KRACKER
AL TS

GRAN KRACKER

THE LITTLE BOX
THAT COULD

COMBETILLED FOR THE LR S3ERS
BY MIKE DODD

© 1987 BY

LA 9%9ERS COMPUTER GROUP
P.O0.B. 3547 GARARIDENA CA 90247

TADBLE OF CONTENTS

Introduction to Kracker Facts.......... I I

Introduction to GPL COde . vvvrrrerrrrrrervnenaroransray
by Craig Miller

Explanation of the GPL XML statement....... . 0000000

by Craig Miller
Programming examples of the GPL MOVE statement.......
by Craig Miller

CALL CAT GPL source code......ccenveenns e e et aaaa
by Craig Miller
Extended BASIC auto-load bypass patch..... re e e

by Craig Miller
Notes on ROM/RAM space at >6000 - >7FFF....iiviuanasas
by Craig Millez .
Changing the BEEP and HONK sounds........cctie0aoevasas
by Mike Dodd

Redesigning the title screen.......... s ees et e e e

by Walt Howe

Changing the keyboard........ C e sttt s s .o
by Mike Dodd

Notes on MYARC XB II and the GRAM Kracker............
by Cralg Miller

Disabling the MYARC RAM-disk power up routine........
by Mike Deodd

Checking the write protect switch ln XB............. .
by Mike Dodd

Changing the Extended BASIC LIST width..... s e asaaaan
by Craig Miller

CALL INIT correction........c.vuiiuicuaaaas Cteeaeeeanaa
by Craig Miller

Changing the cursor shape in XB, BASIC, & B/A........
by Mike Dodd

GK Utility I enhancements and modifications..........
by Tom Freeman

Extended BASIC program loader........csiceasesss e e
by Mike Dodd and Tom Freeman

WRTGRM - a routine to write to GRAM from XB..... v
by Mike Dodad

E/A-GRAMDSK information......... et caisasas
by Craiqg Miller

Changing the cursor in E/A-GRAMDSK..... ceer e e
by Tom Freeman

Changing the default drive In E/A and TI-Writer......
by Tom Freeman

Changing Disk Manager II to accept nine drives....
by Tom Freeman

Barly Logo Learning Fun fix............. crerrr et
by Crailg Miller

Vvideo Chess fllename entry.......... Ceresareer e
by Mike Dodd

TIW-MOVER fix...... Gt e st e s sr s e e e, .o
by Craig Miller

Removing foreign languge options from TI-Writer & DM2
by Mike Dodd

GRAM Packer hints...ci ittt niernssonosnnnnnss e ee e
by Tom Freeman

GRAM Packer ald......cieeveerivensan f e e et e r e e
by Mike Dodd

18
19
13
20
21
21
21
24
25
27

27
28
29
29

INTRODUETION TO KRACKER FACTS

Bver since the GRAM Kracker was released in late 1385, people have come up with
many changes to the operating system and the cartridges. Jome were uploaded to
CompuServe, some to GEnle, some were published in newsletters, and some were Jjust
passed around by word of mouth. Unfortunately, there was no one place that someone
could look for all of the changes.

When MG relsased Danny Michael's excellent GK Utility I disk, it was very helpful
- many changes on one disk, ready te run. But there were still many changes that
people had made, and they were scattered all over the four corners of the TI
community.

This booklet, Kracker Pacts, is an attempt by the Los Angeles 93er Users' Group
to assemble all of the articles and modifications for the GRAM Kracker in one
pubilication.

In here are articles by Tom Freeman, Millers Graphics (Craig Miller and D.C.
Warren), Mike Dodd, and Walt Howe. All are targeted towards getting more out of your
GRAM Kracker. We hope you enjoy thenm.

[—————— e R PP R 8 e gL 8RR e e e e e R

A LITTLE INTRODUCTION TO GPL CODE
by Craig Millar (MG)

We thought you might like to see what a powerful and compact language GPL code
is. With the GRAM KRACKER and a GPL Assembler you will be able to write programs that
can reside in the Module space and will be displayed on your Main Menu as a selection.
GPL can also link to Assembly and BASIC programs! So you will have PULL use of the
THREE built-in lanquages in our 4As (Basic, GPL and Assembly). Eat your hearts out
all you Atari, Commodore, IBM and other computer owners!

* Disassembly of part of the Editor/Assembler Module *
* starting at Crom >606% thru >6132 *
6063 MOVE 7 FROM GEREGDAT TO VRO1 Load the Vdp registers

CALL CHKMEM Go check for memory expansion and
load the (C) character data

MOVE 16 FROM GACURSOR TO VA>(8F0 Load the box and solid cursocor data

* put up the first Menu Screen

5T >7E,83UB3TK Initialize the Sub Return stack peinter
DCLR H@ERRCCDE Zero out A/L Bvror Code indicator

DCLR @GRONMFLG Zero the Grom Flag

ALL SPACE ' Clear the screen with space characters
PMT Start formatted screen output

ROW 2 At zow 2

KRACKER FACTS - PAGE 1

coL 1 At column 1 {note 0,0 is home position)

HTEXT '* EDITOR/ASSEMBLER * ' Put up horizontal text

ROW+ 2 At current row plus 2

COL 1 At column 1

HTEXT 'PRESS:' .

ROW+ 2 .

COL 2 .

HTEXT 'l TO EDIT' . etc,

ROW+ 2 Note: VTEXT, HCHAR, VCHAR are also

coL 2 allowed in a FMT, so is

HTEXT '2 ASSEMBLE' FOR xx - where xx equals

ROW+ 2 the repeat loop counter

COL 2

HTEXT '3 LOAD AND RUN'

ROW+ 2

co. 2

HTEBXT '4 RUN!

ROW+ 2

COL 2

HTEXT 'S RUN PROGRAM FILE'

ROW+ 6

coL 2

HTEXT >0A »>0A 1s the (C) character

HTEXT '1981 TEXAS INSTRUMENTS'

FEND End the formatted screen output
GEBTKY SCaN Scan the keyboard for a key press

BR GETKY BR [Branch on Resat) no NEW key pressed

CBQ PCTNI,8KEY Was PCTN 3 (Back) Pressed

BR GETKY1 NO! check the other keys

BXIT YES| Execute the Power Up routine
GETKY1 SUB >31,8XKBY Subtract >31 from the keycode (0 - 7?)

CHE >05,8KEY If it's now Higher than 4 - wrong key

B8 GETKY 30, go wait for another key press

CASE @KEY Otherwise if AKEY equals

BR EDIT 0 - goto Edit Menu

BR ASSEM 1 - goto Load Assembler Prompt

BR LODRUN 2 - goto Load and Run prompt

BR RUN 3 - goto Run Program prompt

BR RUNPRG 4 - goto Run Program File prompt

Notes:

The above code only requires 202 bytes of memory and that includes 113 bytes of
text! So that means the actual instruction code only uses 33 bytes of memory! There
isn't another language available for our 33/4As that 1s as compact as GPL. And, when
compared to Assembly, it is much easler to program in., This is THE Language that TI
should have released to us in the first place!

Moat instructions can work wlth bytes or words. fThe D in front of an instruction
indicates a word operation. The first operand to is SOURCE and the second is the
DESTINATION., le: 8T >03,dTEMPl stores one byte with the wvalue of 3 into location
TEMP1,

The COND bit in the GPL Status register (>837C) is turned ON if the test is TRUE
and OFF when FAL3SB, It is also turned on when a NEW key is pressed on a keyboard scan

KRACKER FACTS - PAGE 2

oz when the result of certaln instructions is zero.

BR = Branch On Reset... or Branch 1f the COND bit in the GPL 3Status register is
OFF

BS = Branch On Set..... or Branch if the COND bit in the GPL 3Status register |is
Ol

CASE is 1llke ON X GOTO except it starts at zero instead of 1 (Note: the
COND bit is always turned OFF {reset) for a CASE or DCASE)

A CALL works like a GOSUB or Assembly's BL (Branch and Link)

'ALL' Eills the screen with the one byte character following the instruction.
{That's right only 2 bytes to clear the screeni!!!)

MOVE 1s a very powerful GPL lnstruction. With 1t you can MOVE x number of bytes
FROM any type of memory TO any type of memory You can also move bytes to the VDP
Registers! The MOVE instruction only requires 6 to 7 bytes for 1ts object code!

3CAN (to scan the keyboard) only requires 1 byte of object code!!! (SCAN = >03)

Speed Test:

We ran the o0ld 1 to 10,000 timing test in GPL to see how it compares to the other
languages and here 1s how it came out.

l. In an inczementing loop with a DCEQ {double Compare Equal}! 6.8 seconds.

2. In a decrementing loop [no compare just BR {(not zero}] 4.3 saconds.

As we have seen from previous tests thls places third on the list.
1. Assembly - well under .5 second

2. Forth - approex 1.3 seconds

3. GPL - 4,3 to 6.8 seconds

4. Pascal - I think this is where it falls
4. XB - 33.9 szeconds

5. Baslic - weeks {(just kidding}

Since its not as fast as Assembly or Forth you are probably wondering why we are
so excited about GPL?! True, a CRAY 3 it's not., However, it requires LESS THAN one
half the =pace of Assembly code! With the Gram Kracker you have up to 58K of GPL
program space (with 6K reserved for the Operating System), which would require AT
LEAST 116K of Assembly code. This still leaves ALL of memory expansion free plus the
16K of cartridge RAM free for other things or for Assembly routines for your GPL
programs to link to (another 48K). That gives us a TOTAL program space of 106K plus
16K of VDP Ram for a total of 122K (128K with the Operating System area). Also with
GPL you can EXPAND or modify existing Modules. And, last but certainly not least, GPL
is the controlling language for our 4As, so now you make it do most anything yow want!
Start thinking about those changes you've wanted to make Eor the last 6 years, your
chance is comingl!!

L S T O D L < . A o e e T o] g T T T T " D . ke e (o i o T S N S S e S S -

AN EXPLANATION OF THE GPL XMi. INSTRUCTION
by Craig Miller (MG}

If you are using Gram to store an Assembly file in that is MOVE4 ocut by a CALL or
a GPL program {(patch) you can start the Assembly program with a GPL XML statement.

The Opcode for GPL XML is >0F xx - where xx represents the XML table to use for
the start vector {S5ee the Explorer Manual paqe 77 for the XML tablea}. For example
let's say you used a GPL MOVE to move an 8K assembly program out of Gram 7 (>E000) to
high Memory Bxpansion and now you want tc go out of GPL and exeacute your Assembly
program. Let's say that your Assembly program starts at address >A044, this could be

KRACKER FACTS - PAGE 3

the code you could use to do this task.

31 20 00 MYPRCG MOVE >2000,G&>B000,8>A000

8F 1D 00

B0 00

BF 00 A0 DST »A040,4>8300 {store start address)
40

OF FO XML >FO {go to >8300 to get start address)
00 RTH

when your Assembly program is finished you can then B @>006A to go back to the
GPL Interpreter. Don't forget to reset the Grom Mdress if your Assembly program
changed [t. Wwhen the GPL Interpreter starts back up it will grab the >00 opcode (RTN)
and return from the CALL MYPROG that you set up somewhere else in Gram to start the
above routine. By the way, the Opcode for a CALL is »06 so the CALL HYPROG would he
06 xx xx whare xxX xx = the address in Gram where you placed the above code.

.,,.,.________.....___.-_._.__......--————--q.-—_-_——-—-pq.——-—-——---.-.....-—_-————__..—m--———__-—...-..

PROGRAMMING EXAMPLES DOF THE &PL "MOVE" INSTRUCTION
by Craig Miller (MG

Listed below are a number of examples of the GPL MOVE statement. This is a LIST
file generated by the GPL Assembler.

When the GPL Interpreter talks to CPU Memory 1t offsets the CPU address by >8300.
T™his can be seen in the OPCODEBS for the third move atatement which breaks down a3
Eollows:

»35 MOVE

>1234 1234 bytes

>8F to CPU Memory (non-indexed) (>AF = VDP memory)
>9p00 at >2000 (>3D06+>8300=>2000)

>8F from CPU Memory {non-indexed)

>1D0¢ at >A000 {>1D00+>8300=>A000}

When the GPL Interpreter talks to CPU Scratch Pad Memory Below »>8380 or when a
gcratch Pad address is used for lndexing it is referenced by one byte (i.e. »831F
will appear as >1F in the Opcode).

99/4 GPL-ASSEMBLER (Pass 1) correct PAGE 0001
GROM 3 - MOVE TEST

<0001>

Q002> GROM 3

£0063> AORG 0

<0004>

<0005> ¥ GPL, MOVE STATEMENT

<0006> *

<0007> x MOVE Bbhytes, source,destination
<0008> *

<0009> 6000 21,12,34 MOVE >1234,G@>C000,GR>E000

§003 E0,00,C0

KRACKER FACTS - PAGE 4

<0010>

<0011>

<0012>

<p013>

<0014>
<0015>

<0016>

<0017>

<0018>

<0019>
<0020>

€0021>

<0022%

£0023>

<0024>
<0625>

<0026>

<0027>
<0028>

<002%>

£0030>
<0031>
<0032>
<0033>
<0034>
<0035>
<0036>

6006
6007
600A
600D
6010
6013
6016
6019
601C
601F
6020
6023
6026

6028
602B
602E
6030
6033
6036
6038
603B
603E
6041
6044

5045
6048
604B
604D
6050
6053
6356
6059
605C
605D
6060
6063

6065
6068
6068
606D
6070
6073
6076
6079
607B
6078
6081
6082
6085

831F
B39E

6088

00
35,12, 34
AF, 30,00
AR, 10,90
35,12, 34
8F, 9D, 00
8%, 10,00
35,12, 34
17, 8F, 1D
00
35,12, 34
80,9E, 8%
1b, 60

31,12,34
AF, 30,00
co,00
31,12, 34
8%, 90,00
0,00
31,12, 34
1¥,C0,00
31,12,34
30,98, CO
00

25,12,34
C0,00,AF
10,00
35,12, 34
8%, 90,00
AF, 10,00
35,12, 34
1F, AP, 10
00
35,12,34
80,98, AP
10,00

25,12, 34
c0,00,8F
9D, 00
35,12, 34
AF, 10,00
aF, 9D, 00
35,12, 34
¥, 1F
15,12, 34
80, AR, 80
9E
35,12, 34
1F,80,9€

29,12,34

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MQOVE

MOVE

MOVE

MOVE

MOVE

MOVE

HOVE

MOVE

»1234,v@>1000,va>3000

>1234,8>A000,8>2000

>1234,@>2000,8>831F

»1234,@8>A000,8>839E

>1234,G8>C000,V8>3000

>1234,GR>C000,@>20900

»1234,G@>C000,8>831F

>1234,G@>C000,@>833E

>1234,V@>1000,G8>C000

>1234,VE&>1000,8>2000

>1234,VR>1000,8&>831F

>1234,V@>1000,8>839E

»1234,8>2000,G@>C000

>1234,@>2000,va>1000

>1234,8>831F,8>837F

>1234,8>839E,8>83A8

>1234,8>8398,8>831F

2 INDEXED MQVES ----===m==m=wmmmmm—m—moommmmean

TEMP1 EQU
TEMP2 EQU

MOVE

>831F
>833%E

>1234,G@>C000,GA2Z{ATEMP2)

KRACKER FACTS - PAGE 5

6088 09,02,98

§08E C8,00
<0037> 6090 31,12,34 MOVE >1234,G@>C000,Va2{ATENP2)
093 E0,02,98
6096 C0,00
<6038> 6098 31,12,34 MOVE >1234,G@>C008,d2(ATENP2)

6098 CF¥,TD,02
6098 3E,C0,00

<0039> 60ALl 31,12,34 MOVE >1234,G@>C000,@>830F (QTEMP1)
§0Ad CO,0F, 17
§0A7 C0,00

<0040> 60A9 2B,12,34 MOVE >1234,G@1(ATEMP1),Ga2(ATEMP2)

60AC 00,02,9E
§0AF 00,01,1F
<0041>
<0042> 6082 20,12,34 MOVE >1234,@>A000,GR2(QTEMP2)
60BS 00,02,9E
6088 8¥,1D,00
<0043> 60BB 35,12,34 HOVE >1234,Ve1(QTEMP1},VR2{ETEMP2)
60BE £0,02,9E
60Ct 20,01,1F
<0044> 60C4 35,12,34 MOVE >1234,@1({@QTEMP1),@2(ATEMP2)
60C7 CF,70,02
60CA 9E,CF,7D
60CD 01,1%
<0045>
<0046> % [MDIRECT MOVES --—————=m=e-m==mmm—m—m—=—————n
<0047>
<0048> 60CF 31,12,34 MOVE >1234,G@>C000, VX*TEMP2
§0D2 80,9E,CO
60DS 00
<0049> §0D6 31,12,34 MOVE >1234,G@>C000, *TEMP2
6009 90,9E,CO
60DC 00
<0050> 60DD 31,12,34 MOVE >1234,GE>C000, *>830F (RTEMP1)
6080 DO,0F,1F
§0E3 CO,00
<0051> 60ES 33,12,34 MOVE >1234,G@1(@TEMPL), *TEHP2
088 90,9E,00
60EB 01,1F
<0052>
<0053> 60ED 35,12,34 MOVE >1234,V*1(QTEMPL),V*2(QTENP2)
60F0 #F,7D,02
§0F3 9E,FF,7D

§0F6 01,1F

<0054> 60F8 35,12,34 MOVE >1234,%TEMP1, *TEMP2
60FB 90,98,90
50FE 1F

<0055>

<0056> END

e o A o . Sl A o e T e o S . o S T ot B AL M S A T M A N S o e SRS SR R

KRACKER FPACTS - PAGE 6

*CALL CAT" SPL SOURCE CODE
by Craig Miller (M3)

*he following file 1s a LIST file from the GPL Assembler. We uploaded it to give
you an example of a GPL program that is on the £inal Gram Kracker Utllity diskette,
This i3 a new CALL for Extended Basic that will patch itself to XB version 110. The
call is CALL CAT("DSKl.") to catalog the floppy in drive L. This cataloger will also
support other divices that comtain a "CATALOG" routine such as the MYARC Hard Disk and
the MYARC RAM disk.

By comparing the OPCODEs in the third column with other Grom/Gram code you should
be able find cut what 1s going on in other modules and in Grom 1.

Hope this file helps you understand GPL a little more. Have tfun.
T199/4 CPL-A3SEMBLER

GROM 6 - XB Cat 12,17,85

<0o0l> GROM 6

<0002> AQRG >1C00 * Routine loads at GRAM >DCOO
<6e03>

<0004> *

<0005> * Absolute equates into version 110 X~BASIC cartridge
<0006> x

<G0G7> BAT7B CHKEND EQU D>6ATS Routine to check end of statement
<0003> AD78 ERR EQU »6D78 Brror routine

£0009> 533 ERRSYH EQU >C533 SYINTAX error

<PO1D> C992 ERRCIP BEQU >€592 COMMAND ILLEGAL IN PROGRAM error
{0011> CS59X ERRBA EQU >CS59A BAD ARGUMENT erxor

<0012> x

{0013> * PAD equates

<Q0L4d> x

<0015> 8304 PABPTR BQU >3304 PAB polnter register

<0016> 3310 TEMP BEQU >8310 Temporary registers

<DO17> 8312 TEMP1 EQU >8312)

<0018> 8314 TEMP2 BQU >8314 .

<0019> 8342 CHAT EQU >8342 Last character register
<0020> 8344 RUN EQU >8344 Rupning proqram flag

<0021> 8356 NMPNTR BQU >8356 DSR name length pointer
<0022> 8317% KEY EQU >837% Key code returned by key acan
<00623> L

<0024> t XML equates Into X-BASIC cartridge

<0025> L

<0026> 6073 CNs BQU >73 Convert floating to string
<GG27T> G074 PARSE BQU >7¢ Parse routine

£0G28> 0079 PGHCH EBQU >79 Advance character routlne
<D029> 0083 BCROLL EQU >83 Screen scroll routine

{0030> *

<0031> * VDF equates

<¢032> *

£0033> 0820 PAR EQU >0820 PAB. Crunch buffer area
(034> 0836 VBUPF EBQU >08136 Buffer location

£0035> 0828 VLENA EGQU >0828 File name length in crunch buffer
{0036> 0829 VL.ENB BQU >0829% Flle name lenqth ln PAB
<0037> 08CA RCLBUF EQU >08CA Recall buffer address

€<0038> *

<30639> * Misc., equates

£0040> *

KRACKER FACTS -~ PAGE 7

<0041> (00Bé RPAR EQU >B6 Right paren. token
<0042> 0087 LPAR EQU >B7 Left paren. token
<0043> 020D READ EQU >020D DSR read code
<0044> 010D CLOSE EQU >010D DSR close code
<0045> 0020 SPACE EQU »>20 Space char.
<0046> 0002 FCTN4 EQU »>02 CLEAR char.
<0047> 0012 RRT™ BQU >0012 GROM 0 return routine
<00438> *
<0049 (Y F12 2222223223234 33323323323282232220 220 d0REa i ds]
<0050> * X-BASIC DEVICE CATALOGER
<0051> * Loads at GRAM address >DC0¢
<0052> * Accessed with a CALL
<0053> * PAB is installed in Crunch buifer area
<0054> *
<0055> *
<0056> * D.C. Warren 12/17/35
(0057) Y2122 222222223231323223332¢32322342+230 2823242 2s222 sl
<0058> x
<0059> DCOO 8K, 44 CAT CI BRUN Is a program running?
<0060> DCO2 45,92 BR ERRCIP YBS! Brror so tell user
<0061>
<0062> DCO4 D6,42,B7 CEG LPAR,SCHAT Do we have a '(' ?
£0063>» DCO7 45,33 BR ERRSIN NO! SYNTAX error
<0064>
<0065> DCO9 OF, 79 XML PGMCH Advance program polinter
<0066>
<0067> DCOB OF,74 XML PARSE Parse to '}’
<0063> DCOD B& BYTE RPAR *
€<0069> _ .
<0070> DCOB D6,4C,65 CBQ >65,QFAC+2 Do we have a string?
<0G71> DCLll 45%,9A BR ERRBA NG! Bad Arqument
£0072>
<0073> DC13 B8F,50 DCZI AQFAC+é Iz it a null string?
<0074> DCLS B5,9A BS ERRBA YES! Bad Argument
<0075>
<0076> DC17 C6,51,0B CH 11,8FAC+T Don't allow device name
<00T77> DClA 65,9A BS ERRBA greater than 11 chars.
<0078>
<0079> DC1C D6,42,B6 CEQ RPAR, 8CHAT Last char a ")'?
<0080> DC1F 45,33 BR ERRSYN NO! Syntax error
£0081> z
<0082> * set up PAB at V>820
<0083> * The next 7 lines move the name over one byte!!
<0084> %
<0085> DC21 86,10 CLR AQTEMP
<0088> DC23 BC,11,A8 ST VRVLENA,ATEMP+1 Get name length
DC26 18
<0087> DC27 8D,14,10 DST AQTEMP,8TEMP2 Save pname length
<00838> pC2A 91,10 DINC QTEMP Adjust TEMP
<0089>
<009G> DC2C 35,00,01 CAT1 MOVE 1,VAVLENA-1(QTEMP),VAVLENA(RTEMP) Move a
DC2F E§,28,10
DC32 E8,27,10
<00%1> * byte over
<0092> DpC3S 93,10 DDEC QTEMP Keep going until whole
<0093> DC37 5C,2C BR CAT1 name is moved
<00%4>
<0095> DC39 31,00,09 MOVE 9,GEPABDAT,VARPAB Install PAB
DC3C A8,20,DE

KRACKER FACTS -~ PAGE 8

<0096>
<0097>
<0098>
<0099>
<0100>
<0101>
<0102>
€0103>

<0104>
<0105>
<0106>
<0107>
<0108>
<0169>

£0110>
<0111>
<0112>
<0113>
<0114>
<0115>

{0116>
{0117>
<0118>
<0119>

<0120>
<0121>
Q122>
<0123>

<0124>
<0125>
<0126>
<0127>

DC3F

DC40

DC43
DCi6
pC4s

DC4B
DC4D
DC50

DCS3
DCS4
DCS6
pcse
DCSA
DCSh
DCeo
DC63

DCE5
DC646
DC68
DC6B
DC6E
DCTL
DC74
DC717
DC7A
DC7p

DCF
DCs8o
DC82
DC8s
DC88
DC8B
DCSE
pCIl
DC34
DCI7
DCIA
DC3ID

DCAD
DCAl
DCA3
DCAb
DCAY
DCAC
DCAF
pCae?

38

06,DE, 23

BF,A8, 20
02,00
06,DE, 23

07,80
34,14,A2
82,A8,CA

08
#C, 60
FR, 14
FF, 09
09,20, 44
69,73,6B
68,61,6D
65,30

A0
FF, 02

15,41, 76
§1,69,6C
61,62,6C
§5,3D,20
20,26, 20
20,28,20
55,73,65
64,30

A0
FF,02

1¢, 20,46
§9,6C,65
6E,61,6D
§5,20,20
53,69,7A
65,20, 20
20,20, 54
19,170,565
20,28, 20
20, 20,50

A0

FF, 02
ic, 2D, 2D
2D, 2D, 2D
2D, 2D, 2D
20, 2D, 20
2D, 2D, 2D
0,20, 20

b
* Qpen Device
x
CALL DSRER Link to device
b 4

* Read first record
*

DST READ,VRPAB Make PAB a read
CAT2 CALL DSRER Link to device

* Put 4isk information on the screen
x
ALL >80 Clear screen
MOVE RTEMP2,VARCLBUF,V@>282 Put device name up

FMT

SCRO >60

ROW 20

coL 09

HTEX ' Diskname='

ROW+ 1
CoL 2
HTEX ‘'Available= Used="'

ROW+ 1
coL 2
HTEX ' Filename Size Type p!

ROW+ 1
coL 2
HTEX '-==memmmm= —m== —mmmmeooee -

KRACKER FACTS - PAGE 9

<0128>
<012%>
<0130>
<0131>
<0132>
<0133>
<0134>
<0135
<0136>
<0137
<0138>
<0139
<0140>
<0l14l1>
<0142>
<0143>
<0144>
{0145>
<0146>
047>

<0148>

<0149>
Q150>
<0151>
<0152>
<0153>

<0154>

<0155>
<0156>

£0157>
<0158>
<0159>
<0160>
<0161>
<0162>
<0163>
<0164>
<0165>
<0166>
<0167
<0168>
{C1l69>
<0170>
<0171>
<g172>
<0173>
Q174>
<0175
<0176>
<0177>

DCB5
Iy 0¢:1
DCBB
DCBE
DCcCl

Dce2
DCCsS
DCC?

DCCY
DCCA
pcCce
DCCE
DCDO
DCD2

DCD3
DCDS
DCDI
DCDA
oCDD
DCDE

DCEL
DCE4
DCES
DCES
DCEB
DCED
DCFO
DCF1

DCF4
DC?5
DCF?
DCFA
DCFC
DCFF

bDO1
DDO2
oDO4
DDO7
DDO9
b Jalifw

DDOE

2D, 20,20
2D, 2D, 2D
2D, 2D, 2D
20,20, 2D
FB

06,08, 00
8E, 4B
1¢,D3

08
FC, 60
FE, 14
FF, 14
£9, 4C
FB

Al,10,4A
A3,10,00
13
BF, 14,02
AC
06,00, E4

a7,10,00
09
35,00,08
5¢,B80,10
oF, 07
BF, 14,02
B8
06,DD,EA

03

5D, OB
D6,75,02
0,C2
Dé,75,20
50, 08

03

50,01
D6, 75,02
70,02
D6, 75,20
59,01

OF, 83

FEND

* put disk name on screen

CALL
cZ
BS

m?

DISSTR
AFAC+]
CAT3

SCRQ >60

ROW

CoL

20
20

HSTR 10,QFAC#?2

FEND
t

Get stxing lnto FAC
Skip 1f zero length

Put dlsk nampe on screen

.
.

* Display AVAILABLE device szpace on screen

x

CAT3 DADD

DADD
D§?

CALL
x

RFAC, ATEMP
19,8TEMP

>2AC, ATEMP2

DISNUM

Go to next field
Conttinue to last field

Set up screen address

Display AVAILABLE space

* Display USED device space on the screen

*
D5UB

MOVE

XML
psT

CALL

4

* List

CAT4 SCAN
BR
CEQ
Bs
CEQ
BR
CAT4A SCaN
BR
CEQ
B3
CEQ
BR

CAT4B XML

3, 8TEMP

8, VETEMP, BARG

FSUB

>288, ATENP2

DISNUL

catalog

CAT4B
FCTN4, GKEY
DONE
SPACE, &KEY
CATA4B

CAT4A
PCTN4, @KEY
DONE
SPACE, @KEY
CATHA

SCROLL

KRACKER FACTS

Point to FORMATTED space
Move it into ARG

Developed USED value
Set up screen address

Display USED space

Scan the keyboard
Continue {f no nevw key
CLEAR key?

YES! Abort

SPACE key?

HO! Keep going

Scan keyboard

Loop until new key press
CLBAR?

YES! Abort

SPACE key?

NO! Continue to walt

Scroll the screen

- PAGE 10

<0178>
<0179>
<0180>
<0181>
<0182>
<0183>
<0184>
<0185>
<0186>
<0187>
{0188>
<0189>
<0190>
<0191>
<0192>

£0133>
{0194>
<0195>

<0136>
<0197>
<0198>

<0199>

<{0200>
<0201>
<0202>
<0203>
<0204>
<0205>

<0206>
<0297>
{0208>
<0209>
<0210>
{0211>
<0212>
<0213>
<0214>
<021%5>
<0216>
0217>
<0218>
£0213>
<0220>
<0221>

<0222>
<0223>
<0224>
0225>
€0226>
£0227>
€0228>
<0229>

pDid

bDD13
DD16
pDD13

DD1A
DD1B
DD1D
DDLF
DD21
DD23

DD24
D27
DDZA
DDZB
DD2E
DD30
00313
DD34

DD37
0D3A
DD3B
DDIE
DD41

DD43
DD45

DD47
DD4A
DD4B

DD4D

DD4F
DD51
DD53
DD55
bpD37
DD59

DD5SB
DDSC
DDSE
D060
DD62
DD65
D638
DD6A
DD6B

DD6D
DD6E
DD70
D072
DD74

06,DE, 00
3E, 4B
D, 24

08
PC, 60
FE,17
FF, 02
E9, 4C
Fa

Al,10,4A
A3,10,00
0A

8¢, 80,10
7D,C2
BF, 14,02
EC
06,DD,E4

A7,10,00
09
35,00,08
4a,B0,10
OF,12

8B, 4A
D, 4D

BE,A2,FE
89
83,4A

32,48

8A, 4B
50, 5B
5D, 6D
50, 7F
5D, 91
50,43

08
FC,60
&, 17
FF,12
06,44,69
13,2F, 46
69,78

7B

5B, B5

08
£C, 60
FE,17
7,12
06,44,69

CATS

CATSA

DF

CALL
CALL
cZ
B3

FMT

DSRER

DISSTR
AFACH1
CATS

SCRO >60

ROW
CoL

23
a2

HSTR 10,8@PAC+2

FEND

DADD
DADD

DCI
B3
DST
CALL
DsuB
MOVE
IML

cz
BS

5T
DNEG
DEC
CASE
BR
BR
BR
BR
BR

FMT

QFAC, 8TEMP
10, @TENP

VETEMP

DONE

>2EC, 4TEMP2
DISNUM

8, V*TENP, @FAC
CFr!

8FAC
CATSA

>B9,VA>2FE
dFAC
AFAC+]1

AFAC+1
DF
v
IF
Iv
PR

SCRO >60

ROW
COL

23
18

HTEX 'Dis/Fix'

FEND
BR

FMT

CAT6

SCRO >60

ROW
CoL

23
13

ATEX 'Dis/Var'

Link to device
Get string into FAC

Skip display if zero
length

Put disk name on screen

Go to next field
Continue another field

Time to get out if
zero file size

Set up screen address

Display file length

Back a field

Move it into FAC

Convert it to an int.

Non-negative?
YES! File not protected

Put a 'Y' on screen
Make number positive
Adjust for CASE

Show file type

KRACKER FACTS -~ PAGE 11

<0230>
<023%>
<0232>
<0233>
<0234&>
<0235>
0236>
<0237>

<0238>
<0239>
<0240>
<0241>
Q24D
<0243>
<0244>
<0245>

<0246>
024>
<0248>
<0249>
<0250>
<0251>
0253>

<0254>
<0255>
£0256>
<0257>

<0258>

<0259>
<0260>
<0261>
<0262>
<0263>
<0264>
<0265>
<0266>
<0267
<0268>
<02693>
6270>
<0271>
<0272>

<0273>

<0274>
<0275>

<0276>

0077
DD7A
DD7C
DD7D

DDTF
DD8d
pD82
DD84
DD86
DD8Y
DDEC
DDSE
DD8F

DD91
D092
DD94
DDI6
DD98
DD9B
DDIE
DDAO
DDAl

DDA3
DDA4
DDAG
DDAA
DDAD
poBO
pDB2
DDB3

DDBS
DDB8
DDBY
ppBC
DDED
pDCo

DDC2
DDC4
DDC?
pDCY
ppce
DDCE

DDD1
DDD1
DuD4
DDD5
DDD8
DpD9
pbbC
DDDF
DDEO

13, 2F, 56
61,72

FB

5D,B5

08
FC,60
FE,17
FF, 12
06,49, 68
74, 2F, 46
69,78

FB

5D, BS

08

FC, 60
FE,17
FF,12
06,49, 68
74,2F,56
61,72

¥B

5D, BS

08

FC, 60
FE,17
8§,56,72
6%,67,72
61,6D

FB

5C, F4

A3,10,00
12

BF, 14,02
79
06,DD,E4
5C, P4

oF, 83
06,DE, 1A
or,79
06,6A,78
45,33
06,00,12

BF, 04,08
1c
8D, 10, A8
20
06,DE, 1A
BD, A8, 20
10
06,6D,78

IF

iv

PR

CATé

DONE

¥ File

ERROR

KRACKER

FEND
BR CAT®
FNT
SCRO >60
ROW 23
coL 138

HTEX 'Int/Fix’

FEND
BR CAT6
FHT
SCRO >60
ROW 23
COL 18

HTEX 'Int/Var'

FEND
BR Caré

FMT

3CRO >60

ROW 23

HTBX 'Program'

FEND
BR CAT4

DADD 18, ATEMP

DST >2F9,@TEMP2
CALL DISNUM
BR CATH

SCROLL
CLSFL
XML PGHMCH
CALL CHKEND
BR ERRSYN
CALL RRTN

XML
CALL

errof

EQU $§

DST PAB-4,8PABPTR

DST VRPAB,QTEMP

CALL CLSFL
DST ATEMP,VEPAB

CALL ERR

Advavce two flelds
Set up screen address

Display record length
Do 1t all agaln

One last scroll

Close file

Parse past '}'

SYNTAX error if not end

Return to X-BASIC

Fake a BASIC PAB
Save error

Close flle
Restore error

Return through ERR

FACTS - PAGE 12

02771
<0278>
<0279>
<0280>
£0281>
<0282
<0283>
<0284>
<{0285>
<028s&>
<0287>

{0288>
<0239>
<0290>

<0291>

<0292>
<0293>
<0294>
<0295>
<0296>
<0297
<0298>
<0299>
<0360>
<0301>
<0302>
<0303>

<0304>
<0305>

<0306>
<0307>
<0308>
<0309>

£0310>

<0311>
<0312>
<0313>
<0314>
<0315>

<0316>
<0317>
<0318>
<J3319>
<N320>
<032L>
<0322>
<0323>

<0324>
<0325>
<0326>

DDE3

DDE4
DDE7
DDEA
DDEC
DDEE
DOF1
DDF2
DOFS
DDF7
DOF9
DDFB
DOFD
DDFF

DEGO
DEO3
DEO4
DEOS
DE09
DEOA

DEOC
DEOF
DE12
DEl4
DEL?
DE1l9

DE1A
DE1D
DE1F
DE22

DE23
DE26
DE28
DEZB
DE2C
DE2E

[}

35,00,08
4A,80,10
86,55
oF,73
A2,90,55
50

BC, BO, 14
30,55
91,14
90,55
92,56
50, BB

00

BF,10,08
36

86, 4A
8C, 48, B0
10

91,10

BE, 4C, 20
15,00, 09
4D, 4C
34,4, 4C
B0, 10

00

BF, A8, 20
01,0D
06,DE, 2F
00

06,D8, 27
0, D1
D§,A8,21
0D

5D, D1

00

BYTE 36 * [/0 ERROR XX
*
tttttttttttttttttttttttttttttttitttttttttttttttttitttitttt

* Subroutines
tit!!!t!!t!t!!!!tttt*ttttttitttt!t*titt*ttttt*t*t!tttttttt

*

* Display number subroutine

t ENTER: Floating number in FAC for DISNU1
x Screen address in TEMP2

x

DISRUM MOVE 8, VX*TEMP, 8FAC Move FLP number to FAC

DISNUL CLR @&FAC+1] Indicate a free format
XML CNS Convert FAC to a string

DISNU2 ADD »>60,*FAC+11 Add offset to string

3T TPAC+HLIL, VATEMP?2 Put a char on the screen

DINC RTEMP2 Increment screen addr.
INC @FAC+#1l Increment FAC addr.
DEC @FAC+12 Decrement string length count
BR DISNUZ Loop until done
RTN Return to caller

b

* prepare a VDP string for FORMAT statement

* LBAVE: PAC has string length (word}

* FAC+2 has string

* TEMP pointing to next string in recozd

®

DISSTR DST VBUFF,ATEMP Get buffer address
CLR @PFAC Clear MSB of FAC word
87 V*TEMP,APAC+L 3tore disk name length
DINC QTEMP Point to string
ST »20,8FAC+2 Clear out string space

MOVE 9,RFAC+2,QFAC+]
MOVE @FAC,VXTEMP,@FAC+2 Move disk name into FAC

RTN
t

* Close flle
2

CLSFL DST CLOSE,VEPiB A close operation

CALL DSR Link to device
RTN ‘ Return te caller

*

* DSR LINK with error handling
x

DSRER CALL DSR
BS ERROR Branch on no-device
CEQ »0D,V@PAB+l Check for device errors
BR ERRCR
RTN Return to caller

KRACKER FACTS - PAGE 123

<0327 * DSR LINK routine

<0328> *

<0329> DE2F BF,56,08 DSR DST VLENB,@NMPNTR Name length pointer
DE32 29

<0330> DE33 06,00,10 CALL >10 call DSR

<0331> DE3§ 08 BYTE 8 * DSR call

<0332> DE37 01 RTNC Return with COMD bit

<0333 x

<0334> * PAB data

<0335> *

<0336> DE38 00,0D,08 PABDAT BYTE >00,>0D,>08,>36,>00,>00,>00,>00,>00
DE3E 36,00,00
DE3E. 00,00, 00

Symbol Table
DCO0 CAT DC2C CAT1 DC48 CAT2 DCD3 CAT3 DCF4 CAT4
DDOLl CAT4A DDOE CAT4E DD24 CATS DD4D CATSA DDBS CATS
8342 CHAT 6A78 CHKEND 010D CLOSE DE1A CLSFL 0873 CNS
DD5B DPF DDEA DISNUl DDER DISNUZ DDE4 DISNUM DEOO DISSTR
DDC2 DONE DE2F DSR DB23 DSRER DD6D DV 6D78 ERR
CS9A ERRBA £592 ERRCIP DDD1 ERROR €533 ERRSYN 0002 FCTN4
DD7F IF DD91 IV 8375 KEY 00B7 LPAR B356 NMPNTR
0820 PAB DEJS PABDAT 3304 PABPTR 3074 PARSE 0079 PGMCH
DDA3 PR G8CA RCLBUF 020D READ 00B6 RPAR 0012 RRTN
8344 RUN 0083 SCROLL 0020 SPACE 8310 TEMP 8312 TEMPL
8314 TEMPZ 0836 VBUFF 0828 VLENA 0829 VLENB

.---—_--—...-——-——--—..-————-—-_.-—--————_--.--——-———-.....-—————---—...4---————----.q.._--—

EXTENDED BASIC AUTO-BOOT {“DSK1.LDOAD") BYPASS PATCH

First LOAD Extended Basic into the Gram Krackex.

From the Gram Kracker menu select 5 Memory Editor. Then press FCTN = for HEX,
FCTN 1 for the Gram Memory Window and then press FCTN 5 for SEARCH.

Type ln >6300 for the START address and >6400 for the FINISH address. Press FCTN
9 to put the cursor in the Search String Input area and type In 86 A3 71 and then
press FCTN 8 (left arrow) to put the cursor on the last byte to search for. Naxt
press ENTER to start the Search.

For wmost Extended Basic modules this Hex string will be found at >63CD, We'll
call that "address A". Now press FCTN 5 to leave SBARCH and then pzress FCTN 3 to put
the cursor in the Memory Window. Turn off the Write Protect (turn it to Bank 1). Now
change the first two bytes (86 A3) to 58 00. this is a BRANCH ON RESET to »>7800
instruction.

press PCTN 9 and change the Memory Window to g7800. You will see garbage here
(UNLESS YOU HAVE PREVIQUSLY PUT SOMBTHING IN THIS SPACE!!). The GROMs are only 6K in
length so0 the bytes in the last 2K are "garbage wzap around" read by the Gram Kracker
gave routine. So, it's a good area for adding routines to your modules.

Press PCTN 9 to put the cursor in the Memory Window and at the g7800 memory
location, put in the following code:

86 a3 N CLR Va»3T1 Clear Auto Load needed flag
03 SCAN scan the Keyboard
D6 75 20 CEQ >20,8>8375 Is the Space Bar pressed

KRACKER FACTS - PAGE 14

Now take your "address A" and add 6 to it !

>63CD + 6 =
D3

>63D3

BS "address A* plus § bytes

YES! (Branch on Set)

[Take your “address A", add 3 to it and replace the first dlgit with 4]

{>63CD + 3 = 6300 change it to 4300
43D0 BR “address A" plus 3 bytes
For
this:
g7800

AR e T =S E SRS SRR SRS RE=E
86 A3 71 03 D6 75 20 63 D3 43 DO xx
XX XX XX XX XX XX XX XX XX XX XX %X

xx = don't care

Nov restore the Write Protect, return to the Gram Kracker menu and

module.
Now when you

]

NO! (Branch on Reset)}

a module with a >63CD “address A" your memory window should now look llke

resave your

select EXTENDED BASIC you can bypass the auto-load command by

holding down the space bar!! (Mo more DSK1.LOAD seazch)

NOTE: if you are using the GK Utility I version of Extended Basic,

you do not

need to make this change, as it is included in the GK Utility patches.

o vt i} i L o o ot il M W T T S T A kS A S S R O S A S S S

NOTES ON THE ROM/RAM SPACE AT
>620@ — JFFF

by Craig Miller (MG)

modules that contain ROM

memory space, (6000 -
banks or as a form of
the module loaded into
the Gram Kracker is of this type you MUST
have the Write Protect switch in the
Write Protect position in order to use
them. One example of this is TI Extended
Baslc. It writes to >6000 to enable bank
1 and »6002 to enable bank 2 of its ROM
memOCY.

Some of the
write to their
>TPFP, to switch
protection. If

Some of the software currently
available that loads into a Super Cart,
>6000 - >7FFF expects RAM in this area
and as such will only work properly if
the Write Protect switch is NOT
write Protect position. One example of
this is the modified Super Bug that loads

at >6000. This program sets its
workspace in the >6000 - >7FFP area of
mEMOLY.

Since you have manual control over

the Bank 1 - Bank 2 switch it is possible
to have 2 different 8K Assembly programs
in the cartridge RAM area, >6000 - >7FFF.
For example you could have the above
mentioned Super Bug In Bank 1 and 3ay a

in the -

Screen Dump program, that loads into this
area, in Bank 2. Then with the flip of a
switch you could have one or the other
appear on the menu without having to
re-load |it.

Here is some !nformation on the Bank
Switching of the 8K ROM/RAM cartridge
space.

With the WRITE PROTEC? ON a piace of
software can write to:

>6000, >6004, >6008 ... >7FF8,
>TPFC etc. to select Bank 1

: >»6002, 6006, >600A ... >TFFA,
>TFFE etc. to select Bank 2

This 1s how BExtended Basic bank
swaps the upper 4K (>7000 - >7FFF) to get
12K out of an 8K space. This is also how
the Atarl modules do bank swapping to get
16K out of an BK space.

The software you write can also do
this with a CLR @>6000 for Bank 1 and a
CLR @>6002 for Bank 2 - BUT WRITE
PROTECTION MUST BE ON or the banks wan't
swap, you'll just clear the word at that
address. Bank swapping is disabled when
Write Protection i3 turned off so0 we
could load this space without 1t swapping
hanks.

KRACKER FACTS - PAGE 15

To see bank swapping work, 4go into
the Gram Kracker and load Extended Basic.
Next select 5 Memory Editor from the Gram
Kracker Menu. Type in c6FF0 for the
Memory address and press FCTN = for Hex.
Press FCTN 9 to put the curser in the
Memory ¥indow, make sure Write Protection
is ON and press and hold down the 1 key.
As the cursor moves acyoss the screen you
will see the address space from >7000 to
>7FFF swap banks. In reality the entire
8K block ls switching banks but the first
4K (>6000 - >6FFF) is the same 1In Dboth
banks. This glves the appearance that
the last 4K is bank switching and
simulates the 12X of Rom in the Extended
Basic's banks.

o - . o " il D S o S T T S S A

CHANGING THE BEEP AND HONK SOUNDS
by Mike Dadd

To change the sounds of the beep and
honk, go into the GRAM Kracker memory
editor. Press FCTN L for GRAM, FCTN =
for hex, and FCTN 5 to search. Type 0000
for the start, 1000 for the end. Press
FCT™ 9 to enter the search window and
type 05 92 OA 01 9F (don't type the
spaces). When it finds it (mine was at
>047B), press PCTN 5 to leave the search,
FCTH 9 to enter the memory window, enable
bank 1, and change the 05 to a new number
{I used 10).

For the henk sound, follow the same
procedure, except this time search for 20
90 OA 01 9F. Mine was at >0489. Change
the 20 to a new number (I used 25)}.

The best way to hear the new sounds
is to press CYRL = to get out of the
memory editor, press 1 for load wmodule,
PCTH 3 and ENTBR. That way you will hear
both the heep and the honk.

When you've set them to your liking,
save GRAM 0 to disk.

. P T A I - v -

TITLE SCREEN REDESIEN
by Walt Howe

Wwith the help of the GRAM KRACKER
manual, ™TI99/4A INTERN" by Heiner
Martin, and my own poking around, I have
put together this partial gquide to
modifying GROM 0, particularly the title
screen and character sets. I can see
that a lot more than this can be done as
I begin to unravel the Graphic
Programming Language code contalned in
GROM 0, but this guide will concentrate
on the changes that can be made by
changing nothing more than data tables
and text strings.

TEXT MODIFICATIONS:

Most of the text on the title screen
and the following menu screen appears in
a single string beginning at {or near)
memory address g048F. The string begins
with the copyright symbol (hex OA). For
the sake of illustration here, I will use

the "@" in its place. The complete
string is "R1981 TEXAS [NSTRUMENTSHOME
COMPUTER" . The copyright character will

not appear in the GRAM KRACKER editor in

ASCII mode. You have to switch to hex
mode to see the 0A character. The
copyright symbol itself is defined at

g0998 - more about this later. If you do
not want to keep the copyright symbel,
you can overwrite it with whatever
character you want or even redefine the
symbol. The top text line on the screen

uses the 8th through 24th characters of
the string. The second 1line uses
characters 25 through 37. The bottom

line on the screen uses characters 1
through 24. Count spaces as characters,
of course, and notice that there are two
spaces after "1981". The top two lines
are repeated on the following menu
screen. The main things to realize are
that any modifications to the string at
g048F will appear 1in three different
places, and that your replacement string
cannot be longer than the given one.
Other text appears as follows:

g014B - READY-PRESS ANY KEY TO BRGIN

g025D - PRESS

g094D - FOR

GRAPHICS CHANGES:

The Texas Instruments logo - the
state of Texas with the embedded "t" and
*im - is defined beginning at or near
950, #ine speclal graphlcs characters
are designed which f£it together in a 3x3

KRACKER FACTS - PAGE 16

pattern to create the logo. The patfern

is as follows:

123

456

789

The logo appears on the title
screen, the menu screen, and is sometimes
used by cartridgqe based programs, as
well. If you substitute your own design,
be prepared to find it appearing in
unexpected places. The nine characters
are defined by eight hex character pairs
each or by 16 hex characters just as they
are in basic/xbasic. In case you have
one of the slightly different operating
systems, look at or near g0950 for hex
characters beginning 01 03 03 03 03 03 03
03 03 FPC... .

Immediately after the logo patterns
appear 8 hex palrs at or near g0338

defining the copyright sign. This
pattern begins 3C 42 99 Ai... text
charactexr in your own character string,

or substitute your own pattern for your
own purposes. It is identified in text
by the hex palr GA. It will not show up
on screen in the GRAM KRACKER editor
ASCII mode - only the hex mode.

EDITING COLORS & COLOR BARS :
The color table Eor the title screen

and follow-on menu screen is located at
or near g0453, beginning with a series of
12 hex 17's., The 17's define the
character set colors (black on cyan).
You can, of course, change these to any
other preferred text and background
colors. Pollowing the 17's, the next 16
hex pairs, all beginning with 0, define
the different colors that appear in the
coloxr bars. Change these to substitute
your own color patterns as you wish. £
you make them all the same color, the
bars will be a solid color instead of a
pattern of colored sgquares, for axample.

Whatever you select will appear 1in both
the top and bottom coler bars. Finally,
the edge color is defined as the second

digit of hex location 90458, which is F7.
Change the 7 (cyan) to anything else you
want.

CHARACTER SETS:

There are three character sets in
GROM 0 - the large eight dot high
capitals (with numbers and symbols -

ASCII 32 through 95 or hex >20 through
>6F), the T-dot high capitals (likewise),
and the so-called lower case characters,
which are really small capitals. The

MEWCHARS utility provided with the GRAM
KRACXER alters the last two sets, but not
the title screen capitals set. The eight
dot set begins at g04B4 with a series of
8 00's, which iIs the space character, of

course (ASCII 32 or hex >20). The
smaller capitals beqin immadiately
following the large capitals at g0684

with 7 00's for the space character. The
lower case begins at g0874 with 00 20 10
08 00 00 00 representing the grave accent
{*} or ASCII character 96 ({(>60} and
continuing through character 127 (>7F).
The set concludes at g094C, Just before
text "FOR" and the TI loqo set.

SUMMARY OF KEY ADDRESSES:

HEX
ADOR BEGINS WITH TEXT OR PURPQSE
=== TSI TIST SSSTTSTFIEIIISRITITSSN=

0148 52 45 41 44
025D S0 52 45 53
0458 F7

0453 17 17 17 17
0466 @6 03 01 0B
048F OA 31 39 38
04B4 00 00 00 00

READY-PRESS ANY KEBY
PRESS
7 is cyan edge color
Black on cyan chars.
Color bar colors
1981 TEXAS INSTRUNM
Large capital set.
06684 00 00 00 00 Regular capltal set.
0874 00 20 10 08 Lower case char set.
394D 46 4F 52 FOR
0950 01 03 03 03 TI loge definition
0998 3C 42 99 Al Copyright definition

TO RXPLORR FURTHER:

It is fairly easy to move the color
bars, change their size, and change and
move text and graphics, but the systems
of numbering screen locations are complex
and far from obvious at first look (yes,
I meant systems.} One of the systems is
the consecutlve numbering of locations lIn
hex that is used in Assewmbly language.
Another 1s to specify row and column
addresses, but the addresses as they
appear in hex code (the way you see it
from the GRAM KRACKER) are a different’
story. Row addresses begin with A0 and
column addresses begin with 80. A thizd
system is to specify row and column
offsets from the last address. Ii you
have the book ™"TI39/4A INTERN", thls
should be enough to help you figure out
the addressing systems. If you do not, [
don't -advise your trying to touch this
area unless you are a very Kknowledgable
programmer. To explain the uses of the
different systems used by the GPL would
approach book length {(and I hope someone
writes lt!).

KRACKER FACTS - PAGE 17

CHANGING THE KEYBOARD
by Mike Dodd

with the OCGRAM Kracker, you can
finally change the Xkeys on the 39/4A.
One productive use of modifying the
keyboard is to add printer codes - add
keys for consensed, BSCAPE (ASCII 127),
enlarqged, etc. That way, while In
console Baslc or XB, you can type a PRINT
31:* cosmand and type the keys, rather
than having to use CHR$ statements.

Probably the best way to add new
keys is to change the SHIFT, FCTN, and
CTRL key codes for the SPACE and BNTER
keys. 11 left the ASCII codes the same
for those two keys in all the modes.
Here are the addresses, Ln GROM 0, of the
SPACE and ENTER combinations.

KEY SPACE ENTER
PCTN 1766 - 1765
CTRL 1796 1795

SHIFT 1736 1735

[f they aren't right at those
locations, you can look for them around
there. The hex code for SPACE is »>20,
for ENYER it's >0D.

If you want to try to chanqge other
keys, here are the start addresses for
each of the six tables:

1680 Joystick codes

1700 Lower case

1730 SHIFT codes

1760 FCIN codes

1790 CTRL codes

17C0 Xey scan unlts 1 and 2

To flgure out what keys correspond
to what codes in these tables, convert to
decimal and compare to the charts in the
TI Basic manual listing FCTN and CTRL
keys.

Rememer that all address are |in
GROM/GRAM, and you will need to enable
bank 1 or ? when making any changes.

A note about the lower case key
scanning: when you have Alpha-Lock down,
in the capitals position, the key scan
routine reads the key code from the LOWER
CASE table, NOT the SHIFT table. If the
key 1ls a letter (ASCII range 97-122) and
the Alpha-Lock 1is down, the Kkey scan
subtracts ASCII 32 from the key code,
which moves 1t from the lower case
portion of the alphabet to the upper case
portion. If, however, the Alpha-Lock is
down AND you are pressing SHIFT, lt gets
the key code from the SHIFT table.

One £final caution: a few programs
include thelzr own key scan routine, and
as such, the don't scan GROM for the key
code. Thus, the keyboard will revert
back to normal when running these
programs. Two programs that do this are
MG Explorer and the GRAM Kracker Memory
Editor. while these programs are few and
far between, you should keep it in mind
if considering any major changes to the
keyboard (i.e. converting it to DVORAK}.
But you should not let thls stop you from
making minor changes, like adding printer
contzrol codes for (X)Basic.

o —————— vl] S . T 0 0 M o T o — -

A FEW NOTES ABOUT MYARC 'S EXTENDED
BASIC AND THE GRAM KRACKER
by Craig Miller (MG)

Quite a few people have asked us
abaut the MYARC Extended Basic and Lts
use in the Gram Kracker.

Part of the MYARC XB system is an 8K
RAM Module and a new PROM for youz
128K/512K RAM Disk Cards. The wmodule
only contains B8K of statlc RAM, it does
not contain any programsing. The new
PROM that 13 installed in your RAM Dlsak
has a power up routine that loads some
information intoc this BK Ram module every
time you go back to the title screen.

If you want to use this XB with the
Gram Kracker simply leave the VWrite
Protect switch in the Bank 1 or Bank 2
position and then press RESET. This will
aliow the MYARC PROM to down load its
Information into that RAM Bank in the
Gzam Kracker, and appear on your menu.
You MUST leave the Write Protect switch
in the Bank 1 or 2 position in oxrder for
MYARC's XB to axecute properly.

One thing to remember {s, whatever
was in the selected Ram Bank will be
wiped out by the 128K/512Kk power up
routine, {See the article on disabling
the MYARC RAM-dlsk to fix this problem -
MDD.) So if you had TI Extended Baslc
loaded into the Gram Kracker and you left
the write Protect switch turned off, then
both XBs would appear on the menu BUT
only the MYARC XB will work. TI Extended

KRACKER FACTS - PAGE 18

Baslc contalns 2 banks of ROM and one of
them will be wiped out so it will not
execute properly.

There aze a number of TI modules
that do not contain any ROM they only
contain GROM. As such these modules can
properly reside in the Gram Kracker along
with Myarc's XB. To find out lf a module
contains ROM simply plug it into the Gram
Kracker's Module port and select 5 EDIT
MEMORY. Next press FCTN = for HEX and
sat the address to C5000., If the memory
vindow 1s full of 00 or FF, depending on
your console, then that module only
contains GROM. A few of the popular GROM
only modules are, Edlitor/Assembler, TI-
Writer, Disk Manager I & II, Multiplan
and PRK. A few of the ROM/GROM or ROM
only modules aze TI Bxtended Basic, Mini
Memory, Atart and most other third party
modules.

v . v kvl = S S S b G b A D Y P S M U Sk ol Y

DISABLING THE MYARC RAM-DISK POWER UP

by Mike Dodd

If you have the MYARC XBII
cartridge, you have noticed that the
RAM-disk always wipes out your ROM bank

if you forget to enable the write
protection., The following patch will
disable the power up routine in the

RAM-disk, which prevents it from cleazing

. out your ROM bank. Now you can leave the
write-protect off {(e.g. to act as a
Super-cart) and not werry about it being
zapped!

To make the change, enter the GRAM
Kracker Memory editor. Press FCTN 1 to
select GRAM, and FCTN 5 for search. Type
0000 for the start, and 0300 for the end.
Press FCTM 9 to enter the search window
and type 8780D0. Press FCTIN S to back
the cursor onto the "0% in DO, and press
ENTER. When it <£inds the string (mine
was at 90183}, press FCTN 5 to leave the
search and PCTN 9 to esnter the memory
field. Write down the address it ls at.

Now disable write protect and type
051904, Press FCTN 9 again, use PCIN 3
to back over to the memory address, and
type 190A, Press FCTN 9, ENTER to home

-reset.

the cuzsor, and type BF 80 DO L1 00 BF 80
D2 40 04 05. Now take the address you
wrote down and add 3 to it {>0183 + >0003
= >0186). Type that address. Turn your
write protect back on, press CTRL = to
leave the editor, and re-save GROM 0 to
disk. To save GROM 0, press 4 for
Load/Save console, 3 for GROM 0, and 2
for Save consale. Type the filename and
press ENTER. Press space (the correct
GROMs are already enabled)}, let it Einish
saving, and press space again. That's
all there is to it!

If you wish to rum MNYARC XBII,
disable your write protection, change
switch 2 from GRAM 0 to Op Sys, and press
With GRAM 0 loaded, the patch is
not in effect, so the HYARC RAM-disk will
execute its normal power up routine.
When the title screen appears, you <can
re-enable GRAM 0 and proceed as normal to
locad MYARC XBII.

Pinal note: if your RAM-disk 13 not
backed up by an external power supply,
you MUST run the power-up routine when
you £izrst turn the computer on. After
that, Lf you reset the system you will
not need to trun the power-up routine
again. ou have to run it the first time,
otherwise the CALL PART and CALL EMDK
copmands will crash. To run it without
it crahing your RAM bank, disable GRAM 0
{turn to Op Sys) when you turn on the
computer, aaking sure that the
write-protect is on. hen the title
screen appears, enable GRAM 0 and don't
worry about it again.

R —————— PP e B 8l s

CHECKING THE W/FP SWITCH IN XBASIC
by Mike Dodd

As you may have notlced, 1if you
enter Bxtended Basic with the write
protection off, your computer will lock
up. If it doesn't immediatly, it will as
sgon as you type a command. This patch
will make XB check the position of the
write protect avery time you enter XB.
1f the VW/P is off, it will reset to the
title screen and refuse to let you enter
the cartridge.

To make the

patch, load your GK

KRACKER FACTS - PAGE 19

Utility 1 version of Bxtended Basic.
Type G6372 for the memory address, FCTN =
for hex mode, and PCTN 3 to enter the
memory window. Enable bank 1 and type 0%
D FB (don't type the spaces, they're
just a quide]). Press FCTN 9, back the
cursor up over the memory address, and
type D8FB. Press FCTN 9% and ENTER fo
home the cursor, and type:

86 A3 70 86 8F FC FA BD 00 8F ED 00

86 9F FC FC D5 00 8F BD 00 59 13 0B

00

Now, restore write protect, press
CTRL = to leave the memory editor, and
resave your cartridge to disk.

T =2} <} S S ol Wl i P . S S S S T e

CHANGING THE XB "LIST™ WIDTH
by Craig Miller (MG)

With Extended Basic loaded into the
Gram Xracker you can change the LIST
vdevice® width for your output device,
This allows you to easily list your
programs to prlnter in 28 columns, 132
columns or any width you choose. This
same change will also change the DIS/VAR
file width if you LIST to disk.

To make thls change load Extended
Basic into the Gram Kracker and then use
the Gram Kracker's Edit Memory selection.
Next press PCTN = foxr Hex, FCTN 1 for
Gram Memory and FCTN 5 to activate the
search function. The Start address is
9000 and the Finish address is 9800. The
Hex string to search for is: 00 12 00 00
00

when this s found press FCTN 5 to
leave Search and FCTN 9 to put the cnrsor
itn the Memory Window. Turn oa Bank 1 to
disable Write Protection and move the
cursor to the third 00 after 12 and
change it to the width you would like (in

Hex). In our XB this was found at g9170
and the byte to change was at gdl74.
Bxamples:

00 12 00 00 00
00 12 00 00 1C
00 12 00 00 84
00 12 00 00 FE

default 80 column
28 column llstings
132 column listings
254 column listings

The area you are changing is part of
the default PAB for an RBxtended Basic
LIST to a device. Since most of it is
zerped ouft it allows the card's DSR (i.e.
RS232 or DSK) to set its own default foz
width. Wwhen you place a value here the
card will use it instead of the default
of 30 (>50)}.

1f you want to LIST a 28 column
program to disk and then load 1t into
PTI-Writer or the E/A Edltor you will need
to coavert the file back Lntc DIS/VAR 80
format. To do this simply run it through
the following XB program, where TEST is a
DIS/VAR 28 file and TESTA will be the
DIS/VAR 80 flle to bde loaded into an
editor.

100 OPEN #1:"DSK1.TEST",VARI
ABLE 28

110 OPEN #2:"DSK1.TESTA"

120 LINPUT #1:A$

130 PRINT $2:AS :: PRINT AS
140 IF BOP(1)THEN CALL CLSAL
L ELSE 120

If the file is large you can easily
convert it from DIS/VAR 28 to DIS/VAR 80
with a sector editor such as Advanced
Dlagnostics. To do this find the Flle's
Header (File Descriptor Record} by delng
a Find Pile. The "Sector” pointer at the
top of AD's screen points to the File's
Header Jector. Edit this sector and
change the 17th byte, in hex, from 1C to
56 and then rewrite the sector. NOTE:
This will only work L{f you are converting
files to a longer logical record length,
i.e. DIS/VAR 28 or DIS/VAR 40 Into
DIS/VAR 80. It won't work for longer to
shorter, i.e. DIS/VAR 132 or DIS/VAR 254
into DIS/VAR 80

NOTE: if you are using the oX
Utility I version of Extended Basic, you
do not need to make this change, as
included Ln the GX Utllity patches are a
method of setting the line width with the
LIST command.

o = AN W) W S -

KRACKER FACTS - PAGE 20

EXTENDED BASIC CALL INIT CORRECTION
by Craig Miller (M6)

Presently the CALL INIT loads >600
bytes starting at >2000 in Low Expansion
Memotry but only >4F3 bytes need to be

moved. Because of this, some routines
that were loaded into Low Expansion
Memory get overwritten. The patch

corrects this situation.

With BXTENDED BASIC loaded in the
Gram Kracker, select 5 Memory Editor from
the Gram Kracker menu.

Press FCTN = for HEX, FCTN 1 for
Gram Memory Window and then FCIN 5 for
SEARCH<

Type in C200 for the START address
and C300 for the PINISH address. Press
PCTN ¢ to put the cursor in the Search
string Input field and type in 31 06 00.
Press FCTN S (left arrow) to place the
cursor on top of the last byte to seaxch
for and press enter. -

T™izn off Write Protection, press
PCI'N 5 to leave SBARCH and press FCTN 9
to put the curscr in the Memory Window.
Now replace 31 06 06 with 31 04 F3.

Restore write protect, return to
Gram Kracker loader and resave module.

CALL INIT will now work "a 1llttle"”
quicker and it will not move unnecessary

- b T o il) S S S S D S A Ty

hytes out to Low Memory Expansion.

NOTB: if you are using the GK
Utility 1 vezaion of Extended Basic, you
do not need to make this change, as it is
lnciluded in the GK Utillty patches.

 ———— e = - S b) T A ey

CHANGING THE CURSOR SHAPE
by Mike Dodd

o change the cursor shape, in
¥Basic and Basic, search for 00 7C 7C 7C
7¢ ¢ 7C 7C. WVith XBasic, search from

g6000-7800, With Basic, seaxch from
g2000-3000 {remember to turn off the
loader!). With the Editor/Assembler,

search Eor 00 7E 42 42 42 42 7E 00 from
g6000 to g7800, unless you've moved it
elsewhere. If you moved it te Gram 7,
search from gB000-gF800. Once you find
it, change it %o whatever shape you
desire. It's the same format as in a
CALL - CHAR statement. Remember to turn
off write protect before you change It
and then turn it back on when you're
done.

o ki e o S A ;b o ol) olid S g

6K UTILITY it ENHANCEMENTS AND MODIFICATIONS
by Tom Fresman, LA 9%ers

RETAIN GRAMS 1 AMD 2 FOR YOUR OWN USE

Some users who have loaded Danny Michael's fine new combination Extended Basic
and Bditor/Assembler modules into their Gram Krackers may wish to preserve the use of
TI-Writar at the same time, I had previously loaded GRAMs 1 and 2 with BE/A and TI-W
respectively, and thus this new program, which uses these two GRAMs to hold the ASsSMl
and ASSM2 files for rapid leading, were no longei avallable., I had already modified
these modules to load the files from my RAMdisk. which is also quite rarid, so I did
not need Danny's rapld loader. However, I did wish to use the combination and make
use of the other enhancements, such as cataloging from B/A and preserving file names.

the following modifications to your FINISHED flles will accomplish the task.
Essentially, I went to the area of Danny's code where the assembler was loaded from
GRAM into CPU, and changed it back to the original E/A code, with some address chanqes
because of the move to GRAM 7, and screen location changes. All the other routines

KRACKER FACTS - PAGE 21

used by E/A to get the program from the disk were preserved.

To accomplish the changes, go to the GRAM KRACKER memory editor (press 5 on Gk
title screen), then FCTN 1 to get to GRAM memory, PCTN = to get to HEX, enter, and
then type in E658. You should see in the memory window code beginning with the
following bytes: 06 F4 60. Press PCTN 9 to replace the first three lines of code with
the following (where you see ASCII text you can type in ASCII, which saves half the
typing - also remember to push the W/P switch to Bank 1 or 7 while you are typing):

gE658 08 8B Al 14 4C 6F 61 64 20 41 73 73 'teefL0ad Ass' 'reAraREReaesi
qE664 65 6D 62 6C 65 72 28 59 2F 4E 29 IF 'embler(y/N)?’' ‘'rrzamtantas!
gEGT0 20 FB 06 E7 9P D6 75 OF 60 S5A D6 75 ' rrarayxijxy’ !'rirajyitiiyd!
gB67C 4E 60 5A 06 ES B2 E6 28 06 ES-D4 BF 'NZ¥t¥x{frrx! IRaxxapsrrtg)

Defaults for Assembler Source Code Flle
Danny's mods retain separate default areas in GRAM 2 for all the file or device

names you input - only those for LOAD and SAVE flle in the Editor are the same. [
personally wish to have the last file name 1 used for SAVE in the Editor appear as the
default for the Source Code in the Assembler, since I normally assemble souzrce code I
have just written and saved. This is easily done by positioning the cursor after the
g in the upper left corner, typing P347, then FCTN 9 to get in the memory window.
Replace the first byte 4C with 88 (W/P offl).

while you are making changes, you might consider the following:

1) if you are in fact loading the TI-¥ and B/A utility files from RAMdisk, then
you should change the device name/number at gES1E (I use DSK4.) The length should
still be 5 bytes.

2) I have also changed the name of the default program name for option 5 Run
Program PFile from UTIL1l to another name. You can do this at gB62D (see article on
changing drive defaults elswhere in Kracker Facts).

3) The format RAMdisk option from Danny's main E/A screen does not work 1if you
have the RAMdlsk with XBasic, because the CALL PART now requires three numbers rather
than 2. To make sure you do not choose this optlon by mistake, go to gEOF8 and change
the words "Pormat RAMdisk"™ to "Non-valid Xey " and change the bytes at gE05A from 52
Bl to 40 5A. You will now stay on the menu screen if you hit 7.

BE SURB you have saved your original modified module BEFORE you make the changes.
You should now save your newly modifled module under a different namwe. GRAMS 1 and 2
will no longer be used for the ASSM files-and you can go back to keeping other modules
in this space, so 1long as the high bytes in GRAM 2 from 5ED4 to 5FFP are not used
{Danny uses them to hold the default file names in E/A}. Also note that because these
2 GRAMs in the GK are not used, Danny's mods are now also useful in the 56K version of
GRAM KRACKER. However the default file names for E/A mentioned above will no longer
work; you would always see garbage when you are prompted for a file name. It is
easily eliminated with FCIN 3.

Using MSAVE
As there are still 2609 bytes of memory free at the top of the E/A In GRAM 7

(from D>PSCE on) you could still store a few short Basic programs if you use the
following {slightly cumbersome}-method:

1) If you are using GRAM 2, save it using Option 4 Load/Save Console from the GK
main menu. The third switch must be in the GRAM 1-2 position. Also save the "module”
(Menu 2) since we will be clearing the module space. If you have a 56K GK without
GRAMS 1-2 see NOTE below.

2) Move the entire contents of GRAM 7 to GRAM 2 (Gram memory — FCTN 1 until a g
appears ln the upper left corner 1f it isn't already there, K000 for start, FFFF for
Finish, 4000 for Dest, then FCTN 2 to move).

3) Initialize the module space (Menu 1}.

4) Load module (Menu 1) with MSAVE from the original GK utllity disk.

KRACKER FACTS - PAGE 22

5) Go back to the Memory Bditor (Menu 5}, FCTN 1 to get to G memory, FCTN = for
HEX. DPress enter, then type in B012. In the memory window you should see E2 B7 E2
B7. Press PCTN 9 to get the cursor in there, then type PS5 TE PS5 CB (W/P offl). FCIN
9. again, move the cursor back over the memory address and change it to E1DD, PCTHN 3
and change this B2 B7 to F5 CE also.

6) Move the 35 bytes at E2B7 to PSCE by entering E2B7 for Start, B2D9 for Finish,
and gP5CE for Dest. Then PCTN 2 to move. Put Switch 4 back in W/P position.

This new MSAVE will save Basic programs starting at F5CB, rather than BR2B7,
leaving enough room for the E/A module. Save it with a new name (such as M3AVE plus
your initials) with Menu 2

You may now go to Basic (GRAM 1-2 switch down and Loader OFF), enter your basic
progzams, and save them by entering CALL MSAVE. When you are done, and quit Basic,
you should see them on the main conscle menu.

Now go back to the GRAM XRACKER, and save module again (using yet another name,
just in case). You are now ready for your final modification of GRAM 7.

7) Go bhack to the GX Memory Bditor, FCTN 1, FPCTN =, and examine the 2 bytes at
E012. This represents the first free address after your programs. Therefore you will
want to save all the bytes from PSCE to that address.

8) Making sure that g is in the upper left cormer, and 3rd switch is in GRAMS 1-2
position type in FSCEB for Start, the bytes you just found for Finish, and gS55CE for
Dest, and press FCTN 2 to move.

3) fTthe final change 1s at g4018. This is the address for the next application
header after Editor/Assembler and must coatain FSCE. Type it in.

10) Reload the module you saved in. Step 1). 11) Move the entire- modified
contants of GRAM 2 to GRAM 7 by typing 4000 for Start,S5FFF for Finish, gE000 for Dest
and then press PCTN 2.

12) Save your new "module® with resident Baslic programs under a new name.
Remember that to USE these Basic programs the loader must be OFF, and switch 2 must be
in TI Basic position.

NOTR: If you have a 56K GK, make the follwing changes in above steps:

1} You can't save GRAM 2

2) Move GRAM 7 to GRAM 3 by using g6000 for Dest. NOW clear everything else by
a2) Start 8000 Pinish FFPP, W/P to Bank 1, PCTN 3 (FILL). b) PCTN 1 twice to get to
CPU memory, Start 6000, Finish 7FFF, PCYN 3 c) switch W/P to bank 2 and hit FCTN 3 d)
Save "module” (Menu 2) - this should give you one file on disk e) W/P ON (mid
position}.

3) to T} are the same

8) Flrst reload the "module®™ you saved in Step 2d). Then move the bytes with
g75CB as Dest

9) fThe change is at g6010. BEFORE going to next step, a) Move GRAM 3 to GRAM 7
{Start 6000 Finlsh 7FPFF Dest gE000, W/P to Bank 1, PCTN 2 b) Clear GRAM 3 ({Start s
Finish the same, FPCTN 3) c) ¥/P ON (mid position) d) Save module - this will give GRAM
7 only.

10) is the same

11) Load the "module" saved in 94}

12} is the same

All this is not as complicated as it sounds - I just detailed all the steps so
you won't make any mistakes.

0 S S kA . A A . T o A i S S T T T S M S ek SR M M A S e -

KRACKER FACTS - PAGE 23

EXTENDED BASIC PROGRAM LOADER
program by Mike Dodd
tmchnical information by Tom Freeman
article by Mike Dodd and Tom Fraz=eman

1 once asked Craig-Miller whether it was possible to run XBaslc programs directly
off the menu, as MSAVE does with Baslc programs. The answer was no, and essentially
that is true, at least as far as having them run directly from GRAM is concerned,
since the XML instzuction needed exlsts only in Baslc. But I kept on thinklng that if
XBasic can lead a program called LOAD automatlcally from drive i1, why can't it do
others as well! What follows is a program for doing this! The method involves the
following concept: when XBasic starts up, it does a certaln amount of housekeeping,
and then inserts the string DSK1.LOAD lato the crunch buffer in VDP ram, preceded by
the length byte >0B and followed by byte >00, and then "pretends" that you typed it in
with RUN, and runs it. It kurns out that this area is never touched by the
housekeeplng chores, and hence can be done right at the start. Thus my method
involves inserting the program name of your choice there instead, and setting up
proper code to make an additional item on the menu. I£ the program isn’'t there, you
get the same result as XBasic if LOAD isn't ln drive 1 - just the "ready® prompt.

When you run the program, it first checks to see if the WRTGRM subroutine s
loaded. If not, Lt attempts to load an object file called DIK1.WRTGRM/Q (see article
on writing to GRAM from XB elsewhere iln Kracker Facts). After the routine is loaded,
or if it is already loaded, the progzam presents a title screen and asks you to enter
the start hex address to store the loaders. You should consult your GK Utility I
manual for the locations of free space. A good place to store It Is starting at hex
8601 and continuing to B7PP, which is enough room for many loaders. If you are not
using the GK Utility I version of Extended Basic, you can use 7800-7FFF, 9800-9FFF, or
B800-BFFF, as these areas are free. Note that if you install the auto-lecad bypass
patch lInto XB (see elsewhere in Kracker Pacts), 78G0-780A are used. After you enter
the address, it will instruct you to enable bank 1 and press FCTN. Do so. It will
then instruct you to restore the write protect awitch and press FCTH. Again, do so.

Now it will ask you for the menu entries. The program will display the current
hex address. You should be sure that it does not go past the last free address in
your memory space. 1f it does, you should break the program and re-run it to aveid
overwriting existing code in your cartridge. The computer will now ask you for the
name to be placed on the menu. The name may not be more than 18 characters long, and
It must be in all capital letterzs. It will then ask you for a filename (e.4.
DSK1.MENU, DSKR.FWR, RD.XXB)}. Note that the filename can not be greater than 15
characters. After you enter the filename, the program will tell you if either of the
entries are too long. After a short pause, the program will prompt you for another
menu name and filename. When you are done entering all the loaders you wish to
install, enter **t (three SHIPT 8s) for the menu name. The computer will then prompt
you to enable bank 1 and press FCTN. Do so. The computer will now write.the loaders
out to the Extended Basic cartridge. After it is done it will prompt you to restore
the write protect and press FCTN. After you press FCTN, the progran will end. You
may now type BYE, enter the GRAM Kracker Loader and save your modified cartridge.

By the way, after the GKXBLOAD program is a short program that I (T.F.) wrote
allowing you to set up all 'your favorite programs to run without typing in the names:
you mwmerely Insert them in the DATA statement, and follow the last with a “". If you
save this program on your-utility disk and create a menu entry for 1t with GKXBLOAD,
you will quickly get a menu of these programs when you press the "MISC. PROGRANS" key
and be able to pick your program with one more key press. This way you can still have
the auto load of DSK1.LOAD for use with programs that need it. For this program to
run properly you MUST type in line 176 first, exactly as written!

KRACKER FACTS - PAGE 24

100 DEF A(B)=B-65536%(B<0)::
DEF A$(B)sCHRS(INT(A(B)/256
Y)ECHRS(B AND 255):: OPTION
BASE 1
110 ON ERROR 120 :: CALL LIN
K{"WRTGRM"):: ON ERROR STOP
14 GOTO 130
120 CALL INIT ::
DSK1.WRTGRM/0")
130 DISPLAY AT{(1,1)ERASE ALL
:*XBasic programs direct fro
a the main menu”: :"require
3 GRAM Kracker {tm)"
140 DISPLAY AT(5,1}):"Program
by Mike Dodd"™: :"Technical
information by Tom Freeman,
LA 99ers"
150 DISPLAY AT{10,1}:"start
GROM address?" :: ACCEPT AT{
10,21):C% ::; CALL HD{C$,BG)
160 CALL LINK{"WRTGRM",6 25554
,CHR${149),25403,A3(BG+10)&A
$(BG),BG,"1"&CHRS(0)&CHRS(11
J&CHRS(168)&" cQ"sCHRS(S5)&"c

CALL LOAD("

100 DATA RD.PRO1l,RD.PROZ,™™
110 CALL CLEAR

120 X=X+l :: READ A§(X):: IF
AS(X)<>"™" TEEN 120

130 DISPLAY AT(1,1)BEEP:"PRE
33 FPOR" :: FOR Y=1 T0 X-1 ::

") : : g
170 DINM B${15):: E=0 :: CALL
KEY(3,F,G}:: H=BG+10
130 CALL DH(H,C3):: PRINT "
now at ":;C$;"I" :: INPUT "Me
nu name? {*** tp apd} - ":
C$:: IF Cg="rzx* THEN 230-B
LSE INPUT "Fllename? ":D$
190 B=LEN{C$):: C=LEN(D$)}::
IF B>18 OR C>15 THEN PRINT *
ERROR - MAX LENGTH FOR MENU
NAME IS 18, MAX FOR FILENAME
IS 15" :: GOTO 180
200 E=E+1 :: B${B}=AS(0}aAs(
H+T+B+C)&CHRS(B)1 &CS&CHRS (C) &
DS&CHRS(0)&"1"4CHRS(0)&CHRS(
C+2)ECHRS(168)48™ "&AS{H+54B)
&CHRS{S5)&"cr"
210 IF E>1 THEN BS{E-1)=A$(H
1&SBG$(B$(B-1),3,255)
220 H=H+LEN(B$(E})::
THEN 180
230 CALL SOUND(200,1200,0)::
DISPLAY ERASE ALL

IF B<15

MENULQAD

DISPLAY AT(2TY+1,2):¢;" ";A
$(Y¥}:: NEXT Y

140 CALL KEBY(0,K,8):: [F 3=0
THEN 140 BLSE K=K-48

150 CALL [NIT :: BS=A§(X)::
L=LEN{B$):: CALL LOAD(-45,L+

240 D=1 :: DIM B§(2):: B$(1)
,B8(2)="" :: FOR B=1 TO B ::
IFP LEN{E$(D)}+LEN(BS(B))>25
5 THEN D=D+1 :: B=B-1 BL3E ®
3(D}=ES(D)&BS(B)

250 NBXT B :: IF D=1 THEN CA

LL LINK("WRTGRM",BG+10,ES(1)
}:: END

260 CALL LINK{"WRTGRM",BG+10
,E$(1),BG+LO+LEN{BS(1))} ,BS$(2

-Y)}:1 BND-

270 SUB HD(AS$,A):: A=0 :: FO
R X=3 TO 0 STEP -1 :: A=A+l6
~X*(POS{"0123456789ABCDEF", S
EGS(AS,4-X,1),1}~1):: NEXT X
271 A=A+65536%(A>32767):: 3V
BEND

280 SUB DH(B,A$):: T=B-65536
*(B<0):: A§=""
290 Q=INT(T/16}:: R=T-16%*Q :

+ A$=3EGS$("0123456739ABCEF",
R+1,1)&A8% :: IF Q THEN T=Q :
: GOTQ 290
300 3SUBEND

4):: CALL LOAD(-4Z,L)}

160 FOR X=1 TO L :: CALL LOA
D{X-42,ASC{3SEG$(B$, X, 1)1
NEXT X :: CALL LOAD{X-42,0)
170 RUN "0123456789ABCDEF"

o ot e e Al Y b B e A D o T R S B kP W T A 7 T A S D S e S S 2

A ROUTINE TO WRITE TO GRAM FROM XB

by Mike Dodd

Although the GK Util I version of Extended Basic includes a POKEG routine, it 1is

nat useful for

1 have written an assembly

programs to medify Bxtended Basic because of the fact that 1f you
disable the write protection, XB will lock up.

subroutine

for Extended Basic that prompts the user to enable and disable the write protection.
To use the WRTGRM subroutine, use the format:
CALL LINK{"WRTGTM"[,address,str-vaz...)}

In other words,

data to write.

A$=CHRS$ (0} &CHR$(1) &CHRS(2)

The address must be from -32768 to +32767.

equal to 32768 (hex

ADDR=ADDR-65536).

You may pass multiple data sets to the WRTGRM routine.

>8090),

1f the address s
you must subrtract 65536 frow-k%- (IF ADDR>=32768 THEN

you must specify a decimal address and a string containing the
If you wanted to write a hex 00 01 02, you could use:

greatexr than or

1f you wanted to write

the data Ln A$ to GROM >2000 {(decimal 8192) and the data Ln B$ to GROM >a000 {decimal
40960 - 65536 = -24576), you would use:

KRACKER FACTS - PAGE 25

LINK("WRTGRM").
WRTGRM is present in memory.
CALL LINK("WRTGRM"}::
:: CALL LOAD("DSK1.WRTGRM/O")

it.

CALL LI

NX{"WRTGRM", 8192,A%,-24576,88}

You can pass up to seven data sets in one CALL LINK this way.

You als

106 ON
110 CAL
120 pxo

o have the optlon of
This will
Por instance:

ERROR 110 ::
L INIT
gram continues...

not specifying
not do anything, other than let your program verify that

any

GOTO 120

data -

just a simple CALL

when WRTGRM is executed, 1t flrst checks to see if any parameters were passed to

If not,

it returns to XB.

a message prompting you to enable bank 1 and press FCTN.

two,

it

really doesn't matter), press the FCTN key.

If sa, it displays on the screen (at row 13, column 5}

After you enable bank 1 (or

when it is done writing all the

data passed to it (almost instantly), it will prompt the user to restore write protect

and press FCTN.

the FPCTN key.
Por an example of the use of WRTGRM, examine the listing of my GKXBLOAD program
(article elsewhere in Kracker Pacts).

0001
0002
0003
0004
6005
0008
0007
00GS§
0009
0glo0
0011
golz2
¢013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0023
0029
0030

0031

0032
0033
0034
003%
0036
0037
0033
0039

Here is

* WRITS

the source code to WRTGRM:

TG GRAM FROM BXTENDED BASIC

COPYRIGHT 1987 BY MIXE DODD

]
116
* QLI
* 615
VWA
vvD
GWA
GRA
G¥D
NUMREF
STRREF
FAC
HFP
BANK1
BANKO

RICHARDS DRIVE

VER SPRINGS, TN 37840 USA
/435-1667

DEF WRTGRNM

IDT 'MIKEDODD'

EQU >8C02

EQU >8CO00D

EQU >9C02

EQU >9802

BQU >9C0Q

EQU >200C

BQU >2014

EQU >834A

BYTE >PFF

TEXT 'Enable bank lapress FCTN'
TEXT 'Restore W/P & press FCTN'
EVBN -

* DRINT WITH BASIC OFFSBT. IN: RO=VDP
* ADDR,R1=CPU ADDR OF TEXT,R2=LENGTH

PBASIC
PBAS1

PBAS2

WRTGRM
* GET |

DATA
MOVB
MOVB
ORI
NOVE
MOV
MOV
MOVB
AI
MOVB
DEC
INE
RTWP
LWPI MYVS

PARAMETERS. IF 0, RETURN
MOVB @>8312,R6
JEQ RETURN
SRL RS6,9

SUBWS1,PBAS]1
*R13,R0
@L(R13),8VWA
RO,>4000

RO, BVWA
@2(R13},R0
44(R13),R]
*R0+,R2
R2,>6000
R2,QVVA

R1

PBAS2 -

TO LSBY & /2

KRACKER FACTS

Move switch 4 back the the center (write-protect) position and press

004C * PRINT "EMABLE BANK 1..."

0041 LI RO,>184

0042 LI R1,BANK1

0043 LI R2,24

0044 BLWP @PBASIC

0045 CLR R12

30456 * WAI'T FOR FUNCTION KEY TO BE PRESSED
0047 FCTM1 TB 7

D048 JEQ PFCTNL

0049 CLR RS

0050 A CLR RO NOT AN ARRAY
0051 [NC R8

0052 MOV RB,R1 PARAM. NUMBER
0053 BLWP GNUMREF GET NUMBER
0054 LWPI >83ED GPLWS

0055 BL @>1288 FLOATING->INT
0056 LWPI MYWS MAIN WS

0657 MOV @QFAC,R9 GRT ADDR

0058 CLR RO NOT AN ARRAY
0059 INC RS STRING

g064Q MOV RB,R1

0061 LI R2,BYTESL SPOT FOR DATA
po62 MOVB QHFF,*R2 255 CHARS
0063 BLWP @STRREP GRT IT

0054 * SAVE CURRENT GROM/GRAM ADDRESS

0065 MOVE QGRA,R7?

0066 SWPB R7T

0067 MOVB GGRA,R7

0068 SWPB R7

0069 DEC R7 CORRECT

0070 * SET GRAM ADDRESS

0071 MOVE R9, 4GWA

06072 SWPB RY

0073 MOVE R9,QGWA

0074 MOVE @QBYTRSL,R9Y GET LENGTH
0075 SRL R9,8 TC L3BY

0076 LI RO,BYTES START OF DATA
0077 B MOVE *R0+,Q4GWD WRITE TO GRAM
0079 DEC RS DONE?

- PAGE 26

JNE B NO
0080 * RESTORE OLD GROM/GRAM ADDRESS

0081 MOVB RT,QGWA

0082 SWPB R7

0083 MOVB R7,R2GWA

0084 DEC R6 ALL OF 'EM?
0035 JNE A NO, MORE

0086 * WAIT TILL USER LETS GO OF FCTM
0087 FCTN2 T8 7

0088 JNE- FCTN2 STILL PRESSING
0089 * PRINT "RESTORE W/P..."

0030 LI RO,>184

0091 LI R1,BANKOD

vk P A . T oy i 5 L S T

E/A-GRAMDSK INFORMATION
by Craig Miller (M)

If you are using the E/AGRAMDSX
version for your Bditor/Assembler module
in the Gram Xracker you can enhance the
cursor reaction time with the following
changes., First load your E/AGRAMDSK
version of the B/A into the Gram Kracker
and then use the Bdlt Memory selection to
change the following two items, in hex:

1. Bdit g7aA6, it currently contains 06
FF change it to 03 FF. This 1is part
of the delay before a key goes into
auto repeat.

2. Bdit g78BB, it currently contains O0A
00 change it to 00 01. This is a
delay loop between keys.

With these two changes in place you
will notice that the cursocr now moves a
little faster around the screen and that
it goes into auto repeat a little faster.
The cursor blink speed ls determined by
the byte value at g7AA%. It is currently
03, changing it to 01 blinks faster and
OF blinks real slow.

These |tems were found by using
DISKASSEMBLER to disassemble the EDIT1
file., Once the flle is disassembled you
can find items in the E/AGRAMDSK version
"loaded intc the Gram Kracker by adding
>5804 to the address shown in the right
hand column of DISKkASSEMBLER's output.
This will then be the gxxxx address for
editing.

If you want to change the default
Tabs for the E/A Editor they are located
at g7BDé and they are offset by minus
one, The EOF marker that appears on the
editor screen is located at g8018 through

0092 LI R2,24

6093 BLWP @PBASIC

0094 * WAIT FOR PCTN TO BE PRESSED
0095 FPCTN3 TB 7

0096 JEQ FCTN3

(0097 * RETURN TC XB

0098 RETURN LWPI >83E0 GPLWS

6899 B a>6a GPL

0100 SUBWS1 BSS »>20 W3 FOR PBASIC
0101 MYWS BSS >20 MAIN WS

0102 BYTESL BYTE 0 LENGTH

0103 BYTES BSS 255 PLACE FOR DATA

0104 END

e i} S e S — i U S

q803FP. The ‘text that -appears'- en- -The:
Command Line, when you press FCTN 9, is
located at g8614 through g8757. Have

Fun! '

b] L T .y oy -

CHANGING THE CURSOR OF THE
E/A-GRAMDSK UTILITY
by Tom Freeman, LA FFers

If you have used the E/AGRMDISK
utility that came with the 6K and
installed the CHARA! file, you may have
noticed that instead of a true cursor on
the editor and assemblex optlon screens
you get a little 1f., This is because the
B/A uses character >1F for its curser
here, and CHARAL hasn't deflned 1t as a
block. As TI-WRITER never actually uses
it as far as I can tell, you can redefine
it to whatever shape you wish. I put In
a solld block cursor, although the BE/A
module uses a hollow block. The eight
bytes in question are located as the last
two of the first sector of CHARALl and the
first six of the 2nd sector (if you have
already created the E/A GRAM disk files,
these wind up being on the 25th and 26th
sactors of the fourth £lle created. You
should see {00 40} (4C 50 10 1C 10 10) in
these two sectors. Change these all to
7% for a medium size block, or 3C for a
narrow block, or (00 7TB) (42 42 42 42 TE
00} for a hollow block.

while you're at it, 1if you den't
like the arrow Instead of a circumflex
{caret}, then go to the next sector and
look at the 10th to 3zd bytes from the
end. If these are 10 28 44 10 10 10 10

KRACKER FACTS - PAGE 27

00, you can change the 10 's to 00 's and
get a reqular caret back.

PR p—————— P bt dedna e Tkt e L

CHANGING THE DEFAULT DRIVE
by Tom Freeman, LA F%ers

Many of you Kracker Hackers may
still be working with - a TI disk
controller, but have a NYARC or New
Horizons RAMdisk. Up until now you have
had to put the EDIT1l, RDITAl, EDITA2,
ASSM1, ASSM2, FORMAl, FORMA2 in Drive 1
because the E/A and TI-WRITER modules
insisted on it. Therefore, if you wanted
fast loading from the RAMDISK, it had to
be- Drive 1, thus disabling your true
floppy drive 1. The following sections
will show you how to change these modules
tc make the defaults for drives 2-9, and
allow you to keep using all your disk
drives as usual.

To keep repetitions to a minimum, I
will zreview the process of using the GK
Editor here. First save your module to
disk (if you haven't already) using
option 2 on the GK main screen. Then
remove the module and reload the file off
the disk using option 1. Now choose 5,
the ERditor. The cursor will be in the
upper left hand corner, over a small c
tindicating CPU memory). PCTN 1 will
switch you to a small g (for GRAM).

Press enter and you can now kype the
appropriate addresses that will Dhe
described. FCTN 9 will put the cursor on

the memory window, and you can nov make
changes (be sure that the W/P switch is
up, to Bank 1, or changes will not be
accepted). After the change is made,
exit the Bditor with CTRL =, exit the GXK
with PFCT™ = or FCIN 93 and test your
changes. [f they are 0K, go back to the
GX and re-save the module.

I am not sure if there are different
versions of these modules out there,
which might make the addresses slightly
different. If so you can use the Seazch
feature of the GK. After getting the
GRAM window with FCTN 1, press enter
twice to qet to 8tart address, enter
6000, then A00¢ for the Finish address,
press PFCTN 5 to activate the Search,
press FCTN = 1f you need to change from

ASCII to hex or vice versa, press FCTN 9
to get the cursor into the search entry
field, then ¢type the string you want,
MOVE THE CURSOR BACKX TO THE LAST TYPED
ENTRY, and press enter. The GK will find
the f£irst occurence for you and put the
address in the upper left corner. To
edit what you have found press FTCN 5
agaln, then FCTN 9 and you will have the
cursor in the memory field.

EDITOR/ASSEMBLER
The default disk drive £for loading

the Bditor, Assembler, and UTIL1 files is
at g662l1. {search for BEDITYI 1if this
isn't exactly right and you don't see it
on the screen] The default name UTILl1 is
at g662D. The name length of these files
{all the same) is at qg661D (in hex of
course}, and equals 0A (i.e. DSK1.EDIT1
etc.} If you wish to have a different
program name as your default for the
Utility option it must still have 5
characters.

If you have installed the EDIT1 and
ASSM1-2 programs in high GRAM using the
B/AGRMDISK utility that came with the GK,
then these names are not needed and you
can change even the length of the Utility
program, provided you change the length
byte at g661D (be sure to add the 5 for
DSK1.) Alternatively you can change the
NAMES of the EDIT1 and ASSM1-2 flles with
a Disk Manager to make them correspond in
length to the name of the UTIL1 type
program. Then just type in the new names
in GRAM, as well as the new length byte.
There is no room for names longer than 5,
but they can be shorter. They must BEGIN
-at the same location - the unused
characters will be ignored. If you have
chalned a UTILL type program together
with the module for automatic loading on
powerup (uses FCTN X when -saving the
module, see your GK manual Eor
instzuctions) then use a 4 character name
for the module - -this makes the
additional files 5 characters. E.qg. if
the module name i3 UTIL then the utillty
programs can remain UTILL (and 2 1If
used}. I1f you installed the Editor and
Assembler programs in high GRAM then the
numbers would have to be higher than 1-2.
I named the module F, and used the high
GRAM option, so my utllity program had to
be named F4 and FS, and I therefore used
F4 for the default at g661D as above.

As you can see there are myriad
possibilitles - do it the way YOU llke.

When you have done all this you azxe

KRACKER FACTS - PAGE 28

ready to go. Flzst save the nevw module
of course!! Now set up your RAMDISK to
whatever drive you have chosen as your
default. Use some copy program to copy
the wmodule flles plus the utility
programs (and the EDIT1 etc if they are
not in high GRAM) to the RAMDISK. Now
when you enter the Editor or Assembler,
you'll get them in a flash! Disk Managez
1000 V3.5 and the MYARC Disk Manger
Supreme both support more than three

drives. 1If you are using Dis=k Manager
II, see my article oa changing that
cartridge to allow more than three
drives,

TI-WRITER

This one is a bit easier, because

the default utility program name is not
plicked out of GRAM as such, but is put up
on the screen. Hence there is no need to
worry about the length byte, as the
program measures it once you press enter.

First, the default drive number |is
at g6763 (actually DSKl. is at g6760).
If this addzess Is not corzsct you can
search for DSK1l. but there seems to be
one at 65A7 as well, I am not suze of
what the function of this one is, but not
changing Lt seemed to make no difference.

The name of the Utllity program |is
at ¢6B27 in Bnglish. Change (it to
whatever you wish (probably the same as
the one in the Editor/Assembler, if you
have them on the same disk}. The other 7
languages (!) are located at 6CDO, GEBA,
70A1, 725B, 7469, 763B, and 6EBA. You
can change them Lf you wish - [didn't
bother since I don't use them. As a
matter of fact, elsewhere In Kracker
Facts are instructions by Mike Dodd on
how to get rid of these altogether, which
will be useful in the future, because
I've heard a rumor that eventunally we
will be able to get TI-WRITER and E/A !n
one GRAM! . -

PR ———— e it e L

CHANGING DM2 TO ACCEPT NINE DRIVES
by Tom Freeman, LA F9ers

when TI originally wrote Disk
Manager II, the only disk contreller
avallable was TI!'s, whlch would not

accept more than three drives. 80, TI

didn't allow DM2 to accept a dzive number
of three or higher. But today, with
MYARC's disk controller and RAM-disks,
many people have systems with drives
numbered higher than 3. This patch will
allow you to change DM2 to allow 4, 5, or
even 3 drives!

One would think that there is a
single routine that checks for this. I
worked through this one with Explorer and
found a routine and changed it. But when
I went back to the module, the higher
numbers were only accepted in some
places. 1 wound up doing a little bit of
educated guessing. I am pretty sure that
what !s 1listed below will make 1t all
work without messing up any routines.

First the changes to the routines.
A hex 33 is picked cut of GRAM each time;
you can see this as an ASCII 3 as well.
I found the following locations necessary

to change {all in GRAM): 724D, 72C0,
63F4, 6426, 650C, 675D, 685D. All but
the 2nd and 4th also have a small

befors the 3, so you can use r3 for the
search, 1f the addresses aren't right.
Change all of these to 4, 5 or whatever
number you wish.

Next use the search feature to look

for (1-3). There ars 2 locations Eor
each language. Change these to the
number you chosa above. This doesn't
affect the running of the module but

looks neater,

v e e i v N D S T S M e e b g e

EARLY LOGO LEARNING FUN FIX
by Craig Miller (MG)

The problem with the Barly Logo
Learning Pun cartridge ls that it woan't
work with the <CorComp dlsk controller
card. The exact problem 1s that this
module has an APPLICATION PROGRAM name
length of 06. When the Corcomp DSR goes
thru the mcdules looking for Application
names Eor the menu it starts moving them
out and then Lt decrements the name
length counter. »>00 decremented is >FF
or 255 bytes, This is what causes the
mess on the title screen.

To correct this simply SAVE the
module out to dlisk using a TI or MYARC
disk controller and then LOAD it back

KRACKER FACTS - PAGE 29

into the Gram Kracker. Then select the
Gram Kracker's MEMORY EDITOR and change
the byte at g6047 to 01 and resave the
module.

It will not appear on the Corcomp
menu but you can press 3 to start the
module or you can press the space bar
twice and it will appear on the TI Henu.

' We trled putting a standard header
in it for the Corcomp menu but it messed
up the TI and MYARC menus, so 1t wasa't a
good universal fix.

o A i il 7 S S T T e T S S . -

VIDED CHESS FILENAME ENTRY
by Mike Dodd, LA FFers

The Video Chess cartridge's lack of
ability to save to disk can often be
frustrating. The following modification
will allow you to specify any filename;
disk, RAM-disk, cassette, and probably
even hard disk.

Load the Video Chess madule into the
GX. MNow enter the memory editor. Select
GRAM/GROM with PCTN 1 and hex mode with
FCTN =. BEnter search mode with PCTN 5.
Search between 6000 and 7800 for 31 00 OF
AB E8 60 60. When you find it, exit the
search with PCTN 5, get into the memory
window with PCTN 9, and type 06 78 00 05
72 65 (be sure to enabie bank 1), HNow
press PCTN 5 to search., [Leave the
addresses alone, and search for the same
stzing, by putting the cursor on the last
"0* {n the last 60", and pressing ENTER.
Press FPCTN 5 to leave the search, FCTN 9
and ENTER to home the cursor (In the
memory window, and type 06 78 060 05 72
FC. Press FCTN 9 and change the address
field (upper left corner) to 7800. Press
FCTN 9 and ENTER. HNow type the following
data (don't type the addresses - they're
just a gquide).

31 00 OF AB E3 60 60 08 FC 20 FE 00
FF 02 08 46 49 4C 45 4E 41 4D 45 3F
A0 FP 02 SF 20 FB BF 00 00 22 BE BO
00 4A 03 58 22 D6 75 0D 78 3E Dé 75
07 78 00 A2 75 20 BC BO 00 75 31 00
58 22 BD 02 06 A7 02 00 22 78 00 34
02 AB F2 A0 22 BC AB F1 03 BF 00 0B

F2 A6 BO 00 20 91 00 93 02 S8 SS 00

Now enable the write protect, press
CTRL = to leave the memory editor, and
save your modified Video Chess cartridge
to disk.

Now, whenever you tell Video Chess
to save or load a file, 1t will ask for a
flilename. Press PCTN 3 to erase the
filename if you make a mistake. MNone of
the other PCTN keys (i.e. FCTN 3, D, 2,
1) will work.

TIW-MOVER FIX
by Craig Miller (MG)

IF you use the TIW-MOVER utility to
move TI-Writer to another Gram chip you
will need to patch the FORMAL disk file.
This file currently contains a simple
module check that won't allow it to run
with the "5 RUM PROGRAM" cption of E/A or
ANY OTHER module loaded into Gram 3
{>6000->7FFF) that contains Basic
Subprograms (CALLs), such as Extended
Basic. To correct this you need to use a
sector editor such as Advanced
Diagnostics.

Once Advanced Diags is loaded place
your TI-Writer disk in drive 1 with the
write protect tab removed. Execute the
AD command "FF FORMAl" to get the file
information and the Start Sector. Once
you have the Start Sector ¥ (ssd) execute
the AD command "BS ss#". At the 34th and
35th byte in the first data sector (start
sector) of the £ile you will Eind the Hex
value of 1006, change this to 1011. The
1000 is a NOP (no operation) the 1011 1s
a JUMP to >2040 which bypasses the module
check and wipe out routine. After you
have patched this word press FCTN 9 and
then execute "WS 3si" to rewrlte the
sector. We hope thls clears up any
problems you may have encountered with
the new utilities.

. ———— T T — 7 e i B ——

KRACKER FACTS - PAGE 30

REMOVING FOREIGN LANGUAGE OPTIONS FROM

TI-WRITER & DM2
by Mikm Dodd

To remove the extra lanquages from
the TI-Writer cartridge, load TI-Writer
into the GRAM Kracker and select 5 Edit
Memory. Type 66006 to select GRAM
address >6006, and FCTN = to select hex
mode. Press FCTN 3 to enter the memory
window, enable bank 1 and type 60CB.
Enable write protect, press CTRL = ¢to
leave the memory oditor, and re-save your

P1-Writer cartridge back to disk. That's
all there is Lo it!
To eliminate the three extra

lanquages from TI Disk Manager II, enter
the memory editor. Type 68007 FCTN =
PCTN 9. Enable bank 1 and type 5B.
Bnable write protect, prass CTRL = to
leave the memory editor, and re-save your
DM2 cartridge back to disk. That's all
there is to it!

kA S b il A T T A% O S S ke ke U PR S .

GRAM PACKER HINTS
by Tam Freseman, LA F9ers

Several modifications have to be
made to your operating system in GRAM 0
In order to make full use of the GRAM
PACKER (written by J. Peter Hoddle,
available from Genial Computerware}. You
will be using your Gram Kracker Editoz to
accomplish -these. (option #5 from the GK
main menu). Rather than describe all the
keystrokes each time, I will remind you
of the general method here. First of
all, when you get to the editor screen,
press FCTN 1 once to get to GRAM memory.
Now when you are instructred to seazch
for a string, press PCTN 5 for search.
The cursor will be on the “start"
address. Accept the default of 0000 if
it is there, or type it in, then press
enter to get to "finfsh® and type 2000.
Now press PCTN 9 and type in your search
string, remembering FCTN = to get to hex
{f that is what you are searching for (in
general it will be). Back up the cursor
one space to get 1t over the last
character in the search string then press
enter. If the string is not found, the
edit field will not change - [f it is

found, the address in the upper left hand
corner will reflect the location of the
first byte of the string found. Now
press FCTN 5 again to get out of SEARCH,
then FCTN 9 to edit, and type in the
appropriate changes. You will need WP
off in order to type in the changes -
remember to turn it back on when you are
Einished typing.

The following set of changes need to

be made only if you will wind up with
more than 9 items on your main menu.
There would be - two problems 1if the

changes were not made: 1} you wouldn't
see any after 3 because of the double
spacing! and 2) even if you could the key
presses would be : ; < = > etc. some of
which would actually be twe keys (SHIFT
and key). We will therefore enable
singls spacing on the main menu (thanks
to Craig Millezr in The Smart Programmer
for - this information) and change the
sequence of key presses from numbers
beginning with 1 to lettars beginning
with A,

First, to change to double spacing:
Search for (hex) A3 52 00 3A. In many
consoles this will be at 02E0. cChange
the 3A to lA. Next comes a problem of
another routine using temporary storaqe
where we will need it (not actually
involved with the double spacing, but
needed if there ARE more than 9 items for
the menu). Leaving the start and finish
addresses the same, get back to SEARCH by
pressing PCTN 5, FCTN ¢ and type in 00 02

28 60 for the search string. You should
fipnd it at about 0380. FCTN 5 to get
. back to the memory window. The top line

should zead:
G0 02 28 60 00 D6 28 AA 43 935 D2 29
.change the 3rd, 7th, and 12th bytes:
00 02 40 50 00 D6 40 AA 43 95 D2 41

You should also insert the small
capltal character set lIntoc the TITLE
SCREEN Characters using the MNEWCHARS

program on the original GK utillty disk,
otherwise tne characters will touch each
other top %o bottom and be almost
impossible to read. Note that you can
only have 16 items on the menu because
the start address for the first item is
destroyed by the 17th item.

Now to change the key presses ¢to
letters - this is simpler. ¥irst change
your start address back to 0000, then

KRACKER FACTS - PAGE 31

search for BE 58 30. You should find It
at about 0275. Change the 30 to 40.
Next search for A& 75 31 (should be at
02FC) and change the 31 to 41. You will
now see letters instead of numbers on the
main menu.

I found another problem with many
programs: they do not bother to chaage
the keyboard unit to be scanned, assuming
it to be 5, since that is where the E/A
module is when option B5 is chosen. The
problem ts that the operating system is
using keyboard unit 3 at the time the
menu 1is set up (for this reason you can
use lower case letters for the key press
on the menu ~ they will be converted to
upper case). Here is a simple Fix: 12
bytes past the 41 you just typed in you
should see 06 03 Cx A4, where the x |is
probably a B. Change the first three to
05 19 00. Now PFCTH 9 to get out of
memory window, move the cursor to the
address after the g in the upper left
hand corner, and type in 1300. Now FCTN

-9 again, press enter to “home" the
cursor, and type in the following: 06 03
Cx BE B0 C§ 02 05 03 Oy where x is the
same as you just found above, and y i3 3
higher (in hex) than the address where
you £ound the 06 03 (1f that was 030A as
it was in my console, then y would be D).
This changes the keyboard unit to 5.

For those of you using 3BUGS, as I
do often, and who wish to use it from the
main menu, you may have found that the
small character set is not loaded, which
is a PAIN! It's OK if you have loaded it
from BE/A #5. Hers is a fix: it
incorporates MG's GPLLNK lnserted
directly into memory and then a slmple
BLWP @GPLLNK DATA >004A and then return
to the beginning of the actual progzam.
You will need a sector editor for this.
First find the PDR of the file (catalog
sector). Change byte 18(>10) from 92 to

EA. ©Second find the first actual data
sector of the file., Change byte 3 fzom
92 to EA and bytes 24-25(>18-19) from 62
84 to 7D DZ. Finally go to the LAST
sector of the f£ile (there are 30 data
sectors) and atarting at byte 146(>92)
carefully type 1in the following over
whatever is there:
70 7TE 7D 9E 7D €2 17 6C 00 50 00 00
00 00 00 0CG 00 00 C8 1B 33 E§ C8 3E
83 BC C3 20 20 GF C8 09 20 OE 02 EC
B3 B0 06 94 C9 20 70 92 83 02 05 EO
83 73 04 60 00 60 C1 20 16 &C 06 34
02 BC 7D TE C8 OC 20 0B 03 80 02 0¢
0B 00 €8 00 82 4A 04 20 7D 8C 00 4A
04 60 52 84

g — T v o Y A . — b =

GRAM PACKER AID
by Mike Dodd, LA 9%ers

One of the problems with GRAM Packer
was that it has to know whether or not it
the program uses TI Save format. Now you
can use an XB program I wrote to analyze
a fille and tell you what format it uses,
whereas before, the only way to tell was
trial and error. 9dince my program must
read sectors off the disk, you must load
Barry Traver's RAW program before running
the XB program. RAW was on Genial
TRAVelER V14, and is preseat 1in all
versions of the TRAVelER's XXB program.

When the program runs, [t will ask
for a filename. It will then analyze the
file and tell you if it uses TI Save,
doesn't use TI Save, or if it isn't an
EAS flle. It may take a while, depending
on the number of files on the disk, since
it is written in XB.

100 | ERRERARRRARTLARTIRWWY

110 !*GRAM Packer utility?
120 !*Determines if flle®
130 1*is Ti-Save type or*
140 !*non - TI-Save type?
150 !*By Mike Dodd. Usest
160 !*Barry Traver's RAW?
170 {*program. *
180 ! 3323325222220 2220t
190 GOTO 200 :: A$,B%,C3,Ds,
E$:: A,B,C,D,E,F,G :: CALL
LINK :: l@P-

200 DISPLAY ERASE ALL:"MAKE
SURE BARRY TRAVER'S RAW B
ROGRAM 13 LOADED. IF NOT,

PRESS ¥CTN 4 AND LOAD 1T
210 G=256 :: INPUT "FILENAME
? DSK"™:A$§ :: A=VAL(SEG$(A$,1
(1)):: AS=SEGS(A$,3,10):: AS
=A$ERPTS (" ¥, 10-LEN(AS$))
220 CALL LINK{"READ",A,l,BS,
C$):: BS=BS&SBGS(CS,1,127)::
FOR E=0 TC 126 :: FP=ASC(SEG
$5(BS$,B*2+1,1))*G+ASC(SEG5(BS
,B*2+2,10)
230 CALL LINK{"READ",A,F,CS,

D$):: IP SEG$(C$,1,10)=a8 TH
EN 250
240 NEXT E :: PRINT "ERROR -

NOT POUND" :: END

KRACKER FACTS - PAGE 32

250 D={15 AND ASC(SBG§(C$, 30
(1))} *G+ASC(SEGS(C§,29,1) }::
CALL LINK("READ",A,D,D$,ES)
260 B=ASC(SEG$(D%,1,1))2G+AS
C(SBGS(D$,2,1)):: IF E<>6553
S AND E<>0 JND E<>837 THEN P
RINT "ERROR - NOT E/A 5 TYPE
FILE" :: END

270 B=GXASC(SBG$(DS,3,1))+AS
C(SEGCS(DS,4,1))

280 E=ASC(SBGS$(C$,17,1)):: F
=ASC(SEGS(CS,16,1)):: IF B=9
THEN C=F*G ELSE C=F*G+E-G
290 I¥ B=C THEN PRINT "TI 3A
VE" RLSE PRINT "NON TI SAVE"

