Texas Instruments
TI-99/4 Home Computer

TiI
Extended
BASIC

FOR THE TI-99/4 HOME COMPUTER

IMPORTANT NOTICE REGARDING
PROGRAMS AND BOOK MATERIALS

The following should be read and understood before purchasing and/or using
TI Extended BASIC.

Texas Instniments does not warrant that the pragrams contained in the T1
Extended BASIC module and accompanying book materials will meet the
specific requirements of the consumer, or that the programs and book
materials will be free from error. The consumer assumes complete
responsibility for any decision made or actions taken based on information
obtained using these programs and book materials. Any statements made
concerning the utility of TI's programs and book materials are not to be
cunstrued as express or implied warrantics.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THESE PROGRAMS OR BOOK MATERIALS OR ANY PROGRAMS
DERIVED THEREFROM AND MAKES SUCH MATERIALS AVAILABLE SOLELY
ON AN “AS IS"" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF THESE
PROGRAMS OR BOOK MATERIALS, AND THE SOLE AND EXCLUSIVE
LIABILITY OF TEXAS INSTRUMENTS, REGARDLESS OF THE FORM OF
ACTION, SHALL NOT EXCEED THE PURCHASE PRICE OF THIS MODULE.
MOREOVER, TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM
OF ANY KIND WHATSOEVER AGAINST THE USER OF THESE PROGRAMS OR
BOOK MATERIALS BY ANY OTHER PARTY.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages. so the above limitations or exclusions may not apply
to you.

Tl Extended BASIC

FOR THE TI-99/4 HOME COMPUTER

A powertul, high-level programming language that
expands the capability of your T1-99/4 Home
Computer. Includes these features:

= More than 40 new or expanded commands,
statemendis, functions, and subprograms.

 Multipie-statement lines for speed and
efficiency.

B Sprite (moving graphics) capability.

W Subprogram capability that lets you store
commonly used subprograms on diskette for
use as needed.

B The ability to load and run one program from
another.

o Comprehensive program conlrol of errors,
warnings, and breakpoints.

H Direct scraen control of input and output,

B Support for loading and running TMS9900
Assembly Language programs if the optional
Memory Expansion unit (sold separately) is
attached to the computer.

Copynight £ 1981 Texas Instruments Incorporated

Program and data base contents
copyright © 1981 Texas inatruments Incorporated

See ‘moortant warranty information at back o! DeOK

*—f

Table of Contents
This book was developed and written by: Page
o e P Chapter 1 —INTRODUCTION .- e 7
and other stalt members of the Texas lnstrument? .Ln?arning Center g?;l,‘:gr::lromTlBASIc . lg
and the Texas Instruments Personal Computer Division. FHow to Use this ManUal« oo 10
. .) ow to Use the Computer DO 11
";“2::11 Ii‘:)nffgr':il(i)uons by: gpcraling inTI Exktended BASIC . .. 11
Stanley R Hume Special Key Functions. 12
Jacquelyn F. Quiram Chapter 2 ; OVERVIEW OF TIEXTENDED BASIC o 12
ommands
Artwork and layout were coordinated and executed by: issignmems andInput. D U/
Schenck Design Associates, Inc. OULPUL « + v v e e 18
Functions, Subroutines, and Subprograms 19
Bullt-in Functions 20
User-Defined Functions u. 21
Subroutine€s 21
Built-in Subprograms 21
User-WrittenSubprograms 23
Sound, Speech.andColor L 24
SPriles e 25
Debugging 26
ErrorHandling 26
Progiram Entry Example 27
Chapter 3 — TIEXTENDED BASICCONVENTIONS 37
Running aProgramonPowerup 38
Files 38
LineNumbers 38
Lines.. N 38
Special SymbOIS e 38
SPaces 39
Numeric Constantsot e e 39
String Constants 39
Variables. FE e . 39
Numeric Expressions P 41
StrNGEXPressions 41
Relational Expressions 4l
Loglcal EXPressionso 42
ISBN #0-89312-045-3
Library of Cengress Catalog #80-54899
Copyright £ 1981 by Texas Instruments Incorporated
S N
11 Extendad BASIC T Extended BASIC 3

T —
TABLE OF CONTENTS TABLE OF CONTENTS
Chapter 4— REFERENCESECTION cc.... 45 LET ..oovovono o e 111
ABS L 46 LINK - oo oe e Co.112
ACCEPT i 47 LINPUT ..o e 113
ASC e e e e S0 LIST ..o 114
ATN 51 LOAD - o oo 115
BREAK . .o 52 LOCATE . .« oot 116
BYE ..o A4 LOG oo ie e 117
CALL . 55 MAGNIFY ... 118
CHAR ... 56 MAX oo 121
CHARPAT . .\ oo et e e e 59 MERGE ol 129
CHARSET o oot e e 60 MIN . oo 124
CHRS . .. e 60 MOTION 125
CLEAR . o 61 NEW ... 126
CLOSE . .o o e 62 NEXT 127
COINCG ettt e 64 NUMBER 128
COLOR .« .t e e 66 OLD ... 129
CONTINUD © oottt e e e 68 ONBREAK e 130
COS ot 69 ONERROR 131
DAT A . e e e 70 ONGOSUB 133
DEF 72 ONGOTO ... o 135
DELETE 74 ONWARNING 137
DELSPRITE e 75 OPEN e, 138
DIM . e 76 OPTION BASE , e, 141
DISPLAY ..o\t 77 PATTERN.....° 142
DISPLAY..USINGttt 79 PEEK ... 143
DISTANCE . oo oot e e g? gg ST 144
END .o BLROS
EOF . 82 POSITIONo i:g
ERR . 83 PRINT......... o 147
EXD o o oo ... 85 PRINTUSING e 150
FORTOSTEP . ..o\t 86 RANDOMIZE e .151
GCHAR .« oot : 85 READ 152
GOSUB .« e e gl I;ERECM -- 153
GOTO ..o e e Sh et 154
HCHAR . 92 RESEQUENCE oo 155
IF-THEN-ELSE . . .00 oo e 94 RESTORE o e 156
IMAGE . .. e 97 RETURN (with GOSUB) 157
INIT © oo 101 RETURN (withONERROR) = 2
INPUT . e e 102 RND . 159
INPUT (WILHTUES) . . . oo et oot e e e e e e 104 SPTS .. 160
INT __ 107 SUN .. 161
JOYST oo 108 AVE 163
KEY oot 109 SAY 164
LEN oot 110 SCREEN e e
B e
s T Extended BASIC M Extended nasic 3

TABLE OF CONTENTS

SEGS . e 166
SGN e 167
SIN e 168
SIZE . e 164
SOUND . . o 170
SPGET . o e .172
SPRITE e 173
SOR 178
STOP . . e 178
STRS . .o e 179
SUB e 180
SUBEND . 184
SUBEXIT . . . 184
TAB .. e 185
TAN 186
TRACE186
UNBREAK . .. e 187
UNTRACE 187
VAL . 188
VCHAR . . . e e e 188
VERSION190
APPENDICES
Appendix A — List of THustrative PrOgiauns . ..o 192
Appendix B — List of Commands, Slalements, and Functions 194
AppendixC —ASCIICodes o 196
Appendix D — Musical Tone Frequencics 197
AppendixE — CharacterSets 198
Appendix F — Pattern-Identifier Conversion Table 198
Appendix G —ColorCodes 199
Appendix H — Color Combinations. 200
AppendixT — Split Console Keyboard 201
Appendix J — Character Codes for Split Keyboard ..., ..., 201
Appendix K — Mathematical Functions 202
Appendix L — Listof SpeechWordso oo 203
Appendix M — Adding Suffixes to SpeechWords 206
Appendix N —ErrorMessages ... oo 212

CHAPTER

1)

_ Introductio

@

11 Extended BASIC

TTExtended BASIC

INTRODUCTION

FEATURES
Texas Instruments Exlended BASIC is a powerful computer programming
language for use with the Texas Instruments TI-99/4 Home Computer. It has
the features expected from a high level language plus additional features not
available in many other languages, including those designed for use with
large, expensive compulers.

TI Extended BASIC goes beyond Texas Instruments BASIC to enhance the

capability and flexibility of your computer system by adding these features:

B Input and Output — The ACCEPT statement allows the input of data from
anywhere on the sereen. You may clear the screen, accept only certain
characters. and limit the number of characters entered using this
statement. The DISPLAY statement has been enhanced to allow putting
data anywhere on the screen. and DISPLAY ... USING, PRINT ... USING.
and IMAGE have been added [or ease in formatting data on the display
screen and peripheral devices.

B Subprograms — Subprograms with local variables (affecting only values
within the subprogram) can be written in Tl Extended BASIC. Commonly
uscd subprograms may be stored on a diskette and added to programs as
needed. Statements included are SUB, SUBEND. and SUBEXIT. The
MERGE command has been added and the SAVE command moditied (o
allow the merging of programs {rom diskettes.

Sprites — Sprites are specially defined graphics with the ability to move
smoothly on the screen. To provide the sprite capability, the following
subprograms have been included in TI Extended BASIC: COINC,
DELSPRITE. DISTANCE, LOCATE. MAGNIFY. MOTION. PATTERN,
POSITION. and SPRITE. COLOR and CHAR have been redesigned so they
also can aflccl sprites.

B Functions — MAX, returning the larger of two numbers: MIN, returning
the smaller of two numbers: and P1, returning the value of %, have been
included in TI Extended BASIC.

B Arrays — Arrays may have up to seven dimensions instead of three,

String Handling — The RPTS function allows the repetition of a string.

Error Handling — With TI Extended BASIC. vou can choose what action
is taken il there is a minor error {(which in TI BASIC causes a warning
message), a major error (which in TI BASIC causes an error message and
stops the program}, or a breakpoint (which in Tl BASIC causes the
program to hall). The new statements allowing Lhis control are ON
WARNING. ON ERROR, and ON BREAK. RETURN has been modified for
use with crror handhing. The CALL ERR statement can be used (0
determine the nature of an crror that oceurs in a program.

“ T Extended BASK

CHAPTER

@ RUN as a Statement — RUN can be uscd as a statement as well as a

command. RUN has also been modified to allow you to specily which
program to run. As a result, one program can load and run another
program from a diskette Yon can. therelore. write programs of almost
unlimited size by breaking them into picces and letting each segment run
the next.

B Mower-up Program Execution — When TI Extended BASIC is first chosen,

it searches for a program named LOAD on the diskette in disk drive 1. If
that program exists, it is placed in memory and run.

B Multiple Statement Lines — Ti Extended BASIC allows more than one

statement to be on a line, This feature speeds program exceution, saves
memory, and allows logical units (for example FOR-NEXT loops) to be onv a
singlc linc.

B SAVE and LIST Protection — You may protect your programs from being

saved or listed, preventing unauthorized copies of and changes in vour
programs. This, in conjunction with the copy protection leature ol the
Disk Manager Module, can completely secure a TI Extended BASIC
program,

@ [F-THEN-ELSE — The IF-THEN-ELSE statement now allows statements as

the consequences of the comparison. This expansion permils statements
such as “IF X< 4 THEN GOSUB 240 ELSE X=X +1"".

B Multiple Assignments — Tl Extended BASIC allows vou (o assign a value

to more than one variable in a LET statement. saving stalements and
permitting more efficient programming.

B Comments — In addition to the REM statement. comments can be added

to the ends of lines in TI Extended BASIC, allowing detailed internal
documentation of programs.

B Assembly Language Support — With the optional Memory Expansion unit

{available separaltely). TMS9900 assembly language subprograms may be
loaded and run, The subprograms {NIT, LOAD, LINK, and PEEK are used
to access assembly language subprograms. There are no facilities for
writing assembly language programs on the TI-99/4 Home Computer.

& Information — The SIZE command has been added to tell you how much

memory remains unused in your computer. The VERSION subprogram
returns a value which indicales the version of BASIC that is in use. The
CHARYPAT subprogram returns a character siring mdicaung the pattern
which defines a character.

& Memory Expansion — Tl Extended BASIC allows the use of an optional

Memory Expansion peripheral which permits much larger programs (o be
written.

T! Extended TIASIC 9

INTRODUCTION

CHAPTER

CHANGES FROM T1 BASIC

The enhancements described above have made some slight changes
necessary in other areas of TI BASIC. Because of these, some programs
written in TL.O®/4 BASIC may not run in TI Extended DASIC.

B The maximum program size is now 864 bytes smaller than in TI BASIC. If
you have the Memory Expansion peripheral, much larger programs may
be written

B The characters in character sets 15 and 16 are no longer avallable. That
memory area is used by T1 Extended BASIC to keep track of sprites.

B Most programs written in T1 BASIC will also run in TI Extended BASIC
without difficulty. Under certain circumstances, however, such as using a
TI Extended BASIC keyword as a variable in a TI BASIC program,
programs written in TI BASIC may not run in TI Extended BASIC.
However, you can always load TI BASIC programs into Tl Extended
BASIC. Programs using the enhancements of T! Extended BASIC will not
run correctly in TI BASIC.

HOW TO USE THIS MANUAL

This manual assumes that you are already experienced in programming with
TI BASIC. Statements, commands. and functions that are the same as in TI
BASIC are only discussed briefly here. For a cornplete discussion, see the
User’s Reference Guide that came with your TI-99/4 Home Computer,

The additional features uf TI Exiended BASIC are explained in detail and
Nustrated with examples and programs. To get the maximum use from TI
Extended BASIC, read this manual carefully, entering and running the
sample programs to see how they work. Even features that are unchanged
from TI BASIC should be reviewed. You may find that you have been
neglecting a useful statement or discover a new way to use statements in
different combinations.

The remainder of this chapter reviews the basics of operating with TI
Extended BASIC. The second chapter discusses the features of Tl Extended
BASIC and includes a detailed example of entering a program. The third
chapter discusses the conventions of operation with Tl Extended BASIC. The
fourth chapter is a reference section which discusses. in alphabetical order.
all TI Extended BASIC commands, statements. and functions.

The 14 appendices contain much useful information, including ASCIl
character codes, error codes, color codes, keyboard codes, and instruetions
on haw toa add suffixes Lo epeech words,

HOW TO USE THE COMPUTER

Before using the computer with TI Extended BASIC. you must insert the
Solid State Software™ Command Module into the computer. If the computer
i» off, slowly clide the module into the slot on the console until it is in place.

Then turn the computer on. (If you have peripherals, turn them on before
turning on the computer.} The master title screen appears. If the computer is
already on, return to the master title screen. Then slide the module Into the
slot.

Press any key to make the master selection list appear. The title of the
module. TL EXTENDED BASIC, is third on the list. Type 3 to select TI
Extended BASIC.

OPERATING IN TI1 EXTENDED BASIC
There are three main operating modes in Tl Extended BASIC: Command
Mode, Edit Mode. and Run Mode.

Command Mode is the mode entered when you choose TI Extended BASIC
on the master selection list. In the Command Mode you may enter TI
Extended BASIC commands. statements that may be used as commands,
and program lines.

Edit Mode is used to edit existing lines of a TI Extended BASIC program. To
enter Edit Mode, type a line number and press either SHIFT E (UP) or SHVH-'I‘ X
(DOWN). (T1 BASIC also allows EDIT tollowed by a line number, which 'I'l
Extended BASIC does not allow.) The line specified is then displayed on the
screen. You may change it by typing a new line, by typing over part of the
old line, or by using the editing keys discussed below. You arc also in the
Edit Mode when you press SHIFT R (REDO) to repeat a program line or

command.

In Run Mode, a TI Extended BASIC program is executed. You can stop a
running program only by pressing SHIFT ¢ (CLEAR). which causes a
breakpoint, or with SHIFT Q (QUIT). Note: SHIFT @ (QUIT) also erases the
entire prograiu, returns you Lo the master title sereen, and may dclete‘
information from some of your files. The use of BYE is recommended in place
of SHIFT Q (QUIT) to leave TI Extended BASIC.

10 T1 Fxtended BASIC

TI Extended BASIC

INTRODUCTION

DG EE B E]
LA I E DB

[|

SPECIAL KEY FUNCTIONS
The following are the keys that have a special function when pressed at the

same time as the SHIFT key: E, D, S, X, R, T, G, F. C, Q. Each of (hese keys is
discussed below.

SHIFT E (UP) is used in the Edit Mode. If you are not in the Edit Mode, you
may enter it by typing a line number and then pressing SHIFT E (UP). The
line specified is then displayed on the screen and may be edited. If you are
already in the Edit Mode, pressing SMIFT E (UD) cnters the prescnt lue as you
have changed it and displays the next lower numbered line in the program.
Pressing SHIFT E (UP) when you are at the lowest numbered line in the
program returns you to the Command Mode. If you are entering a line in the
Command Mode, SHIFT E (UP) has the same effect as ENTER.

SHIFT B (RIGHT) moves the cursor one space to the right. The cursor does not
erase or change the characters as it passcs over them. Al the end of a line on
the screen, the cursor wraps around to the next screen line, When the cursor
is at the end of an input line, it does not move,

SHIFT $ (LEFT) moves the eursor one space to the left. The cursor does not
erase or change characters as it passes over them. If the cursor is at the
beginning of a line, the cursor does not move. If the cursor is at the left
margin but not at the beginning of an input linc, the cursor goes to the right
margin of the screen line above it.

ST

CHAPTER

SHIFT X (DOWN]) 1s used 1 the Edit Mode. I you arc nut ln the Edit Mode, you
may enter it by typing a line number and then pressing SHIFT X (DOWN). The
\ine specified by the line number is then displayed on the screen and may be
edited. If you are in the Edit Mode, pressing SHIFT X (DOWN) enters the
present line as you have changed it and displays the next higher numbered
line in the program. Pressing SHIFT X (DOWN) when you are at the highest
numbered line in the program returns you to the Command Mode. If you are
entering a line in the Command Mode, SHIFT X {DOWN]) has the same effect

as ENTER.

SHIFT R (REDO) causes the characters on the line previously input to
reappear on the screen. Thus if you wish to enter a line similar to the most
recently entered line, press SHIFT A (REDO). If you enter a line and make a
mistake. you can recall the line using SHIFT R (REDO) and correct it using the
Edit Mode features. This key lets you aveid retyping a long line,

SHIFT T (ERASE) erases all characters on the current line, but leaves the
cursor on that line, If you are in the Command Mode, the cursor refurns tn
the left margin of the screen and you may enter a new line, including the line
number. However, if you are editing a line or the computer is providing the
line numbers (through the use of NUM), the line number is not erased.

SHIFT G (INSERT) instructs the computer to accept inserted characters. Each
subsequent key that you type is inserted at the cursor position and the
character al the cursor position and all characters to the right of the cursor
are shifted one position to the right. Insertion continues with each character
typed until ENTER or one of the other special function keys is pressed.
Characters at the end of a long input line may be lost.

SHIFT F (DELETE) deletes the character that the cursor is on and shilts all
characters to the right of the cursor one position to the left.

SHIFT ¢ (CLEAR) performs different functions depending on the mode that
you are in. If you are in the Edit Mode, any changes that were made to the
line are ignored, including SHIFT T (ERASE), and the computer returns to
Command Mode. If you are in Run Mode. the program is stopped with a

- breakpoint. If you are in Command Mode, the characters that you have typed
on the current line are deleted. When using SHIFT C (CLEAR) to stop a

. program, hold the keys down untll TI Extended BASIC recognizes the

.- breakpoint.

e

Tl Extended BASIC

* Ti Eatended BASIC

13

INTRODUCTION

s CHAPTER

SHIFT @ (QUIT) returns the computer to the master title screen. When you
press SHIFT Q (QUIT), all data and program material are erased from the
computer’s memory. If you are using a disk system, some of your data files

may be lost. Leave TI Extended BASIC by entering BYE instead of using
SHIFT Q {QUIT).

ENTER indicates that you have finished typing the information on the current
line and are ready for the computer to proccas it.

Overview of
Tl Extended BASIC

=

This chapter briefly describes the TI Extendeq BASI.C commands. e
statemenls, and functions and suggests way.'s in which you canluget -

The first eight sections are Commands; Assignments and Inpu:i. Cul p- H
Functions, Subroutines, and Subprograms: Sognd, Speech: and Co or.l)
Sprites: Debugging: and Error Handling. The final section is an erxamp ::) fome
the entry of a program, showing the entry process and the use of some

T1 Extended BASIC elements.

Tl Extended BASK®

Tl Extended RASIC

OVERVIEW OF TI EXTENDED BASIC

COMMANDS

Commands tell the computer te perform a task immediately {that is. as soon
as you press ENTER). while statements are exccuted when a program is run.
In T1 Extended BASIC many commands can be used as statements, and
most statements can be used as commands. A list of all the commands.
statements. and functions is given in Appendix B, indicating the commands
that can be used as statements and the statements that can be used as
commands.

NEW
To remove a program from TI Extended BASIC to prepaie the computer to

accept a new program, use the NEW command. Programs are also removed

from memory by the OLD command and the RUN command when used with
a file name,

NUMBER and RESEQUENCE

When you are entering a program. the compuler assigns line numbers for
you if you enter the NUMBER command. If you wish to resequence the line
numbers of a program after it is written, use the RESEQUENCE command.

LIST

To review the program that you have enfered, use the LIST command. The
program can be listed on the screen or to a peripheral device.

RN
The RUN command instructs the computer to perform, or “execute,” a
program. The RUN command may be followed by a line number to have it

start program cxecution at a specific line, or by a device and filerame o load
and execute a program from a diskette.

TRACE, UNTRACE, BREAK. UNBREAK, and CONTINUE *
All of these commands are related to "debugging’’ a program, which is
finding a problem that causes an crror condition or an incorrect result. These

commands are discussed further in the “Debugging and Error Handling™
section of this chapter.

SAVE. OLD. MERGE, and DELETE

When you are finished working on a program, you may want to store it on a
cassette or diskette [or later use. The SAVE command. followed by the name
of the storage device and a program name. performs this task for you. Then,
when you wish to reuse, list, edit, or change a program, you can load it into
mcory with the OLD command. [f a program has been saved using the
merge option, you can combine it with a program already in memory with
the MERGE command. When you have no further use for a program that has
been saved on diskette, you can rcmove it with the DELETE commanad,

m——— CHAPTER

SIZE i is lLeft
The SIZE command lets you determine how much memory space is left. so

> i lines or end the program
an decide whether to continue to add program .
yg:; ;avc a sccond program run from the first program with RUN used as a
al

statement.

YE o
ahcn you have finished using T1 Extended BASIC. use the BYE command to

return to the master title screen.

several of the commands (RUN. BREAK. UNBREAK. TRACE, UNTRACE,
and DELETE) can also be used as statements in programs.

ASSIGNMENTS AND INPUT 7
This section discusses statements in TI Extended BASIC that assign values
to variables and enter data into programs.

LET and READ

If you know what values are to be assigned to variablgs, use LET or READ
statements. LET is used when you are assigning a fairly srr'xall num_ber of
values or are calculating values to be assigned, and READ is gsed. in '
conjunction with DATA and RESTORE. when you are assigning numcrous
values.

INPUT and LINPUT

When you want the user of the program to assign Yalues, it is customary to
give a prompt that asks for the necessary information. INPUT allows you Ir})l
give a prompt and accept input. INPUT only allows the entry of vah}es at the
bottorn of the screen and cannot check to see that the clatz'a entered is tht.e
type of information the program expects. The final limxtatloq on INPUT is
that commas and quotation marks affect what is entered. Wlth LINPUT,
there is no editing of what is input. so commas and quotation maxfks can be
input. Both INPUT and LINPUT may be used to input data from files on
cassettes and diskettes.

ACCEPT o
ACCEPT allows input from mosl screen positions. Using ACCEPTfhmm'ateﬁ
the necessity of entering data at the bottom of the screen and the “'scrolling
of the INPUT statement. However, ACCEPT doesn't allow a prompt as the
INPUT statcment does. Therefore, a PRINT or DISPLAY statement mgst be
included in the program to tell the user the type of e.nlry that 1s‘requ1red,
ACCEPT can check the input to see that it is numeric, alphabetical. or
specific characters. ACCEPT is for screen and keyboard use only.

16 TI Extended BASIC

TI Extended BASIC

OVERVIEW OF T| EXTENDED BASIC

CHAPTER

CALL KEY ang CALL JOYST

I pre'ssing a single key is all that the program user is required to do, then
CALL KEY can be used. For example, if a Y for “yes” or N for "no” is the
required response, use the CALL KEY statement (o accept the entry, CALL
KEY does not display a character on the screen. It scans the keyboard or a
Portion of the keyboard to see if a key has been pressed. The major limitation
of CALL KEY is that only a single keystroke is accepted. The data is not

CALL CHARPAT, CALL COING, CALL DISTANCE. CALL ERR. FOR.TO-
STEP. CALL GCHAR. CALL POSITION, NEXT. CALL SPGET, and CALL
VERSION

Each of these statements assigns one or more values to a variable, CALL
CHARPAT assigns a value that specifies the pattern of a character. CALL
COINC assigns a value 1o tell if sprites or a sprite and a point on the screen
arc at or near the same lacation on the screcn. CALL DISTANCE indicates
the distance between two sprites or a sprite and a point on the screen. CALL
ERR specifies the error that occurred and where it occurred. CALL GCHAR
reads whalt character is at a given screen location. CALL POSITION reads
where a sprite is on the screen. CALL SPGET assigns the coded value of a
speech phrase (o a variable 1o be used with CALL SAY. CALL VERSION
indicates the version of BASIC in use.

FOR-TO-STEP and NEXT deserve special comment, The FOR-TO-STEP
statement sets the value of a variable so that it can be used to conirol the
number of times a loop is executed. Each time NEXT is cncountered, the
value of the variable is changed. After the loop has been completed, the

variable has a value that Is the first value outside the range specified in the
FOR-TO-STEP statement.

OUTPUT

This section disctisses the TI Extended BASIC statements which are used to
outpit data during Program execution, Usually, output consists of displaying

data on a printer, or saving data on an
external device. However, output can also involve changing the calor of the
screen, changing the enlors of characters, making nuiseg, speaking. or
sending data (o peripheral devices.

i : GE
. S DISPLAY...USING, and IMA:
SPLAY, PRINT...USING, |
PRINT. " ost frequently used output stalement‘s are PRIN};I a’lrn:B[}[SfCI;gﬁ
The b arators (comma, semicolon, and colon].and the AB R?NT
The pdgtt:e&ntrol the placement of information asnlt Eout;\)l\.tp‘;,ard T e
are Ue* f the screen and scrolls them \
3 at the bottom o ipward, one
displays 1ten_1 Y, you can display data almost anyw|
ata umeitfxv‘:\ttl gx-solfl]i‘ri:; 'D);SPLAY can also clear the acreen. erase characters
recn witho .
(s’f; a line, and cause a beep. S
USING and DISPLAY...USING are like PRINT and DKSP1 AY e th;;
l:'RINT“.rormal of the prinied ur displayed characters is ditcrmnrt: b eyUSING
:JhsaltNt(l.‘:eclause possibly in conjunction WithRaIJ;[;\MA({.‘;F}:);t& ;mt[ej siNG
' 1 of the format. P, an X
cmuiglani':\“::ifx;‘uasztcig:t:ﬁth IMAGE, are the only nutput statements that can
gem:seg to send data to an external device.

,and CALL SPRITE
O HOHAR C‘?iLé‘A\I"cl:‘l-ilitilAR place a character at any screen position
by HCHa?lR ;ra: eat it horizontally or vertically. CALL SPRITE displatll)]’ls "
e Opt{?n fhe ;)creen. Sprites are graphics that can be moved slx;}go c‘ythe
;:l;!ﬂdtf;cggn and changed in pattern, size, and color. CALL SPRI an

other statements re. ated to rites are discussed later 1 isc apter.
th it to sp Jt nth h

SCREEN and CALL COLOR _—
[CnA:;:iition to displaying characters ancfi c}l]ala rclm tl;teefscrece:ﬁ):osucigé\l se;gs
reen and the colors of the chara . s
gz ;gxl::;r? fc:)}llgr‘i;cCALL COLOR specifies the foreground and backgroun
colors of characters or the color of sprites.

ALL SOUND and CALL SAY .
SEALL SOUND outputs sounds. A wide range of sounds is aiall:tzlee.c :)rrln puter
addition. CALL SAY (possibly used with CALL SP‘GET] mahet1 e com
speakoif 'you have a Solid State Speech™ Synthesizer attache y

computer.

S
FUNCTIONS, SUBROUTINES, AND SUBPROGRA;G bprograms for
ded BASIC provides extensive functions and subp! rans o
:;Eg]:en numbers and characters, In additon. you may cons ¥
functior;gs and write your own subprograms and subroutines.

lue,
Functions are TI Extended BASIC language elemenﬁ thatﬁr;t;;gnas \:;eu
'us:;l:lly based on parameters given to fhe fuﬂzlcctticzg;3 " :sx:x);t unctions ar¢ ced
ical in nature; others control or afle roduce
“gl;?x:r;t:tlgfnents in which they occur. T?;;[Lléﬁer[l‘doeg Bl:s}l(c ;;;c ;?1 .
TN, CHRS, COS, EOF, EXP, ' . . AL
POS. REC. RND, RPTS, SEGS, SGN. SIN, SQR, STRS, TAB, TAN, an

TI Extended BAGIC

19
TI Extended BASIC

CHAPTER

OVERVIEW OF T| EXTENDED BASIC

You can also define your own functions using DEF. Funcions are used
within TI Extended BASIC statements.

Built-in Functions
The following briefly discuases cach built-in function.

ed Functions -
v'er—m::i to define your own functions. Functions up to one line in length
DEF is u

i . Longer functions may be
d, with up to one argument L i
may be (:egnbey having new definitions refer to previously den.ned fl:ll)nCUO-nS.s
constru® elong functions might be more efficiently handled with subroutine:
However,

TI Fxtended BASIC

Function Value Returned and Comments ¢ subprograms.
ABS Absolute value of a numeric expression, ° tines .
ASC The nuucric ASCI code of the first character of a string :;I;r;; and ON...GOSUB are used to call subroutirc;es. A sut;;’?;lﬂrs‘:dlsi naa
expression. igned to perform a task and is norm
ATN Trigonometric arctangent of a numeric €xpression given in ;er;';a?; sﬁ:? ingzrcfl:frﬁs a taskpseverta}lll l;l;l;i E:c:i;‘go(;eoiiz::l times.
radians, . you do not have to type the ; N
CHRS Character that corresponds to an ASCII code, g:g‘s?,obrsoli?mi can use the values of any variable in the program and
Cos Trigonometric cosine of a aumeric expression given in radians, change thosc valucs.
FOF End-ul-file condition of g file, g bprograms aci
EXp Exponential value (ex) of o numeric expression. ::ﬂut::,n::pigrgms are T1 Extended BASIC eleilfnttzfgriteﬁfrf‘r);’:;35?_1;1
INT Integer value of a numeric expression. functions. They always are accessed with l;g%gAcLESAR COINC COLOR,
LEN Number of characters in a string expression. subprograms are CHAR, CHARPAT, C::A;{CHAI.Q INIT l:;Q\(sT. KEY, LINK,
LOG Natural logarithm of a numeric expression DELSPRITE, DISTANCE. ERR, GCHA PATTERN. PEEK. POSITION. SAY.
MAX Larger of two numeric expressions. LOAD. LOCATE. Mglbc}glvlal’!;‘Y‘SPRlTE. VCHAR, and VERSION.
MIN Smalier of two numeric expressions, SCREEN, SOUND. . ifferent tasks. Some of the
P o With a value of 3.141592654, eubprograma ac the display and determine whai key ha been pressed on
POS Position of the first occurrence of one string expression within subprograms affect the display
another, the keybhoard.
REC Current record Position in a file, Built-in
RND Random number from g (o 1. Subprogram Action and Comments
RPTS String expression equal to a number of copies of a string CLEAR CleafS. the screen. { characters in character sets or the
eXpression concatenated together, COLOR Specifies the colors of c
SEGS Substring of a string expression, starting at a specified point in color of sprites. f the character at a screen position.
that string and ending after a certain number of characters, GCHAR Returns the ASCII code o 4 opuonally repeats 1
SGN Sign of a numeric expression. _EHCHAR D]sPlays a character on the screen and op
SIN Trigonometric sine of a numerie expression given in radians, i hortzontally. indicating the position of the Wired Remote
SQR Square root of a numeric expression. gJOYS]‘ Returnlslcvrzh(-:]esu:nal)_
STRS String equivaleni of a numeric expression. 4 Contro wdf: indicating the key (hat has been pressed.
TAB position for the next item in the pring.jist of PRINT, | KEY Returns 2 he color of the screen.
PRINT...USING, DISPLAY. or DISPLAY. .UsING. | SCREEN SPemﬁes o ter on the screen and optionally repeats it
TAN Trigonornetric tangent of a numeric CXpression given in }VCHAR DlSPlayls a characte
radians, ; vertically.
VAL Numeric value of 5 sSlring expression which represents a
Dumber,
20 / T1 Extended BASIC

OVERVIEW OF TI EXTENDED BASIC

- CHAPTER

Built-in subprograms can also define and control sprites.

Built-in
Subprogram Action and Comments

CHAR - Specifies the pattern for a character used for a sprite or a
graphic.

COINC Determines if two sprites or a sprite and a point on the
screen are at or near the same location on the screen.

COLOR Specifies the color of a sprite or a character set.

DELSPRITE Deletes sprites.

DISTANCE Determines the distance between two sprites or a sprite and
a location.

LOCATE Specifies the position of a sprite,

MAGNIFY Changes the size of sprites.

MOTION Specifies the motion of a sprite.

PATTERN Specifies the character that defines a sprite.

POSITION Determines the position of a sprite.

SPRITE Defines sprites, specifying the character that defines them,

their color. their position, and their motion.

A third category of built-in TI Extended BASIC subprograms involves sound
and speech.

Budlt-in
Subprogram Action and Comments
SAY Causes the computer to speak words when used in
conjunction with the Solid State Speech™ Synthesizer.

Generates sounds.
Retrieves the codes that make speech.

SOUND
SPGET

Four built-in subprograms are only used with machine language
subprograms obtained from Texas Instruments or another source written in
TMS9900 machme language on another computer. Machine language
subprograms cannot be written on the Ti-99/4 Home Computer. Detailed
instructions on the use of INIT. LINK. LOAD. and PEEK are provided with
machine language subprograms.

Finally there are some miscellaneous built-in subprograms.

Butlt-in
Subprogram Action and Comments
CHARPAT Returns a value that identifies the pattern of a character.
CHARSET Resets characters 32 through 95 to their original pre-defined

patterns and colors.
ERR Returns values which give information about an etror that
has occurred.

VERSION Specifies the version of BASIC that is being used.

User-Written Subprograms

You may write your own subprograms. They are a series of statements
designed to perform a task. They may be used in a program when you
expect to perform the task several times or to perform the same task in
geveral different programs. Using the MERGE option when you save a

subprogram allows it to be includced in other programs.

When a subprogram is in a program. it must follow the main program. The
structure of a program must be as follows:
Start of Main Program

Subprogram Calls

The program will stop here
without a STOP or END
statement.

Subprograms are optional.

End of Main Program

Start of First Subprogram

Nothing may appear between
subprograms cxcept remarks and
the END statement.

i-:nd of First Subprogram

Start of Second Subprogram

Only remarks and END may

End of Second Subprogram
appear after the subprograms.

End of Program

22 Tl Extendegd BASIC

TI Extended BASIC 23

OVERVIEW OF TI EXTENDED BASIC

Subprograms are called by the use of CALL followed by the subprogram’s
name and an optional list of parameters and values. The first line of a
subprogram is SUB. followed by the name of the subprogram and optionally
followed by a list of parameters.

The subprograms you wrile are not part of the main program. They cannot
use the values of variables in the main program, so any values that are
needed must be supplied by the parameter list in the CALL slatement.
Variable names may be duplicates of those in the main program or other
subprograms without affecting the values of the variables in the main
program or other subprograms. Subprograms may call other subprograms,
but must not call themselves. either directly or indirectly.

SUBEND must be the last statement in a subprogram. When that statement
s executed, control returns to the statement following the statement that
called the subprogram. Control may also be returned by the SUBEXIT
statement.

SOUND, SPEECH, AND COLOR
You may highlight important sections ol your programs’s output through the

use of sounds, speech, and colors. This “human engineering’” makes the
program easicr and more interesting to use.

CALL SOUND

SOLIND oulputs sounds. Tones may be output in lengths of f[rom 001 to 4.25
seconds at volumes from O (loudest) to 30 (softest). The [requency range is
from 110 (A below low C) 10 44,733 (abave the range of human hearing). [n
addition. 8 noiscs are available. Up to three tones and one noise may be
produced at the same time, Appendix D lists the frequencics that are used (o
produce the musical notes.

CAILL SAY and CALL SPGET

SAY produces speech when a Texas Instruments Selid State Speech™
Synthesizer (sold separately) is attached to the console, You can choose
among 373 letters. numbers. wards, and phrases (listed in Appendix L). In
addition, you can construct new words from old by combining words. For
cxample. SOME + THING produces “something™ and THERE + FOUR
produces “therefore.”

SPGET is used to retrieve the speech codes that produce speech. These
patterns can then be used Lo produce more natural speech and can be used
to change words. Decause making new words is a complex process. it is not
discussed in this manual. However, suffixes can be added rather simply.
Appendix M tells how to add the suffixes ING. S. and ED to any word. so that
words such as ANSWERING. ANSWERS., ANSWERED, INSTRUCTING,
INSTRUCTS. and INSTRUCTED are included in the computer’'s vocabulary.

24 T1 Extended BASIC

- CHAPTER

CALL COLOR and CALL SCREEN
COLOR changes the colors of character sets and determines sprite colors.

SCREEN specifies the color of the screen as one of the sixteen colors
avallable on the TI-99/4 Home Computer.

SPRITES
sprites are graphics tat can be displayed and moved on the sereen. Onc
advantage that sprites have over other characters is that they can be at any
of 49,152 positions of 192 rows and 256 columns rather than one of the 768
itions of 24 rows and 32 columns used by statementa such as CALL
VCHAR and CALL HCHAR. Because of this greater resolution, sprites can
move more smoothly than characters. Also, once set in motion, sprites can
continue to move without further program control.

CALL SPRITE

CALL SPRITE defines sprites. This subprogram specifies the character
pattern that sprites usc, their color, their position, and, optionally, their
motion.

CALL CHAR and CALL MAGNIFY

Although you may use any of the predefined characters. numbers 32
through 95, as a sprite. CALL CHAR is generally used to define a new
pattern for a sprite. Up to four 8 by 8 dot characters may be used to form a
sprite. The MAGNIFY subprogram controls the resolution and size of sprites.

CALL COLOR, CALL LOCATE, CALL PATTERN. and CALL MOTION
Once a sprite is set up. it can be altered by various subprograms. COLOR
changes the color of a sprite. LOCATE moves the sprite to a new position.
PATTERN changes the character that defines a sprite. MOTION alters the
motion of a sprite.

CALL COINC. CALL DISTANCE, and CALL POSITION

Three subprograms provide information about sprites while a program is
running. COINC returne a value that indicates if sprites or a sprite and a
Point on the screen are al or near the same place on the screen. DISTANCE
returns a value that specifies the distance between two sprites or a sprite and
a point on the sereen. POSITION returns values that indicate the position of a
Sprite.

CALL DELSPRITE
CALL DELSPRITE allows you Lo delete sprites. If you prefer. you may *‘hide”
Bprites by locating them off the bottom of the screen.

——

T Extended BASIC 25

OVERVIEW OF TI EXTENDED BASIC

CHAPTER

DEBUGGING

Debugging a program is finding logical or typing errors in a program.
BREAK, CONTINUE, TRACE. ON BREAK. UNBREAK, UNTRACE, and
SHIFT € (CLEAR) are most often used in debugging.

BREAK, ON BREAK, CONTINUE, and UNBREAK

BREAK causcs thc computer to stop program cxecution so that you can print
the values of variables or change their values. BREAK also resets characters
to their standard colors (black on transparent). restores the standard screen
color (cyan). restores the standard characters (32-95) to their standard
representation, and deletes sprites.

ON BREAK tells the computer what to do if a break occurs. You can use this
statement to tell the computer to ignore breakpoints that you have ¢ntered in
the program. CONTINUE causes the computer to continue program
execution after a breakpoint. UNBREAK cancels any breakpolints set with
BREAK. Note: If you have put ON BREAK CONTINUE, the computer will not
stop when you press SHIFT C (CLEAR).

TRACE and UNTRACE

TRACE causes the computer to display each line number before the
statement(s) on that line is (are) executed. Using this statement allows you to
follow the sequence of operation of a program. UNTRACE cancels the
operation of TRACE.

ERROR HANDLING
You may include statements in a program to handle errors that occur while
the program is running.

CALL ERR, ON ERROR, ON WARNING. and RETURN

CALL ERR returns information indicating where an error has occured and
what the error is. Appendix N lists the error codes that are returned. ON
ERROR specifies what the computer does if an error occurs, ON WARNING
specifies what the computer does if a condition arises that would normally
cause a warning message to be issued. RETURN is used with ON ERROR in
addition to its use with GOSUB. It repeats execution of the statement that
caused the error, returns to the statement following the one that caused the
error. or transters control to some other part of the program that avoids the
error that has occurred.

PROGRAM ENTRY EXAMPLE

Now that you've had a brief overview of the features of T1 Extended BASIC,
you may enjoy reviewing or even entering and experimenting with a
demnonstration program. This seetion demonstrates a number of the useful
features of TI Extended BASIC. By following the suggestions in this scction.
you can learn some uscful shortcuts in the entry process.

This program allows you to play a game called Codebreaker. In playing it,
ou determine the length of a code (1 1o 8 digits). Then you decide the range
of digits that may be included in the code {up to ten). The computer selects
the digits in the code without repeating digits. You then guess what the
digits are and their sequence. After each guess, the computer tells you how
many digits you guessed correctly and how many are in the correct place. (If
you repeat a digit in your guess, It ts counted as right each ume it appears.)
Using this information. you guess again. You win when you guess all the
digits correctly and place them in the proper sequence.
For example, suppose yvou've chosen to play the game using four digits with
each digit being any one of nine numbers (0, 1, 2, 3, 4. 5. 6. 7, or 8). The
code the computer chooses might be 0743, which you are trying to break.
Here is a possible sequence of guesses.

EXPLANATION OF THE

GUESS RIGHT PLACE COMPUTER'S RESPONSE
0000 4 1 0 is right four times, once in the right place.
1234 2 0 3 and 4 are right, but not in the right place.
5678 1 0 7 is right, but not in the right place.
2348 2 1 3 and 4 are right. and 4 is in the right place.
0347 4 2 All right, O and 4 in the right place.
3047 4 1 All right, 4 in the right place.
0734 4 2 All right, 0 and 7 in the right place.
0743 4 4 All right, all in the right place. You win.

To begin entering the example, turn on any peripheral devices you have
connected to the computer. Insert the TI Extended BASIC Command Module
and turn on the computer. Press any key to go to the master scleclion list.
Press 3 to select TI Extended BASIC.

In the following. the characters you Lype and the keys you press are
UNDERLINED.

[—

26 Tl Extended BASIC

B Extended BASIC 27

OVERVIEW OF TI EXTENDED BASIC

CODEBREAKER Program Entry

COMMENTS DISPLAY

% READY *
Automatically numbers the program >NUM ENTER
lines.
Title and language. >100 REM CODEBREAKER XBASIC ENTER
Reserves room for the codes and >110 DIM CODE$(8),GUESSE(S) ENTER
guesses,
Makes the codes random. >120 RANDOMIZE ENTER
Clears the screen, beeps, and puts >130 DISPLAY AT(11,9)BEEP ERA
the title CODEBREAKER on the 11th SE ALL:"CODEBREAKER™ ENTER
row starting in the 9th column.
REDO repeats whatever was done >140 SHIFTR
before ENTER was last pressed. Using
the edit keys [SHIFT G (INSERT).
SHIFT F (DELETE), and the arrows],
change line 130 to: 140 DISPLAY
AT(19.1)BEEP:"* NUMBER OF
CODES? (1-8)".
Beeps and displays NUMBER OF 140 DISPLAY AT{19,1)BEEP:"NU
CODES? (1-8) on the 19th row MBER OF CODES? (1-8)" - ENTER
starling at the first column.
Press SHIFT R (REDO) again. Now > SHIFTR
change line 140 to: 150 DISPLAY
AT(21.6)BEEP:“DIGITS EACH
CODE?",
Beeps and displays DIGITS EACH 150 DISPLAY AT(21,6)BEEP:"DI
CODE? on the 21st row starting at GITS EACH CODE?" ENTER
the 6th column.
Accepts into CODES an entry on the >160 ACCEPT AT(19,24)VALIDATE
19th line, 24th column, allowing (DIGIT): CODES ENTER
only digits to be entered.
Change line 160 to: 170 ACCEPT > SHIFTR
ATi21.24) VALIDATE(DIGIT):
DIGITS.
Accepts into DIGITS an entry on the 170 ACCEPT AT(21,24)VALIDATE
21st line, 24th column, allowing only (DIGIT):DIGITS ENTER

digits to be entered.

28 ‘11 Extended BASIC

CHAPTER

>LIST

100 REM CODEBREAKER XBASIC
110 DIM CODE$(8),GUESS$(8)
120 RANDOMIZE

130 DISPLAY AT(11,9)BEEP ERA
SE ALL:''CODEBREAKER"

140 DISPLAY AT{19,1)BEEP: NU
MBER OF CODES? (1-8)"

150 DISPLAY AT(21,6)BEEP:"DI
GITS EACH CODE?T"

160 ACCEPT AT(19,24)VALIDATE
(DIGIT) :CODES

170 ACCEPT AT(21,24)VALIDATE
(DIGIT):DIGITS

Displays the program as 1t is
currently entered.

Runs the program. >RUN

Screen clears, then this appears:
CODEBREAKER
NUMBER COF CODES? (1-8) H

DIGITS EACH CODE?

Enter anything except a digit. The computer beeps and does not accept it.

Enter 4. The cursor moves down to the second prompt. Enter 10, The

program ends and you can continue entry.

* READY ¥

>NUM 180

>180 ITF CODES>DIGITS TIIEN DIS
PLAY AT(24,2)BEEP:"NO MORE C
ODES THAN DIGITS'"::GOTQ 160

Numbers lines starting with 180.
Chechs o sce that thoie will be
enough digits for the number of
codes. If CODES is less than or equal
to DIGITS, cuntrol passes to the next
line. If CODES is greater than
DIGITS, the message NO MORE
CODES THAN DIGITS is displayed
on the last line of the screen. and
contro] is transferred to line 160
again.

ENTER

TI Extended BASIC 29

wo—— CHAPTER

OVERVIEW OF TI EXTENDED BASIC
Starts the loop to choose the codes. »>190 FOR A=1 TO CODES !CHOCSE Completes inside loop. >370 NEXT F ENTER
The words after the exclamation CODES ENTER Completes outside loop. >380 NEXT E ENTER
point are a comment. Displays the number of digits that >390 DISPLAY AT(ROW,14):RIGHT ENTER
Chooscs codes at random. >200 CODE$(A)-STR$ (INT(RND*DI are correct.

GI15)) ENTER £EDO line 390 to be: 400 DISPLAY 400 SHIFTR
Starts the loop to prevent duplicate >210 FOR B=0 TQ A-1 !CHECK FO AT (ROW,22).PLACE.
codes. R_DIPPLICATES ENTER pygplays the number of digits that 400 DISFLAY AL(KUW,Z2) 1PLACE ENTER
Checks for duplicates. Chooses a new >220 IF CODE$(A)=CODE$(B) THE are in the correct place.
code if there is a duplicate. N 200 ENTER numbers lines starting at 410. SNUM_410 ENTER
Finishes duplicate check loop. >230 NEXT B ENTER Checks Lo sce Uf the code has been >410 IF PLACES>CODES THEN ROW
Finishes code choice loop. »240 NEXT A ENTER solved. If it has, goes to the next line. _poy+1::IF ROWS22 THEN 470 E
Sets a variable to kKeep track of >250 ROW=2 ENTER

where information is displayed on
the screen.

Clears the screen and displays a
column heading on the top line.
REDQ line 260 so it reads: 270
DISPLAY AT(24,3):"ENTER "X’ FOR
SOLUTION".

Displays an instruction at the bottom
of the screen.

Numbers lines starting at 280.
Accepts the guess at the proper row.
Checks for giving up or resetting.

Begins loop to break up the guess to
check it for accuracy.

Scparates guess into individual
digits.

Completes loop to separate guess.
sets KIGH'T and PLACE to zero.
Begins outside loop to check the
guess against the code.

Begins inside loop to check guess.

If a guess doesn't match a code. goes
to the next line. If a guess maliches a
code. adds one to the number
correct. Then if the guess is in the
correct place, adds one to the
number m the correct place.

>260 DISPLAY AT(1,1)ERASE ALL
:'GUESS RIGHT PLACE" ENTER

>270 SHIFTR

270 DISPLAY AT(24,3): ENTER

'X' FOR SOLUTION" ENTER
>NUM 280 ENTER

>280 ACCEPT AT(ROW,1):C$ ENTER

>290 IF Cp="X" THEN 470 !GIVE

UP OR RECET ENTER
>300 FOR D=1 TO CODES !BREAK
UP GUESS ENTER

>310 GUESS3(D)=SEG$(C$,D,1) ENTER

>320 NEXT D ENTER
>330 RIGHT,PLACE=Q ENTER
>340 FOR E=1 TO CODES [{HECK

GUESS FOR CORRECTNESS ENTER
>350 FOR F=1 TO CODES ENTER

>360 1F CODE$(F)=CUESS$(F) TH
EN RIGHT=RIGHT+1::IF E=F THE
N_PLACE=PLACE+1 ENTER

If it has not, adds one to the row. LSE 280 ENTER
Then if the row 1s more than 22, -

goes to line 470 and gives the

solution. Otherwise, returns to line

280 10 accept another guess,

Displays the win message with the >420 DISPLAY AT(23,1)BEEP:"Y0
number of guesses at the 23rd row y yIN WITH';ROW-1;“GUESSES.” ENTER
starung at the first column.

REDO line 420 to be: 430 DISPLAY >430 SHIFTR
AT(24.1) BEEP:"PLAY AGAIN? (Y/N)

Y.

Displays the prompt PLAY AGAIN? 430 DISPLAY AT(24,1)BEEP:“PL

(Y/N) Y at the 24th row starting at AY AGAIN? (Y/N) ¥~ ENTER
the first column,

Numbers lines starting at 440. SNUM 440 ENTER
Accepts an entry into X8 on the 24th 440 ACCEPT AT(24,19)SIZE(-1)

row, 19ih column. Does not remove BEEP VALIDATE("YN") 1 X$ ENTER

any character that is already there
{In this case, a Y from the DISPLAY
statement in line 430), accepts only
one character, beeps, and accepts
‘only Y or N. Pressing ENTER at this
Jpoint when the program is running
@Dnﬂrms the Y that was displayed by

Aine 430.

1Y is entered, returns to line 190 >450 IF X$="Y" THEN 190 ENTER
‘and chooses a new code for another

“game.

/Stops the program. >460 STOP ENTER

30

T! Extended BASIC

Tl Extended BASIC 81

OVERVIEW OF TI EXTENDED BASIC

CHAPTER

Displays the message THE CODE IS
at the 23rd row, lst column.

Begins a loop to display the digits.
Displays the digits.

Finishes the loop.

Leave the number mode.

Press DOWN ARROW as if to edit
line 430 so you can use SHIFT R
(REDQ).

Press REDO. Line 510 is a duplicate
of line 430. so change the line
number to 510.

Displays the prompt PLAY AGAIN"?
(Y/N} Y at the 24th row starting at
the 1st column.

Press DOWN ARROW as if to edit
line 440 so you can use SHIFT R
(REDO}.

Press REDO. Line 520 is a duplicate
of line 440, so change the line
number to 520,

Accepts an entry into X8 on the 24th
row, 19th column. Does not remove
any character that is already
displayed (in this case a Y from the
DISPLAY statement in line 510),
accepls only one character, beeps,
and accepts only Y or N. Pressing
ENTER at this point when the
program is running confirms the Y
that was displayed by linc 510,

I Y is entered, returns to line 130,
allows changing the number of digits
in a code and the number of
acceplable digits, and starts a new
gamc

>470 ULSPLAY AT(23,1)BEEP:"TH
E CODE IS" !10SE, GIVE UP, O

R_RESET ENTER
>4B0 FOH =1 TO CODES ENTER
>490 DISPLAY AT(23,12+G):CODE

$(G) ENTER
>500 NEXT G ENTER
>510 ENTER
>430 DOWN ARROW

430 DISFLAY AT(24,1)BEEP: PL

AY AGAIN? (Y/N) Y° ENTER
> SHIFTR

510 DISPLAY AT(24,1)BEEP:"PL
AY AGAIN? (Y/N) ¥~ ENTER

440 DOWN ARROW
440 ACCEPT AT(24,19)SIZE(-1)
BEEP VALIDATE(“YN"):X$ ENTER

> SHIFTR

>520 ACCEPT AT(24,19)SIZE(-1)
BEEP VALIDATE(“YN"):X$ ENTER

>530 IF X$="Y" THEN 130 ENTER

32

TI Extended BASIC

pefure running a program, you should proofread it. Here is a list of the entire

program for you to check against your program list.

100 REM CODEBREAKER XBASIC
110 DIM CODE$(8),GUESS$(8)
120 RANDOMIZE

130 DISPLAY AT{1l,9)BEEP ERA

SE ALL:*'CODEBREAKER"

140 DISPLAY AT(19,1)BEEP:"NU
MBFR OF CODES? (1-8}"

150 DISPLAY AT(21,6)}BEEP: DI
GITS EACH CODE?"

160 ACCEPT AT(19,24)VALIDATE
(DIGIT) :CODES

170 ACCEPT AT(21,24)VALIDATE
(DIGIT) :DIGITS

180 IF CODES>DIGITS THEN DIS
PLAY AT(24,2)BEEP:"NO MORE C
ODES THAN DIGITS'::GOTQ 160
190 FOR A=1 TO CODES !CHOOSE
CODES

200 CODE$(A)=STR${ INT(RND*DI
GITS))

210 FOR B=0 TO A-1 !NO DUPLI
CATES

220 IF CODE$(A)=CODE$(B) THE
N 200

230 NEXT B

240 NEXT A

250 ROW=2

260 DISPLAY AT(1,1)ERASE ALL
:GUESS RIGHT PLACE"
270 DISPLAY AT(24,3): ENTER
"' FOR SOLUTION"

280 ACCEPT AT{ROW,1):C$

290 IF C$="X" THEN 470 IGIVE
UP OR RESET

300 FOH D=1 TQ CODES |BKEAK
UP GUESS

Tl Extended BASIC

33

OVERVIEW OF TI EXTENDED BASIC

310 GUESS$(D)=SEG$(CS,D,1)
320 NEXT D

330 RIGHT,PLACE=0

340 FOR E=1 TU CODES |CHECK
GUESS

350 FOR F=1 TO CCDES

360 IF CODE$(E)=GUESS$(F) TH
EN RIGHT=RIGHT+1::IF E=F THE
N PLACE=PLACE+1

370 NEXT P

380 NEXT E

360 DTSPLAY AT({ROW,14) :RTGHT
400 DISPLAY AT(ROW,22):PLACE
410 IF PLACE<>CODES THEN ROW
-ROW+1::IT ROW»22 THEN 470 E
LSE 280

420 DISPLAY AT(23,1)BEEP:"Y0
U WIN WITH";ROW-1; 'GUESSES.”
430 DISPLAY AT(24,1)BEEP:"PL
AY AGAIN? (Y/N) Y-

440 ACCEPT AT(24,19)SIZE(-1)
BEEP VALIDATE(“YN"}:X$

450 IF X$="Y' THEN 190

460 STOP

470 DISPLAY AT(23,1)BEEP:"TH
E CODE 1S !LOSE, GIVE Ul, @
R RESET

480 FOR G=1 TO CODES

490 DISPLAY AT(23,12+G):CUODE
3(G)

500 NEXT G

510 DISPLAY AT(24,1)BEEP:'PL
AY AGAIN? (Y/N) Y~

520 ACCEPT AT{24,19)SIZE(-1)
BEEP VALIDATE{"YN"):X$

530 IF X$="Y" THEN 130

34

T! Extended BASIC

CHAPTER

Now run the program by typing RUN and pressing ENTER. Choose 4 codes
with 10 digits (0, 1, 2, 3. 4. 5, 6. 7, 8, and 9) possible in each code. Guessing
the code in six tries is excellent. Finding it in eight is very good.

If you wish to use the program again, save it on diskette or cassette. To save
it on cassette, make sure the cassette player is connected. Then enter SAVE
€51 and follow the instructions that appear on the screen,

To save the program on diskette, enter SAVE DSKI1 filename with whatever
Jilename you wish to use to save il. such as CODEBREAK.

After saving the program, or if you do not wish to save the program, cnter
NEW. The program is removed and you may enter another program.

If you have saved the program, you can easily relcad it into the computer's
memory for reuse or further editing. Keload the program from a cassette by
entering OLD CS1 and then following the instructions that appear on the
screen. Reload the program from diskette by entering OLD DSKI1 filenarme
using whatcvcer fliename you uscd to save it.

When you have finished using TI Extended BASIC, enter BYE to return to
the master title screen.

£ T Extended BASIC 35

36

Tl Extended BASIC

- CHAPTER

T

Tl Extended BASIC
__ Conventions

e T - —

This chapter discusses the format that TI Extended BASIC programs must
take and the ways in which TI Extended BASIC functions.

TI Extended BASIC 37

TI EXTENDED BASIC CONVENTIONS

p— CHAPTER

RUNNING A PROGRAM ON POWERUP

If a program named LOAD is on the diskette in disk drive 1 when TI
Extended BASIC is chosen. that program is loaded and run. The effect is the
same as if you had entered RUN "DSK1.LOAD". If the program does not
exist, there is a momentary delay while TI Extended BASIC looks for it.

FILES
Files are groups of data put on external devices. The most common files are
on cassettes or diskettes, but data sent through external devices such as the

RS232 Interface and the optional thermal printer are also considered to be
files by TI Extended BASIC.

LINE NUMBERS

Linc numbers are required in TI Extended BASIC programs. Line numbers
specify the order in which lines are executed and are used to identify what
lines to execute next when using IF-THEN-ELSE, GOTO, GOSUB, ON
ERROR, ON..GOTOQO, and ON.. GOSUB. Line numbers may also be used by
BREAK, LIST, NUM, RESTORE, RETURN, and RUN. Line numbers may be
any integer from 1 through 32767,

The computer automatically gencrates line numbers il you issue the NUM
command. When not followed by a line number, it provides line numbers
starting at 100. incrementing each subsequent line by 10. You may
resequence Hne numhbers with the RES command.

LINES

Lines may be up to 140 characters long, including the line number and
spaces. If you have reached the end of a line, additional characters you enter
replace the 140th character. It is possible to make a line longer than 140
characters in the Edit Mode by the use of SHIFT G (INSERT).

SPECIAL SYMBOLS

Special symbols separate statements and remarks on the same line. A line of
T1 Extended BASIC consists of a line number, one or more Tl Extended
BASIC statements, and an optional remark. For example:

100 FOR A=1 TO 100::PRINT A;SQR(A):NEXT A IPRINT SQUARE ROOTS

The statement separator symbol, a double colon (::), is used to separate
statements on the same line. The tail remark symbol, an exclamalion point
(1). is used to separate an explanatory remark from the rest of the line.
Remarks are not executed when the program is run.

——
SPACES
Spaces are required in TI Extended BASIC between the elements that make
up statements to enable the computer to distinguish variable names from TI
Extended BASIC clements. However. spaces are not 1eyuired before or after
relational symbols or before or after the tail remark symbol or the statement
geparator symbol. You may insert cxtra spaces when inputting commands
and statements, but they are deleted by TI Extended BASIC. When listing
grams. Ti Extended BASIC may add spaces around the tail remark
symbol and statement separator symbol.

NUMERIC CONSTANTS

Numeric constants may be entered with any number of digits. However, they
are rounded to 13 or 14 digits by the computer due to the internal storage
method uscd Ly the computer, and are normally displayed as a maximum of
10 digits. For extremely large or small numbers, it is usually more
eonvenient to use scientific notation to enter numbers. The computer
normally uses scientific notation when printing very larde or small numhers

In scientific notation, a number is given as a mantissa (a number with one
place to the left of the decimal point) times 10 raised to an integer power. 15
i8 expressed in sclentific notadon as 1.5 x 10'. 150 is expressed as 1.5x 10%
- 1,500 is expressed as - 1.5 x 103 156,789,000.000,000 is expressed as
1.56789 x 10**; and 0.156789 is expressed as 1.56789x 10-!. In TI Extended
BASIC, The ' x 10" is represented by “E”. Thus 1.5 x 10% becomes 1.5E3.

Numeric constants are defined in the range ~9.9999999999999E127 to
-1E-128, 0, and 1E-128 to 9.9999999999999E127. If the exponent of a
calculated number is greater than 99, then ** is normally printed ur
displayed as the power. The entire exg)nent is kept internally and can be
displayed with a USING clause in a PRINT or DISPLAY stalement.

S8TRING CONSTANTS

:Qtﬂng constants in Tl Extended BASIC can be up to one input line long. If
the atring is enclnsed in quotation marks. quotation marks in the string are
'S[Bpresented by double quotation marks.

YARIABLES

Wariables in 11 Extended BASIC may consist of one to 13 characters, The
#rst character of a variable must be a letter of the alphabet. the at symbol
1), or an underline (__). Subsequent characters may be those symbols plus
‘finy of the digits. The last character of a string variable must always be a
‘dollar sign ($). Variables are either scalar or arrays with up to seven
Mdimensions.

[—

38 TI Extended BASIC

T Extended BASIC 30

TI EXTENDED BASIC CONVENTIONS

Certain words are reserved for use by 11 Extended BASIC. They are Lthe
commands. statements, functions, and operators that make up the language.
These words may not be used as a variable name. but they may make up
part of a variablc name. The following is a complete list of the words rescrved
for TI Extended BASIC,

ABS EOF NUMBER SEQUENTIAL
ACCEPT EKASE NUMEKIU SUN

ALL ERROR OLD SIN

AND EXP ON SIZE
APPEND FIXED OPEN S@R

ASC FOR OPTION STEP

AT GO OR STOP

ATN GOSUB ouTPUT STRS
BASE GOTO PERMANENT SUB

BEEP IF PI SUBEND
BREAK IMAGE POS SUBEXIT
BYE INPUT PRINT TAB

CALL INT RANDOMIZE TAN

CHRS INTERNAL READ THEN
CLOSE LEN REC TOC

CON LET RELATIVE TRACE
CONTINUE LINPUT REM UALPHA
Ccos LIST RES UNBREAK
DATA LOG RESEQUENCE UNTRACE
DEF MAX RESTORE UPDATE
DELETE MERGE RETURN USING
DIGIT MIN RND VAL

DIM NEW RPTS VALIDATE
DISPLAY NEXT RUN VARIABLE
ELSE NOT SAVE WARNING
END NUM SEGS XOR

The following arc examples of valid variable namcs:
Numeric: X, A9, ALPHA. BASE__PAY, V(3). T(X,Y.Z.Q.A.R,P6),

TABLE(Q37 M/4)
String: $8, Y228, NAMES, Q58(X.7.L/2), ADDRESSS$(4)

A

NUMERIC EXPRESSIONS

Numeric expressions are constructed from numeric constants. numeric
variables, and functions using the arithmetic operators for addition (+),
subtraction (-), multiplication (*), division /), and cxponcntiation (A).

The minus sign (—) can be used either to indicate subtraction or as a unary
mlnus As a unary minus. it reverses the sign of what follows it. For
example —-3AZi1sequal to —Y as It is taken to mean - (322}

8 The normal hierarchy for evaluating a numeric expression is exponentiation,
followed by multiplication and division, and then by addition and
;pubtractlon However, any part of a numeric expression that is enclosed in
‘parentheses is evaluated first. The following shows the effect of parenthescs
*pn determining the value of an expression:

Final
Intermediate Results Value
‘4+2A2/12-6 4+4/2-86 4+2-6 0
>[4+1)/\2M o} 6AZI2Z-b 36/2-6 12
‘«44-2/\2/(2 6) 4+4/(-4) 4-1 3
“S'rnmc EXPRESSIONS

tring expressions are constructed from string variables, string constants,
'J;lnd function references using the operation for concatenation (&) to combine

sirings. If a constructed siring exceeds a length of 255 characters, the extra
Vg:haraucrs on the right are truncated and a warning message is issued. The
Hollowing is an example of concatenation:

100 A$="HI"&* THERE!"
8= "HI"&" THERE!" sets AS equal to "HI THERE!""

RELATIONAL EXPRESSIONS
: Relat:onal expressions are most often used in the IF-THEN-ELSE statement,
}but may be used anywhere that numeric expressions arc allowed. A
‘srelational expression has a value of =1 if it is true and a value of O if it is

false. Relational operations are performed, from left to right. after all
}%::'lthmeuc operations are completed and before string concatenation (the

persand operator). The relational expressions arc:

;Equal to (=) Not equal to (< >}

*Less than (<) Less than or equal to (< =
reater than (>) Greater than or equal to (> =)

10

Ti Extended BASIC

": TI £xtended BASIC 41

TI EXTENDED BASIC CONVENTIONS

The folloWwing examples illustrate the use of relational cxpressions:

IF X <Y THEN 200 ELSE GOSUB >100 IF X<Y THEN 200 ELSE GO
420 next executes line 200 if X is SUB 420

less than Y. If X is greater than or

equal to Y. then the staternent

GOSUB 420 is executed.

IF L(C)=12 THEN C=S+ 1 ELSE
COUNT =COUNT + 1::GOTO 140 sets
C equal to S plus 1 if L(C) equals 12,
If LIC) is not equal to 12, then
COUNT is set equal to COUNT pius 1
and line 140 is executed next.

>100 IF L(C)=12 THEN C=S+1 E
LSE COUNT=COUNT+1::GOTO 140

A=2<5sets A equal to - 1 as it is
true that 2 is less than 5.

>100 A=2<5

PRINT "TIIIS" = ""THAT" prints O as 100 PRINT
it is not true that *“THIS" is equal to
“THAT"™,

THIS "= THAT

A=B=7sects Aequalto -1ifBis
equal to 7, and to 0 if B is not cqual
to 7. There is no effect on B. Note
that this is not the same as the usual
arithmetical meaning of A=B=7.

>100 A=B=7

LOGICAL EXPRESSIONS

Logical expressions are used with relational expressions. The logical
operators are AND, OR. NOT. and XOR. If true, logical expressions are given
a value of - 1. If false, they are given a value of Q. The order of precedence
for logical expressions. from highest to lowest, is NOT, XOR, AND. and OR.

A logical expression using AND is true if both its left and right clauses are
true.

A logical expression using OR is true if either its left clause is true. its right
clause is true. or both its left and right clauses are truc.

A logical expression using NOT is true if the clause following it is not true.

A logical expression using XOR (exclusive or) is true if either its Iclt or ifs
right clausc is truc. but not both its lcft and right clauses are true.

42 TI Extendod BASIC

O
I
>
0
|
m
D

The following examples illustrate the use of logical expressions:
IF 3<4 AND5<6 THEN L=7 sets L >100 IF 3<4 AND 5<6 THEN L=7
equal to 7 since 3 is less than 4 and
5 is less than 6.
IF 3<4 AND 5>6 THEN L =7 does
not set L equal to 7 because 3 is less
than 4. but 5 is not greater than 6.
{F 3<40OR5>6 THEN L=7 sets L
equal to 7 because 3 is less than 4.
IF 3<4 XOR5>B THEN LL=7 sets 1.
equal to 7 because 3 is less than 4
and 5 is not greater than 6.
IF 3<4 X0OR 5<6 THEN L =7 does
not set L equal to 7 because 3 is less
than 4 and 5 is less than 6.
IF NOT 3=4 THEN L =7 sets L equal >100 IF NOT 3=4 THEN L=7
to 7 because 3 is not equal to 4.
IF NOT 3=4 AND (NOT 6=5 XOR
2=2) THEN 200 does not pass
control to line 200 because while it is
true that 3 is not equal to 4. it Is true
" that both 6 is not equal to 5 and 2 is
“equal to 2. so the clause in
_parentheses is not true.
IF (A OR B} AND (C XOR D) THEN
200 passes control to line 200 if
either A or B or both A and B are
true (equal to - 1), and C or D. but
; not both C and D are truc (cqual to
=1)
; The logical operators can also be used directly on numbers. They convert the
+'numbers to binary notation. perlorm the designated operation on a bit level,
{:and then convert the result back to decimal representation. A more detailed
sidiscussion of the use of logical operators with numbers can be found ina
j;,;:lnal.hematius or engineering text dealing with logic.

>100 IF 3<4 AND 5>6 THEN L=7

>100 IF 3<4 OR 5>6 THEN L=7

>100 IF 3<4 XOR 5>6 THEN L=7

>100 IF 3<4 XOR 5<6 THEN L=7

>100 IF NOT 3=4 AND (NOT 6=5
XOR 2=2) THEN 200

>100 IF (A OR B) AND (C XOR
D) THEN 200

#The numbers must be from —32.768 to 32,767, represented in binary
#notation as from 1000000000000000 10 0111111 111111111, with negative
%E:fnumbcrs given in 2's complement form signitied by a 1 1n the most

% significant bit. In binary notation. each place is an additional power of 2

% rather than an additional power of 10 as in decimal notation. The following
shows numbers in both decimal and binary notation.

B3
? Ti Extended BASIC 43

TI EXTENDED BASIC CONVENTIONS

CHAPTER

DECIMAL BINARY
PLACE PLACE

- 100 10 1 - 16384 8192 4096 2048 1024 512 256 128 64 32 16 # 4 2 |

o 0 1 4] [¢] O o o] [0 U o0 0 0 0 0 0 0 1

0 0 8 [} 0 0 [} 0 [+] [} o o 6 00 0 1 10

o oz 3 0 4] 0 [o] [i] 0 [i] 9 @ o0 1 1 0 U 1

- o 13 1 1 1 i) 1 1 1 11 11 00 1

The above is the equivalent to

1,, = 0000000000000001, = 1, 25,, = 000000000011001, = 11001,
6,0 = 0000000000000110, = 110, -13,, = 1111111111110011,

AND places a 1 in the corresponding binary position if there is a 1 in both
the number preceeding and following it. Otherwise it places a zero.

OR places a 1 in the corresponding binary position if there is a 1 in either the
number preceeding it or following it or both. Otherwise it places a zero.

XOR places a 1 in the corresponding binary position if there is a 1 in either
the number preceeding it or following it but not both. Otherwise it places a
zero.

NOT places a 1 in the corresponding binary position if there is a zero in the
number following it. Otherwise it places a zero.

The following illustrate the result of the logical aperators when used on
numbers.

DECIMAL BINARY DECIMAL BINARY
Al 1 000000000000000 1 A: 1 00000000GO00000 L
B: 2 GOOOOAOONIOO00 10 B: 3 VUOLOUVVOOCOUU T §
A AND B: 0 000GO00000000000 A AND B: 1 O0000000G000000
A: 8 0000000000000 1 10 A 47 0000000000101 11t
B: 5 0000000000000101 B: 62 Q000000000111110
AAND B 4 QGO0AGO000000 100 A AND B: 48 000000000C101110
DECIMAL BINARY DECIMAL BINARY
A: 1 QO00O0CLO0ON000 1 A 1 GOO000000000000 L
B: 2 00000000DBOO0010 B. 3 0000000000000 1 1
OR U 3 Q000G0N00YTGO0T 1 AORD: 3 000000000000001 L
A: =] 00000000000001 10 A 47 0000000000101111
B 3 0000000000000101 B: 82 0000000000111110
AORB 7 QO00ON0NCONGOL LI AORB: 63 000GO00000I 11111
DECIMAL BINARY DECIMAL BINARY
A 1 000000O000O0ON0 | A 1 QOGA00000000000 1
B: 2 00000000000000 10 B: 3 000000000000001 1
A XOR B: 3 00C0N00N000O001 1 A XOR B: 2 0000000000000 1
A 3 00000000000OB1 1O A: 47 0000000000101111
B: 5 0000OVEO000NG101 B: 62 0O00000000111110
A XOR B: 3 000000000000001 1 A XOR B: 17 0000CO000A0 10001
DECIMAL BINARY DECIMAL BINARY
A: 1 QOOVUOOODHVVVVY | L% 4 0000000000C000 10
NOT A: -2 I1111E1101111110 NOT A -3 111111111211 E0101
A 6 O0CO000V00001 10 A: 47 0000000000 101111
NOT A: -7 1111111111111001 NOT A: ~48 1111111111010000

_ Reference Sectio

:This chapter is an alphabetical list of all of the Tl Extended BASIC
#commands, statements, and functions. with a detailed explanation of how
% ‘each works. Examples and sample programs are included wherever

"‘In the format of the elements, key words are CAPITALIZED. Variables are in
#talics. Optional portions are enclosed in [brackets]. Items that may be
"'ka‘.-repeated are indicated by elipses (...). Alternative forms are presented one
#£-above the ather.

£

Appendix A contains a list of the illustratve programs. The Index gives the
pages on which each TI Exicnded BASIC element is used in an illustrative

program.

=

44 TI Extended BASIC

Ti Extended BASIC 45

ABS

Format

ABS(numeric-expression)

Description

The ABS function glves the absolute value of numeric-expresston. If
numer{c-expresston is positive, ABS gives the value of numeric expression. If
ﬂumel‘f&c,\plcaalun is ncgative, ABS gives Its negative (a positive number), If
numeric-expression is zero, ABS returns zero. The result of ABS is always a
non-negative number.

Examples

PRINT ABS(42.3) prints 42.3. >100 PRINT ABS(42.3)

VV =ABS{ - 6.124) scts VV equal to
6.124.

>100 VV=ABS(-6.124)

46
11 Extendeg BASIC

CHAPTER

‘ACCEPT

Format

ACCEPT | |AT(row,column}] [VALIDATE (datatype ,...)] [BEEP]
[ERASE ALL} [s[zE(numeric-expression)] :] pariable

Description

The ACCEPT statement suspends program execution until data is entered
from Lhc keyboard. Many options are available with ACCEPT, making it far
more versatile than INPUT. 1t may accept data at any screen position, make
an audibie tone (beep) when ready o accept the data. erase all characters on
the screen hefore accepting data. limit data accepted to a certain number of
characters, and limit the type of characters accepted.

Options
The following options may appear in any order following ACCEPT.

AT(row.column) places the beginning of the input field at the specified row
and column. Rows are numbered 1 through 24. Columns are numbered 1
through 28 with column 1 corresponding (o what is called cotumrt 3 in the

VCHAR, HCHAR, and GCHAR subprograms.
VALIDATE (data-type) allows only certain characters to be entered. Dala-
type specifies which characters are acceptable. If more than one data-type is
specified. a character from any of the data-types given is acceptable, The
following are the data-types.

UALPHA permits all uppercase alphabetic characters.

DIGIT permits O through 9.

NUMERIC permits O through 9, =", "'+ "ot =", and "E".
String-expression permits the characters contained in strirg-
expression.

BEEP sounds a short tone tn signal that the computer is ready to accept
input.

ERASE ALL fills the entire screen with the blank character before accepting
nput.

SIZE(numeric-expression) allows up to the absolute value of numerie-
expression characters to be input. If numeric-expresston is positive, the field
in which the data is entered is cleared before input is aceepted. If numeric-
expression is negative, the input field is not blanked. This allows a default
value to be previously placed in the field and entered by just pressing ENTER.
If there is no SIZE clause, the line is blanked from the heginning position to
the end of the line.

If the ACCEPT statement is used without the AT clause, the last two
characters on the screen (at the lower right) are changed to “edge
characters’” (ASCII code 31).

Tl Extended BASIC 47

CHAPTER

ACGEPT

g

ACCEPT

Examples

ACCEPT AT(5,7):Y accepts data at
the fifth row, seventh column of the
screern into the variable Y.

ACCEPT VALIDATE(YN):R$

accepts Y or N inlo the variable Re.

ACCEPT ERASE ALL:B accepts data
into the variable B after putting the
blank character into all screen
positions.

ACCEPT AT(R,C)SIZE(FIELDLEN)
BEEP VALIDATE(DIGIT."AYN):X$
accepts a digit or the lelters A Y, or
N into the variable X8, The length of
the input may be up to FIELDLEN
characters. The data is accepted al
row R, column C., and a beep is
sounded before data is accepted.

Program

The program al the right illustrates a
typical use of ACCEPT. It allows
entry of np to 20 names and
addresses, and then displays them
all.

>100 ACCEPT AT(5,7):Y

>100 ACCEPT VALIDATE("'YN"):R$

>100 ACCEPT ERASE ALL:B

>100 ACCEPT AT(R,C)SIZE(FIELD
LEN)BEEP VALIDATE(DIGIT, 'AYN
“)iX$

>100 DIM NAME$(20),ADDR$(20)

>110 DISPLAY AT(5,1)ERASE ALL
:“NAME: "

>120 DISPLAY AT(7,1): ADDRESS

>130 DISPLAY AT(23,1):"TYPE A
7 TO END ENTRY."

>140 FOR S=1 TO 20

>150 ACCEPT AT(5.7)VALIDATE(U
ALPHA, '?")BEEP SIZE(13):NAME
$(8)

>160 IF NAME$(S)="2" THEN 200
>170 ACCEPT AT(7,10)SIZE(12):
ADDR$ (S)

>180 DISPLAY AT(7,10):"

160 NEXT S

>200 CALL CLEAR

>210 DISPLAY AT(1,1): NAME","
ADDRESS"

>220 FOR T=1 TO 5-1

>230 DISPLAY AT(T+2,1):NAMES(
T) , ADDR${T)

>240 NEXT T

>250 GOTO 250

(Press SHIFT C to stop the
prograts.)

48

TI Extended BASIC

Tl Extended BASIC

49

ASC

Format

ASCistring-expression)

Description

The ASC function gives the ASCII character code which corresponds to the
first character of string-expression. A list of the ASCII codes is given in
Appendix . The ASC functinn is the inverse of the CHRS function.

Examples
PRINT ASC('*A’") prints 65.

B=ASC("1") sets B equal to 49.

DISPLAY ASC("“HELLO") displays
72,

>100 PRINT ASC("A")
>100 B=ASC("1")
>100 DISPLAY ASC(“HELLQ")

B0 Tl Extended BASIC

ATN

Format
ATN(numeric-expression)

pDescription

The ATN function returns the measure of the angle (in radians) whose
tangent is numeric-expression. If you want the equivalent angle in degrees,
multiply by 180/PL. The value given by the ATN function is always in the
range —PU2 <ATN(X) < P2,

Examples

PRINT ATN(0) prints O. >100 PRINT ATN(O)

@=ATN(.44) sets @ equal 0 >100 Q=ATN{.44)

4145068746.

TI Extended BASIC 51

BREAK

Format
BREAK [line-number-list)

Description

The BREAK command requires a line-number-list. It causes the program to
stop immediately before the lines in line-number-list are executed. After a
breakpoint is taken because the line is listed in line-number-list, the
breakpoint is removed and no more breakpoints occur at that line unless a
new BREAK command or statement is given,

The RREAK statement without line.numhber-list causes the program to stop
when it is encountered. The line at which the program stops is called a
breakpoint. Every time a BREAK statement withoul line-number-list is
encountered, the program stops even if an ON BREAK NEXT statement has
been executed.

You can also cause a breakpoint in a program by pressing SHIFT C {(CLEAR)
while the program is running. unless breakpoints are being handled in some
other way because of the action of ON BREAK.

BREAK is uscful in finding out why a program is not running exactly as you

cxpect it to. When the program has stopped you can print values of variables

to find out what is happening in the program. You may enter any command
or statement that can be used as a command. If you edit the program,
however, you cannot resume with CONTINUE.

A way lo remove breakpoints set with BREAK followed by line numbers is
the UNBREAK command. Also, if a breakpoint is set at a program line and

that linc is deleled. the breakpoint {s removed. Breakpoints are also removed

when a program is saved with the SAVE command. See ON BREAK for a
way to handle breakpoints.

Whenever a breakpoint occurs, (he standard characler set is restored. Thus

any standard characters that had been redefined by CALL CHAR are restored

to the standard characters. A breakpoint also restores the standard colors,
deletes sprites, and resets sprite magnification 1o the default value of 1.

Options

The ltne-number-list is optional when BREAK is used as a statement, but is
required when BREAK is used as a command. When present, it causes the
program to stop immediately before the lines in line-number-list are
exceuted, After a breakpoint is taken because the line is listed in line-
number-list, the breakpoint is removed and no more breakpoinls occur at
that line unless a new BREAK command or statement is given.

BREAK CHAPTER

Examples

BREAK as a slatement causes a
breakpoint when that statement is
exceuted.

>150 BREAK

BREAK 120,130 as a staternent >110 BREAK 120,130
causes breakpoints before execution

of the line numbers listed.

BREAK 200,300,1105 as a command >BREAK 200,300,1105
causcs breakpoints before execution
of the line numbers listed.

52 T Extended BASIC

Extended BASIC 53

BYE

Format
BYE

Description

The BYE command ends TI Extended BASIC and returns the computer to
the master title screen. All open files are closed, all program lines are erased.
and the computer is reset. Always use the BYE command instead of SHIFT Q
(QUIT) to leave TI Extended BASIC. SHIFT @ (QUIT) docs not close files, which
may result in data being lost from external devices.

54 TI Extended BASIC

CHAPTER

CALL

Format
CALL subprogram-name [(parameter-list)]

Description

The CALL statement transfers control to subprogram-name. The
subprogram may be either one built into TI Extended BASIC, such as
CLEAR. or one you have written. After the subprogram is executed. the next
statemnent after the CALL statement is executed. CALL may be either a
statement or a command for calling built-in TI Extended BASIC
subprograms, but must be a statement when calling subprograms that you
write.

Options

The parameter-list is defined according to the subprogram you are calling.
Some require no parameters at all, some require parameters, and some have
optional parameters. Each built-in subprogram is discussed undcr its own
entry in this manual. The subprograms you can write are discussed in the
section in Chapter Il on subprograms and under SUB. The following are the
subprogram-names of the built-in TI Extended BASIC subprograms.

CHAR HCHAR PATTERN
CHARPAT INIT PEEK
CHARSET JOYST POSITION
CLEAR KEY SAY
COINC LINK SCREEN
COLOR LOAD SOUND
DELSPRITE LOCATE SPGET
DISTANCE MAGNIFY SPRITE
ERR MOTION VCHAR
GCHAR VERSION
Program
The program at the right illustrates >100 CALL CLEAR
the use of CALL with a supplied >110 X=4
subprogram (CLEAR) in line 100 and >120 CALL TIMES(X)
the use of a written subprogram >130 PRINT X
(TIMES) in line 120. >140 STOP
>200 SUB TIMES(Z)
>210 Z=Z%PI
>220 SUBEND
>RUN

--gcreen clears
12.56637061

TI Extended BASIC 55

CHAR subprogram

Format
CALL CHAR(character-code pattern-identifier [....])

Description

The CHAR subprogram allows you to define special graphics characters. You
can redefine the standard set of characters (ASCII codes 32-95) and the
undefined characters, ASCII codes 96-143. Note that fewer program defined
characters are available tn TI Extended BASIC than in T1 BASIC, where
ASCII codes 96-156 are allowed. The CHAR subprogram is the inverse of the
CHARPAT subprogram.

Character-code specities the character which you wish to define and must be
a numeric expression with a value from 32 through 143. Pattern-identifier is
a 0 through 64 character string expression which specities the pattern of the

character(s) you are defining. This string ¢xpression is a coded representation
of the dots which make up a character on the screen.

Each character is made up of 64 dots comprising an 8 by 8 grid as shown
below.

LEFT RIGHT
BLOCKS BLOCKS

ROW 1
ROW 2
ROW 3
ROW 4
ROW 5
ROW 6
ROW 7
ROW 8

Each row is partitioned into two blocks of four dots each:

anvrow [[[[T T[]

LEFT RIGHT
BLOCKS BLOCKS

Each character in the pattern-identifier describes the pattern in onc block of
one row. The rows are described from left to right and from top to bottom.
Therefore the first two characters in the pattern-identifier describe the
pattern for row one of the grid. the next two the second row. and so on.

56 TI Extended BASIC

CHAR SUBPROGRAM CHAPT S

Characters are created by turning some dots “on" and leaving others "off."
The space character (ASCII code 32} is a character with all the dots turned
“ofl.” Turning all the dots “on" produces a solid block. The color of the on
dots is the foreground color. The color of the off dots is the background color.

All the standard characters are set with the appropriate dots on. To create a
new character, you specify what dots to turn on and leave off. In the ,
computer a binary code, one number for each of the 64 dots, is used to
specify which dots are on and off in a particular block. A more human-
readable form of binary is hexadecimal. The following table shows all the
possible on/off conditions for the four dots in a given block, and the binary
and hexadecimal codes for each condition.
Binary Code Hexadecimal
BLOCKS (0=0ff: 1 =0y Coude
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
If the pattern-identifier is less than 16 characters. the computer assumes
that the remaining characters are zeros. If the pattern-identifier is 17 to 32
characters, two character-codes are defined, the first with the first through
sixteenth characters and the second with the remaining characters, with
zeros added as needed. If the pattern-identifier is 33 to 48 characters. three
character-codes are defined. the first with the first through sixteenth
characters, the second with the seventeenth through thirty-second
characters, and the third with the remaining characters, with zcros added as
1eeded. If the pattern-identifier is 49 to 64 characters, four character-codes
re defined, the first with the first through sixteenth characters, the second
rith the seventeenth through thirty-second characters, the third with the
arty-third through forty-eighth characters, and the fourth with the
*maining characters, with zeros added as needed. If the pattern-identifier is
onger than 64 characters or is long enough to define characters higher than
character code 143, the excess is ignored.

TEHUDWPOOINRU A WN—=O

Tl Extended BASIC 57

CHAR SUBPROGRAM

Programs
To describe the dot pattern pictured
below, you code this string for CALL

CHAR

*1898FF3D3C3CE404"

LEFT RIGHT BLOCK

BLOCKS BLOCKS CODES
row1 []] 18
ROW 2 98
ROW 3 FF
ROW 4 | | 3D
ROW 5 3c
ROW 6 | | 3C
ROW 7 E4

rows | | [| W] 04

The program at the right uses this
and one other string to make a figure
“dance."”

If a program stops for a breakpoint,
the predefined characters (ASCII
codes 32 through 95) are reset to
their standard pattern. Those with
codes 96 through 143 keep their
program defined pattern. When the
program ends normally or because of
an error, all predefined characters
are reset.

>100
>110
>120
>130
>140
>150
>160
>170
>180
>190
>200
>210
>220
>RUN

CALL CLEAR

A$="1898FF3D3C3CE404"
B$="1819FFBC3C3C2720"

CALL COLOR(9,7,12)
CALL VCHAR(12,16,96)
CALL CHAR(96,A$)
GOSUB 200

CALL CHAR(96,B$)
GOSUB 200

GOTC 150

FOR DELAY=1 TO 50
NEXT DELAY

RETURN

-- screen clears
~~- character moves

(Press SHIFT C to stop the

program.)

>100 CALL CLEAR

>110 CALL CHAR(96, FFFFFFFFF

FFFFFFF")

>120 CALL CHAR(42,"OFOFOFOFQ

FOFOFOF"")
>130 CALL HCHAR(12,17,42)
>140 CALL VCHAR(14,17,96)

>150

FOR DELAY=1 TO 500

>160 NEXT DELAY

>RUN

CHAPTER

CHARPAT subprogram

fl‘ormt
CALL CHARPAT (character-code,string-vartable {,...])

‘Description

‘The CHARPAT subprogram returns in string-variable the 16-character
pattern identifier that specifies the pattern of character-code. The CHARPAT
subprogram is the inverse of the CHAR subprogram. See the CHAR
:subprogram for an explanation of the value returned in string-variable.

Example

CALL CHARPAT(33.CS) sets C$
equal to *0010101010001000™, the
pattern identifier for character 33,
the exclamation point.

>100 CALL CHARPAT(33,C$)

58

Ti Extended BASIC

Tl Extended BASIC 59

CHARSET subprogram

Format

CALL CHARSET

Description

The CHARSET subprogram restores the standard character patterns and
standard colors for characters 32 through 95. Normally when a program is

run by another program using RUN as a statement, characters 32 through
95 are not reset to their standard patterns and colors. CHARSET is useful

when this feature is not desired.
Example

CALL CHARSET restores the
standard characters and their colors.

>100 CALL CHARSET

CHR$

Format
CHRS(numeric-expression)

Description

The CHRS function returns the character corresponding to the ASCII
character code specified by numeric-expression. The CHRS function is the
inverse of the ASC function. A list of the ASCII character codes for each
character in the standard character set is given in Appendix C.

Examples

PRINT CHR$(72) prints H.
X8 =CHRS(33) sets XS equal to !.

Program

For a complcte list of all ASCII
characters and their corresponding
ASCII values. run the program on
the right.

>100 PRINT CHR$(72)
>100 X$=CHR$(33)

>100 CALL CLEAR
>110 FOR A=32 TO 95
>120 PRINT A; sCHR$(A);

’

>130 NEXT A

60

TI Extended BASIC

CLEAR subprogram

CHAPTER

Format
CALL CLEAR

Description

The CLEAR subprogram is used to clear (erase) the entire screen. When the
CLEAR subprogram is called, the space character (ASCII code 32) is placed
in all positions on the screen.

Programs

When the program at the right is
run, the screen is cleared before the
PRINT statements are performed.

>100 CALL CLEAR

>110 PRINT “HELLO THERE!"
>120 PRINT “HOW ARE YOU?"
SRUN

--screen clears

HELLO THERE!

HOW ARE YOU?

df the space character (ASCII code
,?2) has been redefined by the CALL
CHAR subprogram, the screen is >110 CALL CLEAR
filled with the new character when >120 GOTO 120
ALL CLEAR is performed. >RUN
--screen 1s filled with 4
(Press SHIFTC to stop the
progran.)

>100 CALL CHAR(32,"0103070F1F
3F7FFF")

TI Extended BASIC

61

»

CLOSE CLOSE CHAPTER
Examples >100 OPEN #24:'CS1",INTERNAL,

Format
CLOSE #file-number [.DELETE]

Description

The CLOSE staternent stops a program's usc of the file referenced by #file-
number. After the CLOSE statement is performed, the file cannot be used by
the program unless you OPEN it again. The computer no longer associates
the #flle-number with the closed file, so you can assign that number to
another file.

When no program is running, the following actions close all open files:
Editing the program
Entering the BYE command
Entering the RUN command
Entering the NEW command
Entering the OLD command
Entering the SAVE command
Entering the LIST command to a device

If you use SHIFT Q (QUIT) to leave TI Extended BASIC, the computer does not
close any open files, and you may lose data on any files that are open. To
avoid this possibility, you should leave TI Extended BASIC with BYE instead
of SHIFT Q (QUIT).

Options

You may delete a diskette file at the same time you close it by adding
*:DELETE" to the statement. Other devices, such as cassette recorders, do
not allow DELETE. The manual for each device discusses the use of
DELETE.

62 TI Extended BASIC

when the computer performs the
CLOSE statement for a cassette tape
recorder, you receive instructions for
gperating the recorder.

The CLOSE statement for a diskette
requires no further action on your

part.

a—

INPUT, FIXED

~--program lines

>200 CLOSE #24
>RUN
--opening instructions

--program runs

* PRESS CASSETTE STOP
THEN PRESS ENTER

>100 OPEN #24:"DSK1.MYDATA",I
NTERNAL, INPUT, FIXED

CcS1

--program lines

>200 CLOSE #24
>RUN
--program runs

Tt Extended BASIC

63

COINC subprogram

E(;INC SUBPROGRAM

Format

CALL C()]NC(#sprite—n umber.“sprite-number.toIerance.muneric—uariable]

CALL COXNC(ttsprire»nunxber.dut-ruw,dut-culumn.tolerance,numeric-
variable)

CALL COINC(ALL.numeric-variable)

Description

The COINC subprogram detects a coincidence between a sprite and another
sprite or a position on the screen. The value returned in numeric-variable is
- 1 if there is a coincidence and O if there is no coincidence.

If the keyword ALL is given, the coincidence of any two sprites is reported. If
two sprites are identified by #sprite-number, their coincidence is reported. If
#sprite-number and a location arc identified, their coincidence is reported.

If the keyword ALL is given, sprites are coincident only if one or more of the
dots which make them up accupy the same position on the screen. If (wo
sprites or a sprite and a location are given, then tolerance must be specified,
and two sprites are coincident if their upper left hand corners are within the
value specified by tolerance. A sprite and a location are coincident if the
upper left hand corner of the sprite and the position specified by dot-row and
dot-column are within the value specified by tolerance. These coincidents are
reported even if there is no apparent overlap of the sprites or the sprite and
the position.

Dot-row and dot-colurnn are numbered consecutively starting with 1 in the
upper left hand corner of the screen. Thus the dot-row can be from 1 to 192
and the dot-column can be from 1 to 256. (Actually the dot-row can go up to
256. but the positions from 193 through 256 are off the bottom of the
screen.) If any part of the sprite occupies the position given, then there is a
coincidence.

Whether or not a coincidence is detected depends on several variables. If the
sprites are moving very quickly., COINC may not be able to detect their
coincidence. Also, COINC checks for a coincidence only when it is called, so a
program may miss a coincidence that occurs when the program is executing
some other statement.

Program
The program at the right defines two

sprites that consist of a triangle.

Line 160 shows a coincidence
because the sprites are within 10
dots of each other.

Line 180 shows no coincidence
because the shaded areas of the
gprites are not coincident.

>100 CALL CLEAR

>110 S$="0103070F1F3F7FFF"
>120 CALL CHAR(96,5$)

>130 CALL CHAR(100,S$)

>140 CALL SPRITE(#1,96,7,8,8)
>150 CALL SPRITE(#2,100,5,1,1)
>160 CALL COINC(#1,#2,10,C)
>170 PRINT C

>180 CALL COINC(ALL,C)
>190 PRINT C
>RUN
-1
0

64 TI Extended BASIC

Tl Extended BASIC

65

COLOR subprogram

CHAPTER
COLOR subprogram

Format .

CALL COLOR(-"sprile-number,foreground-color [....]1)
CALL COLOR(character-set,foreground-color,background-color [...])

Description

The COLOR subprogram allows you to specify either a foreground-color for
#sprite-number or a foreground-color and background-color for characters in
the character-set. In a given CALL COLOR, you may define sprite color(s) or
character set colors, but not both.

Each character has two colors. The color of the dots that make up the
character itself is called the Joreground-color. The color that occupies the rest
of the character position on the screen is called the background-celor. In
sprites. the background-color is always code 1, transparent, which allows
characters and the screen color to show through. To change the screen color,
see the SCREEN subprogram. Foreground-color and background-color must
have values from 1 through 16. The color codes are shown below:

Color Code Color
1 Transparent
2 Black
3 Medium Green
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red
10 Light Red
11 Dark Yellow
12 Light Yellow
13 Dark Green
14 Magenta
15 Gray
16 White

Until CALL COLOR is performed, the standard foreground-color is black
(code 2) and the standard background-color is transparent (code 1) for all
characters. Sprites have their color assigned when they are created. When a
breakpoint occurs, all characters are reset to the standard colors.

To use CALL COLOR you must also specify to which of the fifteen character
sets the character belongs. (Note that TI BASIC has si‘xteen character sets

while TI Extended BASIC has fifteen.) The list of ASCII character codes for
the standard characters is given in Appendix C. The character-set numbers

are given below:

Set Number Character Codes
0 30-31
1 32-39
2 40-47
3 48-55
4 56-63
5 64-71
] 72-79
7 80-87
8 88-95
9 96-103
10 104-111
11 112-119
12 120-127
13 128-135
14 136-143

Examples

CALL COLOR(3.5,8) sets the
Jforeground-color of characters 48
through 55 to 5 (dark blue) and the
background-color to 8 (cyan).

>100 CALL COLCR(3,5,8)

CALL COLOR(#5,16) sets sprite >100 CALL COLOR(#5,16)
number 5 to have a foreground-color
of 16 (white). The background-color

is always 1 (transparent).

CALL COLOR(#7,INT(RND*16 + 1)) >100 CALL COLOR(#7,INT(RND¥*16
sets sprite number 7 to have a +1))

Joreground-color chosen randomly

from the 16 colors available. The

background-color is 1 (transparent).

66 TI Extended BASIC

67
TI Extended BASIC

CONTINUE

Format

CONTINUE
CON

Description

The CONTINUE command restarts a program which has been stopped by a
breakpoint. It may be entered whenever a program has stopped running
because of a breakpoint caused by the BREAK command or statement or
SHIFT C (CLEAR). However, you cannot use the CONTINUE command if you
have edited a program line. CONTINUE may be abbreviated as CON.

When a breakpoint occurs, the standard character set and standard colors
are restored. Sprites cease to exist. CONTINUE does not restore standard
characters that have been reset or any colors. Otherwise, the program
continues as if no breakpoint had occurred.

cOS

CHAPTER

Format
COS{radian-expression)

Description

The cosine function gives the trigonometric cosine of radian-expression. If
the angle is in degrees. multiply the number of degrees by PI/180 to get the
equivalent angle in radians.

Program

The program on the right gives the
cosine of several angles.

>100 A=1.047197551196
>110 B=60
>120 C=45%P1/180
>130 PRINT COS(A);COS(B)
>140 PRINT COS(B¥*PI/180)
>150 PRINT COS(C)
>RUN

.5 —.9524129804

5
.7071067812

68 Tl Extended BASIC

Tl Extended BASIC

69

DATA

DATA

Format
DATA data-list

Description

The DATA statement allows you to store data inside your program. The data.
which may be numeric or string constants, is listed in data-list separated by
commas. During program execution, the READ statement assigns the values
in data-list to the variables specitied in variable-list in the READ statement.

DATA statements may be located anywhere in a program. However, the
order in which they appear is important. Data from several DATA statements
is read sequentially, beginning with the first item in the first DATA
statement. If a program has more than one DATA statement, the DATA
statements are read in the order in which they appear in the program, unless
otherwise specified by a RESTORE statement. Thus the order in which data
appears in the program normally determines the order in which data is read.
DATA statements cannot be part of multiple statement lines,

Data in data-list must correspond to the type of the variable to which it s
assigned in the READ statement. Thus if a numeric variable is specified in
the READ statement, a numeric constant must be in the corresponding
position in the DATA statement. Similarly, if a string variable is spccified, a
string constant must be supplied. A number is a valid string, so you may
have a numeric constant in a DATA statement where a string is called for in
thc READ statement. If a DATA stalement contains adjacent commas. the
computer assumes you want to enter a null string (a string with no
characters).

When using string constants in a DATA statement, you may enclose the
string in quotes. However, if the string you include contains a comma.
leading spaces, or trailing spaces, you must enclose the string in quotes. If
the string is enclosed in quotes, quotes in the string are represented by
double quotes.

Program

The program at the right reads and
prints several numeric and string
constants. Lines 100 through 130
read five sets of data and print their
values. two to a line.

Lines 190 through 220 read seven
‘data elements and print each on its
own line.

First two elements of line 140.
:Second two elements of line 140.
:Last element of line 140 and first of
‘ine 150.

{Second and third elements of line
{150.

#Fourth and fifth elements of line 150.

iLine 160.

filine 170.

ILine 180.

{First element of line 230.

rSecond element of line 230.

:E'Null string for two commas in line
+230.

‘Last element of line 230.

>100 FOR A=1 TO 5

>110 READ B,C

>120 PRINT B;C

>130 NEXT A

>140 DATA 2,4,6,7,

>150 DATA 1,2,3,4,

>160 DATA " THIS HAS QUOTES™

>170 DATA " NO QUOTES, HERE"
>180 DATA NO QUOTES HERE EITH
ER

>190 FOR A=1 TO 7

>200 READ B$

>210 PRINT B$

>220 NEXT A

>230 DATA 1,NUMBER,,TI

>RUN

8
5

@ O N
~3

o8]
w

4 5

“THIS HAS QUOTES™

NO QUOTES, HERE

NO QUOTES HERE EITHER
1

NUMBER

TI

70 Ti Extended BASIC

TI Extended BASIC

71

DEF

DEF

CHAPTER

Format

DEF function-name [(parameter)] =expression

Description

The DEF statement allows you (o define your own functions. Function-name
may be any variable name. If you specify a parameter following function-
name, the parameter must be enclosed in parentheses and may be any
scalar variable name. If expression is a string, function-name must be a
string variable name, i.e. the last character must be a dollar sign.

The DEF statement must occur ar a lower numbered line than any reference
to the function it defines. However, a DEF statement may not appear in an
IF-THEN-ELSE statement. When the computer encounters a DEF statement
during program execulion, it proceeds to the next statement without taking
any action. A function may be used in any string or numeric expression by
using function-name followed by an expression enclosed in parentheses if a
parameter was specified in the DEF statement.

When a reference to the function is encountered in an expression (by using
Jfunction-name in a statement), the function is evaluated using the current
values of the variables specified in the DEF statement and the value of
parameter if there is one. A DEF statement can refer to other defined
functions. However, the function you specily may not refer to itself cither
directly (e.g. DEF B=B*2) or indirectly (e.g. DEF F=G:DEF G=F).

Attempting to print the value of a function with PRINT used as a command
does not work if the Memory Expansion is connected to your computer.

Options

If you specify a parameter for a function, when a reference to the function is
cncountered in an cxpression, its valuc is assigned to parameter. The value
of the function is then determined using the value of parameter and the
values of the other variables in the DEF statement. If parameter is given in
the DEF statement. an argument value must always be given when referring
to the function.

The pararneter name used in the DEF statement affects only the DEF
statement in which it is used. This means that it is distinct from any other
variable with the same name which appears elsewhere in the program.

Parameter may not be used as an array. You can use an array element in a
function as long as the array does not have the same name as parameter. For
example you may use DEF F(A)=B(Z) but not DEF F(A) = A{Z).

gxamples

DEF PAY(OT)=40*RATE + 1.5*
RATE*OT defines PAY so that each
time it is encountcred in a program
the pay is figured using the RATE of
pay times 40 plus 1.5 times the rate
of pay times the overtime hours.

DEF RND20=INT(RND*20+ 1)
definecs RND20 so that each time it is
encountered in a program an integer
from 1 through 20 is given.

DEF FIRSTWORDS(NAMES)=SEG$
(NAMES.1.POS(NAMES," ".1)- 1)
defines FIRSTWORDS to be the part
of NAMES that preceeds a space.

>100 DEF PAY(OT)=40%RATE+1.5%
RATEXQT

>100 DEF RND20=INT(RND¥20+1)

>100 DEF FIRSTWORDS$(NAMES)=SE
GP(NAMES$, 1,POS(NAMES," ",1)~
1)

72 T1 Extended BASIC

Ti Extended BASIC

73

DELETE

DELSPRITE subprogram

CHAPTER

Format
DELETE device-filename

Description
The DELETE command allows you to remove a program or data file from the
computer’s filing system. Device-filename is a string expression. If a string

constant is used, it must be enclosed in quotes. You may also delete data files
by using the keyword DELETE in the CLOSE statement.

Some devices (such as diskettes) allow deleting files: others (such as
cassettes) do not. Read the manual for the specific device for more
information.

Example

DELETE "DSK1.MYFILE" deletes
the file named MYFILE from the
diskette in disk drive 1.

>DELETE “DSK1.MYFILE"

Program

The program on the right illustrates
a use of DELETE.,

>100 INPUT "FILENAME: ":X$
>110 DELETE X$

Format

CALL DELSPRITE(#sprite-number |....])

CALL DELSPRITE(ALL)

Description

The DELSPRITE subprogram removes sprites from further access by a
program. You may delete one or more sprites by specifying their numbers
preceded by a number sign (#) and separated by commas, or you may del]ele
all sprites by specifying ALL. After being deleted with DELSPRITE, a sprite
can be recreated with the SPRITE subprogram.

Examples
CALL DELSPRITE(#3) deletes sprite
number 3.

>100 CALL DELSPRITE(#3)

CALL DELSPRITE(#4,#3*C) deletes >100 CALL DELSPRITE(#4,#3%C)
sprite number 4 and the sprite
whose number is found by

multiplying 3 by C.

CALL DELSPRITE(ALL) deletes all >100 CALL DELSPRITE(ALL)

spritcs.

74 T! Extended BASIC

Tl Extended BASIC 75

DIM

CHAPTER

DISPLAY

Format
DIM array-namel(integer1 | integer2) ... l.integer7) [...])
Description

The DIM statement reserves space in the computer's memory for numeric
and string arrays. You can dimension an array only once in a program. If you
dimension an array, the DIM statement must appear in the program at a
lower numbered line than any other reference to the array. If you dimension
more than one array in a single DIM statement, array-names are separated
by commas. Array-name may be any variable name. A DIM statement may
not appear in an IF-THEN-ELSE statement.

You may have up to seven-dimensional arrays in TI Extended BASIC. The
number ol irntegers separated by commas following the array name
determines how many dimensions the array has. The values of the integers
determine the number of elements in each dimension.

Space is allocated for an array after you enter the RUN command but before

the first statement is executed. Each element in a string array is a null string
and each element in a numeric array is zero until it is replaced with another

value,

The values of the uitegers determine the maximum value of each subscript
for that array. If you are using an array not defined in a DIM statement, the
maximum value of each subscript is 10. The first element is zero unless an
OPTION BASE statement sets the minimum subscript value to 1. Thus an
array defined as DIM A(6) is a one dimensional array with seven elements
unless the zero subscript is eliminated by the OPTION BASE statement.

Examples

DIM X8(30) reserves space in the
computer's memory for 31 members
of the array called XS.

>100 DIM X$(30)

DIM D(100),B(10.9) reserves space in
the computer's memory for 101
members of the array called D and
110 (11 times 10) members of the
array called B.

>100 DIM D(100),B(10,9)

76 Tl Extended BASIC

Format
DISPLAY [[AT(row.column)i [BEEP] [ERASE ALL] [SIZE(numeric-
expression)) :] variable-list

Description

The DISPLAY statement displays information on the SCreen. Many o tions
are available with DISPLAY, making it far more versatile than PRINT . It may
display data at any screen position, make an audible tone [beep_) when
displaying data, blank screen positions, and erase all characters on the
screen belore displaying data.

Options -
AT (row.column) places the beginning of the display field at the specified row
and column. Rows are numbered 1 through 24. Colu.mlls arc nuxnbvrt‘d. 1
through 28 with column 1 corresponding with what is callgd L:Ulllml‘l 3 in the
VCHAR, HCHAR. and GCHAR subprograms. If the A_T option is r}gl present,
data is displayed at row 24. column 1. just as it is with the PRINT statement.

BEEP sounds a short tone when the data is displayed.

ERASE ALL fills the entire screen with the blank character betore displaying
data.

SIZE(numeric-expression) puts numeric-expression blank characters on the
screen starting at row and column. If the SIZE option is‘ not pre:sent. the rfst
of the row at which data Is to be displayed is blanked. If numeric-expression
is larger than the number of posilions remaining in the row. only the rest of

the row is blanked.

Examples

DISPLAY AT(5.7):Y displays the
value of Y at the fifth row, seventh
column of the screen.

>100 DISPLAY AT(5,7):Y

DISPLAY ERASE ALL:B puts the >100 DISPLAY ERASE ALL:B

blank character into all screen

positions before displaying the value

of B.

>100 DISPLAY AT(R,C) SIZE(FIE

5 AT(R.C) SIZE(FIELDLEN)
D e LDLEN)BEEP:X$

BEEP:X$ displays the value of X8 at
row R, column C. First it beeps and
blanks FIELDLEN characters.

77
Tl Extended BASIC

DISPLAY

Program
The program at the right illustrates a
use of DISPLAY. It allows you to

position blocks at any screen position
to draw a figure or design.

>100 CALL CLEAR

>110 CALL COLOR(9,5,5)

>120 DISPLAY AT(23,1):“ENTER
ROW AND COLUMN. "

>130 DISPLAY AT (24,1):"ROW:

COLUMN: "

>140 FOR COUNT=1 TO 2

>150 CALL KEY(O,ROW(COUNT),S)
>160 IF S<=0 THEN 150

>170 DISPLAY AT(24,5+COUNT)SI
ZE(1) :STR$(ROW(COUNT)-48)

>180 NEXT COUNT

>190 FOR COUNT=1 TO 2

>200 CALL KEY(O,COLUMN(COUNT)
bl

>210 IF S<=0 THEN 200

>220 DISPTAY AT(24,16+COUNT)S
IZE(1) : STR$(COLUMN (COUNT)~48
)

>230 NEXT COUNT

>240 ROW1=10% (ROW(1)-48)+ROW(
2)-48

>250 COLUMN1=10%(COLUMN(1)-48
)+COLUMN(2)-48

>260 DISPLAY AT(ROW1,COLUMN1)
SIZE(1):CHR$(96)

>270 GOTO 130

(Press SHIFT C to stop the
program.)

78

TI Extended BASIC

DISPLAY USING

———
Format ' ‘ ‘
DISPLAY loption-list:] USING string-expression [‘: uanqble-hst]
DISPLAY [option-list:] USING line-number [: variable-list]

scription ,
:;e DIQPLAY.“USlNG staternent is the same as DISPLAY \A{l[h lh‘e Z?d;t-::n[f
of the USING clause, which specifies the format of tpe data in varia e: 1)n.t
string-expression is present. it defines the format. If line-rllxg%egof:;(st .
it refers to the line number of an IM[I\GE statement. See IM
explanation of how the format is defined.

Examples

‘DISPLAY AT(10.,4):USING "## ##":N
‘msplays the value of N at the tenth
row and fourth column, with the
format “HH# ##

DISPLAY USING "##.##":N displays
the value of N at the 241h row and
first column, with the format

g w

>100 DISPLAY AT(10,4):USING
CHEHA N

>100 DISPLAY USING “##.##:N

79
Tl Extended BASIC

|

DISTANCE subprogram

O
I
>
e
—
m
D

END

Format Format
CALL DISTANCE(#sprite-number #sprite-number,numeric-variable) END
CALL DISTANCE (#sprite-number.dot-rowdot-column,.numeric-variable) Description

Description

The DISTANCE subprogram returns the square of the distance between two
sprites or betwcen a sprite and a location. The position of each sprite is
considered to be its upper left hand corner. Dot-row and dot-column are from
1 to 256. The squared distance is returned in numeric-variable.

The number returned is computed as follows: The diflerence between the
dot-rows of the sprites (or the sprite and the location) is found and squared.
Then the difference between the dot-columns of the sprites (or the sprite and
the location) is found and squared. Then the two squares are added. If the
sum is larger than 32767. then 32767 is returned. The distance between the
sprites (or the sprite and the locarion) is the square root of the value
returned.

Examples

CALL DISTANCE(#3,#4 DIST) scts
DIST equal to the square of the
distance between the upper left hand
corners of sprite #3 and sprite #4,

>100 CALL DISTANCE(#3,#4,DIST)

CALL DISTANCE(#4,18.89,D) sets D
equal to the square of the distance
between the upper left hand corner
of sprite #4 and position 18, 89.

>100 CALL DISTANCE(#4,18,89,D)

80 TI Extended BASIC

The END statement ends your program and may be used i'n}erch?:rgeably
h the STOP statement. Although the ENP stglemem n"ldy app .
o it is normally placed as the last line in a program and_ thus ends
anny:)CY;Iil both physically and logically. The STOP statement is usua(ljly
me(fl;ngolher places that you want your program to halt. In T1 Ex'tende
;T\CSIC vou are not required to use the END statement. The program

automatically stops after it exccutes the highest numbered line.

I'T Extended BASIC

81

EOF

CHAPTER

RR subprogram

Format
EOF{file-number)

Description

;;.I;;anfi function is used to test whether there is another record to be read
ile. The value of file-number indicates the file to be tested and must

correspond to the number of 3 i
Correspond o an open file. The EOF function cannot be used

The EOF function always assum
F \ es that the next record is goi
sequentially, even if you are using a RELATIVE file, going to be read

flﬂrée I\;a;::s ;hat the EQF function provides depends on where you are in the
. re not at the last record of the file, the fi
0. 1F you arm ot te on Jast rec : . the function returns a vaiue of
of the file, the functiol
the diskette ur other storage medi is | "t the end of the te
. fum is full. you are at the end of the fi
) e file,
and there is no more room for any data, the function returns a value ol‘e— 1

For more information. see the Disk Memory System manual
Examples

PRINT EOF(3) prints a value
according to wheihier you are at the
end of the file that was opened as #3,

>100 PRINT EOF(3)

IF EOF(27)< >0 THEN 1150 transfers
control to line 1150 if you are at the
end of the file that was opened as
#27.

>100 IF EOF(27)<> 0 THEN 1150

IF EOF(27) THEN 1150 transfers
control to line 1150 if you are at the

cnd of the file that was opened as
#27.

>100 IF EOF(27) THEN 1150

82
Tl Extended BASIC

Format

|CALL ERR(error-code.error-type |.error-severity.line-number})

Description

The ERR subprogram returns the error-code and error-type of the most
recent uncleared error. An error is cleared when it has been accessed by the
ERR subprogram, another error has occured. or the program has ended.

b Error-codes are two or three digit numbers. The meanings of each of the
| codes s in Appendix N.

If error-type is a negative number. then the error was in the execution of the
program. If the error-code is 130 (VO ERROR). the error-type is a positive
number and the number is the number of the file that caused the error.

If no error has occured, CALL ERR returns all values as zeros.
CALL ERR is used in conjunction with ON ERROR.

Options

You may optionally obtain the error-severity and line-number on which the
error occured. The error-severity is always 9. The line-number is the number
of the line being exccuted when the error occurred. It is not always the line
that is the source of the problem since an error may occur because of values
generated or actions taken elsewhere in a prograin.

Examples

CALL ERR(A.B) sets A equal to the
error-code and B equal to the error-
type of the most recent error.

>100 CALL ERR(A,B)

CALL ERR(W.X.Y.Z) sets W equal to >100 CALL ERR(W,X,Y,Z)

(he error-code, X cqual to the error-
type, Y equal to the error-severity.
and Z equal to the ltne-number of

the most recent error.

TI Extended BASIC

83

ERR SUBPROGRAM

Program

The program on the right illustrates
the use of CALL ERR. An error is
caused in line 110 by calling for an
illegal screen color. Because of line

100, control is transfered to line 130,

Line 140 prints the values obtained,
The 79 indicates that a bad value
was provided.

The -1 indicales that the error was
in a statement. The 9 is the error-
severity. The 110 indicates that the
error occured in line 110.

>100 ON ERROR 130
>110 CALL SCREEN (18)
>120 STOP

>130 CALL ERR{(W,X,Y,Z)
>140 PRINT W;X;Y;2
>RUN

> 79 -1 9 110

[EXP

CHAPTER

EXP(numeric-expression)

Description

* The EXP function returns the exponential value (eX) of numeric-expression.

E The value of e is 2.718281828459.

‘ Examples

b Y=EXP(7) assigns to Y the value of e
" raised to the seventh power which is
- 1096.633158429.

' L=EXP(4.394960467) assigns to L
[ine value of e raised to the

Y 4.394960467 power which is

i 81.04142688868.

>100 Y=EXP(7)

>100 L=EXP(4,394960467)

84

Tl Exlended BASIC

TI Extended BASIC

85

FOR TO [STEP]

J'FOR TO [STEP]

CHAPTER

Format
FOR control-variable = inttial-value TO limit [STEP increment|

Description

The FOR-TO-STEP statement repeats execution of the statements between
FOR-TO-STEP and NEXT until the control-variabie is outside the range of
inirial-value to limit. The FOR-TO-STEP statement is useful when repeating
the same steps in a lvop. The FOR-TO-STEP statement cannot be used in an
IF-THEN-ELSE statement.

Control-variable may be any unsubscripted numeric variable. It acts as a
counter for the loop. Initial-value and limit are numeric expressions. The
loop starts with control-variable given a value of tnitial-value. The second
time through the loop. the value of control-variable is changed by one or
optionally by irwcremend, which may be a posiuve or negative number. This

continues until the value of control-variable is outside the range {nitial-value

to limit. Then the statement after NEXT is executed. The value of control-
variable is not changed when the computer leaves the loop.

The value of control-variable can be changed within the loop, but this must
be done carefully o avoid unexpected results. Loops may be "nested,” that
is onc lovp may be contatned wholly within another. You may leave a loop
using GOTO. GOSUB. IF-THEN-ELSE. or the like, and then return. However.
you may not enter a FOR-NEXT loop at any point except at its start.

If inittal-value exceeds limit at the beginning of the FOR-NEXT loop. none of
the statements in the loop are executed. Instead execution continues with the

first statement after the NEXT statement,

Examples

FOR A=1TO 5 STEP 2 executes Lhe
statements hetween this FOR and
NEXT A three times, with A having
values of 1, 3, and 5. After the lcop is
finished. A has a value of 7.

>100 FOR A=1 TO 5 STEP 2

FORJ=7TO -5 STEP -.5 executes
the stalements between this FOR
and NEXT J 25 times, with J having
values of 7, 6.5, 6, ..., -4, ~4.5, and
~5. After the loop is finished, J has
a value of -5.5.

>100 FOR J=7 TO -5 STEP -.5

86 Tl Extended BASIC

Program

L The program at the right illustrates a

use of the FOR-TO-STEP statement.

' There are three FOR-NEXT loops.

with control-variables of CHAR.
ROW. and COLUMN.

>100 CALL CLEAR

>110 D=0

>120 FOR CHAR=33 TO 63 STEP 3
0

>130 FOR ROW=14D TO 214D STEP
4

>140 FOR COLUMN=1+D TO 294D S
TEP 4

>150 CALI VCHAR(ROW,COLUMN,CH
AR)

>160 NEXT COLUMN

>170 NEXT ROV

>180 D=2

>190 NEXT CHAR

200 GOTO 200
(Press SHIFT C to stop the
progran.)

Tl Extended BASIC

87

GCHAR subprogram

GOSUB

CHAPTER

Format
CALL GCHAR(row,column.numeric-variable)

Description

The GCHAR subprogram reads a character from anywhere on the display
screen, The computer returns in numeric-variable the ASCII code for the
character in the position described by row and column.

Row and column are numeric expressions. A value of 1 for row indicates the
top of the screen. A value of 1 for the column indicates the left side of the
screen. The screen can be thought of as a grid as shown below.

COLUMNS
12 14 16 18 2 24 2 28 3 32
tizbas iz tasdbashard o dand

2 4 6 8 10 20
td3dstzhedn 194 21

22—~
23
24 -

Examples

CALL GCHAR(12,18,X) assigns to X
the ASCII code of the character that
is in row 12, column 6.

CALL GCHAR(R.C.K) puts into K the
ASCII code of the character that is in
row R. column C.

>100 CALL GCHAR(12,16,X)

>100 CALL GCHAR(R,C,K)

h Format
GOSUB line-number
f GO SUB line-number

} Description

¢ The GOSUB statement allows transfer to a subroutine. When executed.

j control is transferred to line-number and that statement and any following

j (which may include any staterments, including GOTO stalements and other

f GOSUB statements) are executed. When a RETURN statement Is

I encountered. control is returned to the next statement following the GOSUB
‘statement. Subroutines are most useful when the same action is (o be
performed in different parts of a program. See also ON...GOSUB. Subroulines
L in TI Extended BASIC may call themselves.

‘ Example

) GOSUB 200 transfers control to

statement 200. That statement and
the ones up to RETURN are

L executed, and then control returns to

the statement after the calling

statement.

>100 GOSUB 200

88 TI Extended BASIC

Tl Extended BASIC

89

GOSUB

CHAPTER

Program

The program on the right illustrates
a use of GOSUB. The subroutine at
line 260 figures the factorial of the
value of NUMB. The whole program
figures the solution to the equation
NUMB = X! __

Y (X-Y)!

where the exclamation point means
factorial. This formula is used to
figure certain probabilities. For
instance. if you enter X as 52 and Y
as 5. you'll find the number of
possible five card poker hands.

>100 CALL CLEAR

>110 INPUT “ENTER X AND Y: ':
X, Y

>120 IF X<Y THEN 110

>130 IF X>69 OR Y>69 THEN 110

>140 NUMB=X

>150 GOSUB 260

>160 NUMERATOR=NUMB

>170 NUMB-Y

>180 GOSUB 260

>190 DENOMINATOR=NUMB

>200 NUMB=X-Y

>210 GOSUB 260

>220 DENOMINATOR=DENOMINATOR*
NUMB

>230 NUMB=NUMERATOR/DENCMINAT
CR

»240 PRINT “NUMBER IS';NUMB

>250 STOP

>260 REM FIGURE FACTORTAL

>270 IF NUMB<O THEN PRINT “NE
GATIVE" :: GOT9 110

>280 IF NUMB<2 THEN NUMB=1 ::
GOTO 330

>290 MULT=NUMB-1

>300 NUMB=NUMB*MULT

>310 MULT=MULT-1

>320 IF MULT>1 THEN 300

>330 RETURN

TO line-number
TO line-number

scription

he program at the right shows the
se of GOTOQ in line 160. Anytime
at line is reached the program
ecutes line 130 next and proceeds
om that new point.

e GOTO statement allows you to transfer control unconditionally to
other line within a program. When a GOTO statement is executed, control
s passed 1o the first statement on the line specified by line-tumber.

e GOTO statement should not be used to transfer control into

>100 REM ADD 1 THROUGH 100

>»110 ANSWER=0

>120 NUMB=1

>130 ANSWER=ANSWER+NUMB
140 NUMB=NUMB+1

>150 IF NUMB>100 THEN 170
>160 GOTO 130

>170 PRINT ‘“THE ANSWER IS'jAN
SWER

>RUN

THE ANSWER IS 5050

90

Tl Extended BASIC I' T1 Extended BASIC

91

HCHAR subprogram

Format
CALL HCHAR{row.column.character-code |,repetition|)

Description

The HCHAR subprogram displays a character anywhere on the display
screen and optionally repeats it horizontally. The character with the ASCII
value of character-code is placed in the position described by row and
column and is repeated horizontally repetition times.

A value of 1 for row indicates the top of the screen. A value of 24 is the
bottom of the screen. A value of 1 for column indicates the left side of the
screen. A value of 32 is the right side of the screen. The screen can be
thought of as a grid as shown below.

COLUMNS

L] o R 1w t2 14 1o 18 20 22 24 26 28 30 32
sbsthsdoeodndbbistzbebardbaadastaziondnd

12 e

wgow
z

14—
15
Lo—
17
18—
19
20—~
21
22—~
23
24—+

92 Ti Extended BASIC

+{CHAR SUBPROGRAM

CHAPTE

—
;%Examples
%:;CALL HCHAR(12.16.33) places

Fcharacter 33 (an exclamation point)
{n row 12, column 16.

B

SCALL HCHAR(1.1.ASC("!"").768)
,p]aces an exclamation point in row
¥1, column 1. and repeats it 768
ftimes, which fills the screen.

3

ALL HCHAR(R.C K.T) places the
haracter with an ASCII code

olumn C and repeats it T times.

pecified by the value of K in row R,

>100 CALL HCHAR(12,16,33)

$100 CALL HCHAR(1,1,ASC("!"),
768)

>100 CALL HCHAR(R,C,K,T)

T1 Extended BASIC

93

————

IF THEN [ELSE]

THEN [ELSE]

CHAPTE

Format

IF relational-expresstion THEN line-numberl [ELSE line-number2]
IF relational-expression THEN statement! [ELSE statement2]

IF numeric-expression THEN line-numberl [ELSE line-number2]
IF numeric-expression THEN statement! [ELSE statement2]

Description

The IF-THEN-ELSE statement allows you to transter control to line-number!
or to perform statementl if relational-expression is true or if numeric-
expression is not equal to zero. Otherwise control passes to the next
statement, or optionally to line-number2 or statement2.

Staternentl and statement2 may each be several statements long, separated
by the statement separator symbol. They are only executed if the clause
irnmediately before them is executed. The IF-THEN-ELSE statement cannot
contain DATA, DEF, DIM, FOR, NEXT, OPTION BASE, SUB, or SUBEND.

Examples

IF X>5 THEN GOSUB 300 ELSE

X =X +5 operates as follows: If X is
greater than 5, then GOSUB 300 is
executed. When the subroutine is
ended, control returns to the line
following this line. If X is 5 or less, X
is set equal to X + 5 and control
passes to the next line.

IF @ THEN C=C+ 1:GOTO
500:ELSE L =L/C::GOTO 300
operates as [ollows: If Q is oot zero,
then C is set equal to C+ 1 and
control is transferred to line 500. If Q
is zero, then L s set equal to L/C and
control is transferred to line 300.

>100 IF X>5 THEN GOSUB 300 EL
SE X=X+5

>100 IF Q THEN C=C+1::GOTO 50
0::ELSE L=L/C::GOTO 300

IF A>3 THEN 300 ELSE A=0::
GOTO 10 operates as follows: If A is
greater than 3, then control is
transferred to line 300. Otherwise, A
is reset to zero and control is
transferred to line 10.

>100 IF A>3 THEN 300 ELSE A=0
1:G0T0 10

Br AS="Y" THEN COUNT=
RCOUNT + 1::DISPLAY AT(24,1):
“‘HERE WE GO AGAIN!"::GOTQ 300
erates as follows: If A8 is not equal
'Y, then control passes to the
fnext line. 1f AS is equal to "'Y"", then
{COUNT is incremented byl a
finessage is displayed, and control is

L gransferred to line 300.

FF HOURS < =40 THEN

BpAY = HOURS*WAGE ELSE

fPAY = HOURS*WAGE + .5*WAG-
FE*(HOURS-40) :: OT =1 vperdices as
Follows: If HOURS is less than or
equal to 40. then PAY is set equal to
PHOURS*WAGE and cantrol passes to
fthe next line. If HOURS is greater
Mihan 40 then PAY is set equal to
BHOURS*WAGE + .53*WAGE*(HO-
fURS-40), OT is set equal to 1, and
ontrol passes to the next line.

IJF A=1 THEN [F B=2 THEN C=3
JELSE D =4 ELSE E =5 operates as
ffollows: If A is not equal to 1, then E
Js set equal to 5 and control passes to
the next line. If A is equal to 1 and B
[1s not equal to 2. then D is set equal
m 4 and contrel passes to the next
,]ine. If A is equal to 1 and B is equal
to 2. then C is set equal to 3 and
beontrol passes to the next line.

>100 IF A$="Y" THEN COUNT=COU
NT+1::DISPLAY AT(24,1):"HERE
WE GO AGAIN!"::GOTO 300

>100 IF HOURS<=40 THEN PAY=HO
URS*WAGE ELSE PAY=HOURS*WAGE
+.5%AGEX (HOURS-40) :: OT=1

>100 IF A=1 THEN IF B=2 THEN
C=3 ELSE D=4 ELSE E=5

94 TI Extended BASIC

TI Extended BASIC

95

IF THEN [ELSE]

CHAPTER

Program '

The program on the right illustrates
a use of IF-THEN-ELSE. It accepts up
to 1000 niimhers and then prints
them in order from smallest to
largest.

»>100 CALL CLEAR

>110 DIM VALUE(1000}

»>120 PRINT “ENTER VALUES TCO B
E SORTED, ':"ENTER '9999' TO
END ENTRY."

»>130 FOR COUNT=1 TO 1000

>140 INPUT VALUE(COUNT)

>150 IF VALUE(COUNT}=9999 THE
N 170

>160 NEXT COUNT

>170 COUNT=COUNT-1

>180 PRINT “SORTING."

>190 FOR SORT1=1 TC COUNT-1

>200 FOR SORT2=SORT1+1 TO COU

NT

»>210 IF VALUE(SORT1)>VALUE(SO
RT2)THEN TEMP=VALUE(SORT1)::

VALUE(SORT1)=VALUE(SORT2) : :
VALUE(SORT2)=TEMP

>220 NEXT SORTZ2

230 NEXT SORT1

>240 FOR SORTED=1 TO COUNT

>250 PRINT VALUE(SORTED)

260 NEXT SORTED

' The IMAGE statement specifics the format in which numbers are printed or
displayed when the USING clause is present in PRINT or DISPLAY. No action
3 {s taken when the IMAGE s(atement is encountered during program

i execution. The IMACE statement must be the only statement on a line. The
i following description of format-string also applies to the use of an explicil

¢ image after the USING clause in PRINT...USING and DISPLAY...USING.

; Formal-string must contain 254 or fewer chardciers and 1uay be made up uf
¥ any characters. They are treated as follows:

’, Pound signs (¥) are replaced by the print-list values given in PRINT...USING
. or DISPLAY...USING. One pound sign must be allowed for each digit of the

" value and one for the negative sign if it is present. or for each character that
" {s to be printed. If there is not enough room to print the number or

characters in the space allowed, each pound sign 1s replaced with an asterisk
(*). If more numbers are after the decimal place than are allowed by the
number of pound signs after the decimal place in the IMAGE statement, the
number is rounded to fit. If there are fewer non-numeric characters than are
allowed for in the print string, the value printed will have blanks for the
extra characters.

To indicate that a number Is to be given in scientific notation, circumflexes
(A) must be given for the E and power numbers. There must be four or five
circumflexes, and 10 or [ewer characters (minus sign, pound signs, and
decimal peint) when using the E format.

The decimal point separates the whole and fractional portions of numbers.
and is printed where it appears in the IMAGE statement.

All other letters, numbers, and characters are printed exactly as they appear
in the IMAGE statement.

Furmai-string may be cnclosed in quotation marks. If it is not enclosed in
quotation marks, leading and trailing spaces are ignored. However. when
used directly in PRINT...USING or DISPLAY...USING, it must be enclosed in
quotaton marks.

Each IMAGE slatement may have space for many images. separated by any
character except a decimal point. If more values are given in the
PRINT...USING or DISPLAY...USING staternent than there arc images. then
the images are reused, starting at the beginning of the statement.

If you wish. you may put format-string directly in the PRINT.. . USING or
DISPLAY...USING statement immediately following USING. However, if a

96

TI Extended BASIC

TI Extended BASIC 97

IMAGE

Jormat-string is used often, it is more efficient to refer to an IMAGE

statermnent.

Examples

IMAGE $#### ##%# allows printing of
any number from -999.999 to
9999.999. The following show how
some sample values will be printed
or displayed.

Value Appearance
-999.999 $ -999.999
-345 $ -34.500
o] S 0.000
12.4565 $ 12457
6312.9991 $ 6312999
99999999 Grrarenen

IMAGE THE ANSWERS ARE ###
AND ## ## allows printing of two
numbers. The first may be from -99
to 999 and the second may be from
-9.99 (0 99.99. The following show
how some sample values will be
printed or displayed.

>100 IMAGE S###H.HHH
>110 PRINT USING 100:4

>200 IMAGE THE ANSWERS ARE #
AND #4844
>210 PRINT USTNG 200:A,B

¢ values

IMAGE

CHAPTE

& IMAGE DEAR ####, allows printing
. a four-character string. The following

show how some sample values will

. be printed or displayed.

Appearance

i JOHN DEAR JOHN,

;. TOM DEAR TOM ,

RALPH DEAR ****,
Programs

. The program on the right illustrates
- a use of IMAGE. [t reads and prints
 aeven numbers and their total. Lines

110 and 120 set up the images. They

ii. are the same except for the dollar

sign in linc 110. To keep the blank
space where the dollar sign was, the

- format-string in line 120 is enclosed

in quotation marks.

Line 180 prints the values using the
IMAGE statemerns.

>300 IMAGE DEAR ####,
310 PRINT USING 300:X$

>100 CALL CLEAR

>110 IMAGE $H#H#E #K

>120 IMAGE - #A##_#¥"

>130 DATA 233.45,-147.95,8.4,
37.263,-51.299,85.2,464

>140 TOTAL=0

>150 FOR A=1 TO 7

>160 READ AMOUNT

170 TOTAL=TOTAL+AMOUNT

>180 IF A=1 THEN PRINT USING
110:AMOUNT ELSE PRINT USING
120: AMOUNT

>190 NEXT A

Values Appearance >200 PRINT =ecem== "

-99 -9.99 THE ANSWERS Line 210 shows that the format can >210 PRINT USING “3####.#4":T
ARE -99 AND be put directly in the PRINT...USING OTAL
-9.99 statement. >RUN

-7 ~3.459 THE ANSWERS The amounts are printed with the $ 233.45
ARE -7 AND decimal points lined up. ~147.95
-346 8.40

(4] 0 THE ANSWERS - 37.26
ARE 0 AND .00 -51.30

148 12.75 THE ANSWERS 85,20
ARE 15 AND 12.75 464.00

795 852 THE ANSWERS R
ARE 795 AND $ 629.06
LE AR R]

-984 647 THE ANSWERS
ARE *** AND
64.70

a8 99

Tl Extended BASIC

TI Extended BASIC

Z CHAPTER
IMAGE INIT subprogram 4
The program at the right shows the >100 IMAGE ###.##, 4844 ¢ Format
effect of using more values in the >110 PRINT USING 100:50.34,50 ' CALL INIT
.34,37.26,37.26 1
PRINT...USING statement than there 34,3 3 f' Description
are images in the IMAGE statement. >RUN

- The INIT subprogram is used, along with LINK, LOAD, and PEEK, to access
' assembly language subprograms. The INIT subprogram checks to see that

t the Memory Expansion is connected. prepares the computer to run assembly
k language programs, and loads a set of supporting routinges into the Memory
f Expansion.

50.34, 50.3
37.26, 37.3

f The INIT subprogram must be called before LOAD and LINK are called. INIT
b reiioves any previously loaded subprograms from (he Memory Expansion.

f The effects of INIT last until the Memory Expansion is turned off and does

g not need Lo be called from each program that is using the subprogram

p involved.

E If the Memory Expansion is not attached, a syntax error is given.

100 TI Extended BASIC TI Extended BASK® 101

|

INPUT

Format
INPUT linput-prompt:| variable-list

(For information on using the INPUT statement with a file, see INPUT with

files.)

Pescription

This form of the INPUT statement is used when entering data from the
keyboard. The INPUT statement suspends program execution until data is
entered from the keyboard. The optional input-prompt may display on the

screen what data is expected.

Variable-lis¢ contains the variables (scalar or array elements: numeric or
string) which are assigned values when the INPUT statement is executed.
The variables are separated by commas. If a value in variable-list is input. it
may later be used as a subscript in the same INPUT statement.

When inputting string values, they may optionally be enclosed in quotation
marks. However, if you wish 1o have leading or trailing blanks or commas.
the entire string must be enclosed in quotation marks. If more than one
value is to be input, separate the values (o be input by commas.

Options

‘The oplional input-prompt is a string expression. It must be followed by a
colon. It is displayed on the screen when the INPUT statement is executed. It
there is no tnput-prompt, a question mark and space are displayed to
indicate that input is expected. If there is an input-prompt. it takes the place

of the question mark and space.

Examples
INPUT X allows the input of a
number.

INPUT X8.Y allows the input of 2
string and a number.

INPUT “ENTER TWO NUMBERS:
*:A,B prints the prompt ENTER
TWO NUMBERS and then allows the
entry of two numbers.

INPUT A(J).J first evaluates the
subscript of A and then accepts data
into that subscript of A. Then a value
is accepted into J.

>100 INPUT X

>100 INPUT X$,Y

>100 INPUT “ENTER TWQ NUMBERS
":A,B

>100 INPUT A(J),J

pp—

INPUT

m
1]

INPUT J.A(J) first accepts data into J
and then accepis data into the Jth
¥ clement of the array A.

'Program

¥ The program on the right illustrates
- 4 use of INPUT from the keyboard.
Lines 110 through 140 allow the

. person using the program to enter
data, as requested with the input-

¥ prompis.

B o e T

i Lines 170 through 250 construct a
jetter based on the input.

>100 INPUT J,A(J)

>100 CALL CLEAR

>110 INPUT “ENTER YOUR FIRST
NAME: ":FNAME$

»120 INPUT “ENTER YOUR LAST N
AME: “:LNAMES

>130 INPUT “ENTER A THREE DIG
IT NUMBER: ':DOLLARS

>140 INPUT “ENTER A TWO DiGiT

NUMBER: ":CENTS

>150 IMAGE OF B###.4# AND THA
T IF YOU

>160 CALL CLEAR

>170 PRINT “DEAR *'; FNAME$;", "

>180 PRINT ~ THIS IS TO R
EMIND YOU™

»190 PRINT “THAT YOU OWE US T
HE AMOUNT™

>200 PRINT USING 150:DOLLARS+
CENTS/100

5210 PRINT *DO NOT PAY US, YO
U WILL SOON"

>220 PRINT “RECEIVE A LETTER
FROM OUR™

>230 PRINT “ATTORNEY, ADDRESS
ED TQ"

5240 PRINT FNAMES;" ~;LNAMES;
ey

>250 PRINT TAB(15); SINCERELY
,7 o <TaB(15);"1. DUN YOU™:

>260 GOTO 260
(Press SHIFTC to stop the
program,)

102

TI Extended BASIC

T1 Extended BASIC

103

INPUT (with files)

Format
INPUT #file-number [, REC record-number)| :variable-list

(For information on using the INPUT statement to enter data from the
keyboard, see INPUT.)

Description

The INPUT statement, when used with files, allows you to read data from
files. The INPUT statement can only be used with files opened in INPUT or
UPD.‘(\jTE mode. DISPLAY files may not have over 160 characters in each
record.

File-number and variable-list must be included in the INPUT statement.
Record-number may optionally be included when reading random access
(RELATIVE) files from diskettes.

All statements which refer 1o files do so with a file-number from 0 through
2535. File-number is assigned (o a particular file by the OPEN statement. File
number O is dedicated (the keyboard and screen of the computer. It cannaot
be used for othcr files and is always open. File-number is entered as a
number sign (#) followed by a numeric expression that. when rounded to the
nearest integer, is a number from 0 (o 255, and is the number of a filc that is
open,

Variable-list is the list of variables into which you want the data from the file
tO‘ be placed. IL consists of s(ring or numeric variables separated by commas
with an optional trailing comma.)

Options

You can optionally specify the number of the record that you want (o read as
record-number. It can only be specified lor disketie files which have been
opened as RELATIVE. The first record of a file is number 0.

| INPUT #11 REC 44:TAX puts into
. TAX the first value of record number

INPUT #3:A B.C, puts into A. B, and

104 -
TI Extended BASIC

CHAPTER

L INPUT (with files)

Examples

INPUT #1:X8 puts into X8 the next >100 INPUT #1:X$

£ value available in the file that was
opened as #1.

| INPUT #23:X,A.LLS puts into X. A.

>100 INPUT #23:X,A,LL$
and LL$ the next three values {rom
the flle that was opened as #23.

>100 INPUT #11,REC 44:TAX

44 of the file that was opened as #11.

>100 INPUT #3:A,B,C,
C the next threc values from the file

that was opened as #3. The comma

after C creates a pending Input

condition. When the next INPUT o1

LINPUT statement using this file is

performed, one of the following

actions occurs: If the next INPUT or

. LINPUT statement has no REC

clause, the compuler uses the data
beginning where the previous INPUT
statement stopped. If the next INPUT
or LINPUT statement includes a REC
clause, the compuiter terminates ihe
pending input condition and reads
the specified record.

TI Extended BASIC 105

INPUT (with files)

Program

The program at the right illustrates a
use of the INPUT statement. It opens
a file on the cassette recerder and
writes 5 records on the file. It then
goes back and reads the records and
displays them on the screen.

>100 OPEN #1:°€S1",SEQUENTIAL
, INTERNAL, OUTPUT, FIXED 64
>110 FOR A=1 TO 5
>120 PRINT #1:THIS IS RECORD
A
130 NEXT A
>140 CLOSE #1
>150 CALL CLEAR
160 OPEN #1:C51",SEQUENTIAL
, INTERNAL, INPUT, FIXED 64
>170 FOR B=1 TO %
>180 INPUT #1:4%,C
>190 DISPLAY AT(B,1):43;C
>200 NEXT B
210 CLOSE #1
>RUN
* REWIND CASSETTE TAPE C(S1
THEN PRESS ENTER
¥ PRESS CASSETTE RECORD (CS1
THEN PRESS ENTER
¥ PRESS CASSETTE 3TOF c51
THEN PRESS ENTER
* REWIND CASSETTE TAPE €51
THEN PRESS ENTER
* PRESS CASSETTE PLAY CcS1
THEN PRESS ENTER
THIS IS RECORD L
THIS IS RECORD 2
THIS IS RECORD 3
THIS IS RECORD 4
THIS IS RECORD 5
¥ PRESS CASSETTE STOP Cs1
THEN PRESS ENLER

See the Disk Memory System manual for instrucions on using diskettes.

INT

CHAPTER

Format
INT(numerlc-expresslon)
Description

The
expression.

Examples
PRINT INT(3.4) prints 3.

X =INT(3.9) sets X equal to 3.

P = INT(3.9999999999) sets P equal
to 3.

DISPLAY AT(3.7):INT(4.0) displays 4
at the third row, seventh column.
N=INT(-3.9) scts N cqual to - 1.

K = INT{ - 3.0000001) sets K equal to
-4.

INT function returns the greatest integer less than or equal to numeric-

>100 PRINT INT(3.4)
>100 X=INT(3.90)
5100 P=INT(3.9999999999)

100 DISFLAY AT(3,7):INT(4.0}

100 N=INT(-3.9)
>100 K=INT(-3.0000001)

TI Extended BASIC

Tl Extended BASIC

107

JOYST subprogram

Format
CALL JOYST(key-unit.x-return,y-return)
Description
The JOYST subprogram returns data i
: : : into x-return and y-return b
position of the joystick in the Wired Remote Controller (gvaﬂable ased on the

separately) labeled key-unit, Key-unit is a numeric expression with a value of

1 through 4. The values 1 and 2 j i
are joysticks 1 a 3
reserved for possible future use. 1 ne % Values Sand 4 are

T
Jol;z;[;/:liuf;; 1;&‘111;::;:1 lfntx-relcnltrn and y-return depend on the position of the
. eturned are shown below. The first value i
: . n the
parentheses is placed in x-return. The second value is placed in y-return

(0.4)

-4 @.4)

(-4.0) - (4.0)

(-4 -4 4.-4)

0.-4)
Example
CALL JOYST{(1.X.,Y) returns values

in X and Y according to the position
of joystick number 1.

>100 CALL JOYST(1,X,Y}

Program

The program on the right illustrates
a use of the JOYST subprogram. It

>100 CALL CLEAR
>110 CALL SPRITE(#1,33,5,96,1

creates a sprite and then moves it 28)
.ar?und according to the input from a >120 CALL JOYST(1,X,Y)
Jjoystick. >130 CALL MOTION(#1,-Y,X)
>140 GOTO 120
(Press SHIFT C to stop the
program.)
108

Tl Extended BASIC

CHAPTER

KEY subprogram

Format
CALL KEY(key-unir.retum-uartable.status-uariable)

Description

The KEY subprogram assigns the code of the key pressed to return-variable.
The value assigned depends on the key-unit specified. If key-unit is O, input
is taken from the entire keyboard. and the value placed in return-variable is
the ASCII code of the key pressed. If no key is pressed. return-variabte 1s set
equal to - 1. See Appendix C for a list of the ASCII codes.

If key unit is 1. input is laken from the left side of the kevboard. If key-unit is
2, input is taken from the right side of the keyboard. The possible values
placed in return-variable are given in Appendix J. Values of 3, 4, and 5 are
reserved for possible future uses.

Status-variable indicates whether a key has been pressed. A value of 1
means a new key was pressed since the last CALL KEY was executed. A
value of — | means the same key was pressed as in the previous CALL KEY.
A value of 0 means no key was pressed,

Example

CALL KEY(0,K.8) returns in K the
ASCII code of any key pressed on the
keyboard, and in S a value indicating
whether any key was pressed.

>100 CALL KEY(O,K,S)

Program
I'he program on the right illustates >100 CALL CLEAR
a use of the KEY subprogram. It >110 CALL SPRITE(#1,33,5,96,1
creates a sprite and then moves it 28)
around according to the input [rom >120 CALL XEY(1,K,S)
the left side of the keyboard. >130 IF 5=0 THEN 120
Nole that line 130 returns to line 120 >140 IF K=5 THEN Y=-4
if no key has been pressed. >150 IF K=0 THEN Y=4
>160 IF K=2 THEN X=-4
>170 IF K=3 THEN X=4
»180 IF K=1 THEN X,Y=0
>190 IF K>5 THEN X,Y=0
>200 CALL MOTION(#1,Y,X)
»210 GOTO 120
(Press SHIFTC to stop the
program.)

Tl Extended BASIC

LEN

'I:'ET CHAPTaq'

Format
LEN(string-expression)
Description

The LEN function returns the number of char: i

acters in string- i
space counts as a character. stringexpression. &
Examples
PRINT LEN("ABCDE") prints 5. >100 PRINT LEN('‘ABCDE")

X=LEN("THIS IS A SENTENCE.") >100 X= -
R =LEN(-'THIS IS
sets X equal to 19. E.") (SRR

DISPLAY LEN("") displays 0. >100 DISPLAY LEN("")

DISPLAY LEN(") displays 1. >100 DISPLAY LEN(~ *)

110

TI Extended BASIC

Format

[LET] numeric-variable [.numeric-vartable, ... | =numeric-expression
[LET] string-variable l.string-variable. ... | = string-expresston
Description

The LET statement assigns the value of an expression to the specified
vartable(s). The computer evaluates the expression on the right and puts its
value into the variahle(s) on the left. If more than one variable is on the left,
they are separated with commas. The LET is optional, and is omitted in the
examples in this manual. All subscripts in the variable(s) on the left are
evaluated before any assignments are made.

You may use relational and logical operators in numeric-expression. If the
relation or logical value is true, numeric-variable is assigned a value of — 1. If
the relation or logical value is false. numeric-variable is assigned a value of
0.

Examples

T =4 puls the value 4 into T. >100 T=4

X.Y.Z = 12.4 puts the value 12.4 into >100 X,Y,Z=12.4
X, Y, and Z.

A=3<5puts -1 into A since it is >100 A=3<5

true that 3 is less than 5.

B=12<7 puts O into B since it is not >100 B=12<7
true that 12 is less than 7.

LA(I) = 3 puts 3 into A{l) with »100 1,A(I)=3
whatever value 1 had before. and

then puts 3 into [

1L$.DS.BS="B" puts "B into LS.
DS, and BS.

>100 L$,D§,B3="B"

Tl Extended BASIC 111

LINK subprogram

Format
CALL LINK(subprogram-name |.argument-list])
Description

The LINK subprogram is used. along with INIT, LOAD. and PEEK. (o access
assembly language subprograms. The LINK subprogram passes control and
optionally, a list of parameters from a T1 Extended BASIC program to an v
assembly languagc subprogram.

Subprogram-name is the name of the subprogram (o be called. It must have
been previously loaded into the Memory Expansion with the CALL LOAD
command or statement. Argument-list is a list ot variables and expressions
as required by the specific assembly language subprogram being called.

TI Ex(ended BASIC

'Y T CHAPTER
LINPU 4

Format
LINPUT | [#file-number] [REC record-number] :| string-variabte

LINPUT [input-prompt:| string-variable

Description

The LINPUT staternent allows the assignment of an entire line, file record, or
(if there is a pending input record) the remaining portion of a file record into
string-variable. No editing is performed on whalt is input, S0 commas,
leading and trailing blanks. semicolons, colons, and quotation marks are
placed in string-variabie as they are given.

Options

A #file-number may be specified. If the file is in RELATIVE format,. a specific
record may be specified with REC. The file must be a DISPLAY-type file. If no
file is specificd, an {nput prompt may be displayed prior to accepting input
from the keyboard.

Examples

LINPUT LS8 assigns into L$ anything >100 LINPUT L$
typed before ENTER is pressed.

LINPUT "NAME: ":NMS§ displays >100 LINPUT -NAME: “'NM3
NAME: and assigns into NM$
anything typed before ENTER is
pressed.

LINPUT #1.REC M:L8(M) assigns >100 LINPUT #1,REC M:L$(M)
into LS(M) the value that was in

record M of the file that was opened

as #1.
Program

The program on the right illustrates >100 OPEN #1:"DSK1,TEXTL1",INP
the use of LINPUT. It recads a UT,FIXED 80,DISPLAY

previously existing file and displays >110 I¥ EOF(1) THEN CLOSE #1
only the lines that contain the word 11 STOP
“THE". >120 LINPUT #1:4$

»130 1=r0S(A$, THE ,1)
»>140 IF I<>0 THEN PRINT A$
»150 GOTO 110

Tl Extended BASIC 113

LIST

Format
LIST I"device-name'":] (line-number|
LIST [“device-name "] [start-line-number] - |end-line-number]

Description

The LIST command allows you to display program lines. If LIST is entered
with no numbers following ti. the entire program in memory is listed. If a
number follows LIST, the line with that number is listed. If a number
followed by a hyphen follows LIST, that line and all lines following it are
listed. If a number preceeded by a hyphen follows LIST. all lines preceeding
it and that line are listed. If two numbers separated by a hyphen follow LIST,
the indicated lines and all lines between them are listed.

By pressing and holding a key until Tt Extended BASIC responds. you may
temporarily halt a listing so that you can look at it on the screen. Press any
key again to restart the listing. Similarly. pressing SHIFT € (CLEAR) stops the
listing.

Options

The listing normally is displayed on the screen. If you wish, you can instead
direct the list to some other device, such as the optional thermal printer or
R5232 intertace, by specitying device-name.

Examples

LIST lists the entire program in »LIST
memory on the display screen.

LIST 100 lists line 100. >LIST 100
LIST 100- lists line 100 and all lines >LIST 100~
after it.

LIST -200 lists all lines up to and >LIST -200

including line 200.

LIST 100-200 lists all lines from 100
through 200.

>LIST 100-200

LIST **TP" lists the entirc program >LIST "TP"

on the optional thermal printer.

LIST "TP": -200 lists all lines up to
and including line 200 on the
optional thermal printer.

>LIST "TP": -200

114 TT Extended BASIC

LOAD subprogram

CHAPTER

===

. pormat

CALL LOAD('access-name” .address.bytel [, ... filefield, ...)
pescription

. The LOAD subprogram is used. along with INIT, LINK. and PEEK, to access
" assembly language subprograms. The LOAD subprogram 1pads an assembly
©. Janguage object file or direct data into the Memory Expansion for later

» execution using the LINK statement.

" The LOAD subprogram can specify one or more files from which to load

By
i

i
#

object data or lists of direct load data, which consists of an address folloyved
by data bytes. The address and data bytes are separated by comrqas. Direct
Joad data must be separated by file-field, which is a string expression
specifying a file from which to load assembly language object code. File-field
may be a null string when it is used merely to separate direct load data
fields. Use of the LOAD subprogram with incorrect values can cause the
computer to cease to function and require turning it off and back on.

Assembly language subprogram names (see LINK) are included in the file,

115

Ti Extended BASIC

LOCATE subprogram

Format

CALL LOCATE(#sprite-number,dot-rotw.dot-column [....])

Description

The LOCATE subprogram is used to change the location of the given sprite(s)
to the given dot-row(s) and dot-column(s). Dot-row and dot-column are
numbered consecutively slarting with 1 in the upper left hand corner of the
screen. Dot-row can be from 1 to 192 and dot-column can be from 1 to 2586.
(Actually dot-row can go up (o 256. but the locations from 193 through 256
are off the bottom of the screen.) The location of the sprite is the upper left
hand corner of the character(s) which detine it.

Program

The program on the right illustrates

the usc of the LOCATE subprogram.

Line 110 creates a sprite as a fairly
quickly moving red exclamation
point.

Line 140 locates the sprite at a
location randomly chosen in lines
120 and 130.

Line 150 repeats the process.

>100 CALL CLEAR

>110 Call SPRITE(#1,33,7,1,1,
25,25)

>120 YLOO=INT(RND¥150+1)

>130 XLOC=INT(RND*200+1)

>140 CALL LOCATE(#1,YLOC,XLOC
)

>150 GOTO 120

(Press SHIFTC to stop the

program,)

Alsa see the third example of the SPRITE subprogram,

116

T! Extended BASIC

LOG

CHAPTE

Format
LOG(numeric-expression)

Description

The LOG function returns the natural logarithm of numeric-expression
where numeric-expression is greater than zero. The LOG function is the

inverse of the EXP function,

% Examples

PRINT LOG({3.4) prints the natural
logarithm of 3.4 which is
1.223775431622.

kX - LOG(EXP(7.2)) sets X equal (0
" the natural logarithm of e raised to

the 7.2 power, which is 7.2.

5=LOG(S@RIT)) scts S cqual to the
natural logarithm of the square root
of the value of T.

Program

The program at the right returns the
togarithm of any positive nnmber to
any base.

>100 PRINT LOG(3.4)

>100 X=LOG(EXP(7.2))

>100 S=LOG(SQR(T))

>100 CALL CLEAR
>»110 TNPUT “BASE: ":B
»120 IF B<=1 THEN 110
>130 INPUT “NUMBER: ":N
>140 TF N<=0 THEN 130
>150 LG=LOG(N)/LOG(B)
>160 PRINT “LOG BASE";B; " 0F";
NivT1875 TG
>170 GOTO 110
(Press SHIFTC to stop the
program.)

TI Extended BASIC

117

MAGNIFY subprogram

— CHAPTER
MAGNIFY subprogram

Format
CALL MAGNIFY(magnification-factor)

Description

The MAGNIFY subprogram allows you to specify the size of sprites and how
many characters make up each sprite. All sprites are affected by MAGNIFY.
Magnification-factors may be 1, 2, 3, or 4. If no CALL MAGNIFY is in a
program, the defaull rragriification-factor 1s 1.

A magnification-factor of 1 causes all sprites to be single size and
unmagnified. This means that each sprite is defined only by the character
specitied when the sprite was created and takes up just one character
position on the screen.

r N

-~ J

A magnification-factor of 2 causes all sprites to be single size and magnified.
This means that each sprite is defined only by the character specified when it
was created, but takes up four character positions on the screen. Each dot
position in the character specified expands to occupy four dot positions on
S}E scrleen. The expansion from a rmagnification-factor of 1 is down and to

he riglit.

{ Y

118 TI Extended BASIC

A magnificationfactor of 3 causes all sprites to be double size and
unmagnified. This means that each sprite is defined by four character
positions that include the character specitied. The first character is the one
specified when the sprite was created if its number is evenly divisible by
four, or the next smallest number that is evenly divisible by lour. That
character is the upper left quarter of the sprite. The next character is the
Jower left quarter of the sprite. The next character is the upper right quarter
of the sprite. The final character is the lower right quarter of the sprite. The
characler specified when the sprite was created is one of the four that makes
up the sprite. The sprite occupics lour characler positions on the screen.

S h

. v
A magnification-factor of 4 causes all sprites to be double size and

magnified. This means that each sprite is defined by four character positions
that include the character specified. The first character is the one specified
when the sprite was created if its number is evenly divisible by four. or the
next smallest number that is evenly divisible by four, That character is the
upper left quarter of the sprite. The next character is the lower left quarter of
the sprite. The next character is the upper right quarter of the sprite. The
final character is the lower right quarter of the sprite. The character specified
when the sprite was created is one of the four that makes up the sprite. The
sprite occuples sixteen character positions on the screen. The expansion
from a magnification-factor of 3 is down and to the right.

r)

a8

\ J

TI Extended BASIC

119

MAGNIFY subprogram

Program

The following program illustrates a use of the MAGNIFY subprogram. When
it is run, a little figure appears near the center of the screen. In a moment, it
gets to be twice as big. covering four character positions. In another moment,
it is replaced by the upper left corner of a larger figure, still covering four
character positions. Then the full figure appears, covering sixteen character
positions. Finally it is reduced in size to four character positions.

>100 CALL CLEAR

>110 CALL CHAR(96, “1898FF3D3C
FCE404)

Line 120 sets up a sprite using >120 CALL SPRITE(#1,96,5,92,1
character 96. By dcfault the 24)

5130 GOSUB 230

>140 CALL MAGNIFY(2)

>150 GOSUB 230

»160 CALL CHAR{96, ‘0103C3417F
3F07070707077E7C40000080C0C0O
BOFCFEE2E3EOECEQ6060606070™)

Line 110 defincs character 96.

magnification factor is 1.

Line 140 changes the magnification
factor to 2.

Line 160 redefines characier 96.
Because the definition is 64
characters long, it also defines

characters 87, 98, and 99. »170 GOSUB 230
Line 180 changes the magnification >180 CALL MAGNIFY(4)
factor to 4. >180 GOSUB 230
Linc 200 changes the magnification >200 CALL MAGNIFY(3)
factor to 3. >210 GOSUB 230

>220 STOP

»230 REY DELAY
>240 FOR DELAY=1 TO 500
>250 NEXT DELAY

>260 RETURN

120 Tl Extended BASIC

MAX

CHAPTER

Format

MAX(numeric-expresstonl .numeric-expression2)

Description

The MAX function returns the larger of numeric-expressionl and numeric-
expression2. If they are equal. then their value is returned.

Examples
PRINT MAX(3.8) prints 8.

F=MAX(3E12,1800000) scts F equal
to 3E12.

G=MAX(-12 -4) sets G equal to
-4.

L=MAX(AB)scts L equal to 7 if A is
7and Bis -5.

>100 PRINT MAX(3,8)
>100 F=MAX(3E12,1800000}

>100 G=MAX(-12,-4)

>100 L=MAX(A&,B)

Tl Extended BASIC

121

MERGE

'MERGE

Format
MERGE ("] device-filename [”']

Description

The MERGE command merges lines in filename [rom the given device into
the program lines alrcady in the computer's memory. It a line nurnber in
filename duplicates a line number in the program alrcady in memory. the
new line replaces the old line. Otherwise the lines are inserted in line number
order among the lines already in memory. The MERGE command does not
clear breakpoints. Also, MERGE can only be used with diskettes.

NOTE: Files can only be merged into memory il they were §8Vﬁd using the
MERGE oplion. Sec the SAVE command for more information.

Example

MERGE DSK1.5UB merges the
program SUB into the program
currently in memory.

Program

Il the program on the right is saved
on DSK1 as BOUNCE with the merge
option, it can be merged with
programs such as the onc shown on
the next page.

>MERGE DSK1.SUB

>100 CALL CLEAR

>110 RANDOMIZE

>140 DEF RND50=INT(RND*50-25)
>150 GOSUB 10000

>10000 FOR AA=1 TO 20

>10010 QQ=RND50

310020 LL-RND50

>10030 CALL MOTION(#1,QQ,1L)
>10040 NEXT AA

»10050 RETURN

>GAVE “DOK1.BOUNCE", MERGE

On the right is a program you can
put into the computer's memory.

Now merge BOUNCE with the above
program.

The program that resulis {rom
merging BOUNCE with the above
program is shown on the right.

Note that line 150 is from the
prograin that was merged, not from
the program that was in memory.

——

>120 CALL CHAR(96, 18183CFFFY
3C1818")

>130 CALL SPRITE(#1,96,7,92,1
28)

>150 GOSUB 500

>160 STOP

>MERGE DSK1.BOUNCE

>LIST
>100 CALL CLEAR

>110 RANDOMIZE

>120 CALL CHAR(96,"18183CFFFF
3C1818")

>130 CALL SPRITE(#1,96,7,92,1
28)

>140 DEF RND50=INT{RND¥50-25}
>150 GOSUB 10000

>160 STOP

>10000 FOR AA=1 TO 20

>10010 QQ=RND50

>10020 LL=BND50

>10030 CALL MOTION(#1,QQ,LL)

>10040 NEXT AA

>10050 RETURN

122

TI Extended BASIC

M Extended BASIC

123

Format

MIN(nurmeric-expression 1 .numeric-expression2)

Description

The MIN function returns the smaller of numeric-expressionl and numeric-
expression2. If they are equal. then their value is returned.

Examples
PRINT MAX(3.8) prints 3.

F = MIN(3E12,1800000) sets F equal
to 1800000.

G =MIN{ - 12, - 4) sets G equal Lo
-12.

L=MIN(A.B) sets L equal to -5 if A
is 7and Bis - 5.

>100 PRINT MAX(3,8)
>100 F=MIN(3E12,1800000)

>100 G=MIN(-12,-4)

>100 L=MIN(4A,B)

CHAPTER

MOTION subprogram

Format
CALL MOTION(¥sprite-number. row-velocity,column-velocity [....] |

Description

The MOTION subprogram is used to specify the row-velocity and column
velocity of a sprite. If both the row- and columnri-velocities are zero. the sprite
is stationary. A positive row-velocity moves the sprite down and a negative
value moves it up. A positive column-velocity moves the sprite to the right
and a negative value moves it to the left. If both row-velocity and column-
pelocity are nonzero, the sprite moves smoothly at an angle in a direction
determined by the actual values.

The row- and column-velocities may be from - 128 to 127. A value close to
zero is very slow. A value far from zero is very {ast. When a sprite comes to
the edge of the screen, it disappears and reappears in the corresponding
position on the other side of the screen.

Program
The program at the right Mustrates a
use of the MOTION subprogram.

»100 CALL CLEAR

124 Tl Extended BASIC

Line 110 creates a sprite.

Lines 120 and 130 set values for the
motion of the sprite.

Line 140 displays the current values
of the motion of the sprite.

Line 150 sets the sprite in motion.

Lines 160 and 170 complete the
loops that set the values for the
motion of the sprite.

[—

>110 CALL SPRITE(#1,33,5,92,1
24)

>120 FOR XVEL=-16 TO 16 STEP
2
>130 FOR YVEL=-16 TO 16 STEP
2

>140 DISPLAY AT (12,11):XVEL;
YVEL

>150 CALL MOTION{#1,YVEL,XVEL

)

>160 NEXT YVEL
>170 NEXT XVEL

T Extended BASIC

125

NEW

CHAPTER

NEXT

Format
NEW

Description

The NEW command clears the memory and screen and prepares the
computer for a new program. All values are reset and all defined characters
become undefined. Any open files are closed. Characters 32 through 95 are
reset 10 thelr standard representations. The TRACE and BREAK commands
are canceled.

Be sure to save the program that you have been working on before you enter
NEW as it is unrecoverable by any means once NEW has been entered.

Format
NEXT control-variable

See ON BREAK, ON WARNING. and RETURN (with ON ERROR) for the use
of NEXT clause with those statements.

pescription

The NEXT statement is always paired with the FOR-TO-STEP siatement for
construction of a loop. Control-variable must be the same as control-variable
in the FOR-TO-STEP statement. The NEXT statement may not appear in an
[F-THEN-ELSE statement.

The NEXT statement controls when the loop is repeated. Each time the
NEXT statement is executed. control-variable is changed by the value
following STEP in the FOR-TO-STEP statement. or by 1 if there is no STEP
clause. If the value of control-variable is between initial-value and limit. the
loop is executed again. If it is not. control passes to the statement after
NEXT. Thus the value of control-variable at the end of the loop is always the
first valuc vutside the range of the FOR-TO-STEP statement. See FOR-TO-
STEP for more information.

Program
The program on the right illustrates >100 TOTAL=0
a use of the NEXT statement in lines >110 FOR COUNT=10 TO O STEP -
130 and 140, 2
>120 TOTAL=TOTAL+COUNT
>130 NEXT COUNT
>140 FOR DELAY=1 TQ 100::NEXT

126

DELAY
>150 PRINT TOTAL,COUNT;DELAY
SRUN
30 -2 101
—
TIExtended BASIC T Extended BASIC 127

NUMBER

CHAPTER

oLD

Format
NUMBER linitial-line] [.incremerntt|
NUM {initial-line) [,increment|

Description

The NUMBER command generates sequenced line numbers, allowing entry
of program lines without typing the line numbers. If initial-line and
ncrement are not specificd. the line numbers start at 100 and increase in
increments of 10. You may give the command at any time in the Command
Mode. If a line already exists, the current line is displayed. You may type
over it (o replace it, alter it using the edit functions. or press ENTER L0
confirm it. To leave the NUMBER rnode, press ENTER when a line comes up
with no statements on it or press SHIFT ¢ (CLEAR) when any line is
displayed. NUMBER may be abbreviated as NUM.

Options
You may specily an initial-line and/or increment.
Example

In the tollowing. what you type is
UNDERLINED. Press ENTER after

cach line.
NUM instructs the computer to >NUM
number starting at 100 with >100 X-4
increments of 10. >110 Z=10
>120
NUM 110 instructs the computer to >NUM 110
number starting at 110 with 110 2=11
izncrfmems of 10. Change line 110 to 5120 PRINT (Y+X)/Z
=il >130
NUM 105.5 instructs the computer to >NUM 105,5
number starting at line 105 with >105 Y=7
irfcrerlnle(;lfsl Oi, 5. _ 110 7=11
Line alrcady exists. 5115
>LIST
100 X=4
105 Y=7
110 Z=11

120 PRINT (Y+X)/Z

rormat
OLD [l device-program-name []

pescription

The OLD command loads progranm-rname from device into memory. The
program must first have been put on device using the SAVE command. OLD
closes any open files and removes the program currently in memory before
loading program-name. To add pragram lines from another program to a
program in memery. see the MERGE command.

Device can be several different things. If it is CS1 or CS2. designaling one of
the twu possible cassctte recorders, then no program-name is given., The
program loaded is the program that is on the cassette. Instructions on
operating the cassetle recorder are displayed on the screen.

See the Disk Memory System Manual for instructions on using OLD with
diskettes.

Examples

OLD CS1 loads a program from a >0LD ¢S1

cassette recorder into the computer’s

memory.

OLD" DSK1.MYPROG" loads the >0LD “DSK1.MYPROG"

program MYPROG into the
computer's memory from the
diskette in disk drive one.

OLD DSK.DISK3.UPDATESO loads
the program UPDATESO into the
computer's memory from the
digkette named DISK3.

>0LD DSK.DISK3.UPDATEROD

128 Tl Extended BASIC

TI Extended BASIC 129

ON BREAK

CHAPTER

ON ERROR

Format
ON BREAK STOP
ON BREAK NEXT

Description

The ON BREAK statement determines the action taken if a breakpoint is
encountered during the execution of a program. The default action is STOP,
which causcs program execution to halt and the standard breakpoint
message to be printed. The alternative is NEXT. which transfers control to
the next line wilthout a breakpoint occurring.

You can use ON BREAK NEXT to have a program lgnore breakpoints which
you have put in a program for debugging purposes. (NOTE: ON BREAK
NEXT does not have any effect on a BREAK statement which is not followed
by a program linc number. The breakpoint will oceur even if the statement
ON BREAK NEXT has been cxecuted.) When ON BREAK NEXT is in effect.
the external break, SHIFT € (CLEAR), does not stop a program. In that case
only SHIFT @ (QUIT) can stop the program. SHIFT Q (QUIT) erases the program
and returns you to the main screen and may interfere with the proper
operation ol some exlernal devices such as disk drives.

=

Format
ON ERROR STOP
ON ERROR line-number

Pescription

The ON ERROR statement determines the action taken if an error occurs
during the execution of a program. The default action is STOP, which causes
the standard error message to be printed and program execution te halt. The
alternative is to give a line-number which transfers control to that line in
case of an error.

Once an error has occurred and control has been transferred, error handling
reverts to the normal action, STOP. If you wish to have any new errors
handled differently. an ON ERROR statement must be executed again.

if a line-number is specified by ON ERROR. the line-number must be the
beginning of a subroutine similar to that called by GOSUB. It should end
with a RETURN statement. See RETURN {with ON ERROR) for more

Information.

NOTE: A transfer of control following the execution of an ON ERROR
‘statement acts like the execution of a GOSUB statement. As with GOTQ and

Program ‘GOSUB, you must avoid translers to and {from subprograms. The most

The program on the right illustrates >100 CALL CLEAR ‘gommon result of an illegal transfer into a subprogram is a syntax error on a
the use of ON BREAK. Line 110 sets >110 BREAK 150 ‘statement that appears to be correct.

a breakpoint in line 150, Line 120 >120 ON BREAK NEXT

sets breakpoint handling to go to the >130 BREAK

next line, A breakpoint occurs in line >140 FOR A=1 TO 50

130 1n spite of line 120, Enter >150 PRINT “SHIFT C IS DISABL

CONTINUE. No breakpoint occurs in ED.”

line 150 because of line 120. SHIFT ¢ >160 NEXT A bt

(CLEAK) has no effect during the >170 ON BREAK STOP :

exccution of lines 140 through 160 >180 FOR 4=1 TO 50

because of line 120. Line 170 >190 PRINT "NOW IT WORKS."

restares the normal use of SHIFT C >c00 NEXT A

(CLEAR).

130 TI Extended BASIC ¥ Tl Extended BASIC 131

ON ERROR

Program

The program at the right illustrates
the use of ON ERROR. Line 110
causes any error to pass control to
line 160.

An error oceurs in line 130 and
contrel is passed to line 160.

Line 170 causes the next error to
pass conirol to linc 230. Line 180
tinds out about the error using CALL
ERR.

Linc 190 transfers control o line 230
it the error isn't in the expected line.
Line 200 transfers control to line 230
if the error isn’t the onc expected.
Line 210 changes the value of X8 to
an acceptable value. Line 220
rcturns control te the line in which
the error occurred.

Line 240 reports the nature of the
unexpected crror and the program
stops.

>100
>110
>120
>130
>140
>150
>160
>170
>180

CALL CLEAR

ON ERROR 160

¥3- A

X=VAL(X$)

PRINT X;SQUARED IS";X¥x
STOP

REM ERROR SUBROUTINE

ON ERROR 230

CALL ERR(CODE,TYPE,SEVER

, LINE)

>190

IF LINE<>130 THEN RETURN

230

>200

230
>210
>220
>230

>240
LINE
>RUN

IF CODE<>74 THEN RETURN

X§="5"
RETURN
REM UNKNOWN ERROR

PRINT "ERROR";CODE;" IN
" LINE

5 SQUARED IS 25

TI Extendeq BASIC

—

CHAPTER

ON GOSUB

Format
ON numeric-expression GOSUB line-number |....]
ON numeric-expression GO SUB line-number |....]

pescription
The ON...GOSUB statement transfers control to the subroutine beginning al
gne-number in the position corresponding to the value ol nuihneric-
expresslon. Other than giving a cholce, it acis the same as the GOSUB
statement. but it is more efficient in that it may require fewer lines of code
than using an IF-THEN-ELSE slatement,

Numeric-expression must have a value from 1 through the number of line-
numbers.

gxamples

ON X GOSUB 1000,2000.300

transfers control to 1000 if X is 1,
2000 if X is 2, and 300 if X is 3.

>100 ON X GOSUB 1000,2000,300

ON P - 4 GOSUB 200.250.300.
800,170 transfers control 1o 200 if
P—4 is 1 (PisH). 260if P-41is 2,
300ifP-4is3 800if P-4 is 4, and
170 (P-4 is 5.

>100 ON P-4 GOSUB 200,250,300
,800,170

TI Extended BASIC 133

ON GOSUB

ON GOTO

CHAPTER

Program

The program on the right illustrates
a use of ON...GOSUB. Line 220
determines where (0 go according w
the value of CHOICE.

>100 CALL CLEAR

>110 DISPLAY AT{11,1):"CHOOSE
ONE OF THE FOLLOWING:"

>120 DISPLAY AT(13,1):"1 ADD
TWO NUMBERS."

>130 DISPLAY AT(14,1):"2 MUL
TIPLY TWO NUMBERS."

>140 DISPLAY AT(15,1):"3 SUB
TRACT TWO NUMBERS. ™

>150 DISPLAY AT(20,1):"YOUR C
HOICE:"

>16Q DISPLAY AT(22,2): FIRST
NUMBER:

>170 DISPLAY AT(23,1):SECOND
NUMBER :

>180 ACCEPT AT (20,14)VALIDAT
E (NUMERIC):CHOICE

>190 IF CHOICE<1 OR CHOICE>3
THEN 180

>200 ACCEPT AT (22,16)VALIDAT
E(NUMERIC):FIRST

»>210 ACCEPT AT (23,16)VALIDAT
E(NUMERIC) : SECOND

»>220 ON CHOICE GOSUB 240,260,
280

>230 GOTO 180

>240 DISPLAY AT(3,1):FIRST;"F
LUS "3 SECOND; "EQUALS"; FIRST+S
ECOND

>250 HETURN

>260 DISPLAY AT(3,1):FIRST;"T
IMES"; SECOND; “EQUALS"; FIRST#*
SECOND

>270 RETURN

»>280 DISPLAY AT(3,1):FIRST;'M
INUS™ 3 SECOND; “"EQUALS "3 FIRST—
SECOND

>290 RETURN

(Press SHIFT C to stop the
program.)

=

Format

ON numerlic-expression GOTO line-number |....]
ON numeric-expression GO TO line-number |....|

pescription

The ON...GOTO statement transfers control to the line-number in the

tion corresponding to the value of numeric-expression. Other than giving
a choice, it acts the same as the GOTO statement, but it 18 more elticient in
that it may require fewer lines of code than using an IF-THEN-ELSE

gtatement.

Numeric-expression must have a value from 1 through the number of lire-

numbers.

Examples

ON X GOTO 1000,2000,300
transfers control to 1000 if X is 1,
2000 if X is 2, and 300 if X is 3. The
equivalent statement using an IF-
THEN-ELSE statement is IF X=1
THEN 1000 ELSE IF X=2 TIIEN
2000 ELSE IF X =3 THEN 300 ELSE
PRINT “ERROR!"::STOP.

ON P -4 GOTO 200,250.300,800,170
transfers control to 200 if P-4 is 1
(Pis 5), 250if P-4 is 2, 300 it P-4
83,800if P-4 is 4. and 170 if P-4
is 5.

——

>100 ON X GOTO 1000,2000,300

>100 ON P-4 GOTO 200,250,300,
800,170

134

T! Extended BASIC

TIExtended BASIC

135

ON GOTO

Program

The program on the right illustrates
a use of ON...GOTO. Linc 220
determines where 0 go according to

the value of CHOICE.

>100 CALL CLEAR

>110 DISPLAY AT(11,1): CHOOSE
ONE OF THE FOLLOWING:™

>120 DISPLAY AT(13,1):"1 ADD
TWO NUMBERS."

»130 DISFLAY AT(14,1):"2 MUL
TIPLY TWO NUMBERS.”

>140 DISPLAY AT(15,1):3 SUB
TRACT TWO NUMBERS.™

>150 DISPLAY AT(20,1):"YOUR C
HOICE:"

»160 DISPLAY AT(22,2):"TIRST
NUMBER: ™

»170 DISPLAY AT(23,1): SECOND
NUMBER: "

>180 ACCEPT AT (20,14)VALIDAT
E (NUMERIC):CHOICE

:»190 IF CHOICE<1 OR CHOICEX>3
THEN 180

>200 ACCEPT AT (22,16)VALIDAT
E NUMERIC):FIR3T

>210 ACCEPT AT (23,16)VALIDAT
E NUMERIC) :SECOND

»>220 ON CHOICE GOTO 230,250,2
70

>230 DISPLAY AT(3,1):FIRST;'F
LUS"; SECOND; EQUALS'; FIRST+S
ECOND

>240 GOTO 180

>250 DISPLAY AT(3,1):FIRST; T
IMES " ;SECOND; “EQUALS"; FIRST*
SECOND

>260 GOTO 180

>270 DISPLAY AT(3,1):FIRST; M
INUS'";SECOND; “EQUALS"; FIRST-
SECOND

>280 GOTO 180

(Press SHIFT C to stop the
program.)

136

TI Extended BASIC

CHAPTER

ON WARNING

Format

ON WARNING PRINT
ON WARNING STOP
ON WARNING NEXT

Description

The ON WARNING statcment determines the action taken if a warning
occurs during the execution of a program. The defanlt action is PRINT.
which causes the standard warning message to be printed and the program
to continue execution. One alternative is STOP. which causes the standard
warning message to be printed and the program to halt execution. The other
alternative is NEXT which causes the program to continue execution without
printing any message.

Program

The program on the right illustrates »100 CALL CLEAR

the use of ON WARNING. Line 110 >110 ON WARNING NEXT
scts warning handling to go to the >120 PRINT 120,5/0

next line. Line 120 therefore prints

the result without any message.

Linc 120 scts warning handling to >130 ON WARNING PRINT
the default, printing the message and >140 PRINT 140,5/0
then continuing execution. Line 140

thercfore prints 140. then the

‘warning, and then continues.

Linc 150 scts warning handling to >150 ON WARNING STOP
print the warning message and then >160 PRINT 16Q,5,/0
.Btop execution. Line 160 therefore >170 PRINT 170
- prints 160 and then the warning >RUN
M message and then stops. 120 DD+ * ¥
i 140
* YARNING

NKUMERIC OVERFLOW IN 140
9.99999E+**

160

¥ WARNING

NUMERIGC OVERFLOW IN 160

T Extended BASIC 137

OPEN SI—DEN CHAPTER

Format

OPEN #flle-number:device-filename | file-organization] [file-typel
l.open-mode] {.record-typel

Description

The OPEN statement prepares a BASIC program to use data files stored on a
diskelte or cassette by providing a link between file-number and a file. To set
up this link, the OPEN siatcment describes a file's characteristics. If the file
already exists. the description that is given in the program must match the
actual characteristics of the file. Files on cassettes are not checked, however,
so errors may occur if the characteristies do nnt mateh

File-number must be included in the OPEN statement. Statements which
refer to files do so with a file-number from O through 255. File number 0 is
the keyboard and screen of the comnputer. It cannot be used for other files
and is always open. You may assign the other numbers as you wish, with
each file having a different number. File-number is entered as a number sign
(#) followed by a numeric expression that, when rounded to the nearest
integer. is a number from O to 255, and is not the number of a file that is
already open,

Device must also be included in the OPEN suwatcinent. If device is CS1 or
(S2, designating one of the two cassctte recorders, then no file-name is
given. Instructions on operating the cassette recorder are displayed on the
soreern.

If device is DSK1. DSK2. or DSK3. designating one of the three disk drives,
then file-name is the name of a file on the diskette in the given drive, If
device is DSK.disketre-name, where diskerte-name is the name of 4 diskette
in onc of the drives, then file-name is the name of a file on the diskette
named diskette-name. The computer searches the drives. starting at DSK1,
until it finds the diskette with the given name. Then it looks for file-name on

The other information may be in any order, or may be omitted. If an item is
omitted, the compulter assumes certain defaults, which are described below.

File-organization can be either sequential or random. Records in a sequential
file are read or written one after the other. Records in random files can be
read or written in any order. Random files may also be processed
sequentially. To indicate which structure the file has, enter either
SEQUENTIAL for sequential files or RELATIVE for random files. You may
optionally specify the initial number of records on a file by following the
word SEQUENTIAL or RELATIVE with a numeric expression. If you do not
specify the file-organization. the default is SEQUENTIAL.

File-type may be either DISPLAY or INTERNAL. Files can be written either
in human-readable form, called ASCIl (DISPLAY), or in machine-rcadable
form. called binary (INTERNAL). Binary records may take up less space and
are processed more quickly by the computer. However, if the information is
golng to be printed or displayed, ASCII format is usually a better choice.

To specify that you wish the file to be in ASCII format, enter DISPLAY. To
gpecify binary format. enter INTERNAL. If you do not specify a file-type. the
default 1s DISPLAY. Usually INTERNAL is the best choice when using files
on cassettes or diskettes, and DISPLAY is the best choice when using files on
the thermal printer or RS232 Interface.

Open-mode may be UPDATE, INPUT. OUTPUT, or APPEND. The computer
may be instructed that the file may be both read and written on, that it may
only be read. that it may only be written on, or that it may only be added to.
However. If the file is marked as proiccted, it cannut be written on and may
only be opened for input.

To be able both to read from and write to a file, specify UPDATE. To just
read from a file, specify INPUT. To just write to a file. specify OUTPUT. To
only add to a file. specify APPEND. Append mode can only be specified for
VARIABLE length records. If you do not specify an open-mode, the default is
UPDATE.

Note that if an unprotected file already exists on a diskette. specifying an
open-mode of OUTPUT to the same file name writes over the existing file
with the new data. You can prevent this by moving to the end of the file by
using the RESTORE statement with the proper record or opening the file in
the APPEND mode.

Record-type may be either VARIABLE or FIXED, Files may have records that
are all the same length or that vary in length. If all records are the same
length, any that are shorter are padded to make up the difference. Any that
are longer may be truncated to the proper length. You may specify records of
variable length by entering VARIABLE. You specify records of lixed length
by entering FIXED.

If you like. you may specify a maximum length of a record by following
VARIABLE or FIXED with a numeric expression. The maximum record is
dependent on the device used. If you do not specify a record length, the
defaull is 80 for diskelles. 64 for cassettes. 80 [or the RS232 interface, and
32 for the thermal printer.

RELATIVE files must have FIXED length records. If you da not specify a
record-type for a RELATIVE file. the defaull is FIXED.

138 Tl Extended BASIC

Tl Extended BASIC 139

e

OPEN

SEQUENTIAL filcs may be either FIXED or VARIABLE. If you do not specily
a record-type tor a SEQUENTIAL file, the default is VARIABLE. A fixed-
length file may be reopened for either SEQUENTIAL or RELATIVE access
independent of previous file-organization assignments.

Examples

OPEN #1:C51".FIXED.OUTPUT
opens a lile on cassette one. The file
is SEQUENTIAL, kept in DISPLAY
format, in OUTPUT mode with
FIXED length records with a
maximum length of 64 bytes,

OPEN #23:"DSK.MYDISK.X"",
RELATIVE 100,INTERNAL,UPDATE.
FIXED opens a file named X", The
file is on the diskette named MYDISK
in whichever drive that diskette it is
located. The file is RELATIVE, kept
in INTERNAL format with FIXED
length records with a maximum
Length of 80 bytes. The file is
opened in UPDATE mode and starts
with 100 records made available for
it.

OPEN #243:A8,INTERNAL, if AS
equals “"DSK2 ABC", assumes a file
on the disketle in drive two with a
name of ABC. The lile is

format, in UPDATE mode with
VARIABLE length records with a
maximum length of 80 byles.

OPEN #17:"TP".OUTPUT prepares
the thermal printer for printing.

>100 OPEN #1:"CSL",FIXED,CUT
PUT

>300 OPEN #23:"DSK.MYDISK.X",
RELATIVE 100, INTERNAL, UPDATE
> FIXED

>100 OPEN #243:A%, INTERNAL

>100 OPEN #17:"T?",QUTPUT

OPTION BASE

CHAPTER

=

Format
OPTION BASE 0
OPTION BASE 1

pescription

The OPTION BASE statement sets the lowest allowable subscrigt of arrays to
zero or one. The default is zero. If an OPTION BASE statement is used. it
must have a lower line number than any DIM statement or reference to any
array. There may only be one OPTION BASE statement in a program, and it
applies to all array subscripts. The OPTION BASE statement may not appear

in an IF-THEN-ELSE statermnent.

Example

OPTION BASE | sets the lowest
allowable subscript of all arrays to
one.

>100 OPTION BASE 1

140

Ti Extended BASIC

Tl Extended BASIC

141

PATTERN subprogram

Format

CALL PATTERN(#sprite-number,character-value |[....])

Description

The PATTERN subprogram allows you to change the character pattern of a
sprite without affecting any other characteristics of the sprite.

Sprite-number specifies the sprite you are using. Character-value may be
any integer from 32 to 143. See the CHAR subprogram for information on
defining the pattern for characters. See the MAGNIFY subprogram for more

information.

Program

The program on the right illustrates
the usc of the PATTERN
subprogram. Lines 110 through 140
build a floor.

Lines 150 though 200 define
characters 96 through 107.

Line 210 creates a sprite in the
shape of a wheel and starts it moving

Line 220 makes the sprite double
size.

Lines 230 through 270 make the
spokes of the wheel appear to move
as the character displayed is
changed.

Also sec the third example of the
SPRITE subprogram.

>100 CALL CLEAR

>110 CALL GOLOR(12,16,16)
>120 FOR A=19 TO 24

>130 CALL HCHAR(A,1,120,32)
>140 NEXT A

>150 A$="01071821214141FFFF41
41212119070080E09884848282FF
FF8282848498E000"

>160 B$="01061820305C46818142
4624201807008060183424624281
8162340C0418E000

>170 C8="0106182C244642818146
5C3020180700806018040C346281
8142622434 18E000

>180 CALL CHAR(96,4%)

>190 CALL CHAR(100,B$)

>200 CALL CHAR(L04,C$)

»>210 CALL SPRITE(#1,96,5,130,
1,0,8)

>220 CALL MAGNIFY(3)

>230 FOR A=9% TO 104 STEF 4
>240 CALL PATTERN(#1,A)

>250 FOR DELAY=1 TO %:: NEXT
DELAY

>260 NEXT A

>270 GOTQ 230

(Press SHMIFT G 10 Stop the
program.)

CHAPTER

PEEK subprogram

——
rormat
CALL PEEK(address,numeric-variable-list)

pescription

The PEEK subprogram is uscd. along with INIT, LINK, and LOAD. 10 access
asesemnbly language subprograms. The PEEK subprogram returns values in
the variables in numeric-variable-list that correspond with the values in the
byte specified by address and the bytes following it. PEEK can be LfSCd o
without assembly language subprograms, but the information obtained is of
tittle use.

Detailed instructions on the usc of INIT. LINK, LOAD, and PEEK are included
with customn written programs that may be available on diskette or cassette.

Indiscriminate use of PEEK may cause the computer to “lock up’ and
require it to be turned off and back on before further use.

Example
CALL PEEK(81902,X1,X2.X3,X4) 100 CALL PFFK(8192,X1,X2,X3,
returns the values in lecations 8192, X&)

8193. 8194, and 8195 in X1, X2, X3.
and X4, respectively.

142

TI Extended BASIC

TI Extended BASIC 143

Pl

pPOS

CHAPTER

Format
Pl

Description

The Pl function returns the value of 7 as 3.14159265359.

Example

VOLUME =4/3"P1*6 A 3 sets VOLUME
equal to four thirds times pi times

six cubed, which is the volume of a
sphere with a radius of six.

>100 VOLUME=4 /3¥PIX6A 3

Format

pOS(stringl .stri ng2.numeric-expression}

pescription

The POS [unction returns the position of the first oceurance of string2 in
stringl. The search begins at the position specified by numeric-expression. Il
no match is found, the function returns a value of zero.

Examples

X =POS("PAN","A".1)scts X equal
to 2 because A is the second letter in
PAN.

¥ =POS{APAN","A" .2} sets Y equal
to 3 because the A in the third
position in APAN is the first
occurance of A in the portion of
APAN thal was scarched.

Z=POS("PAN","A".3) sets Z equal
to O because A was not in the part of
PAN that was searched.

R=POS("PABNAN"."AN".1) sets R
equal Lo 5 because the first
occurance of AN starts with the A in
the fifth position in PABNAN.

Program

The program at the right illustrates a
use of POS. In it any input is
searched for spaces, and is then
printed with each word on a single
line,

>100 X=POS{"PAN","4",1)

>100 Y=POS(“APAN","A",2)

>100 Z=POS{"'PAN","A",3)

>100 R=POS{‘PABNAN",“AN",1)

»100 CALL CLEAR
»>110 PRINT "ENTER A SENTENCE.

>120 INPUT X3
>130 S=P0OS(X$," ~,1)
»140 IF S=0 THEN PRINT X$::

PRINT :: GOTC 110
>150 Y$=SEGE(X$,1,5):: PRINT
Y3

>160 X$=SEGE(X$,S+1,LEN(X$))
>170 GOTO 130

(Press SHIFT C to stop the
program.)

144

Tl Extended BASIC

TI Extended BASIC

CHAPTER

POSITION subprogram S

Format
CALL POSITION(#sprite-number.dot-row.dot~column L...1)
Description

The POSITIO
the ghe dOt_l;JO?LJ(ts)i);%gdrzrst l;:etlurns (th]e position of the specitied sprite(s) in
e o1 -column(s) as numbers from ,
position of the upper left corner of the sprite, If the spi‘iice) i2ssr?r.)tTr:1 efy o
defined,

dot-row and dot column are set to zero

The sprite contin
ues to move after it: ition i
all R 1ts position is retu
owed for. The distance moved depends on the Spﬁgsii)sezgl at must he

Example

CALL P I 7 { #
OSI TON(1L,Y.X) returns the >100 CALL POSITION(1,Y X)
s 1,

Pposition of the upper left ha;
; nd
of sprite #], comer

Also see the third example of the
SPRITE supr ogram.

146

TI Extended BASIC

[#file-number ,REC record-number] :] [print-list]

ption
RINT statement allows you to transfer the values of the elements of the

al print-list to the display screen or optionally to an external file or
Print-list consists of string constants, numeric constants. string

les, numeric variables, numeric expressions, string expressions, and/or

AB function. Each element in print-list is separated from the others by

micolon, a comma, or a colon.

. semicolon, comma, and colon control spacing for the screen or a file
Ined in DISPLAY format. A semicolon causes the next element to be

ed immediately adjacent to the previous element. A comma causes the
t element of print-list to be put in the next print field. Each print field is
fcharacters long. The number of print fields depends on the record length
e device being used. On the screen, the print fields are at positions 1 and
{| If the cursor is past the start of the last print field, the next item is
nted on the next line. A colon causes the next element to be put on the
Pxt line or record. To print several blank lines, you may put several colons
jer the PRINT statement. However, they must have spaces between them
f they are not confused with the statement separator symbol (::).

parator may be placed following the last element of print-list, which

fects the placement of the next element of the next PRINT, PRINT...USING,
PLAY (without AT), or DISPLAY...USING (without AT) statement written

§ the same device. It causes the next output statement to be considered to

f a continuation of the current one unless it is a PRINT statement with a

fC clausc.

hen printing a new line on the screen, everything (except sprites) is

krolled up one line (so the top line is lost) and the new line is printed at the

ottom of the screen.

ihe #file-number determines the file that is to be printed on. If it is omitted
#0, the screen is used. Otherwise file-number must be the number of a file
fthat is already open. See OPEN.

FThe REC clause is used to specify the record on which you wish to print the
felements in print-list. REC may only be used with files that were opened as
RELATIVE files. See OPEN.

I TI Extended BASIC

147

CHAPTER

PRINT PRINT

PRINT #1,REC 3:A.B followed by
PRIN'T #1:C.D causes A and B to be
printed in record 3 of the file that

>100 PRINT #1,REC 3:4,B

In printing to INTERNAL format files, the comma and semicolon both place
>150 PRINT #1:C,D

the elements in print-list adjacent to each other. In DISPLAY format files, the
comma and semicolon acl as described above. with the semicolon placing the

element adjacent to the previous element and the comma putting the

element in the next print ficid.

Examples
PRINT causcs a blank line to appear
on the display screen.

PRINT “THE ANSWER IS :ANSWER
causes the string constant THE
ANSWER IS to be printed on the
display screen. followed immediately
by the value of ANSWER, If
ANSWER is positive. there will be a
blank for the positive sign after 1S.

PRINT X:Y/2 causes the value of X to
be printed on a line and the value of
Y/2 to be printed on the next line.

PRINT #12.REC 7:A causes the value
of A to be printed on the eighth
record of the file that was opened as
number 12. (Record number O is the
first record.)

PRINT #32:A.B.C. causes the values
of A, B. and C to be printed on the
next record of the file that was
opened as number 32. The tinal
comma creales a pending output
condition. The next PRINT statement
directed to file number 32 will print
on the same record as this PRINT
statement unless it specitics a record,
thereby closing the pending output
condition.

>100 PRINT

>100 PRINT “THE ANSWER IS5';AN
SWER

>100 PRINT X:Y/2

>100 PRINT #12,REC 7:A

>100 PRINT #32:4,B,C,

was opened as number 1 and C and
D to be printec 1n record 4 of the

same file.
Program
The program at the right prints out

various values in various positions
on the display screen.

>100 CALL CLEAR
>110 PRINT 1;2;3;4;536;7;8;9
>120 PRINT 1,2,3,4,5,6

>130 PRINT 1:2:3

>140 PRINT

>150 PRINT 1;2;3;

>160 PRINT 4;5;6/4

777

>RUN

12 3 4 5 6 7 8 9
1 2

3 4

5 6

i

2

3

12 3 4 5 L5

148

TI Extended BASIC

TI Extended BASIC

149

PRINT USING

Format
PRINT [#file-number | .REC record-number]|USING string-expresston:print-lis;
PRINT [#flie-number [.REC record-number]|USING iine-number:print-list

Description

The PRINT...USING staternent acts the same as PRINT with the addition of
the USING clause, which specifies the format to be used. $tring-expression
defines the format in the manner described in IMAGE. Line-number refers to
the line number of an IMAGE statement. See the IMAGE statement for more
information on the use of string-expression.

Examples
PRINT USING "### ##:32 .5 prints >100 PRINT USING “###.##°:32.
32.50. 5

PRINT USING "THE ANSWER IS
wan #:123.98 prints THE ANSWER
IS 124 0

>100 PRINT USING “THE ANSWER
IS ###.#:123.98

PRINT USING 185:37.4, -~ 86.2 prints >100 PRINT USING 185:37.4,-86
the values of 37.4 and —86.2 using .2
the IMAGE statement in line 185.

RANDOMIZE

CHAPTER

]‘ormlt
RANDOMlZE {numeric-expression]
Description

The RANDOMIZE statement rcscts the random numbecer gencrator to an
unpredictable sequence. If RANDOMIZE is followed by a numeric-expression,
the same sequence of random numbers is produced each time the statement
is executed with that value for the expression. Different values give different

sequences.

Program
The program at the right illustrates a
use of the RANDOMIZE statement. it
accepts a value for numeric-
expression and prints the first 10
values obtained using the RND
function.

>100 CALL CLEAR

>110 INPUT “'SEED: ":S

>120 RANDOMIZE S

>130 FOR A=1 TO 10::PRINT A;R
ND::NEXT A::PRINT

>140 GOTO 110

{Press SHIFTC to stop the
program.)

150 Tl Extended BASIC

Tl Extended BASIC

151

REM

RESEQUENCE

CHAPTER

Format
REM character-string

Description

The REM statement allows you to enter remarks into your program. The
remarks may be anything that you wish. but are usually used to divide
sections of programs and to explain what the following seclion is meant to
do. No matter what follows REM. including the statement separator symbol
(1) remarks are not executed and have no etfect on program execution. They

do, however, take up space in memory.

Example

REM BEGIN SUBROUTINE identifics
a scction beginning a subroutine.

>100 REM BEGIN SUBROUTINE

———

Format

RESEQUENCE linitial-line] [.increment]
RES [initial-line] [.increment]

pescription

The RESEQUENCE command changes the line numbers of the program in
memory. If no inttial-line is given. the line numbering starts with 100. If no
jncrement is given, an tincrement of 10 is used. RESEQUENCE may be
abbreviated as RES.

In addition to renumbering lines, any line references in the statements
BREAK, DISPLAY...USING, GOSUB. GOTO, IF-THEN-ELSE, ON ERRCR.
ON..GOSUB, ON...GOTO, PRINT...USING, RESTORE, RETURN, and RUN
are also changed so that they refer to Lhe same lines of code as before
resequencing. If a line reterred to in a slatement does not exist, the line
aumber is replaced with 32767.

ff, because of the initial-line and increment chosen, the program requires
Hines larger than 32767, the resequencing process is halted and the program
{8 unchanged.

Examples
RES resequences the lines of the >RES

program in memory to start with
100 and number by 10's,

RES 1000 resequences the lines of
the program in memory to start with
1000 and number by 10's.

>RES 1000

RES 1000, 15 resequences the lines >RES 1000, 15

of the program in memory 1o stare

with 1000 and number by 15's.

RES |15 resequences the lines of the
Program in memory to start with
100 and number by 15's.

>RES ,15

[—

154 TI Extended BASIC

T Extended BASIC 155

RESTORE

Format
RESTORE [line-number)
RESTORE #file-number [, REC record-number]

Description

The RESTORE slatement can be used either with DATA statements or with
files. When used with DATA statements. RESTORE sets the DATA statement
which will be used by the next READ statement. If no line-number is given,
the DATA statemeni with the lowest numbered line is used by the next
READ statemendt. If line-number is given, then the DATA statement with
that line numher or (if it is not a DATA statement) the next DATA statement
following it is used.

When used with files. the RESTORE statement sets the record that is used
by the next PRINT, INPUT, or LINPUT statement relerring to file-number. If
no REC clause is given. the next record is the first record in the file, record
number O. If the REC clause is present, record-number specities the next
record to he used

If there is pending output because of a previous PRINT, DISPLAY.
PRINT...USING, or DISPLAY...USING. then that pending rccord is writlen on
the file before the RESTORE statement is executed. Pending input data is
removed by the RESTORE statement.

Examples

RESTORE sets the next DATA
statement to be used to the first
DATA statement in the program.

>100 RESTORE

RESTORE 130 scts the next DATA >100 RESTORE 130
statement to be used to the DATA

slalement at line 130 or, il line 130

is not a DATA statement, to the next

DATA statcment after line 130.

RESTORE #1 scts the next record to >100 RESTORE #1
be used by the next PRINT, INPUT,
or LINPUT statement using file #1 to

be the first record in the file.

RESTORE #4 REC H5 sets the next >100 RESTORE #4,REC H5
recurd 1o be used by the next PRINT,
INPUT, or LINPUT statement using

file #4 to be record HS.

—

T1 Extended BASIC

156

CHAPTER

RETURN (with GOSUB)

-
format
RETURN
pescription

Gee also RETURN (with ON ERROR).

RETURN used with GOSUB transters control back to the statement after the
GOSUB or ON...GOSUB which was most recently executed.

Program
The program on the right illustrates
a use of RETURN as uscd with

>100 CALL CLEAR
>110 INPUT "AMCUNT DEPOSITED:

GOSUB. The program figures "z AMOUNT
interest on an amount of money put >120 INPUT "ANNUAL INTEREST R
n savings. ATE: “:RATE
>130 IF RATE<1 THEN RATE=RATE
*100
>140 PRINT “NUMBER OF TIMES ¢
OMPOUNDED"
>150 INPUT “ANNUALLY: ":COMP
>160 INPUT "STARTING YEAR: -
Y
>170 INPUT “NUMBER CF YEARS:
N

>180 CaLlL CLEAR

>190 FOR A=Y TO Y+N

5200 GOSUB 240

5210 PRINT A, INT(AMOUNT#*100+.
5)/100

>220 NEXT A

>230 STOP

5240 FOR B=1 TO COMP

5250 AMOUNT=AMOUNT+AMOUNT*RAT
E/(COMP*100)

>260 NEXT B

>270 RETURN

i
Extendeq BASIC 157

RETURN (with ON ERROR)

CHAPTER

- e
Format ifformat
RETURN [line-number} “RND
RETURN [NEXT]} t
“pescription

Description
See also RETURN (with GOSUB).

RETURN is used with ON ERROR. After an ON ERROR statement has been
executed. an error causes transfer to the line specified in the ON ERROR
statement. That line, or one after it, should be a RETURN statement. If
RETURN is given without anything following it, control is returned to the
statement on which the error occurred and the program executes it again. If
RETURN is followed by line-number. control is transferred to the line
specified and execution starts with that line. If RETURN is followed by
NEXT, control Is transferred to the statement following the onc that caused
the error.

Program

The program on the right illustrates >100 CALL CLEAR
the use of RETURN with ON ERROR. >110 A=1

Line 120 causes an error to transter >120 ON ERROR 170
control to line 170. Line 130 causes »130 X=VAL('D")

an error. Line 140, the next line after »>140 PRINT 140

the one that causes the error, prints >150 STOP

140. Line 170 checks to see if the >160 REM ERROR HANDLING
error has occurred four times and >170 IF A>4 THEN 220

transfers control to 220 if it has. Line >180 A=A+l
180 increments the error counter by >190 PRINT 190

one. Line 190 prints 180. Line 200 >200 ON ERROR 170
resets the error handling to transfer >210 RETURN
to line 170. Line 210 returns to the >220 PRINT 220 :: RETURN NEXT
line that caused the error and RUN
executes it again. Line 220, which is 190
executed only after the error has 190
occurred four times, prints 220 and 190
returns to the line following the line 190
that caused the error. 220
140

Also see the example of the ON
ERROR statement.

i
{The RND function returns the next pseudo-random number n the current
g.cquence of pseudo-random numbers. The number returned is greater than

tement appears in the program.

sfxamples

f{q;oLORls: INT(RND*16) + 1 sets
?pOLORIG equal to sorme number
%m 1 through 16.

IYALUE =INT(RND*16) + 10 sets
2!WALUE equal to some number from
?'I;'{IV.O through 25.
LLB)=INT(RND*(B-A + 1)} + A sets

LL(S) equal to some number from A
Jﬂlrough B.

[—

or equal to zero and less than one. The sequence of random numbers
returned is the same every time a program is run unless the RANDOMIZE

>100 COLOR16=INT(RND*16)}+1

>100 VALUE=INT(RND#¥16)+10

>100 LL(8)=INT(RND*(B-a+1)}+A

158 T1 Extended BASIC

M Extended BASIC

159

R PT$ T ’R'U N CHAPTER

RPTS(string-expression,numeric-expression)

Description

The RP1$ function returns a string equal to numeric-expression repetitions
of string-expression. If RPT$ produces a string longer than 255 characters,
the excess characters are discarded and a warning is given.

Examples
M$ =RPT$("ABCD" 4) sets M$ equal
to “"ABCDABCDABCDABCD".

CALL CHAR(96 RPTS$(*'0000FFFF",
8)) defines characters 96 through 99
with the string “"O00OFFFFOQOQOFFFF
0000FFFFO000FFFFOO00FFFFO000

>100 M$=RPT$("ABCD'",4)

>100 CALL CHAR{96,RPT$({ 0000F
FFF",8))

FFFFOOCOFFFFOQOOFFFF".

PRINT USING:RPTS("#",40):X$ >100 PRINT USING RPT$(#',40)
prints the value of X$ using an X3

image that consists of 40 number

signs.,

RUN ["device.program-name”’]
~RUN [line-number]

;/ Description
 The RUN command, which can also be used as a stalement, starts program
i i execution. The program to be run is first loaded into memory from device.
l : program-name if that option is specified. The program is then checked for
i ‘certain errors, such as FOR-NEXT loops that are missing the NEXT
agmtemem and errors in syntax in statements. The values of all numeric
L yariables are set to zero and the values of all string variables are set to null {(a

i

4'string of zero characters). The program is theu executed.

Options
2'¥f device program-name is specified. the program to be run is loaded from
e t.he specified device, The program and data currently in memory are lost.

lf line-number is specified, the program in memory is run starting at line-

- nwnber.

_V;";‘l:xamplea

““RUN causes the computer to begin SRUN
‘{'execution of the program in memory.

./ RUN 200 causes the computer to SRUN 200

“ begin execution of the program in »100 RUN 200

< memory starting at line 200.

RUN “DSK1.PRG3" causes the

{ computer to load and begin
execution of the program named
2 PRG3 from the diskette in disk

% drive 1.

>RUN “DSK1.PRG3™
>320 RUN “DSK1.PRG3"

R

160

Tl Extended BASIC

, Tl Extended BASIC 161

RUN

Program

The program at the right illustrates
the use of the RUN command used
as a statement. It creates a "“menu’”
and lets the person using the
program chose what other program
he wishes to run. The other
programs should RUN this program
rather than ending in the usual way,
so that the menu is given again after
they are finished.

>100
>110
>120
>130
>140
>150
>160
>170

G1”
>180

G2"
>190

G3"
>200
>210

CALL CLEAR

PRINT "1 PROGRAM 1.
PRINT "2 PROGRAM 2."
PRINT "3 PROGRAM 3.”
PRINT "4 END."

PRINT

INPUT “YOUR CHOICE: ":C
IF C=1 THEN RUN "DSK1.PR

IF C=2 THEN RUN "DSK1.PR
IF C=3 THEN RUN "DSKL.PR

IF C=4 THEN STOP
GOTO 100

162

T1 Extended BASIC

s |

-:-‘ Av E CHAPTE

§ Y

BBAVE device.program-name [PROTECTED)
BAVE device. program-name [, MERGE|

scription

he SAVE command allows you to copy the program in memory to an

Fexternal device under the name program-name. By using the OLD

f mand. you can later recall the program into memory. The method of

Paving onto a cassette recorder is given in the User's Reference Guide. The
fnethod of saving onto a diskette is given in the Disk Memory System

Fprogram can only be run or brought into memory with OLD. The program
feannot be listed, edited, or saved. This is not the same as using the

otection avallable with the Disk Manager Module. NOTE: Be sure to keep

unprotected copy of any program because the protection feature is not

ersable. If you also wish to protect the program from being copied, use the

otect feature of the Disk Manager module.

'ou may optionally specify that the program is to be available for merging
th another program by using the key word MERGE. Only programs saved
th the key word MERGE may be merged with another program:.

lxamplcs

BAVE DSK1.PRG1 saves the >GAVE DSK1.PRG1
rogram in memory on the diskette

ajn disk drive 1 under the name PRG1.

~GSAVE DSK1.PRG1,PROTECTED >SAVE DSK1.PRG1,PROTECTED
$aves the program in memory on the

kette in disk drive 1 under the

e PRG1. The program may be

ded into memory and run, but it

Ymay nat he edited. listed. or resaved.

,’f,SAVE DSK1.PRG1,MERGE saves the >SAVE DSK1.PRG1,MERGE
?program in memory on the diskette

'in disk drive 1 under the name

.PRG1. The program may later be

~merged with a program in memory

. by using the MERGE command.

Tt Extended BASIC 163

SAY subprogram

Format
CALL SAY(word-string |.direct-stri ng) [....])

Description

The SAY subprogram causes the computer to speak word-string or the value
specified by direct-string when the Solid State Speech™ Synthesizer (sold
separately) is connected, For a complete description of SAY, see the manual
that comes willi the Speech Edilor Command Module and Speech
Synthesizer (both sold separately).

The value of word-string is any string value listed in Appendix L. If it is
given as a literal value, il must be enclosed in quotation marks. The value of
direct-string is a value returned by SPGET. The value of direct-string may be
altered to add suffixes as described in Appendix M.

Word.-strings and direct-strings must be alternated in the CALL SAY
subprogram. If you wish to have two direct-strings or word-strings spoken
consecutively, vou may put in an extra comma to indicate the position of the
item omitted,

Examples
CALL SAY("HELLO, [IOW ARE

YOU™) causes the compuler to say
“Hello, how are you."”

CALL SAY(,A8..BS) causes Lhe
computer to say the the words
indicated by AS and BS. which must
have been returned by SPGET.

>100 CALL SAT("HELLU, HUW ARE
YOU")

CALL SAY(,A$,,B$)

Program
The program on the right illustrates >100 CALL SPGET(“HOW",X$)
using CALL SAY with a word-string >110 CALL SPGET(“ARE",Y$)

and three direct-strings. >120 CALL SPGET('YOU",Z$)
>130 CALL SAY(“HELLO",X$,,Y$,

,2$)

164 TI Extended BASIC

‘SCREEN subprogram

CHAPTER

‘ Format
CALL SCREEN(color-code)

. pescription
The SCREEN subprogram changes the color of the screen to the color
: specified by color-code. All portions of the screen that do not have characters
% on them, or have characters or portions of characters that are color 1
?1.» (transparent}, are shown as the color specified by color-code. The standard
i gcreen color for TI Extended BASIC is 8, cyan.

i The color codes are:

Code Color Code Color
1 Transparent 9 Medium Red
2 Black 10 Light Red
3 Medium Green 11 Dark Yellow
4 Light Green 12 Light Yellow
S Dark Blue 13 Dark Green
6 Light Blue 14 Magenta
7 Dark Red 15 Gray
8 Cyan 16 White

I Examples

" CALL SCREEN(8) changes the screen >100 CALL SCREEN(8)
“ to cyan. which 1s the standard screen

color.

" CALL SCREENI(2) changes the screen >100 CALL SCREEN(2)

" to black.

TI Extended BASIC

165

SEG$

Format

SEGSistri ng-expression,position,length)

Description

The SEGS function returns a substring of a string. The string returned starts
at position in string-expression and extends for length characters. If position
is beyond the end of string-expression, the null string (") is returned. If
length extends beyond the end of string-expresston, only the characters to
the end are returned.

Examples

X8 =SEGS("FIRSTNAME >100 X$=SEG$(FIRSTNAME LASTN
LASTNAME",1,9) sets XS equal to AME",1,9)

“FIRSTNAME".

Y$ =SEGS("'FIRSTNAME >100 Y$=SEG$ (" FIRSTNAME LASTN
LASTNAME" 11 8) sets Y$ equal to AME"",11,8)

"LASTNAME".

28 =SEGS("FIRSTNAME >100 Z$=SEG$("FIRSTNAME LASTN
LASTNAME",10,1) sets Z$ equal to AME”,10,1)

PRINT SEGS$(A$.B.C) prints the >100 PRINT SEG$(A$,B,C)

substring of A$ starting at character
B and extending for C characters.

166 TI Extended BASIC

CHAPTER

bGN(numeric-expression)

scription
SGN function returns | if numertc-expression 1s positive, 0 1f 11 18 zero.
3md — 1 if it Is negative,

Sixamples

¥ SGN(X2)= 1 THEN 300 ELSE 400
Kansfers control to line 300 if X2 if
paitive and to line 400 if X2 is zero
F negative.

PN SGN(X) + 2 GOTO 200,300,400 >100 ON SGN{X)+2 GOTO 200,300
gransiers control to line 200 if X is 4,400

>100 IF SGN(X2)=1 THEN 300 EL
SE 400

—

M Extended BASIC 167

SIN

T
SIZE

CHAPTER

Format
SIN(radian-expression)

Description

The sine function gives the trigonometric sine of radian-expression. If the
angle is in degrees, multiply the number of degrees by P1/180 to get the

cquivalent angle in radians.

Program
The program on the right gives the
sine of several angles.

>100 A=,5235987755982
»110 B-30

>120 C=45%P1/180

>130 PRINT SIN(4);SIN(B)
>140 PRINT SIN(B*PI/180)
>150 PRINT SIN(C)

>RUN
.5 .9880316241
)
. 7071067812

f:gkomﬂt
SIZE
ibe”rlption

“fhe SIZE command displays the number of unused bytes of memory left in
ithe computer. If the Memory Expansion peripheral is attached. the number
;d' bytes available is given as the amount of stack free and the amount of
éprugrmn space free. A byte is the memory space required for such things as
g‘gne character or digit, or one TI Extended BASIC keyword.

g}f the Memory Expansion is not attached, the space available is the amount
Jof space left after the space taken up by the program, screen, character
“pattern definitions, sprite (ables, color tables, string values, and the like is

I,sﬁubtracledA

#f the Memory Expansion is attached, the space available in the stack is the

‘g_mount of space left after the space taken up by string values, information

about variables, and the like is subtracted. Program space is the amount of

g

spariables is subtracted.
¥

;'ﬁ amples
BIZE gives the available memory.

BIZE gives the available memory. If
#the Memory Expansion peripheral is
‘: ttached. stack and program space

i;{re given.

e

Ry

ﬁpace left after the space taken up by the program and the values of numeric

>SIZE
13928 BYTES FREE

>SIZE
13928 BYTES OF STACK FREE
24511 BYTES OF PROGRAM
SPACE FREE

168

TI Extenced BASIC

Tl Extended BASIC

t

169

SOUND subprogram

Format
CALL SOUND(duration frequencyl volumel |, ... frequency4.voiumed4] }

Description

The SOUND subprogram tells the computer to produce tones or noise. The
values given control three aspects of the sound: Duration; frequency: and
volume.

Value Range Description
Duration 1 to 4250 The length of the sound in
-1to -4250 thousandths of a second.

Frequency (Tone) 110 to 44733 What sound is played.
(Noise) -1 to ~8
Volume 0 to 30 How loud the sound is.

Duration is from .001 to 4.250 seconds, although it may vary up to 1/60th ot
a second. The computer continues performing program statements while a
sound is heing played. When you call the SOUND subprogram, the computer
walits until the previous sound has been completed before performing the
new CALL SOUND. However, if a negative duration is specified, the previous
sound is stopped and the new one is begun immediately.

Frequency specifies the frequency of the note to be played with a value from
110 to 44733. (NOTE: This range goes higher than the range of human
hearing. People vary in their ability to hear high notes. but generally the
highest is approximately a value of 10000.) The actual frequency produced
by the computer may vary up to 10 percent. Appendix D lists the
frequencies of some common notes.

A value of -1 to -8 specifies one of eight different types of noise.

Frequency Description

-1 Periodic Noise Type 1

-2 Periodic Noise Type 2

-3 Periodic Noise Type 3

-4 Periodic Noise that varies with the frequency of the
third tone specified

-5 White Noise Type 1

-6 White Nolse Type 2

-7 White Noise Type 3

-8 White Noise that varies with the frequency of the
third tone specified

A maximum of three tones and one noise can be played simultaneously.

Volume specifies the loudness of the note or noise. Zero is loudest and 30 is
softest.

170 TI Extended BASIC

CHAPTER

#HCALL SOUND(500.110,0,131,0,196,
'8) plays A below low C and low C
udly, and G below C not as loudly.

Aall for half a second.
]

F CALL SOUND(4250, - 8,0) plays loud
& white noise for 4.250 seconds.

», ALL SOUND(DUR,TONE,VOL)

¥ plays the tone indicated by TONE for
¥ a duration indicated by DUR. at a

k. volume indicated by VOL.

¥ Program

% The program on the right plays the

¥ 13 notes of the first octave that is
f.availahle nn the eomputer

>100 CALL SOUND(1000,110,0)

>100 CALL SOUND({500,110,0,131
,0,196,3)

>100 CALL SOUND(4250,-8,0)

>100 CALL SOUND(DUR,TONE,V
OL)

>100 X=2/A(1/12)

>110 FOR A=1 TO 13

>120 CALL SOUND(100,110%¥XAA,0
)

>130 NEXT A

Ti Extended BASIC

171

SPGET subprogram

CHAPTER

SPRITE subprogram

Format
CALL SPGET(word-string.return-string)
Description

;l‘he SPGET ﬁubprograrr? returns in return-string the speech pateern that
orresponds to word-string. For a complete description of SPGET. see th

manual that comes with the Speech Editor Command Module d Solid ‘
State Speech™ Synthesizer (both sold separately) nesen

The . .
gil;;:zlsu: ﬁ{:;)lrd-sltrmg 1s any string value listed in Appendix L. If it is
value, it must be enclosed in quotati \
return-string is used with SAY d g q‘ o a markf}- HoN
described i Anpentie oF - and may be altered to add suffixes as

alue of

Program

The program on the right illustrates

. >100 CA oW
using CALL SPGET. LL SPGET("HOW", X§)

>110 CALL SPGET(“ARE",Y$)
>120 CALL SPGET(YOU",Z$)
>130 CALL SAY(“HELLO",X§,,Y$,
»28)

Format
CALL SPRITE(#sprite-number.character-vatue sprite-color.dot-row.dot-
column,. [,row-velocity.column-veloctty] [,...])

Description)
The SPRITE subprogram creates sprites. Sprites are graphics which have a
color and a location anywhere on the screen. They can be set in motion in
. any direction at a variety of speeds. and continue their motion until it is
.changed by the program or the program stops. They move more smoothly
than the usual character which jumps from one screen position to another.

Sprite-number s a numeric expression from 1 to 28. If the valuc is that of a

‘sprite that is already defined. the old sprite is deleted and replaced by the

new sprite. If the old sprite has a row- or column.velocity. and no new one is
. gpecificd. the new sprite retains the old velacities

" Sprites pass over fixed characters on the screen. When two or more sprites
are coincident, the sprite with the lowest sprite number covers the other

- sprites. While five or more spriles are on the same screen row, thc once(s)
with the highest sprite number(s) disappear.

- Character-value may be any integer from 32 to 143. See the CHAR

i subprogram for information on defining characters. The character-value can
“.pe changed by the PATTERN subprogram. The sprite is defined as the

i’ character given and, in the case of double-sized sprites, the next three

¥ characters. Sce the MAGNIFY subprogrammn fur more information.

;" Sprite-color may be any numeric expression from 1 to 16, It determines the
‘foreground color of the sprite. The background color of a sprite is always 1,
transparent. See the COLOR and SCREEN subprograms for more

% information.

Dot.row and dot-colwnn are numbered consecutively starting with 1 in the
‘?;vupper left hand corner of the screen. Dot-row can be from 1 to 192 and dot-
% column can be from 1 to 256. (Actually dot-raw can go up to 256, but the

i positions from 193 through 256 are off the bottom of the screen.) The

¥ position of the sprite is the upper left hand corner of the character(s) which
4 define it

% Information about the position of a sprite can be found using the POSITION.
L COINC. and DISTANCE subprograms. The location of a sprite can be

" changed using the LOCATE subprogram. COLOR changes the color of a
sprite. Sprites can be deleted with the DELSPRITE subprogram.

e

When a breakpoint occurs or the program stops. sprites ccase to exist. They
%" do not reappear with CONTINUE.

Tl Extended BASIC

i T1 Extended BASIC 178

e

SPRITE subprogram

g—

TSPRITE subprogram

CHAPTER

Options

Row-vetbcity and column-velocity may optionally be specified when the
sprite is created. If both row- and column-velocity are zero, the sprite is
stationary. A positive row-velocity moves the sprite down and a negative
value moves it up. A positive column-velocity moves the sprite to the right
and a negative value moves it to the left. If both row-velocity and column-
velocity are non-zero, the sprite moves at an angle in a directon determined
by the actual valucs.

Row- and column-velocity may be from - 128 to 127. A value close to zero Is
very slow. A value far from zero is very fast. When a sprite comes to the edge
of the screen, it disappears and reappears in the corresponding position on
the other side of the screen. The velocity of a sprite may be changed using
the MOTION subprogram.

Programs

The following three programs show some possible uses of sprites. The third
one uses all the subprograms that can relate to sprites except for COLOR and
DISTANCE.

>100 CALL CLEAR

>110 CALL CHAR(96,"FFFFFFFFFF

FFFFFF")
>120 CALL CHAR(98, 183C7EFFFF
7E3(18")
>130 CALL CHAR(100, FOOFFOQFF
OOFFOOF")

Line 140 creates a dark blue sprite in
the center of the screen and a dark
red sprite in the upper left corner of
the screen. Line 150 creales a white
sprite near the upper right corner of
the screen and starts it moving
slowly at a 45 degree angle down
and to the right. The sprite is an
exclamation point,

Line 160 creates a sprite at the
upper left corner of the screen and
starts it moving very fast al a 45
degree angle up and to the right.

>140 CALL SPRITE(#1,96,5,92,1
24,42,100,7,1,1)

>150 CALL SPRITE(#28,33,16,12
,48,1,1)

>160 CALT. SPRITE(#15,98,14,1,
1,127,-128)
>170 GOTO 170

(Press SHIFTC to stop the
program.)

=
The program on the right makes a
.rather spectacular use of sprites.
“gdne 110 defines character 96.
iune 150 defines the sprites, 28 in

-gll. The sprite-number is the current
1“'vnlue of A. The character-value is
96 The sprite-color is INT(A/3) + 3.

e starting dot-row and dot-column
92 and 124, the center of the

¥ goreen. The row- and column-
¥pelocities are chosen randomly using
the value of A*INT(RND*4.5)
—2.25+ A/2*SGNIRND - 5], Line
'170 causes the sequence to repeat.

ELines 110. 120, 140, 150, 250. and

E Line 130 sets the meeting counter to
- zero,

¥ Lines 170 trough 200 build the
¢ floor.

>100 CALL CLEAR

>110 CALL CHAR(96,"0008081C7F
100808")

>120 RANDOMIZE

>130 CALL SCREEN(2)

>140 FOR A=1 TO 28

>150 CALL SPRITE(#A,96,INT(
3)+3,92,124, AXINT(RND¥*4.5)
. 25+A/2%SGN(RND-.5) , A¥INT(
D¥4.5)-2.25+A/2%SGN(RND-.5))
>160 NEXT A

»>170 GOTO 140
{Press SHIFT C to stop the
program.)

A/
-2
RN

: i > S hat can relate to sprites
he following program uses all the subprograms t

except for COLOR and DISTANCE. They are CHAR. COINC, DELSPRITE.

B OCATE. MAGNIFY. MOTION, PATTERN, POSITION, and SPRITE.

am creates two double sized magnified sprites in the shape of a
Ep resg;(.)gadlllt(ling along a floor. There is a barrier that one of them p:sses .
; rough and the other jumps through. The one that jumps throug “%)es "
ittle faster after each jump. so eventually it (.:a.tches tlhe other one. When
Bdoes, they each become double size unmagnified sprites and conum;e faster
¥ walking. When they meet the second time. the one that has been going fas
¥ disappears and the other continues walking.

>100 CALL CLEAR

>110 S1$=0103030103030303030
303030303030380C0C080COCOCOC
0COCOCOCOCOCOCOED™

>120 52$="0103030103070F1B1BO
30303060C0C0OER0COCNBNCOEOFOD
8CCCOCOC060303038

>130 COUNT=0

»140 CALL CHAR(96,S1$)

>150 CALL CHAR(100,S52%)

>160 CALL SCREEN(14)

»170 CALL COLOR(14,13,13)
>180 FOR A=19 TO 24

>190 CALL HCHAR(A,1,136,32)
>200 NEXT A

174

TI Extended BASIC

TI Extended BASIC

175

SPRITE subprogram

—

SPRITE subprogram

CHAPTER

Lines 210 through 240 build the
barrier. -

Line 270 sets the slarling speed of
the sprite that will speed up.

Line 290 sets the sprites in motion.

Line 300 creates the illusion of
walking.

Line 320 checks to see if the sprites
have met.

Line 330 transfers conirol if the
sprites have met. Lines 340 and 350
chieek o see if the sprite has reached
the barrier and transfer control if it
has.

Line 360 loops back to continue the
walk. Lines 370 through 460 handle
the sprites running into each other.

Lines 380 and 390 stop them.

Line 400 checks to see if it is the first
meeting. Line 410 increments the
meeting counter. Line 420 finds their
position.

Line 430 makes them smaller.
Line 440 puts them on the Noor and
moves the fast one slightly ahead.

Line 450 starts them moving again

>210 CALL COLOR(13,15,15)

>220 CALL VCHAR(14,22,128,6)

>230 CALL VCHAR(14,23,128,6)

>240 CALL VCHAR(14,24,128,6)

>250 CALL SPRITE(#1,96,5,113
,129,#2,96,7,113,9)

>260 CALL MAGNIFY(4)

>270 XDIR=4

>280 PAT=2

>290 CALL MOTION(#1,0,XDIR,#2
)0:4)

>300 CALL PATTERN(#1,98+PAT,#
2,98-PAT)

>310 PAT=-PAT

>320 CALL COINC(ALL,CO)

>330 IF CO<>0 THEN 370

>340 CALL POSITION{#1,YP0S1,X
POSL)

>350 IF XP0S1>136 AND XPOS1<1
92 THEN 470

>360 GOTO 300

>370 REM COINCIDENCE

>380 CALL MOTTON(#1,0,0,#2,0,
0)

>390 CALL PATTERN(#1,96,#2,96
)

>400 IF COUNT>0 THEN 540

>410 COUNT=COUNT+1

»420 CALL POSITION(#1,YP0S1,X
POS1,#2,YP0S2,XP0S2)

>430 CALL MAGNIFY(3)
>440 CALL LOCATE(#1,YPOS1+16,
XPOS1+8,#2, YPOS2+16,XPOS2)

S450 CALL MOTION(#1,0,XDIR,#2
10,4}
>460 GOTO 340

¥

Lines 470 through 530 handle the
fast sprite jumping through the

- paurrier. Line 480 stops it. Line 490
finds where it is.

/" Line 500 puts it at the new location
L peyond the barrier.
% Lines 510 and 520 start it moving

g

¥ again, a little faster.

P,

Lincs 540 through 640 handle the

% second meeting.

&

; ;.Lllllf 560 starts the slow sprite
® moving, while line 570 deletes the
! fast sprite. Lines 580 through 630

gl it e

. make the slow sprite walk 20 steps.

>470 REM #1 HIT WALL

>480 CALL MOTION(#1,0,0)

>490 CALL POSITION(#1,YP031,X
POS1)

>500 CALL LOCATE(#1,YPOS1,193
)

»>510 XDIR=XDIR+1

>520 CALL MOTION(#1,0,XDIR)

>530 GOTO 300

>540 REM SECOND COINCIDENCE

>550 FOR DELAY=1 TO 500 :: NE
XT DELAY

»>560 CALL MOTION(#2,0,4)

>570 CALL DELSPRITE(#1)

»580 FOR STEP1=1 TO 20

>590 CALL PATTERN{#2,100)
>600 FOR DELAY=1 TO 20 :: NEX
T DELAY

>610 CALL PATTERN(#2,96)

>620 FOR DELAY=1 TO 20 :: NEX
T DELAY

>630 NEXT STEP1

>640 CALL CLEAR

176

TI Extended BASIC

TI Extended BASIC

177

SQR

Format .-
SQ@R(numeric-expression)
Description

The SQR function returns the positive square root of numeric-expressiort.
SQR(X) is equivalent to X A(1/2). Numeric-expression may not be a negative
number.

Examples

PRINT SQR(4) prints 2.

X =S@R(2.57E5) sets X equal to the

square root of 257,000 which is
506.9516742.

>100 PRINT SQR(4)
>100 X=SQR(2.57ES)

STOP

Format
STOP
Description

The STOP statement stops program execution. It can be used
interchangeably with the END statement except that it may not be placed
after subprograms.

Program

The program on the right illustrates >100 CALL CLEAR
the use of the STOP statement. The »110 TOT=0
program adds the numbers from 1 to >120 NUMB=1

100. >130 TOT=TOT+NUMB
>140 NUMB=NUMB+1
>150 IF NUMB>100 THEN PRINT T
OT: :STOP
>160 GOTO 130

178 TI Extended BASIC

CHAPTER

. Format
1 . STRS(numeric-expression)

5,'- Pescription

' The STRS function returns a string equivalent to numeric-expression. This
3 allows the functions, statements, and commands that act on strings to be

» used on the character representation of numeric-expression. The STRS
'"functlun is the inverse of the VAL function.

% NITMS = STRS(78.6) sets NUMS equal
Fio 7867,

3 LLS - STRS(3E15) sets LLS equal to
3.E15".

>100 NUM$=STR$(78.6)
>100 LL3=STR$(3EL5)

F 18 = STRS(A*4) sets IS equal to a >100 T$=STRE(AX4)
& .!ﬂ’iﬂg equal to what ever value is
@ obtained when A is multiplied by 4.
or instance, if A is equal to -8, I8

g set equal to " -32".

o

TI Extended BASIC 179

S U B —U-_B CHAPTER
S
Format ;—t;ons

SUB subprogram-name [(parameter-list))

Description

The SUB statement 1s the first statement in a subprogram. Subprograms are
used when you wish to separate a group of statements from the main
program. You may use subprograms to perform an operation several times in
a program or in several different programs or to usc variables that are
specific to the subprogram. The SUB statement may not be in an IF-THEN-
ELSE statement.

Subprograms are called with CALL subprogram-name |(parameter-list)}.
Subprograms are ended with SUBEND, and left when either a SUBEND or a
SUBEXIT statement is execuled. Control is returned to the statement
following the statement thal called the subprogram. You must ncver transfur
control out of a subprogram with any statement except SUBEND or
SUBEXIT. This includes passing control with ON ERROR.

When a subprogram is in a program, it must follow the main program. The
structure of a program must be as follows:

Start of Main Program
Subprogram Calls

End of Main Program The program will stop here without
a STOFP or END statement.

Start of First Subprogram Subprograms are optional.

End of First Subprogram Nothing may appear between
subprograms except remarks and
the END statement.

Start of Second Subprogram

End of Second Subprogram Only remarks and END may appear
after the subprograms.

End of Program

All variables used in a subprogram other than those in parameter-list are
tocal to that subprogram, so you may use the same variable names (hat are
used in the main program or in other subprograms, and alter their values,
without having any eltect on other variables. Likewise. the values of
variables in the main program or other subprograms have no effect on the
values of the variables in the subprogram. (However. DATA statements are
“available to subprograms.)

'()ommunicating values (o and from the main program is done with the
opdonal parameter-lis{. The parameters need not have the same names as in
the calling statement, but they must be of the same data type (numeric or
‘string). and in the same order as the items in the CALL. If simple variables
passed to subprograms have their values changed in the subprogram, the
«valucs of the variables in the main program arc alse changed. An array
ghlement such as A(1) in the parameter list of the calling statement is also
changed in value in the main program when control is returned to the main
rogram

value that is given in the calling statement as an expression is passed as a
'Nalue only and changes in the value in the subprogram do not change values
an the main program. Entire arrays are passed by reterence, so changes in
Nelements in the subprogram also change the values of the elements of the
rray in the main program. Arrays are indicated by following the parameter
ame with parentheses. If the array has mare than ane dimension. a comma
ust be placed inside the parentheses for each additional dimension.

you wish, you may pass values only for simple variables by enclosing them
parcntheses. Then the value can be used in the subprogram., but it is not
anged in the return to the main program. For example, CALL SPRG1({A})
asses the value of A o a subprogram that starts SUB SPRG1{X), and allows
at value to be used in X. but does not change the value of A in the main
program if the subprogram changes the value of X.

a subprogram is called more than once, any local variables used in the
Wubprogram retain those values from one call to the next.

180 TI Extended BASIC

Extended BASIC 181

SuB

Examples

SUB MENU marks the beginning of a
subprogram. No parameters are
passed or returned.

SUB MENU(COUNT.CHOICE) marks
the beginning of a subprogram. The
variablcs COUNT and CHOICE may
be used and/or have their values
changed in the subprogram and
returned to the variables in the same
position in the calling statement.

>100 SUB MENU

>100 SUB MENU(COUNT,CHOICE)

SUB PAYCHECK(DATE.Q.SSN,
PAYRATE, TABLE(.)) marks the
beginning of a subprogram. The
variables DATE, Q. SSN, PAYRATE,
and the array TABLE with two
dimensions may be used and/or have
their values changed in the
subprogram and returned to the
variables in the same position in the
calling statement.

PAYRATE, TABLE(,))

CHAPTER

>100 SUB PAYCHECK (DATE, Q,SSN,

182
Tl Extended BASI(

“The program on the right illustrates
Ahe use of SUB. The subprogram
;*MENU had been previously saved
with the merge option. It prints a

imenu and requests a choice. The

main program tells the subprogram
ow many choices there are and

» vhat the choices are. It then uses the

‘Bholce made in the subprogram to
termine what program to run.

ginning of subprogram MENU.

#Note thal this R is not Uie same as
Sthe R used in lines 100 and 110 in
R¥he main program.

b
¥
H

»100 CALL MENU(5,R)

>110 ON R GOTO 120,130,140,15
0,160

»120 RUN "DSK1.PAYABLES™

>130 RUN “DSK1.RECEIVE"

»140 RUN *DSK1.PAYROLL™

>150 RUN "DSK1.INVENTORY"

>160 RUN “DSK1,LEDGER"

%170 DATA ACCOUNTS PAYABLE,AC
COUNTS RECEIVABLE,PAYROLL,IN
VENTORY, GENERAL LEDGER

10000 SUB MENU{COUNT,CHOICE)

>10010 CALL CLEAR

510020 IF COUNT>22 THEN PRINT

“TOO MANY ITEMS' :: CHOICE=
Q :: SUBEXIT

>10030 RESTORE

10040 FOR R=1 TO COUNT
>10050 READ TEMP3
>10060 TEMP$=SEGS(TEMPS$,1,25)
>10070 DISPLAY AT(R,1):R;TEMP
$
>10080 NEXT R
>10090 DISPLAY AT(R+1,1):"YOU
R CHOICE: L
>10100 ACCEPT AT{R+1,14)BEEP
VALIDATE(DIGIT)SIZE(-2):CHOI
CE
>10110 IF CHOICE<1 OR CHOICE>
COUNT THEN 10100
>10120 SUBEND

2 Tl Extended BASIC

183

SUBEND

Format -
SUBEND

Description

The SUBEND statement marks the end of a subprogram. When SUBEND is
executed, control is passed to the statement following the statement that
called the subprogram. The SUBEND statement must always be the last
statement in a subprogram. The SUBEND statement may not be in an [F-
THEN-ELSE statement. The only statements thal may immediately follow a
SUBEND statement are REM, END, or the SUB statement for the next
subprogram.

TAB

SUBEXIT

Format

SUBEXIT

Description

The SUBEXIT statement allows leaving a subprogram before the end of the
subprogram (indicated with SUBEND). When it is executed, control is passed

to the statement following the statement that called the subprogram. The
SUBEXIT siatement need not be present in a subprogram.

' "NOP' prints ABCDEFGHIJKLM at
. the beginning of the line and NOP at

= DISPLAY AT(12.1):"NAME":TAB
" (15).""ADDRESS"" displays NAME at

184 Ti Extended BASIC

CHAPTER

Format

| TAB(numeric-expression)

. Description

' The TAB function specifies the starting position for the next print-iterm in a

! PRINT, PRINT...USING. DISPLAY, or DISPLAY...USING statement. if

L numeric-expression is greater than the length of a record for the device on
which the printing is being done {for example; 28 for the screen, 32 for the

b thermal printer, the specified value for a file on a diskette or cassette). then it

| is repeatedly reduced by the record length until it is between 1 and the

record length.

' If the number of characters already printed on the current record is less than

or cqual to numeric-expression, the next print item is printed beginning on
the position indicated by numeric-expression. If the number of characters
already printed on the current record is greater than the position indicated
by numeric-expression, the next print-ftem is printed on the next record

' beginning in the position indicated by numeric-expression.

| The TAB function is treated as a print.item, so it must have a print separator

{colun, sernicolon. or comma) before and/or after it, The print scparator

. before TAB is evaluated before the TAB function. Normally semicolons are
| used before and after TAB.

Examples

PRINT TAB(12):35 prints the
number 35 at the twelfth position.

PRINT 356:TAB(18): "'NAME™ prints
356 at the beginning of the line and
NAME at the eighteenth position of
the line.

>100 PRINT TAB(12);35

>100 PRINT 356;TAB(18); NAME™"

PRINT "ABCDEFGHIJKLM " TAB(5): >100 PRINT “ABCDEFGHIJKLM ;TA

B(5);"NOP"

the fifth position of the nexlt line.

>100 DISPLAY AT(12,1):"NAME";
TAB(15); "ADDRESS"
the beginning of the twelfth linc on

) the screen and ADDRESS at the

fifleenth position on the twelfth line

of the screen.

kTl Fxrended BASIC 185

TAN

Format

TAN(radian-expresslon}

Description

The tangent function gives the trigonometric tangent of radian-expression. If
the angle is in degrees, multiply the number of degrees by PI/180 to get the
equivalent angle in radians.

Program

The program on the right gives the
tangent of several angles.

>100 A=.7853981633973
110 B=26.565051177
>120 C=45%PI/180
>130 PRINT TAN(A);TAN(B)
140 PRINT TAN(BXPT/180)
>150 PRINT TAN(C)
>RUN

1. 7.17470553

5

1

TRACE

Format
TRACE

Description

The TRACE command causes each line number to be displayed on the
screen before the statements on that line are executed. This enables you to
follow the course of a program as a debugging aid. The TRACE command
may be used as a statement. The effect of the TRACE command is canceled
when the NEW command or UNTRACE command or statement is performed.

Example

TRACE causes the computer to >TRACE

display a trace of the lines of a 5100 TRACE

program on the screen,

186 Tl Extended BASIC

CHAPTER

BREAK [line-list)
0 scription

L jxamples
UNBREAK removes all breakpoints.

BREAK 100.130 removes the

eakpoints from lines 100 and 130.

e UNBREAK command removes all breakpoints. It can optionally be set
jgor only those in line-list. UNBREAK can be used as a statement.

>UNBREAK
>420 UNBREAK

>UNBREAK 100,130
>320 UNBREAK 100,130

NTRACE

xample
'TRACE remaves the effect of
ACE.

——

ihe UNTRACE command removes the effect of the TRACE command.
TRACE can be used as a statement.

>UNTRACE
>420 UNTRACE

i’l‘l Extended BASIC
L

187

VAL

Formn‘!;
VALi(string-expression)

Description

The VAL funetion returns the number equivalent to string-expression. This
allows the functions, statements, and commands that act on numbers toc be
used on string-expression. The VAL tunction is the inverse of the STR$
function,

Examples .
NUM - VAL('78.6") acts NUM cqua
Lo 78.6.

>100 NUM=VAL("78.6")

LL=VAL("3E15") sets LL equal to >100 LL=VAL("3E15")

3.E15.

VCHAR

Format
CALL VCHAR(row.column.character-code [.repetition|)

Description

The VCHAR subprogram places a character anywherc on the display screen
and aptionally repeats it vertically. The character with the ASCII value of
character-code is placed in the position described by row and column and is
repeated vertically repetition times.,

A value of 1 for row indicates the top of the screen. A valuce of 24 is the
bottom of the screen. A value of 1 for column indicates the left side of the
screen. A value of 32 is the right side of the screen. The screen can be
thought of as a grid as shown below

188

TI Extended BASIC

CHAPTER

& 10 12 14
|

COLUMNS

16 18 20 22 24 20 28 30

32

odndbasbas bbbz tasd a7 20 b 31 d

PALL VCHAR(12.16.33) places
Pharacter 33 (an cxclamation point)
i row 12, column 16.

FALL VCHAR(1,1, ASC("*1"),768)
places an exclamation point in row
. column 1, and repeats it 768
Himes, which fills the screcen.

LALL VCHAR(R,C.K.T) places the
¥haracter with an ASCII code of K in
fow R, column C and repeals it T
ftimes.

>100 CALL VCHAH(12,16,33)

>100 CALL VCHAR(1,1,4SC(~!"),
768)

>100 CALL VCHAR(R,C,K,T)

Extended BASIC

189

VERSION subprogram

Format
CALL VERSION(numeric-variable)

Description
The VERSION subprogram returns a value indicating the version of BASIC
that is being used. TI Extended BASIC returns a value of 100.

Example
CALL VERSION(V) sets V equal to
100.

>100 CALL VERSION(V)

190 Tl Extended BASIC

Appendices

FThe following appendices give useful information concerning T1 Extended
BASIC.

Appendix A: List of lllustrative Programs
List of Commands, Statements, and Functions
ASCII Codes
Musical Tone Frequencies
Character Sets
Pattern-Identifier Conversion Table
: Color Codes
ppendix H: High Resolution Color Combinations
ppendix I: Split Console Keyboard
Character Codes for Split Keyboard
Mathematical Functions
Tist of Speech Waords
. Adding Suffixes to Speech Words

. Error Messages

T1 Extended BASIC 191

List of

lilustrative Programs

ELEMENT
ILLUSTRATED

ACCEPT
CALL
CHAR

CHRS$
CLEAR

COINC

COs

DATA
DELETE
DISPLAY

ERR
FOR-TO-STEP
GOosuB
GOTO
IF-THEN-ELSE
IMAGE

INPUT

INPUT (with files)
JOYST

KEY

LINPUT

LOCATE

LOG

LINES

DESCRIPTION

Codecbreaker Game
Entry of 20 names
CLEAR and user written subroutine
1. Moving figure

2. Resetting characters
List of ASCII codes
(Simple example)
(Simple example)
(Simple example)
(Simple example)
(Simple example)
(Simple example)
Draw on screen
(Simple example)
Design

Probability

Add 1 through 100
Sequence numbers
{Simple example)
(Simple example)
Writes letter
(Simple example)
Moves sprite
Moves sprite
(Simple example)
(Simple example)
Log to any base

192

TI Extended BASIC

: APPENDIX
- LIST OF ILLUSTRATIVE PROGRAMS
i ELEMENT
ILLUSTRATED LINES DESCRIPTION PAGE
MAGNIFY 17 (Simple example) 120
MERGE 13 Moves sprite 122
MOTION 8 Moves sprite 125
NEXT 6 (Simple example) 127
NUMBER 4 (Simple example) 128
ON BREAK 11 (Simple example) 130
ON ERROR 15 (Simple example) 132
ON...GOSUB 20 Choose with a menu 134
ON...GOTO 19 Choose with a menu 136
ON WARNING 8 (Simple example) 137
PATTERN 18 Rolling wheel 142
POS 8 Breakup sentence 145
‘PRINT 7 (Simple example) 149
: RANDOMIZE 5 (Simple example) 151
:REC 12 (Simple example} 153
"RETURN (with GOSUB) I8 Figure interest 157
RETURN (with ON ERROR) 13 Handle error 158
RUN 12 Choose with a menu 162
F SAY 4 (Stmple example) 164
SIN 6 (Simple example) 168
| SOUND 4 Play first 13 notes 171
SPCGET 4 (Simple example) 172
SPRITE 8 {Simple example) 174
8 Creation of stars 175
55 Walking sprites 175
STOP 7 Add 1 through 100 178
SUB 21 Choose with a menu 183
TAN 6 (Simple example) 186
- T1 Extended BASIC 193

Commands, Statements, APPENDIX

and Functions

The following is a list of all Tl Extended BASIC commands, statements, and TI Extended BASIC Functions
functisns. Commands are listed first: if a command can also be used as a : ABS LEN SEGS
statemnent, the letter S’ is listed to the right of the command. Commands F ASC LOG SGN
that can be abbreviated have the acceptable abbreviations underlined. Next F ATN MAX SIN
1s a list of all TI Extended BASIC statements: those that can also be used as . CHRS MIN SQR
commands have a **C'" after them. Finally, there is a list of all TI Extended k cos Pl STRS
BASIC functions.

§ COMMANDS, STATEMENTS, AND FUNCTIONS

'EOF POS TAB

TI Extended BASIC Commands EEXP REC TAN
BREAK S MERGE SAVE b INT RND VAL
BYE NUMBER SIZE RPTS
CONTINUE QLD TRACE S
DELETE § RESEQUENCE UNBREAK S
LIST RUN S UNTRACE S

TI Extended BASIC Statements
ACCEPT C CALL HCHAR C OPTION BASE
CALL IF THEN ELSE CALL PATTERN C
CALL CHAR C IMAGE CALL PEEK C
CALL CHARPAT C CALL INIT C CALL POSITION C
CALL CHARSET C INPUT PRINT C
CALL CLEARC INPUT REC PRINT USING C
CLOSE C CALL JOYST C RANDOMIZE C
CALL COINC C CALL KEY C READ C
CALL COLOR C [LET] C REM C
DATA CALL LINK C RESTORE C
DEF LINPUT RETURN
CALL DELSPRITE C CALL LOAD C CALL SAY C
DIMC CALL LOCATE C CALL SCREEN C
DISPLAY C CALL MAGNIFY C CALL SOUND C

DISPLAY USING C

CALL MOTION C

CALL SPGET C

CALL DISTANCE C NEXT C CALL SPRITE C
END ON BREAK STOP C

CALL ERR C ON ERROR SuB

FORC ON GOSUB SUBEND

CALL GCHAR C ON GOTO SUBEXIT

GOSsUB ON WARNING CALL VCHAR C
GOTO OPEN C CALL VERSION C

194

TI Extended BASIC

%'ﬂ Extended BASIC

195

ASCI

| Codes

APPENDIX

The following predefined characters may be printed or displayed on the screen.

ASCIl
CODE

ASCIE ™
CODE

30

31

32

33 !

35 #
36 S
37 %
38 &

10
41)
42 M
43 +

45 -

-
p
-~

(%]
w
TR N RWN~O

60 <

62 >

CHARACTER
{cursor)
(edge character)
(space)
(exclamation point)

* (quote}

(number or pound sign}
(dollar)

(percent)
(ampersand)
(apostrophe)

(open parenthesis)
(close parenthesis)
(asterisk)

(plus)

(comma)

(minus)

(period)

(slash)

{colon)
(semicnlon)
(less than)
(equals)
(greater than)

63

CHARACTER
{question mark)
(at sign)

TNAX SCCHUTOTOZENRCT I OTIEOOE P

(open bracket)
\. (reverse slash)

] (close bracket}
A (exponentiation)
__ (underline)

The following key presses may also be detected by CALL KEY.

1

4

7

9
11

13
15

SHIFT A (AID)

SHIFT G (INS)

SHIFT T (ERASE)

SHIFT D (RIGHT ARROW)
SHIFT E (UP ARROW)
ENTER

SHIFT 2 (BACK)

SHIFT F (DEL)

SHIFT R (REDO)

SHIFT § (LEFT ARROW)
SHIFT X (DOWN ARROW)
SHIFT vV (CMD)

SHIFT w (BEGIN)

| Musical Tone Frequencies

196

T! Extended BASIC

APPENDIX

D

f The following table gives the frequencies {rounded to integers) of four octaves
 of the tempered scale (one half step between notes). While this list docs not

represent the entire range of tones that the computer can produce, it can be

[helpful for programming music.

FREQUENCY

NOTE FREQUENCY NOTE
110 A 440 A (above middle C)
117 A% P 466 Af, B?
123 B 494 B
131 C (low C) 523 C (high C)
139 cf o 554 cd | Db
147 D 587 D
156 D E° 622 D# E°
165 E 659 E
175 F 698 F
185 Fé Gh 740 F¥ &’
196 G 784 G
208 GF . A’ 831 G# ab
220 A (below middle C) 880 A (above high C)
220 AJbelow middle C) 880 A [above high)
233 A%, B” 932 A% B
247 B 988 B
262 C (middle C) 1047 c
277 c¥ 1109 Cc® p°
294 D 1175 D
311 D# E’ 1245 D# EP
330 E 1319 E
349 F 1397 F
370 F¥ . G° 1480 F# G?
392 G 1568 G
415 G¥ A 1661 G% . a*
440 A (above middle) 1760 A

P a—

Tl Extended BASIC

197

1110

APPENDIX
Character Sets
SET ASCIH CODES SET ASCIil CODES
0 30-31
1 32-39 8 88-95
2 40-47 9 06-103
3 48-55 10 104-111
4 56-63 11 112-119
5 64-71 12 120-127
6 72-79 13 128-135
7 80-87 14 136-143
cen APPENDIX
Pattern-ldentifier
A
Conversion Table
BINARY CODE HEXADECIMAL
Blocks {O=off: 1=0n) CODE
[0000 0
B 0001 1
] 0010 2
0011 3
o100 4
0101 5
0110 6
o111 7
1000 8
1001 o
1010 A
1011 B
1100 C
1101 D
E
F

1111

olor Codes

APPENDIX

COLOR
Transparent

 Black

Mediumn Grecn
Light Green
Dark Blue

 Light Blue

Dark Red
Cyan

CODE

[o N B R4 I S

COLOR
Medium Red
Light Red
Dark Yellow
Light Yellow
Dark Green
Magenta
Gray
White

CODE

10
11
12
13
14
15
16

198

TI Extended BASIC

Tl Extended BASIC

199

Color Combinations

The folfbwing color combinations produce the sharpest, clearest character

resolution.

Black on Cyan

Black on Dark Red

Black on Light Blue

Black on Medium Green
Dark Blue on Cyan

DarK Blue on Light Blue
Dark Blue on Magenta

Dark Green on Cyan

Dark Green on Gray

Dark Gicen on Light Yellow
Dark Red on Gray

Dark Red on Light Yellow
Medium Green on Light Yellow

SECOND BEST

Black on Dark Blue
Black on Light Green
Black on Light Yellow
Dark Green on White
Light Blue on Gray
Light Blue on White

BEST

2,13
2,15
2. 14
2.9

5. 15
5.4

5,16
13, 11
13. 4
13.3
7. 10
14, 2
3. 15

2,11
2,10
13. 10
7. 16
6. 4
4,18

THIRD BEST

Black on White

Dark Red on Medium Red
Magenta on Gray

Medium Green on Dark Yellow
Medium Red on Gray

Medium Red on Light Yellow
White on Dark Red

FOURTH BEST
8. 16

Cyan on Black

Dark Red on Black

Gray on White

Light Green on Black

Light Red on White

Medium Red on Light Green

5,12
4,12
i4, 18
3.15
9, 10
9. 16

7.4
5.2
0.2
14,12
16. 6

Black on Dark Green

Black on Gray

Black on Magenta

Black on Medium Red
Dark Blue on Gray

Dark Blue on Light Green
Dark Blue on White

Dark Green on Dark Yellow
Dark Green on Light Green
Dark Green on Medium Green
Dark Red on Light Red
Magenta on Light Red
Medium Green on White

Black on Dark Yellow
Black on Light Red

Dark Green on Light Red
Dark Red on White

Light Blue on Light Green
Light Green on White

Dark Blue on Light Yeilow
Light Green on Light Yellow
Magenta on White

Medium Green on Gray
Medium Red on Light Red
Medium Red on White

Cyan on White

Dark Red on Light Green
Light Blue on Black
Light Red an Black
Magenta on Light Yellow
White on Light Blue

ann

APPENDIX

Key-unit 1 Key-unit 2
19 7 8 9 10 19 7 8 9 10
' a [= 1% 1 [l 8 [1!
L——q
11 18 3 11

18 4 5 6
T
Lo] Lu] T L]

17 1 2 3 12
BlaZe :
;A___!
16 15 0 14 _ 13
&
H L EEL
[SPACE BAR i

g

' *Note that the first key listed is on the left side of the keyboard and the
[second key listed is on the right side of the Keyboard.

1 APPENDIX
tCharacter Codes
for Split Keyboard
CODE KEYS* CODE KEYS*
0 X. M 10 5.0
1 A.H 11 T.P
2 S. J 12 F.L
3 D.K 13 V, ENT
4 wW. U 14 C, .
5 E. I 15 Z. N
6 R.O 16 SHIFT. B
7 2.7 17 SPACE, G
8 3,8 18 QY
9 4.9 19 1.6

: TI Extended BASIC

201

Mathematical Functions

APPENDI(X

 List of Speech Words

APPENDIX

The following mathematical functions may be defined with DEF as shown.

-
Function

Sccant

Cogecant

Cotangent

Inverse Sine

Inverse Cosine
Inverse Secant
Inverse Cosecant
Inverse Cotangent
Hyberbolic Sine
Hyberbolic Cosine
Hyperbolic Tangent
Hyperbolic Secant
Hyperbollc Cosecant
Hyperbolic Cotangent
[nverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
Inverse Hyperbolic Secant
Inverse Hyperbolic Cosecant
Inverse Hyperbolie Cotangent

TI Extended BASIC statement

DEF SEC(X)=1/C0S(X)

DEF CSC(X)=1/SIN(X}

DEF COT(X)=1/TAN(X}

DEF ARCSIN(X)=ATN(X/SQR(1-X*X))

DEF ARCCOS(X)=-ATN(X/SQR({1-X¥X})+P1/2

Dit ARGSEC (X) =ATN (SQH(X2X-1)) +(SGN(X)-1) %P1 /2
DEF ARCCSC(X)=ATN(1/SQR(X#*X-1))+(SGN(X)-1)#PI/2
DEF ARCCOT(X)=PI/2-ATN(X) or =PT/2+ATN(-X)
DEF SINH(X}=(EXP(X)-EXP{-X))/2

DEF COSH(X)=(EXP{X)+EXP(-X))/2

DEF TANH (X)=—2%EXP(—X)/ {EXP (X)+EXP(—X})+1
DEF SECH=2/{EXP(X)+EXP(-X}}

DEF CSCH=2/(EXP{X)-EXE(-X))

DEF COTH(X)=2%EXP(-X) /(EXP(X)-EXP(-X))+1
DEF ARCSINH(X)=LOG(X+SQR{X¥X+1))

DEF ARCCOSH(X)=LOG(X+SQR(X¥X~1))

DEF ARCTANH(X)=L0G((1+X)/(1-X))/2

DEF ARCSECH(X)=LOG{ {1+5QR(1~X*¥X)) /X)

DEF ARCCSCH(X)=LOG{ {SGN(X)*SQR(X¥X+1)+1)/X)
DEF ARGCOTH(X)=LOC({X+1)/(%-1)}/2

CHIOHULWN=O

The following is a list of all the letters, numbers. words, and phrases that can
be accessed with CALL SAY and CALL SPGET. See Appendix M for

| instructions on adding suffixes to anything in this list.

- (NEGATIVE) CENTER
+ (POSITIVE} CHECK
. (POINT) CHOICE
3 CLEAR
COLOR
COME
COMES
COMMA
COMMAND
COMPLETE
COMPLETED
COMPUTER
CONNECTED
L Ala) CONSOLE
Al (3) CORRECT
ABOUT COURSE
AFTER CYAN
"~ AGAIN D
ALL DATA
AM DECIDE
AN DEVICE
AND DID
ANSWER DIFFERENT
ANY DISKETTE
ARE DO
AS DOES
ASSUME DOING
AT DONE
B DOUBLE
BACK DOWN
BASE DRAW
BE DRAWING
BETWEEN E
BLACK EACH
BLUE EIGHT
BOTH EIGHTY
BOTTOM ELEVEN
BUT ELSE
BUY END
BY ENDS
BYE ENTER
c ERROR
CAN EXACTLY
CASSETTE EYE

F
FIFTEEN
FIFTY
FIGURE
FIND
FINE
FINISH
FINISHED
FIRST

FIT

FIVE

FOR
FORTY
FOUR
FOURTEEN
FOURTH
FROM
FRONT

G

GAMES
GET
GETTING
GIVE
GIVES

GO

GOES
GOING
GOOD
GOOD WORK
GOODBYE
GOT
GRAY
GREEN
GUESS

H

HAD
HAND
HANDHELD UNIT
HAS
HAVE
HEAD
HEAR
HELLO
HELP

202

Tl Extended BASIC

T! Extended BASIC

203

LIST OF SPEECH WORDS

HERE MEMORY PRINTER
HIGHER MESSAGE PROBLEM
HIT MESSAGES PROBLEMS
HOME MIDDLE PROGRAM
HOW MIGHT PLT
HUNDRED MODULE PUTTING
HURRY MORE a
1 MOST R
I WIN MOVE RANDOMLY
IF MUST READ (read)
IN N READ! (red)
INCH NAME READY TO START
INCHES NEAR RECORDER
INSTRUCTION NEED RED
INSTRUCTIONS NEGATIVE REFER
IS NEXT REMEMBER
1T NICE TRY RETURN
J NINE REWIND
JOYSTICK NINETY RIGHT
JUST NO ROUND
K Now s
KEY NUMBLER SAID
KEYBOARD SAVE
KNOW o SAY
L OF SAYS
LARGE OFF SCREEN
LARGER OH SECOND
LARGEST ON SEE
LAST ONE SEES
LEARN ONLY SET
LEFT OR SEVEN
LESS ORDER SEVENTY
LET OTHER SHAPE
LIKE out SHAPES
LIKES OVER SHIFT
LINE P SHORT
LOAL PART SHORTER
LONG PARTNER SHOULD
LOOK PARTS SIDE
LOOKS PERIOD SIDES
LOWER PLAY SIX
M PLAYS SIXTY
MADE PLEASE SMALL
MAGENTA POINT SMALLER
MAKE POSITION SMALLEST
ME POSITIVE SO
MEAN PRESS SOME
FRINT SORKY
204 Ti Extended BASIC

LIST OF SPEECH WORDS

APPENDIX

SPACE
SPACES
SPELL
SQUARE
START
STEP

STOP

SUM
SUFPFOSED
SUPPOSED TO
SURE

T

TAKE
TEEN

TELL

TEN
TEXAS INSTRUMENTS
THAN
THAT
THAT IS INCORRECT
THAT IS RIGHT
THE (the)
THE1 (tho)
THEIR
THEN
THERE
THESE
THEY
THING
THINGS
THINK
THIRD
THIRTEEN
THIRTY
THIS
THREE
THREW
THROUGH
TIME

TO
TOGETHER
TONE

TOO

TOP

TRY

TRY AGAIN
TURN
TWELVE

TWENTY z
TwO ZERO
TYPE

U

UHOH

UNDER
UNDERSTAND
UNTIL

up

UPPER

USE

\Y

VARY

VERY

W

WAIT

WANT
WANTS

WAY

WE

WEIGH
WEIGHT
WELL

WERE

WHAT

WHAT WAS THAT
WHEN
WHERE
WHICH
WHITE

WHO

WHY

WILL

WITH

WON

WORD
WORDS
WORK
WORKING
WRITE

X

Y
YELLOW
YES

YET
YOU
YOU WIN
YOUR

TI Extended BASIC

205

Adding Suffixes
to Speech Words

This appendix describes how to add ING, S, and ED to any word available in
the SolidtState Speech™ Synthesizer resident vocabulary.

The code for a werd is first read using SPGET. The code consists of a
number of characters, one of which tells the speech unit the length of the
word. Then, by means of the subpregrams listed here, additional codes can
be added to give the sound of a suffix.

Words often have tralling-off data that make the word sound more natural
but prevent the easy addition of suffixes. In order to add suffixes this trailing-
off data must be removed.

The following program allows you to input a word and, by (rying different
truncation values, make the suffix sound like a natural part of the word. The
subprograms DEFING {lines 1000 through 1130), DEFS1 (lines 2000 through
2100). DEFS2 {lincs 3000 through 3090), DEFS3 (lines 4000 through 4120),
DEFED! (lines 5000 through 5070). DEFED2 (lines 6000 through 6110),
DEFED3 (lines 7000 through 7130), and MENU (lines 10000 through 10120)
should be input separately and saved with the MERGE option. [The
subprogram MENU is the same one used in the illustrative program with
SUB.) You may wish to use different line numbers. Each of these
subprograms (except MENU) defines a suffix.

DEFING defines the ING sound. DEFS] defines the S sound as it occurs at
the end of “cats.”” DEFS2 defines the S sound as it occurs at the end of
“‘cads.”’ DEFS3 defines the S sound as it occurs at the end of “‘wishes.”
DEFEDI defines the ED sound as it occurs at the end of *‘passed,'* DEFED2
defines the ED sound as it occurs at the end of “‘caused.”” DEFED3 defines
the ED sound as it occurs at the end of ““heated."

In running the program, enter a O for the truncation value in order to leave
the truncation sequence.

100 REM *¥REEXKAX KR KEHXREXH

110 REM REQUIRES MERGE OF:

120 REM MENU (LINES 10000 THROUGH 10120)
130 REM DEFING (LINES 1000 THROUGH 1130)
140 REM DEFS1 (LINES 2000 THROUGH 2100)
150 REM DEFS2 (LINES 3000 THROUGH 3090)
160 REM DEFS3 (LINES 4000 THROUGH 4120)
170 REM DEFED1 (LINES 5000 THROUGH 5070)
180 REM DEFED2 (LINES 6000 THROUGH 6110)
190 REM DEFED3 (LINES 7000 THROUGH 7130)
200 REM ¥¥KMKER KA RERHHEHRK

210 CALL CLEAR

220 PRINT “THIS PROGRAM IS USED TO"

206 Tl Extended BASIC

APPENDIX

' ADDING SUFFIXES TO SPEECH WORDS

230 PRINT “FIND THE PROPER TRUNCATION"
240 PRINT “VALUE FOR ADDING SUFFIXES"

250 PRINT “TO SPEECH WORDS.':

260 FOR DELAY=1 TO 300::NEXT DELAY
270 PRINT “CHOOSE WHICH SUFFIX YOU"
280 PRINT “WISH TO ADD.™:
290 FOR DELAY=1 TO 200::NEXT DELAY

300 CALL MENU(8,CHOICE)

310 DATA 'ING','S' AS IN CATS,'S' AS IN CADS,'S' AS IN WISHES,
'ED! AS IN PASSED,'ED' AS IN CAUSED,'ED' AS IN HEATED,END

| 320 IF CHOICE=0 OR CHOICE=8 THEN STOP

330 INPUT *WHAT IS THE WORD? ':WORD$
340 ON CHOICE GOTO 350,370,390,410,430,450,470
350 CALL DEFING(D$)

| 360 GOTO 480

370 CALL DEFS1(D$)!CATS

© 380 GOTO 480

390 CALL DEFS2(D$)!CADS
400 GOTO 480

. 410 CALL DEFS3(D$)!WISHES

420 GOTO 480
430 CALL DEFED1(D$)!PASSED
440 GOTO 480
450 CALL DEFED2(D$)!CAUSED

460 GOTO 480

470 CALL DEFED3(D$) |HEATED

480 REM TRY VALUES

490 CALL CLEAR

| 500 INPUT “TRUNCATE HOW MANY BYTES? “:L

510 IF L=0 THEN 300

520 CALL SPGET(WORD$,B$)

530 L=LEN(B$)-L-3

540 C$=SEGH(BS,1,2)&CHR$(L)ESEGH(BS,4,L)
550 CALL SAY(,C3&D3$)

560 GOTO 500

207
TI Extended BASIC

ADDING SUFFIXES TO SPEECH WORDS

APPENDIX
ADDING SUFFIXES TO SPEECH WORDS

The data has been given in short DATA statements (o make it as easy as
possibiedo input. It may be consolidated to make the program shorter.

1000 SUB DEFING(A$)

1010 DATA 96,0,52,174,30,65

1020 DATA 21,186,90,247,122,214
1030 DATA 179,95,77,13,202,50

1040 DATA 153,120,117,57,40,248
1050 DATA 133,173,209,25,39,85

1060 DATA 225,54,75,167,29,77

1070 DATA 105,91,44,157,118,180
1080 DATA 169,97,161,117,218,25
1090 DATA 119,184,227,222,249,238,1
1100 RESTORE 1010

1110 A$=""

1120 FOR I=1 TO 55::READ A::A$=A$&CHR$(A)::NEXT I
1130 SUBEND

2000 SUB DEFS1(A$)!CATS

2010 DATA 96,0,26

2020 DATA 14,56,130,204,0
2030 DATA 223,177,26,224,103
2040 DATA 85,3,252,106,106
2050 DATA 128,95,44,4,240
2060 DATA 35,11,2,126,16,121
2070 RESTORE 2010

2080 AP=

2090 FOR I=1 TO 29::READ A::A$=A$&CHR$(A)::NEXT T
2100 SUBEND

3000 SUB DEFS2(A$)I1CADS

3010 DATA 96,0,17

3020 DATA 161,253,158,217

3030 DATA 168,213,198,86,0

3040 DATA 223,153,75,128,0

3050 DATA 95,139,62

3060 RESTCRE 3010

3070 A3=

3080 FOR I=1 TO 20::READ A::A$=ASACHRS(A): :NEXT T
3090 SUBEND

208

Tl Extended BASIC

4000 SUB DEFS3(A$) |WISHES
4010 DATA 96,0,34

4020 DATA 173,233,33,84,12
4030 DATA 242,205,166,55,173

b 4040 DATA 93,222,68,197,188

4050 DATA 134,238,123,102
4060 DATA 163,86,27,59,1,124
4070 DATA 103,46,1,2,124,45
4080 DATA 138,129,7

4090 RESTORE 4010

4100 A$=""

. 4110 FOR I=1 TO 137::READ A::A$=A8&CHR$(A)::NEXT I

4120 SUBEND

5000 SUB DEFED1(A$)!PASSED

5010 DATA 96,0,10

5020 DATA 0,224,128,37

5030 DATA 204,37,240,0,0,0

5040 RESTORE 5010

5050 A3

5060 FOR [=1 TO 13::READ A::A8=A3&CHR$(A)::NEXT I
5070 SUBEND

6000 SUB DEFED2(A$)!CAUSED
6010 DATA 96,0,26

6020 DATA 172,163,214,59,35

6030 DATA 109,170,174,68,21

6040 DATA 22,201,220,250,24

6050 DATA 69,148,162,166,234

6060 DATA 75,84,97,145,204

6070 DATA 15

6080 RESTORE 6010

6090 Ag=""

6100 FOR I=1 TO 29::READ A::A3=A$&CHRS(A)::NEXT I
6110 SUBEND

209
Tl Extended BASIC

ADDING SUFFIXES TO SPEECH WORDS

APPENDIX
. ADDING SUFFIXES TO SPEECH WORDS

7000 SUB DEFED3(A$) !HEATED
7010 D&LA 96,0,36

7020 DATA 173,233,33,84,12
7030 DATA 242,205,166,183
7040 DATA 172,163,214,59,35
7050 DATA 109,170,174,68,21
7060 DATA 22,201,92,250,24
7070 DATA 69,148,162,38,235
7080 DATA 75,84,97,145,204
7090 DATA 178,127

7100 RESTORE 701U

7110 A$=""

7120 FOR I=1 TO 39::READ A::A$=AS&CHR${A)::NEXT I
7130 SUBEND

10000 SUB MENU(COUNT,CHOICE)

10010 CALL CLEAR

10020 IF COUNT>22 THEN PRINT “TOO MANY ITEMS" ::
10030 RESTORE

10040 FOR T=1 TO OOUNT

10050 READ TEMP$

10060 TEMP$=SEG3(TEMP$,1,25)

10070 DISPLAY AT(I,1):I;TEMP$

10080 NEXT I

10090 DISPLAY AT(I+1,1):"YOUR CHOICE: 1~

10100 ACCEPT AT(I+1,14)BEEP VALIDATE(DIGIT)SIZE(2):CHOICE
10110 IF CHOICE<1 OR CHOICE>COUNT THEN 10100

10120 SUBEND

CHOICE=0 :: SUBEXIT

210
Ti Extended BASIC

You can use the subprograms in any program once you have determined the
. number of bytes to truncate. The following program uses the subprogram
DEFING in lines 1000 through 1130 to have the computer say the word
DRAWING using DRAW plus the suffix ING. Note that it was found that

i DRAW should be truncated by 41 characters to produce the most natural
sounding DRAWING. The subprogram DEFING in lines 1000 through 1130
is the program you saved with the merge option.

100 CALL DEFING(ING3)
110 CALL SPGET({"DRAW",DRAWS)
120 L=LEN(DRAW$)-3-41! 3 BYTES OF SPEECH OVERHEAD, 41 BYTES TRUNCATED
130 DRAW$=SEGE(DRAWS,1,2)&CHR$(L)&SEGS(DRAWS,4,L)
£140 CALL SAY('WE ARE",DRAVS&INGS, Al SCREEN™)
150 GOTO 140
1000 SUB DEFING(A$)
1010 DATA 96,0,52,174,30,65
1020 DATA 21,186,90,247,122,214
1030 DATA 179,95,77,13,202,50
1040 DATA 153,120,117,57,40,248
1050 DATA 133,173,209,25,39,85
1060 DATA 225,54,75,167,29,77
1070 DATA 105,91,44,157,118,180
1080 DATA 169,97,161,117,218,25
1090 DATA 119,184,227,222,249,238,1
1100 RESTORE 1010
1110 A%=""
1120 FOR I=1 TO 55::READ A::A$=A$&CHR3(A)::NEXT I
11130 SUBEND
(Press SHIFT C to stop the program.)

TI Extended BASIC 211

Errors

The following lists all the crror messages that Tl Extended BASIC gives. The
{irst lis¥'is alphabetical by the message that is given. and the second list is
numeric by the number of the error that is returned by CALL ERR. If the
error occurs in the execution of a program. the error message is often
followed by IN line-number.

Sorted by Message

Message Descriptions of Possible Errors
74 BAD ARGUMENT
* Bad value given in ASC. ATN, COS, EXP. INT, LOG,
SIN. SOUND, S@R. TAN, or VAL.
' An arrdy element specified in a SUB statement.
* Bad first parameter or 100 many parameters in LINK.
61 BAD LINE NUMBER
* Line number less than 1 or greater than 32767,
* Omitted line number.
* Line number outside the range 1 through 32767
produced by RES.
57 BAD SUBSCRIPT
Use of too large or small subscript in an array.
Incorrect subscript in DIM.

*

79 BAD VALUE
* Incorrect value given in AND, CHAR, CHRS, CLOSE,
EQF. FOR, GOSUB. GOTO. HCHAR, INPUT, MOTION,
NOT. OR, POS, PRINT. PRINT USING, REC, RESTORE,
RPTS. SEGS, SIZE, VCHAR, or XOR.
* Array subscript value greater than 32767.

File number greater than 255 or less than zero.

More than three tones and one noise generator specificd

in SOUND.

* A value passed (o a subprogram is not acceplable in the
subprogram. For example, a sprite velocity value less
than - 128 or a character value greater than 143.

* Value in ON..GOTO or ON...GOSUR greater than the

number of lines given.

Incorrect position given after the AT clausc in ACCEPT

or DISPLAY.

67 CANT CONTINUE

* Program has been edited after being stopped by a
breakpoint.

Program was nol stupped by a breakpoint.

69 COMMAND ILLEGAL IN PROGRAM

* BYE, CON, LIST. MERGE. NEW, NUM, OLD. RES, or
SAVE used in a program.

*

»

APPENDIX

B ERRORS

i 84 DATA ERROR

100

f 130

28

READ or RESTORE with data not present or with a
string where a numeric value is cxpected.
* Line number after RESTORE is higher than the highest
line number in the program.
* Error in object file in LOAD.
FILE ERROR

*

Wrong type of data read with a READ statement.
Attempt to use CLOSE. EOF, INPUT. OPEN, PRINT,
PRINT USING, REC, or RESTORE with a file that does
not exist or does not have the proper aitributes.
Not enough memory to use a lile.
FOR-NEXT NESTING

* The FOR and NEXT statements of loops do not align
properly.
Missing NEXT statement.

*

»

i0 ERROR
* An error was detected in trying to execute CLOSE,
DELETE. LOAD, MERGE. OLD. OPEN. RUN. or SAVE.
* Not enough memory to list a program.
ILLEGAL AFTER SUBPROGRAM
* Anything but END. REM. or SUB afier a SUBEND.
IMAGE ERROR
* An error was detected in the use of DISPLAY USING.
IMAGE, or PRINT USING.
* More than 10 (E-format) or 14 {(numeric format)
significant digits in the format string.
* IMAGE string is longer than 254 characters.
IMPROPERLY USED NAME
* An illegal variable name was used in CALL, DEF, or
DIM.
* Using a Tl Extended BASIC reserved word in LET.
* 1lsing a subscripted variable or a string variable in a
FOR.
* Using an array with the wrong number of dimensions.
* Using a variable name differently than originally
assigned. A variable can be only an array, a numeric or
string variable, or a user deflined function name.
* Dimensioning an array twice.
Fulting a user defined funcuon pame on the left of the
cquals sign in an assignment statement.
* Using the same variable twice in the parameter list of a
SUB statemtent.

*

212 Tl Extended BASIC

213

22 T! Extended BASIC

APPENDIX

ERRORS ERRORS
81 INCORRECT ARGUMENT LIST 25 OPTION BASE ERROR
- * CALL and SUB mismatch of arguments. * OPTION BASE executed more than once. or with a
83 INPUT ERROR value other than 1 or zero.
* An error was detected in an INPUT., 97 PROTECTION VIOLATION
60 LINE NOT FOUND * Attempt to save, list, or edit a protected program.
* Incorrect line number found in BREAK. GOSUB, GOTO. 48 RECURSIVE SUBPROGRAM CALL
ON ERROR. RUN, or UNBREAK, or after THEN or * Subprogram calls itself, directly or indirectly.
ELSE. 51 RETURN WITHOUT GOSUB
* Line to be edited not found. * RETURN without a GOSUB or an error handled by the
62 LINE TOO LONG previous execution of an ON ERROR staterment.
* Line too long to be entered into a program. 56 SPEECH STRING TOO LONG
39 MEMORY FULL * Speech string returned by SPGET is longer than 255
* Program too large to execute one of the following: DEF, characters.
DELETE. DIM, GOSUB, LET, LOAD, ON...GOSUB. 40 STACK OVERFLOW
OPEN. or SUB. * Too many sets of parentheses.
* Program too large to add a new line, insert a line, * Not enough memory to evaluate an expression or assign
replace a line, or evaluate an expression. a value.
49 MISSING SUBEND 54 STRING TRUNCATED
* SUBEND missing in a subprogram. * A string created by RPTS$, concatenation (&’ operator),
47 MUST BE IN SUBPROGRAM or a user defined function is longer than 255 characters.
* SUBEND or SUBEXIT not in a subprogram, * The length of a string expression in the VALIDATE
19 NAME TOO LONG clause is greater than 254 characters.
* More than 15 characters in variable or subprogram 24 STRING-NUMBER MISMATCH
name. * A string was given where a number was expected or
43 NEXT WITHOUT FOR vice versa in a TI Extended BASIC supplied function or
* FOR statement missing, NEXT befure FOR, incotect . subprogram. . - , .
FOR-NEXT nesting. or branching into a FOR-NEXT éesignmg a string value to a numeric value or vice
leop. * Atlen;ptlng to concatenate ("'&" operator) a number
wone PROGRAN} PI\?C:EEEOI:;Tram present when issuing a LIST, ° Using a string as a subseript.
RESEQUENCE. RESTORE, RUN, or SAVE command. 135 SUBPROGRAH:' NOT FOUND)
A subprogram called does not exist or an assembly
10 NUMERIC OVERFLOW language subprogram named in LINK has not been
* A number too large or too small resulting froma *. +. loaded.
—, [operation or in ACCEPT. ATN. COS, EXP. INPUT.
INT. LOG. SIN. SQR. TAN. or VAL.
* A number outside the range - 32768 to 32767 in PEEK
or LOAD.
70 ONLY LEGAL IN A PROGRAM
* One of the following statements was used as a
command: DEF, GOSUB, GOTO. {F, IMAGE, INPUT, ON
BREAK, ON ERROR, ON...GOSUB, ON...GOTO, ON
WARNING. OPTION BASE. RETURN. SUB. SUBEND. or
SUBEXIT
214 TI Extended BASIC Tl Extended BASIC 215

ERRORS

14 SYNTAX ERROR

»

An error such as a missing or extra comma or
parenthesis, parameters in the wrong order. missing
paramcters, missing keyword. misspelled keyword.
keyword In the wrong order, or the like was detected in
a Tl Extended BASIC command, statement, function. or
subprogram.

DATA or IMAGE not first and only statement on a line,
[tems after final)",

Missing "#" in SPRITE.

Missing ENTER. tail comment symbol (!). or statement
separator symbol (::).

Missing THEN after IF.

Missing TO after FOR.

Nothing atter CALL, SUB, FOR, THEN, or ELSE.

Two E's in a numeric constant.

Wrong parameter list in a Tl Extended BASIC supplied
subprogram.

Going into or out of a subprogram with GOTO, GOSUB.
ON ERROR, ctc.

Calling INIT without the Memory Expansion peripheral
attached.

Calling LINK or LOAD without first calling INIT.

* Using a constant where a variable is required.

More than seven dimensions in an array.

* = % »

- o x o ow

» » »

»

17 UNMATCHED QUOTES
* Odd number of quotes in an input linc.
20 UNRECOGNIZED CHARACTER
* Anunrecognized character suchh as ? or % is notin a
quoted string.
* A bad field in an object file accessed by LOAD.
216 Tl Extended BASIC

| ommm—

APPENDIX

f 109
130
135

¥ ERRORS
Sorted by #
Message
10 NUMERIC OVERFLOW
14 SYNTAX ERROR
16 ILLEGAL AFTER SUBPROGRAM
17 UNMATCHED QUOTES

NAME TOOQ LONG
UNRECOGNIZED CHARACTER
STRING-NUMBER MISMATCH
OPTION BASE ERROR
IMPROPERLY USED NAME
IMAGE ERROR

MEMORY FULL

STACK OVERFLOW

NEXT WITHOUT FOR
FOR-NEXT NESTING

MUST BE IN SUBPROGRAM
RECURSIVE SUBPROGRAM CALL
MISSING SUBEND

RETURN WITHOUT GOSuB
STRING TRUNCATED
SPEECH STRING TOO LONG
BAD SUBSCRIPT

LINE NOT FOUND

BAD LINE NUMBER

LINE TOO LONG

CAN'T CONTINUE
COMMAND ILLEGAL IN PROGRAM
ONLY LEGAL IN A PROGRAM
BAD ARGUMENT

NO PROGRAM PRESENT
BAD VALUE

INCORRECT ARGUMENT LIST
INPUT ERROR

DATA ERROR

PROTECTION VIOLATION
FILE ERROR

IfO ERROR

SUBPROGRAM NOT FOUND

f T1 Extended BASIC

217

Index

The pagesJisted In 1talics show where Lhe language elements are used in an

illustrative program.

A

Absolute value function (ABS) 20, 46

ACCEPT statement17.47-49. 28, 30.
31,32, 48,134,136, 183

Addition 4]

ALL, ERASE clause47.77
Ampersand operator B 4]
AND logical operator 42,175
APPENDclause138
Arclangent function (ATN) 20.51
Arithmetic expressions 41

Arithmetic hierarchy ...
Arithmetic operators
Arrays
ASCIl character codes
ASCIH functlon (ASC)
Assignment statement (LET)17, 111,
30. 55. 58. 65. 69. 78, 87,90, 91, 96, 99,
113, 116,117,122, 127,128, 132, 142,
145, 157,158,168, 171,175,176, 178,

183. 186

ATclause 44,77
B

Backspacekey. 12
BASE, OPTION statement 141
DEEPclauseo vao, 47,77
Binarycodes4344
Blankspaces 39

Branches. program . . See GOTO, GOSUB,
ON...GOTO,ON...GOSUD

BREAK command . . .16.26,52, 130
Breakkey, ... 13
Breakpoints 16.26. 52
Bulltinfunctions20
Built-in subprograms L2t
BYE command 17.54
C

CALL CHAR subprogram . .22, 25, 56, 58.

65,120,122, 142, 174. 175

CALL CHARPAT subprogram . . 18, 23. 59
CALL CHARSET subprogram ..23,60
CALL CLEAR subprogram21.61,49,

55, 58, 60, 61, 65, 78, 87, 90, 96. 99.
103, 106, 108,109, 116,117, 120. 122,
125, 130, 132, 134. 136. 137. 142, 145,
149, 151,153,157. 158,162,174, 175,
177,178, 183

CALL COINC subprogram . . 18. 22, 25, 65,
176
CALL COLOR subprogram .16.21.22,

25, 66, 58, 78, 142, 175. 176

CALL DELSPRITE subprogram 22,
25, 75. 177

CALL DISTANCE subprogram 18. 22,
25, 80

CALL ERR subprogram . . .18,23. 26, 83.
84.132

CALL GCHAR subprogram18.21.88

CALL HCHAR subprogram 19,21. 92,
58,142,175

CALL INIT subprogram22,101

CALL JOYST subprogram 18,21, 108

CALL KEY subprogram . . . 18,21, 78, 109

CALLLINK subprogram 22.112

CALL LOAD subprogram 22,115

CALL LOCATE subprogram . . . 18. 22, 25
116,176, 177

CALL MAGNIFY subprogram 22,25,

118, 120, 142, 176
CALL MOTION subprogram .22, 25, 125,
176, 177, 108, 109, 122, 125, 176. 177

CALL PATTERN subprogram22 25,
142,176, 177

CALL PEEK Subprogram 22.143

CALL POSITION subprogram22, 25,
146, 176, 177

CALL SAY subprogram . . . 19,22, 24, 164,
172

CALL SCREEN subprogram . . . 19, 21, 25,
165, 84, 175

CALL SOUND subprogram 19,22,
24,172,171

CALL SPGET subprogram 18,22,
24, 164, 172

('ALL SPRITE subprogram19, 22, 25,

173. 65, 108. 109, 116. 120, 122, 125.
142,174,175, 176

CALL VCHAR subprogram . . . 19,21, 189,
58, 87. 176

CALL VERSION subprogram . . 18, 23. 190

CALL subprogram. 55, 183

Charactercodes. 67. 200

Character conversian function (CHRS)
20, 60. 78
Character definition subprogram

{CHAR]22, 25, 56. 58.65. 120.
122 142,174 175
Character limit 34
Characler paltern subprogram
{(CHARPAT) 18, 23, 59
Character set subprogram
(CHARSET) 23.60
Charactersets200

: Codebreaker program . . .

L INDEX

Circumflex . 41
Clearkey
Clear screen subprogram [LLEAR) .21,
61,49, 55,58.60.61,65.78.87.90.96.
Q9. 103, 106, 108, 109, 1148, 117, 120,
122,125, 130. 132. 134. 136, 137, 142,
145,149,151, 153. 157. 158, 162, 174.
175,177,178, 183
CLOSE statement .82.106.113.153

Coincidence of sprites subprogram

(COINC) . .. 18.22.25.64.65,176
Colon S 19, 147
Colorcodes 66, 165, 198
Colorcombinations 199

| Color of characters subprogram

(COLOR) . . 19, 21, 22, 25, 66, 58, 78,
142,175,176
Color of screen subprogram
(SCREEN)19.21.25,165,84, 175
Comma 19,147
CommandMode 11
F Commands 16
Commands used as statemcnts ... 18
} Comment, tail (1)38
Computenransfer S Scc OI\. GOSUB
ON..GOTO
Computer’s limit 39
Concatenation . - Lo 41
Constants 39
CONTINUE command 16, 26, 52. 68
‘Conversion table e ..BT
L Correcting crrors 11
Cosine function (COS) 20.69
' D
 DATA staternent70, 71,99, 183
Debugging
DEFine statement
DELETE clause
' DELETE command 16. 74
Deletekey e 13
Delete sprite subprogram
{DELSPRITE) 22.25.75.177
DIGITclause 47
DiMensionstatement 76,28, 48, 96
DISPLAY USING statement 19,79,97
DISPLAYclause 139.113

DISPLAY statement . . .19, 77,28, 29, 30,
31, 32, 48, 49, 78, 106, 125, 134, 136,
183

Distance of sprites subprogram

(DISTANCE) .. .18,22,25.80
Division . . . A ... 4]
Downarrowkey. 13.32

)]
EditMode S B |
ELSE clause
End of file function (EOF] 20.82,113
END statement
Enterkey . .
ERASE ALL clause
Erase key
FRROR, ON statement.
132, 158
Error handling . .. _.
Error subprogram . . .

26.83.131. 84,

Error messages 21 1
Exponential function (EXP) 20, 85
Exponentiation, 41
Expressions 41
F

Files 38
FIXEDclause 139.106.113

FOR-TO-STEP statement18.86. 127.
30,32, 48.49.58.60.71.78.87.96, 99,
106,120, 122,125,127, 130, 142, 151,
153,157,171, 175, 177, 183

Forwardspace key 12
Funcuons, built-in 19-20
Functions, user written . 21.201
G

Get character subprogram (GCHAR) . . 18,
21.88

GOSUB statement. 21, 89. 58, 90.
120, 122, 157
GOTO statement91. 29,49, 58.61.

78,87, 90,91, 103, 108, 109, 113, 116.
117,134,142, 145, 151. 162,174, 175,
176, 177, 178

Greaterthan 41
H

Hexadecimal 57
Hierarchy. arithmetic41

Horizontal character subroutine
{HCHAR) .19.21.92.58. 142, 175

1

IF-THEN-ELSE statement . .94, 29, 30. 32.
48, 78, 90, 91. 96. 99, 109, 113, 117.
132,134. 136. 145, 157, 158. 162, 176,
178

IMAGE statement 19, 97,99, 100, 103

Initialization subprogram (INIT) . .22, 101

Input 17

INPUTclause 139.106.113

INPUT statement (files) 104, 106. 153

INPUT statement (keyboard)17.102.
74.80.96.103.117. 145,151,157, 162

218

TI Extended BASIC

TI Extended BASIC

219

INDEX
lnscrtkcy [P & | N
Integer funmon(lNT; 20, 107 Nanie (variabie} . ..39-40
INTERNAL clause . 139, 106 NEW command 16, 126
J NEXT statement . 18 86 127 30,31. 32,
¢ OYST)18, 21. 40, 58, 60, 71, 78. 87, 96, 99, 106, 120,
JO’\ISOLEKSUmegmm t k 122,125,127, 130, 142, 151, 153, 157
X 171,175,177, 183
- Noise170
Keystroke subprogram (KEY) 18,21, Normal d(‘(‘m\al form a8
78, 109 40 NOT logical operator ., 42
Keywords o Notational conventions . .39
L NUMBER command . .13, 128, 28, 29, 31
Leaving Tl Extended BASIC54 Numbcr representation . LL....39
Leftarrowkey S 12 Number-string function (VAL). 188
Length function (LEN) 20,110 Numbers.................... 39
Less than. . 41 NUMERICclause SaT
LET statement . . 17.111. 30, 55, 58, 65. Numerie constants30
69, 78. 87. 90, 91, 96, 99, 113, 116, Numeric eXpressions. 11
117,122,127, 128,132, 142, 145, 157, Numeric variables 1
158,168, 171,175,176, 178, 183, 186 o
Limits, coMputer ;-39 OLDcommand16, 129
Line numbering, automatic (NUMBER) ON...GOSUB statement 21,133,134
""""""""""""" 3% ON.GOTOstatement 135,136, |82
Line numbers ... 3% ONBREAK statement 26.52. 130
Lines . ..o <38 ONERROR statement26, 83, 131,
Link subprogram {LINK) 22, 11'2 84. 132, 158
LINPUT statement 17113 o WARNING statement26, 137
LIST command . 16,114 oppNswtement ... 138,106, 113. 153
Load subprogram (LOAD) 22.115 Operators (Arithmetic, Relational.

Locate sprite subprogram (LOCATE) . . 18
22,25, 116,176, 177

Logarithmic function (LOG) .20.117
Logical eperators. 12
Loop 86
M
Magnify sprites subprogram
(MAGNIFY) .22,25,118.120. 142,
176
Mantissa P .39
Master seledion list R
Master tile screen o1
Maximum function [M_A‘(l 20,121
MERGEclause oL 188
MERGE command . .16, 122
Minimum function (MIN) .20, 124
Meodes L. oo 1
Motion of sprltes ﬁubprogrdm
(MOTION) . .22.25, 125, 108, 109.
122.125.176. 177
Multiple statement separator (::}38
Multiplication P 3 |

Musical tone frequencies 196

String. Logical) S4T-44
OPTION BASE statement 141
OR logical operator 42,183
Order of operations . e 41
Output 18
OUTPUT clause 139
Overflow . AN S .39
P
Parameter18.72, 180
Parentheses 41
Pattern of sprites subprogram

(PATTERN) 22,25, 142,176,177
Pattern-identifier L'onversion table57,

197
Poek subprogram (PEEK} . - 22,143
Pendinginputs105
Pending outputs L. 148
Pi, value of function [PI] .20. 144, 69.

168. 186
Position ina string function (POS) 20.

145
Position of sprites subprogram

(POSITION) .22.25.146, 176,177
Powers, 41

220

T Extended BASIC

fE PRINT statement . . 19, 147, 55, 60, 61, 65.
69, 71, 84. Y0, 91, Y6, 99, 103, 106,
113,117,127,128, 130, 132. 137, 145.
149. 151, 153, 157, 158, 162, 168, 178.
183, 186

Printseparators S 19,0147
EPRINT USING slatement 19 96, 150. 99,
¥ 100, 103
RProgram lines,38
PROTECTED clause 183
Pseudo-random numbers _151.159
it key .14.54
otation marks o ...39
Random number function (RND) . . 20, 159
ndom numbcoers .. 1561. 159

NDOMIZE staternent 151, 28, 122,

151,175

AD statement . .17, 70, 152. 71, 99. 183
REC clause oL 104,147
Record positlun fun(‘tlon [RL(). . .20, 153,

- 153
jRedokey 13.28.30.31.32
Relational expressions 41

LATIVE clause . .
Mark statement
132, 158.176.177
marks, tail{!)38
flemote controls 108

138,153
154 28.80.91. 120,

R peatstrlngiumllon(RP’lb) .20. 160
Rescrved words40
Resct, . 54
R SEQUENCE command .16.155

70. 156, 153, 183
26. 157. 158, 58, 90,
120, 122, 132, 134, 136

RESTORE statement .
IRETURN statement

Right arrow key . . . 12
RUN command . 16. 161,162, 183
Run Mode . .. S b |
unning a TI Ex(t‘ndcd BASIL
program L.o.....38
AVE command 18,163
Pay subprogramn (SAY) .19.22 24,
164. 202
peicntific notation 39,97

pcreen color subpmgram (SCREE! N) 19,
E 21, 25, 165, 84, 170

Begment n(a string function (SEGS) . . . 20,
166

Pemicolon 19,147, 185
P parator Sy m'l)ul() . L. . .38

SEQUENTIAL clause 138. 106
Sign of a numnber function (SGN) -20. 167
Sine function (SIN) .20, 168
SlZEclause 47,77
SIZE command 17. 169
Sound generation subprogram
(SOUND) 19.22.24.
170. 171
Spaces . .. P <
Sprmaliumlmn kcvs L1214
Specch ..o ...202

Speech pd"[‘l’n gemng subprogmm

(SPGET) 18.22.24. 172,202,
164,172
Split cansole keyboard L. 200

Sprite definition subprogram
[SPRITE). . .. 19.22, 25,173, 65, 108,
109. 116, 120. 122,125, 142. 174. 175,
176

Sprites L..22,25
Square root tumuun (SQR) .20,178
Statement Separaltor Symbol (. .38
Statements . 16 17 26
STOP stalement 178 31, 55, 84, 90,

113.120. 122, 132, 157, 158, 162, 178
String constants
String expressions,4l

String functions 39
String variables 40
String-number funcion(STRS) . . . 20. 179
String-segment function (SEGS) . . 20. 166
Strings oL 39,41
SUBstatement ..,180.55. 183
SUBEND statement 184,55, 183
SUBEXIT statement 184. 183
Subprograms, user writlen . 23-24.55
Subprograms. built-in 8.21.556
Subroutines, user written 21
Subseripl ... L L. 76
Subtraction, B 3
Suffixes e 205
T

Tabular function (TAB} .20. 185,103
Tail comment svmbol (1)38
Tangent function (TAN) . . 20 186
THEN clause94
Tones L .. 170
TRACE command 16.26. 186

Trigonometric lunrnons (ATN, COS,
SIN.TAN) . .. 51.69. 168. 186

Extended BASIC

221

INDEX

u
UALPMAclause. 47
UNBREAK command 16, 26, 52, 187
UNTRACE command 16. 26, 187
Up arrow key N 12
UPDATEclause139
User-defined functions 21
v
VALIDATE clause 47
Value function (VAL)20, 188
Variables.39
VARIABLE clause o139
verslon of BASIC subprugram

(VERSION) 18.23.190
Vertical character subprogram

(VCHAR) 19.21,189.58.176
w
WARNING, ON statement26.137
Wired Remote Controllers 108
b4
XOR logical operator42
222

TI Extended BASIC

[I'1 Extended BASIC

223

SERVICE AND WARRANTY
INFORMATION

THREE MONTH LIMITED WARRANTY

IN CASE OF DIFFICULTY

If TFExtended BASIC does not appear to be working properly, check the

following:

1. Power — Be sure all devices are plugged in. Then turn on the power (o
the units in the proper sequence: Peripheral devices first (if you have
them). followed by the console and monitor. Insert ithe Tl Extended BASIC
module carefully.

2. Connector Separauon — Check for proper alignment ot the console and
any accessory devices such as the Disk Drive Controller, Speech
Synthesizer. and RS232 Interface. Remove and reinsert the TI Extended
BASIC module.

3. If none of the above procedures corrects the difficulty, consult “'If You
Have Questions or Need Assistance™ or see the ““Service Information’™
portion of the l/ser’s Reference Guide that came with your computer.

If you have questions concerning module repair or peripheral, accessory, or
software purchase, please call our Consumer Relations Department at (800)
858-4565 (toll free within the contiguous United States except Texas) or (B00)
692-4279 within Texas. The operators al these numbers cannol provide
lechnical assistance.

For technical questions about programming, specific applications, etc., you
can call (806) 741-2663. Please note that this is not a toll-frece number and
collect calls cannot be accepted.

As an alternative, you can wrile to:
Consumer Relalions Department
Texas Instruments Incorporated
P.O. Box 53
Lubbock, Texas 79408

Because of the number of suggestions which come to Texas Instruments
from many sources containing both new and old ideas, Texas Instruments
will consider such suggestions only if they are freely given to Texas
Instruments. It is the policy of Texas Instruments Lo refuse to receive any
suggestions in confidence. Therefore, if you wish 1o share vour suggcslic;ns

language program which you have developed, please include the following

statement in yow letler:
“All of the information forwarded herewith is presented to Texas
Instruments on a nonconfidential, nonobligatery basis: no relationship.
eonfidential or otherwise, expressed or implied, is established with
Texas Instruments by this presentation. Texas Instruments may use,
copyright, distribute. publish. reproduce, or dispose of the information
in any way without compensation to me."”

THIS TEXAS INSTRUMENTS TI EXTENDED BASIC COMMAND MODULE
WARRANTY EXTENDS TO THE ORIGINAL CONSUMER PURCHASER OF THE
MODULE.
WARRANTY DURATION: This command module is warranted to the
original consumer purchaser for a period of three months from the original
purchase date.
WARRANTY COVERAGE: This command module is warranted against
defective materials or workmanship. THIS WARRANTY IS VOID IF THE
COMMAND MODULE HAS BEEN DAMAGED BY ACCIDENT, UNREASONABLE
USE, NEGLECT, IMPROPER SERVICE OR OTHER CAUSE NOT ARISING OUT
OF DEFECTS IN MATERIAL OR WORKMANSHIP.
WARRANTY DISCLAIMERS: ANY IMPLIED WARRANTIES ARISING OUT OF
THIS SALE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO THE ABOVE THREE MONTH PERIOD. TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE MODULE
OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS. EXPENSES, OR
DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER, Some states
do not allow the exclusion or limitation of implied warranties or consequential
damages, s0 the above limitations or exclusions may not apply to you,
LEGAL REMEDIES: This warranty gives you specific legal rights, and you
may also have other rights that vary from state to state.
WARRANTY PERFORMANCE: Please first contact the retailer from whom
you purchased the module and determine the exchange policies of the retailer.
During the above three month warranty period your TI Extended BASIC
command module will be repaired or replaced with a new or reconditioned
unit of the same or equivalent model {at TI's option) when the module is
returned by prepaid shipment to a Texas Instruments Service Facility listed
below. The repaired or replacement unit will be warranted for three months
from the date of repair or replacement. Other than the postage requirement,
no charge will be made for the repair or replacement of in-warranty modules.
Texas Instruments strongly recommends that you insure the module for
value prior to shipment.
Texas Instruments Consumer Service Facilities

L. S. Residents:

Texus Instruments Service Fucility

2303 North University
Lubbock, Texas 79415

Canadian customers only:

Geophysical Services Incorporated

41 Shelley Road

Richmond Hill, Ontario, Canada L4C5G4

Consumers in California and Oregon may contact the following Texas
Instruments office lor additional assistance or intformation.
Texas Instruments Consumer Service Texas Instruments Consumer Service
831 South Douglas Sireet 6700 Southwest 105th
El Segundao. Culitornia 90245 Kristin Square, Suite 110
(213)973-1803 Beaverton, Oregon 97005
(503)643-6758

224 Tt Extended BASIC

TI Extended BASIC

ADDENDUM
TI Extended BASIC Owner’s Manual

The program listing on page 153 in the manual is incorrect. Line 110
should read:

>110 OPEN #1:"DSK1.RNDFILE”,RELATIVE, INTERNAL

Copyright < 1983 Texas Instruments Incorporated 1053596-2
Printed in L.S8.A. (Use with 1041345-1)

IMPORTANT PRODUCT INFORMATION
FOR TI EXTENDED BASIC

TI Extended BASIC has been enhanced and maodified for use with
both the TI-99/4A and TI1-99/4 Computers. Several important product
differences should be noted in relation to the type of computer you
have, Please read this folder and mark the appropriate changes in
your copy of the TI Extended BASIC owner’s manual.

Although the TI-99/4A and TI1-99/4 Computers are similar, the
TI-99/4A is easily recognizable by its standard lypewriter keyboard
which returns both upper-case (large capital) and lower-case (small
capital) alphabetical characters. Depressing the ALPHA LOCK key
locks the alphabet keys in upper-case mode. To release ALPHA LOCK,
press the key again.

When the TI Extended BASIC module is in place. both the TI-99/4 A
and TI-99/4 Computers share several enhancements, However, cach
compuler also has its own unique features. These features are
discussed in the following paragraphs.

AUTO REPEAT FEATURE

When using TI Extended BASIC on either computer, holding down a
key for more than one sccond automatically causes its symbol to he
repeated on the display until you release the key.

SPECIAL FUNCTION KEYS

The TI1-99/4A Computer has the same special computer functions as
the TI-99/4. However, these functions awe fiequently assigned to
different keys on the T1-99/4A Computer. The following chart
compares the keystroke sequences for the function keys on the two
uniis.

Function Keys

Key TI-99/4 Ti-99/4A

Name Keys Keys
AID SHIFT A FCTN 7
CLEAR SHIFTC FCTN 4
DELete SHIFTF FCTN1
INSert SHIFT G FCTN 2
auir SHIFT Q FCTN =
REDO SHIFT R FCTN 8
ERASE SHIFTT FCTN 3
LEFT arrow SHIFT 8 FCTN S
RIGHT arrow SHIFT D FCTND
DOWN arrow SHIFT X FCTN X
UP arrow SHIFTE FCTNE
PROC'D SHIFT V FCTN B
BEGIN SHIFT W FCTN S
BACK SHIFT Z FCTN 9
ENTER ENTER ENTER

In addition to these funcuons, the T1-99/4A Computer has functions
represented as symbols on the fronts of the individual keyfaces.
These functions may be accessed by pressing FCTN and the
appropriate key stmultaneously.

CONTROL KEYS

The T1-99/4A Computer also has control characters which are used
primarily for telecommunications. To enter a control character, hold
down the CTRL key and press the appropriate letter, number. or
symbol key.

EXPANDED CHARACTER SET — TI-99/4A

As explained in vour TI Extended BASIC manual, codes 32-95 are
the predefined standard ASCII characters on the TI-99/4 Computer.
The cursor and edge characters, ASCII codes 30 and 31, are assigned
to character set 0. The undefined character codes (128-135 and
136-143) are assigned (o sets 13 and 14, respectively.

These codes and the corresponding characters are listed in Appendix
C of the manual. The CALL KEY character codes are also listed in
Appendix C. Appendix E in the manuatl lists the 15 character code
seis which may be used for color graphics.

Due to the inclusion of the lower-casc character sct, the defined
characters on the TI-99/4A Computer are the standard ASCII
characters for codes 32 through 127. The following chart lists these
characters and thceir codces.

ASCH ASCH
CODE CHARACTER CODE CHARACTER
30 B (cursor) 55 7
31 (edge character) 56 8
32 (space) 57 9
33 ! (exclamation polnt) 58 : [colon)
34 * (quote} 59 ; (semicolon}
35 # (number or pound sign) 60 < (less than)
36 S (dollar) 61 = (equals)
37 % (percent) 62 > (greater than)
38 & (ampersand) 63 ? {question mark)
39 " (apostrophe} 64 @ (at sign)
40 ((open parenthesis) 65 A
41 } [close parenthesis) 66 B
42 * (asterisk) 67 C
43 + (plus) 68 D
44 . [commay} 69 E
45 - [minus) 70 F
16 . [period) 71 G
47 / (slant) 72 H
48 0 73 |
49 1 74 J
50 2 75 K
51 3 76 L
52 4 77 M
53 5 78 N
54 6 79 0O

ASCH ASClI

CODE CHARACTER CODE CHARACTER
80 P 104 h 1
81 Q 105 i
82 R 106 j
83 S 107 k
84 T 108 1
85 §) 109 m
86 v 110 n
87 W 111 0o Displayed
88 X 1z p on screen
gg Y }ii a r as small
Z r .
91 | lopen bracket) 115 s capitals.
92 \ (reverse slant) 116 t
93 | (close bracket) 117 u
94 Alexponentiation) 118 v
95 — (line) 119 w
96 * (grave) 120 x
97 a 121y
98 b . 122 z A
g9 ¢ | Displayed 123 { (left brace)
100 d on screen 124 . (vertical line)
101 e | 2ssmal 125 } (right brace)
102 f | capitals. 126~ (tilde)
103 g 127 DEL (appears on

SCreen as a
blank)

CALL KEY SUBPROGRAM

The information given on the KEY subprogram in Chapter 4 of the T!
Extended BASIC manual is accurate for the T1-99/4 Computer. The
values of 3, 4, and 5 are not accessible as key units.

However, the TI-99/4A maps key units O through 5 to specific modes
of operation. If the key-unit is 0. the keyboard is mapped in
whichever mode was specified by the previous CALL KEY program

line,

If the key-unit is 1. input is taken from the left side of the keyboard.
if the key-unit is 2, input is taken from the right side of the
keyboard.

A key-unit of 3 maps the computer into the standard 11-9%/4
keyboard mode. Both upper- and lower-case characters are returned
as upper-case characters only. Function codes 1 through 15 are
active, but no control characters are returned.

A key-unit of 4 places the computer in Pascal mode with both upper-
and lower-case characters active. The function codes 129 through
143 and the control character codes 1 through 31 are also active.

The key-unit 5 maps the TI-99/4A Compuler in the BASIC mode.
Both upper- and lower-case characters are active. The active function
codes are 1 through 15, and the active control character codes are
128 through 159 (and 187).

In addition, codes are assigned to the function and contrel keys sc
that these can be referenced by the CALL KEY subprogram in TI
Extended BASIC. The codes assigned depend on the key-unit value
specified in a CALL KEY program statement. The following tables
show typical code assignments.

FUNCTION KEY CODES

Codes
TI-99/4 & Pascal Function Function

BASIC Modes Mode Name Key
1 129 AlD FCTN7

2 130 CLEAR FCTN 4

3 131 DELete FCTN 1

4 132 INSert FCTN 2
5 133 auT FCTN =

6 134 REDO FCTN 8

7 135 ERASE FCTN 3

8 136 LEFT arrow FCTIN S

g 137 RIGHT arrow FCTN D

10 138 DOWN arrow FCTN X

11 139 UP arrow FCTNE

12 140 PROC'D FCTN 6

13 141 ENTER ENTER

14 142 BEGIN FCTN 5

15 143 BACK FCTN 9

CONTROL KEY CODES

Codes

BASIC Pascal Mnemonic

Mode Mode Code Press Commenits
129 1 S0H CONTROL A Start of heading
130 2 STX CONTROL B Siart of text
131 3 ETX CONTROL C End of text
132 4 EOT CONTROL D End of transmission
133 5 ENQ CONTROL E Enquiry
134 6 ACK CONTROL ¥ Acknowledge
135 7 BEL CONTROL G Bell
136 8 BS CONTROL H Backspace
137 9 HT CONTROL | Horizontal tabulation
138 10 LF CONTROLJ Line feed
139 11 VT CONTROL X Vertical tabulation
140 12 FF CONTROL L Form feed
141 13 CR CONTROL M Carriage return
142 14 S0 CONTROL N Shift out
143 15 SI CONTROL O Shift in
144 16 DLE CONTROL P Data link escape
145 17 DC1 CONTROL @ Device control 1 (X-ON)
146 18 DC2 CONTROL R Device contraol 2
147 19 DC3 CONTROL S Device control 3 (X-OFF)
148 20 D4 CONTROL T Device cuntrul 4
149 21 NAK CONTROL U Negative acknowledge
150 22 SYN CONTROL V Synchronous idle
151 23 ETB CONTROL W End of translssion block
152 24 CAN CONTROL X Cancel
153 25 EM CONTROLY End of medium
154 26 SUB CONTROL Z Substilute
155 27 ESC CONTROL. Escape
156 28 FS CONTROL ; File separator
157 29 GS CONTROL = Group sepauator
158 30 RS CONTROL 8 Record separator
159 31 us CONTROL 8§ Unit separator

You may also obtain detailed CALL KEY subprogram information,
including keyboard diagrams, in your User’s Reference Guide for the
TI-99/4A Computer.

CALL VERSION SUBPROGRAM

The VERSION subprogram (discussed in Chapter 4 of your TI
Extended BASIC manual] now returns a value of 110 on both
computers. 6

DATA STATEMENT

The computer reads any information entered after a DATA statement
as a part of the DATA statement. Therefure, in a mulli-statement
program line, a DATA statement should not be followed by another
statement.

SCIENTIFIC NOTATION

Whenever vou use scientific (or exponential) notation. be certain that
the "L is an uppcr-casc (large capital) character. A lower-case e
may cause your program to function improperly.

PRE-SCAN — !|@P—- and |@P +

After you enter RUN to start a program, you may notice a pause
before the program actually begins. This pause is the time the
computer takes to “'pre-scan’’ your program to establish memory
space for variables, arrays, and data. Then the computer proceeds
through each instruction. performs the appropriate functions, and
establishes variable values. Since the time required to pre-scan
depends on the length of the program, you may want to decrease the
pre-scan pause, particularly if you have a long program.

TI Extended BASIC's new pre-scan commands, !@P - aud !@P +.
allow you to control which instructions will not be pre-scanned.
Because the purpose of the pre-scan is to set memory space for
variables, only those instructions which contain the first reference to
the variables need to be pre-scanned. Therefore, many other
instructions in your program do not require a pre-scan.

Careful program planning is required to minimize the statcments
that need the pre-scan. When certain types of statements (as
explained here) are used in your program, the procedures listed
below should be included in the pre-scan.

B Enter your first DATA slatement within the pre-scan.

®m Include the first use of each variable and/or array. (Also.
include the OPTION BASE statement, if used.)

B Include the first reference to each CALL statement of any
subpregram.

m Include all DEF statements for user-defined functions.

® Include all SUB statements and SUBEND statements in the
pre-scan.

Note that a variable in a user-defined (SUB) subprogram is
considered to be unigue from any other variable used elsewhere in
your program, even though the name and value may be the same,
Therefore, each variable used in a user-defined subprogram must be
included in the pre-scan.

To use the pre-scan option, first be certain that your completed
program runs successfully. Then, at the beginning of a group of
function statements, use the !@P - command to “‘turn off’’ the pre-
scan. The following statements will not be pre-scanned. allowing the
execution of your program to begin more quickly. Any statements
related to variable names (not previously referenced during pre-scan)
return a syntax error if the pre-scan is "'off.”” Note that !@P - cannot
be followed by another statement in a multiple statement.

To resume the pre-scan, simply enter the command !@P + . This
command causcs thc pre-scan to “‘turn on’ and memory space for
variables may be set. Remember (o use the !@P + command before a
5UB or SUBEND statement and do not incorporate this command as
a part of a multiplc statement.

You may choose to use the pre-scan feature several times throughout
your program. By turning the pre-scan on and off, your program can
begin to execute more efficiently. The effectiveness of the pre-scan is
more noticeable in large programs than small programs. Note that
when using the TI-99/4A Computer, the commands, !@P - and
'@P +, may also be entered with a lower-case “'p’* character.

The following examples illustrate how to include the pre-scan
statements in an existing program. The final example demonstrates
the most efficient use of the pre-scan feature by making use of a
GOTO statement,

g ——

Examples:

Original program:

100
110
120

CALL CLEAR
CALL CHAR(96, 'FFFFFFFFFFFFFFFF'')
CALL CHAR{42,"OFOFOFCFOFOFOFOF™)

130 .
140 .

150
160
170
180
150
200
210

CALL HCHAR(12,17,42)
CALL VCHAR(14,17,96)
DELAY=0

FOR DELAY-1 TO 500
NEXT DELAY

DATA 3

220 .
230 .

With pre-scan control added:

10
100
110
120
125

DATA 3
CALL CLEAR

CALL CHAR{96, FFFFFFFFFFFFFFFF'")
CALL CHAR(42, OFOFOFOFOFOFOFOF’)
1@P~

130 .
140 .

150
155
160
170
180
185
150
200

'8P+

CALL HCHAR(12,17,42)
CALL VCHAR{14,17,96)
DELAY=0

1@P—

FOIi DELAY=1 TO 5Q0
NEXT DELAY

210 .
220 .
230 .

Notice that the first DATA statement has been moved to the
beginning of the program so that it is included in the pre-scan. By
including statements 125, 155, and 185, the pre-scan is turned off
and on and off again. This causes the program to begin to execute
more quickly.

With GOTO added:

You have the added ability to “trick" the computer into establishing
mcmory space for CALL statements, as well as variable-related
slatements, without actually performing those statemenis. To do
this. simply use a GOTO instruction in your program. The following
cxample demonstrates the original program adapted with a pre-scan
and a GOTO statement.

10 DATA 3

20 GOTC 100::DELAY::CALL CHAR::CALL CLEAR::CALL HCHAR::CALL
VCHAR: : !18P-

100 CALL CLEAR

110 CALL CHAR(96,“FFFFFFFFFFFFFFFF”)

120 CALL CHAR{42,"'OFOFQFOFOFQFOFOF)

130 .

140 .

150 .

160 CALL HCHAR(12,17,42)

170 CALL VCHAR(14,17,96)

190 FOR DELAY=1 TO 500

200 NEXT DELAY

210 .

220 .

230 .

Note that the GOTO method causes the necessary memory space (o
be reserved in line 20. However, the statements in line 20 do not
execule until they are encountered further on in the program. Thus,
as shown in the preceding and following examples, you can put all of
your variable references together and your subprogram calls do not
have to be syntactically correct. This can be the most cfficient use of
the pre-scan option.

100 GOTO 180::X,Y,ALPHA,BETA,Z=DELTA::DIM B(10,10)
110 CALL KEY::CALL HCHAR::CALL CLEAR::CALL MYSUB
120 DATA 1,2,S8TRING

130 DEF F{X)=1-X*SIN{(X)

140 .

150 .

160 .

170 lep-

180 .

190 .

200 .

10

PROGRAMMING WITH LOWER-CASE LETTERS

Device names must be entered in upper-case {large capital) letters
only. For example, "DSKI1" is 4 correcl device name, but “Dsk1™ is
not. Any reference to a device name spelled in lower-case (small
capital) lelters results in an error message.

File names are also very specific. Not only are they exact as {o the
correct spelling, but they are also specific as to the use of upper- or
lower-case letters, For example, the file name, MYFILE, is not the
same file as Myfile (a combination of large and small capital letters).
Any file name listed in part or whole by lower-casc letters is not
accessible by the TI-99/4 Computer. Only the T1-99/4A Computer can
access a program named or called in lower-case letlers.

Lower-case letters in DATA statements or quoted strings function
carreetly and offer a wide variety of programming techniques on the
TI-99/4A Computer. However, lower-case quoled strings and data are
not displayed if you run the program on a T1-99/4 Computer. If you
plan to run your program on hoth the TI-39/4A and TI-99/4
Computers, take special care when using lower-case leiters.

To display the lower-case letters in your T1-99/4A Computer program
when the program is 1un on a TI-99/4 Computer, simply include the
following statemenis. Small capital letters are created similar to those
of the T1-99/4A. Be sure to allow adequate memory space and
excculion lme.

100 FOR [=65 TG 90

110 CALL CHARPAT{I,A$)

120 B$=""0000 &SEGH{AS,1,4) &SEGH(AS,7,4)&3EGH(AS,13,4)

130 CALL CHAR(I+32,B$)

140 NEXT I

Insertion of the above program lines into your TI-99/4A program
allows pre-programmed lower-case characters (o be displayed by the
TI1-99/4 computer.

SIZE COMMAND

The SIZE example, using the Memory Expansion unit discussed in
Chapter 4 of your Ti Extended BASIC manual. now informs yuu that
you have 24488 "BYTES OF PROGRAM SPACE FREE™.

TAIL REMARKS

If you previously programmed a TAIL REMark that is identical to the
pre-scan instructions (!@P + or !@P -}, your program will no longer
function pruperly. These groups ol characicers are now considered to
be “'reserved words” for the operation of the computer.

11

CORRECTION TO APPENDIX C

ASCII code 12 in Appendix C of your TI Extended BASIC manual
should be stated as the "PROC'D” character rather than as the
"“CMD" character.

LARGE PROGRAM FILES

Some programs written with TI BASIC may be too large to run with
TI Extended BASIC because Tl Extended BASIC requires more
system nverhead than TI RASIC. If you attempt ta load such a
program, your system will lock up. Before you can continue, you
must turn your computer off, wait several seconds, and then turn it
on again.

Entering a CALL FILES(1) or CALL FILES(2) command before

loading your program may {ree enough memory (o run the program
with TI Extended BASIC. (A full eaplanation of the CALL FILES

command can be found in the Disk Memory System manual.)

If a CALL FILES command does not free enough memory, you must
shorten your T1 BASIC program by deleting statermnents until the
program fits in the memory available with Tl Extended BASIC.
However, if you have a Memory Expansion unit, you can run the
entire program by using the following procedure:

1. As a safety measure, make a backup copy of your TI BASIC
program on a cassette tape or diskette.

2. With the Memory Expansion unil attached and turned on, load
your program with TI BASIC. Next, delete several statements, and
save the shortened program on cassette tape or diskette, Then try
to load this shortened program with TI Extended BASIC.

3. Type the deleted statements back into the proper places in your
program.

4. Save your program on a diskette only. You are now ready to run
your program with Tl Extended BASIC and the Memory
Expansion unit,

Note: Programs converted in this fashion can only be run with T1

Extended BASIC and with the Memory Expansion unit attached and

turned on. They are not stored in PROGRAM format.

12

MEMORY EXPANSION UNIT AND CASSETTE-BASED
PROGRAMS

The Memory Expansion unit adds 32K bytes of Random Access
Memory (RAM) to the built-in memory of the computer. However,
even with the Memory Expansion unit available, the largest Tl
Extended BASIC program that can be stored on a cassette tape is
12K bytes in size. Note that, although the length of the actual
program is limited, utilizing the Memory Expansion unit provides
other advantages. For example, with the unit attached and turned
on, your program (which can be up to 12K bytes in length) is stored
in the expansion RAM. The numeric data generated by the program
is stored in the Memory Expansion unit and the string data is stored
in the computer's built-in memeory. Without the unit, the program
must be shorter so that both it and the generated data can be stored
in the computer’s built-in memory.

CONTINUE COMMAND

A CONTINUE cuinnand is usud to resume your program when you
break by using a BREAK command or by pressing CLEAR. However,
il your last command (before the CONTINUE command) results in a
crror, the program may not continue properly. Your final command
to the computer before the CONTINUE command must be correct. If
you receive an ERROR message, be sure to enter a correct command,
such as a PRINT command, before resuming program execution.

MANUAL ERRORS

Page 39

The second sentence in the third paragraph of the "Numeric
Constants™ section should be corrected to read *...number is greater
than 99 or less than — 99, then .7

Pages 79 and 150

The string used in a string-expression with the DISPLAY .., USING
and PRINT ... USING statements may be more general than shown in
the examples in the manual. For example. both of the following are
valid statements.

PRINT USING A$:X,Y
DISPLAY USING RPT$('“#",5)8V$:A(12)

Pages 89, 133, and 135

The GOSUB. ON GOSUB, and ON GOTO statements should not be
used to transfler control to and from subprograms.

13

Page 114
If you press CLEAR when using the LIST command, the listing stops
and cannot be restarted.

Pages 118 and 119

The graphic figures at the bottom of page 118 and the top of 119
should be reversed,

Page 185

The TAB function cannot be used in the PRINT ... USING or
DISPLAY ... USING statements. Also, the second paragraph of this
explanation should be corrected to read as follows: 'If the number of
characters already printed on the current record is less than
numerlic-expression, the next print-item is printed beginning on the
position indicated by numeric-expression. If the number of
characters already printed on the current record is greater than or
equal to the position indicated by numeric-expression. the next
print-item is printed on the next record beginning in the position
indicated by numeric-expression.

Page 200

In Appendix H. Color Combinations, the color codes for the last two
listings in the 'Best’” category should be as follows,

14, 10 Magenta on Light Red
3. 16 Medium Green on White

In the “"Fourth Best' category, the third combination in the second
column should read:

6, 2 Light Blue on Black.

14

Format Lines

The following list gives corrections that should be made to the
indicaled formats and also shows the present format information.
DIM Statement (page 76)
Correct Format: (integerl | integer2)...[.integer?7]}[,...]
Present Format: (integerl|.integer2].. .integer7][....])
DISPLAY Statemnent (page 77)
Correct Formal: [SIZE (numeric-expression)]:|print-list
Present Format: |[SIZE (numeric-expression)j:lvariable-list
DISPLAY . USING Statement (page 79)
Correct Formats: USING string-expression|:print-list]
USING line-number|:print-list]
Prescent Formats: USING string-cxpressionj:variable-list]
USING line-number|:variable-list]
LINPUT Siatement (page 113)
Correct Format: #file-number| REC record-number]:
Present Format: [{#file-number]l. REC record-number]:]
PRINT . USING Statement (page 150)
Correct Format: [#file-number|,REC record-number],]
Present Format: [#file-number[,REC record-number])

SPRITE Subprogram (page 173)

Correct Format: dot-column|, row-velocity,column-velocityl|..
Present Format: dot-column,[,row-velocity,column-velocity]|..

-]
-1

15

TEXAS INSTRUMENTS

INCORPORATED
DALLAS. TEXAS

16

Printed in U S A Copyright i+ 1981 Texas Instrumenis Incorparated 1041361-3

