SERIES 6300 PARTS MANUAL

$A \rightarrow C$ CROB
 The Originator of Electronic Darts

TABLE OF CONTENTS

Page

Introduction 3

1. General Description 3
2. Unique Features 3
3. Unpacking/Assembly 4
4. Operation 4
5. Technical Description 5
6. Parts Listing 13
7. Troubleshooting 18

This manual contains description, unpacking/assembly, operation, and troubleshooting information for the model 6300 English Mark Darts Machine.

The purpose of this manual is to provide the user with a basic installation and field service guide. If you should encounter a problem that is not covered, please call the factory using our toll-free number, 800-435-8319 or 815-654-0212.

SECTION 1 - GENERAL DESCRIPTION

The 6300 Series English Mark Darts machine is a patented microprocessor controlled dart game (patent \#4057 251) where players may select one of several different games. It is a coin operated game offering players a choice of 1 credit games or more challenging 2 credit games.

Occupying only 2.5 square feet of floor space (see Figure 1), this unit uses a revolutionary sealed switch matrix scoring system behind the dart face. As the darts strike the target, the machine's computerized digital scoring system gives the players an instantaneous displayed score.

Figure 1. Plan view of the 6300 Series play field.

SECTION 2 - UNIQUE FEATURES OF THE 6300 SERIES GAME

There are several features that are unique to the 6300 series English Mark Dart Game from previous series games, such as:

1. There are several games on the 6300. These games are: 301, Count-Up, Tic Tac Darts, 501 Team Doubles-Open in/open out, 701, 301 Double in/double out, three versions of Cricket: Regular, Cut Throat and Team.

A. 301-1 credit per player-20 round maximum

 A count down game for one to four players where each player starts with 301 points. The first person to hit zero exactly or the lowest score after 20 rounds wins the game.
B. Count up-1 credit per player - $\mathbf{8}$ round maximum

A 24 dart game for one to four players where each player tries to score the most points in 24 darts thrown (three per round.)
C. Tic Tac Darts - $\mathbf{1}$ credit per player - 20 round maximum A game for two players. The numbers will come up at random to start the game. The bull is always in the center square. To mark an X or O a player must hit a number 4 times. Hitting a number more than 4 times will score points for that player. Singles score 1 hit, doubles score 2 hits, and triples score 3 hits and the bull scores 1 hit. When one player gets 3 X's or 3 O's in a row, he wins. In case of a tie game where it is not possible to have 3 in a row, the high score wins.
D. 501 Team Doubles - Open in/open out - 2 credits per player. 35 round maximum.
One to four players or teams, played the same as 301. This is usually played by two-person teams.

E. 701-Open in/double out - 2 credits per player-35 round maximum

One to four teams or players, played the same as 301 except to go out a double or bullseye must be hit (Inner bull if double bull active). Count down game popular with three or four person teams.
F. 301 Double in/double out - 2 credits per player - 35 round maximum
This is for the more experienced players. One to four players, played the same as 301 except the player must start counting down and end the game by hitting a number in the outer double score ring or by hitting the bullseve (Inner biell if double bull active).
G. Cricket - Two to four players - 2 credits per player - 35 round maximum.
The game of Cricket is played with the numbers 15 through 20 and the bullseye. Each player must hit a number three times to close the number and score before the number is closed by the opponent. The winner is the first person to close all the numbers and have the highest or equal score. Cricket can be limited to 200 points over opponents at the operator's discretion. See section 4.3 for instructions on how this is done.
Three options are offered when playing Cricket on the 6300: 1) Two to four players can use the regular game. The
highest or equal score with all the numbers closed wins. 2) Two to four can play the game of Cut Throat Cricket. Close a number and give points to your opponents. In this game, the lowest or equal score wins.
3) Four players participate as two teams. Both you and your partner must close the number before your team can score.
2. Credit Accumulation. Players may insert as much money as they wish, and the game will accumulate up to 99 credits, using only the amount that is necessary for the particular game chosen. This feature allows the use of large denomination coin mechanisms and bill acceptors with this game. See special insert on the Coin Credit option for information on how to use this feature to its full advantage.
3.. Target lamps surround the target head with light. Darts already stuck in the board no longer cast shadows on other segments. In the "off" condition, the lamps go dim, just enough to let the dart player see the target without giving him enough light to play for free. The level of light is adjustable internally to suit the ambient light conditions at the locations. The fact that the lamp doesn't get "cold" gives longer life as the surges of current when turned on are reduced (i.e. a warm bulb has a higher resistance than a cold bulb.)
4. Warm Up Mode. The target lamps come on when coins are inserted, and a warm-up round consisting of 3 darts per credit can be thrown. After all darts are thrown, the lamps will go dim until a game is selected. The operator may also choose to have the game emit a tone whenever a dart is thrown during this "dim" state. This is accomplished with a small set up routine, done during the game's test mode (see section 4.2 A). The tone will also sound when there are no credits on the game. This feature will call attention to the fact that someone is throwing darts without inserting coins.
5. Bullseye Options. By flipping a single D.I.P. switch on the main P.C. board (described in section 4.3), the operator can choose to have a 25 point/ 50 point bullseye, or our original 50 point only bullseye. Also, with a small setup routine done during the game's test mode, the operator may choose to enable the game to sound off in a special way if a player throws a hattrick (3 bullseyes in one round) in $301,501,701$ and Count-Up only. When the double bull is activated, the outer bull (25 points) counts as a single hit, and the inner bull (50 points) counts as a double hit. This is important to know when playing cricket and double/in or out games.
Note: $25 / 50$ point bullseye is only active on 2 credit games.
6. League Slot ${ }^{\text {TM }}$ In the $\mathbf{6 3 0 0}$ Series game, a league money slot is provided so that league captains may deposit their money envelopes into the safety of the game cabinet for

Figure 2. Stuck segment indicator display
7. External video is available for displaying the scores to large crowds at tournaments or to attract other player's attention. Section 5.8 shows how to do this.
8. Electronic popularity meter and coin meter to keep track of statistics. You can tell how many times each game was selected and total number of coins inserted. (See section 4.2 Test Mode for further information). A mechanical counter is mounted inside the coin door as well, due to the fact that the electronic meter can be reset.
9. Stuck segment indication on screen to immediately let the player know to check for broken tips or any other foreign objects holding a segment back. It indicates which segment is closed by flashing its location on the screen. (See Figure 2.)
10. Instructions can be read any time a game is not being played by pressing "ENTER" to bring up the instruction menu, selecting the game you want to see instructions on with "SELECT", and pressing "ENTER" again. Return to attract mode is automatic after approximately a minute and 30 seconds or by inserting a coin or pressing "ENTER". After inserting coins, instructions can still be selected as it is the last item of the menu.
11. Other On-Screen Features. On the 6300 series game, the temporary score will flash while the remove darts indicator is on, to help alert the player that it is not yet time to throw darts.

At game over, the screen will show if the winner went out in $6,7,8$, or 9 darts (Known as 9 dart out or better) in 301, 301 double in/double out and 501 only.

When a game is over and game select screen is called up again, the pointer will be resting at the last game selected. This will be convenient for those who wish to replay a previous game selection, or for locations where there are only one or two popular games.

SECTION 3 UNPACKING/ASSEMBLY

3.1 Unpacking

a) Using a sharp knife, cut the plastic bands.
b) Slide the top of the container straight up.
c) Remove the individual pieces from the cardboard base. The machine is now ready for assembly. -CAUTION-
DO NOT LIFT BASE UNIT BY ITS INSTRUCTION PANEL.

3.2 Assembly

a) Remove back of top assembly.
b) Feed ribbon cable and lamp plugs through the hole in center of bottom.
c) Attach top assembly into base assembly as shown in

Fig. 3 using four 1/4-20 carriage bolts and nuts and two $1 / 4$ " hex cap bolts (Fig. 3A) and washers. See hardware instructions (37-0134) in your accessory kit for detailed assembly information.
d) Feed speaker connector up through the hole in base of top assembly and connect (Fig. 4).
e) Power cord plugs into a 120 V AC (or proper input voltage for your country) GROUNDED wall outlet.
The machine is now ready for power up sequence.

SECTION 4 - OPERATION

4.1 Power Up, Checkout, and Test

a) Turn on dart machine using on/off switch on the back of the machine. The remove darts/throw darts lamps should start to flash alternately. After a few seconds, the monitor should come on displaying the attract sequence.
b) Inside the coin door you will find a slam/reset switch, Fig. 5, which when activated will cause the game to reset, and a slide switch which will put the game into test mode when depressed and released.

Figure 5. Coin door showing coin mechanism, reset switch and test switch
c) Slide the test switch down and release. The screen will show a crosshatch test pattern plus a message that the lamp test is starting. At this time all lamps on the machine will illuminate to check for proper operation.
These lamps are:

1. target lamps (3)
2. remove darts (2) on PC board
3. throw darts (2) on PC board
4. select push button lamp
5. enter/player change lamp

While the lamps are lit, the sounds of the game are played. Next the lamps will go out and the message "TEST TARGET HEAD" will appear at the top and other messages will appear at the bottom, as shown in figure 6. If you press any segment in the dart head at this time, the score should appear in the center of this screen.

Figure 6. Test mode ready for dart head test

Figure 7. Report screen
4.2 Test Mode Setup and Report Screens. From the screen displayed in Fig. 6, you can select several different modes to view or change screens or operations of your dart game.
A. Setup Screen. Press the test switch again, and the setup screen for free dart sound appears. If you wish to enable this option, press enter, if not, press select. Next the screen for hattrick sound will appear. Do the same for this option. (See section 2.4 and 2.5 for description of these options.) Once both options are selected, the game will return to the selection screen (Fig. 6 except crosshatch and target head test will be gone). Pressing the test switch or inserting a coin will bring you out of this mode.
B. Spider Writer screen. Press enter, and the spider writer screen will become accessable. See Spider Writer page (Fig. 10) for instructions on how to use it. If you press select while in this mode, it will bring you back to the selection screen.
C. Popularity Report Screen. Press select, and the popularity report screen appears. From this screen, you can tell how many times each game has been played. In the bottom left corner is an electronic coin counter, which keeps track of the number of credits issued by the game (Fig. 7). The numbers displayed on the popularity report screen can be cleared by pressing the bullseye when this screen is on.
NOTE: the electronic coin counter will also reset to zero when this is done.

All screen options listed above will be retained when the power is turned off. (See section 5.2.6) Closing the slam switch or turning the power off and on will always cancel any mode you're in. Otherwise, follow these written instructions or screen instructions to change modes or exit.

4.3 Main P.C. Board dip switch options

There is a four position D.I.P. (S1) located near U20 on the Main P.C. Board. This switch package has many functions. Switch numbers 1 and 2 are used for certain coin accumulation options. See Coin Credit insert for more information on the settings of these. Switch number 3 is used to select a single, 50 point bullseye, or a $25 / 50$ point double Bullseye. In the "Off" position, the Bullseye is 50 points, in the "On" position the Bullseye's outer ring is 25 points and its inner ring is 50 points for 2 credit games. This option makes games like Cricket more challenging to expert dart players. If you opt for the $25 / 50$ point double Bullseye, you may change the Bullseye to the two-piece double Bullseye included in your accessory kit. Simply follow the instructions for disassembling the Dart Head in Section 5, replace the Bull segrnent, and reassemble per instructions.
Switch number 4 is used to select cricket 200. When this switch is in the "on" position, the player with the highest score cannot score more than 200 points above the closest opponent's score. This discourages extended "practice" play during a game. "Cricket 200" will be displayed on the screen during the cricket game when this option is activated.

SECTION 5 - TECHNICAL DESCRIPTION

5.1 General

Figure 8 and Figure 9 show the main components of the game.
a) Main CPU Board (Behind front door)
b) Power Supply
c) $9^{\prime \prime}$ Monitor
d) Target Interface Board
e) Dart Head Assembly
f) Coin Credit Card

The assembly containing the main board, monitor, Coin Credit Card, and power supply is designed for easy access as shown in Fig. 8. Most service can be performed by swinging the front door open. However, if desired, the component tray can be removed entirely by unplugging game, unscrewing three screws in the bottom of the tray, disconnecting target lamp wire, ribbon cable, speaker wire, and coin door harness. This way the unit can be bench tested by attaching a dart head $w /$ target interface, a low wattage (40W) lamp, and switches to simulate the coin up, test, and reset.

Figure 8. Front view of 6300 game.

Figure 9. Rear view of 6300 series game.

This page left blank intentionally

SPIDER WRITER INSTRUCTIONS: EASY AS 123

1. Put the game into the test mode by depressing the slide switch inside the coin door. At the end of the test mode the message "press Enter for text input - press Select for report" will appear. Press the Enter button.
2. A cursor will appear in the upper left corner of the screen. Use the dart head as a "keyboard" to move the cursor around and to enter your custom message. The diagram to the right illustrates which symbols are represented by segments in the single, double and triple rings.
3. Press the bullseye when you are satisfied with the screen you have created. The Spider Writer will remain in the input mode for ten minutes before returning to normal game operations. If time expires while you are entering a screen, simply put the game back in Test mode and continue where you left off. The screen you were working on was automatically saved.

HELPFUL HINTS:

Use the 32×16 grid below to create the screen on paper before writing it on the game. It will save you time in deciding where to place words or graphics. Make copies of this original and draw on the copies, saving the original to make additional copies from.
Be careful of the Single 5! It clears the screen completely and should only be pressed when you wish to change the entire screen.
Note: A game that is not properly grounded may place strange characters in random locations on the screen. Please make sure the ground plug on the wall receptacle is properly connected.

Keyboard Legend
Each segments In the Singles, Doubles, and Triples rings correspond to the letter, number or graphic represented on the diagram above. Use "Move" segments to position the cursor on the screen. Be careful of the single 5 - It clears the screen completely.

SPIDER WRITER WORKSHEET

Use this grid to design your custom screen

This page left blank intentionally

5.2 Main CPU Board

The main CPU board (Figure 19, page 14) contains a 6809 microprocessor and associated IC's consisting of:
TMS4416 16KX4 Dynamic Memory - U12, U13
TMS9118 Video Generator - U11
74LS32 2 Input OR Gate - U10
MK48Z02 2KX8 Memory W/Battery - U23
27256 32 K Eprom - U15
74LS04 Hex Inverter - U1
556 Dual Timer - U2
6821 Peripheral Interface Adapter - U4, U17
74LS138 3 Line to 8 Line Decoder - U14
LM340-15 15 V Regulator - U22
LM383T Audio Amp - U21
6840 Programmable Timer - U16
ULN2003 Transistor Network - U7, 18, 24
Capacitor Network -.O1UFDX8 - U8, 9
Resistor Network - 2KX8 - U5
Resistor Network - 10KX8 - U19, 20
Diode Network - IN4148X8 - U6

5.2.1. Monitor - See monitor manual

5.2.2 Player Change - Select

The player change and select push buttons are located on the front slanted panel. When the player change is closed, pin 3 of U17 is shorted to ground. When select is closed, it shorts pin 2 of U17 to ground. When the switches are open, the inputs are held high by a 10K OHM resistor network. C22 and C23 (.Olufd) are used for noise suppression.

5.2.3 Sound Circuit

Sound is generated in U16 by programming timer 1 (of three timers) to free run at specific frequencies. The sound is output at pin 27 (01) and is fed thru R9 which is the volume control accessible from the top of the main PC board. U21 (LM383T) is an 8 watt audio power amplifier whose gain is controlled by the ratio of R23 and R24. The voltage for U21 is controlled by U22 (LM340-15) a 15 volt regulator. Input should be 21 to 24 volts DC depending on line voltage.

5.2.4 Reset

The microprocessor can be reset either by shutting off power for a few seconds and then turning back on, or by closing the slam switch inside the coin door.
a) The slam switch on the coin door is buffered with two sections of U7. When the switch is closed, pin 2 of U7 is grounded. U7 inverts this signal twice so the effect on the reset line is that it goes low. C 6 is used for preventing electrical noise from triggering a reset.

Figure 11. Target interface board with test jumper
b) The purpose of half of the 556 timer is to give a short delay to the reset line after power up. The reset line cannot come to 5 volts at the same time as the 5 volts on Pin 7 on U3, but must be delayed a few clock cycles for reset to work properly.

5.2.5 Interrupts

The microprocessor can be interrupted in three different ways at which time it will jump to the part of the program that controls that particular interrupt.
a) Two of the three timers (U16-6840) are cascaded to give approximately a ten-minute delay before an interrupt will occur, at which time the game resets as if you had just turned it on. Any activity during a game automatically resets the timer back to 10 minutes (i.e. as long as there is someone playing the game it will not reset, only if it is left unattended for 10 minutes). b) The coin input switch will override any game or other mode that the game may be in.
c) The test switch will also be acknowledged any time.

5.2.6 Memory

Memory in this system consists of 2K of RAM (U23-MK48ZO2) with internal lithium batteries. This gives data retention when power is off for the popularity screen. The manufacturers data sheet (MOSTEK) states the minimum expected data retention time as 10 years based on statistical studies made by MOSTEK.

Eprom memory (U15-27256) holds the main program. The window on the IC should always be covered with our stick-on label as Eproms are erasable when exposed to ultraviolet light over a period of time.

5.2.7 Address Decoding

Address decoding is done with U14, a three line to one of 8 line decoder. This IC determines if the microprocessor is addressing memory, one of the two peripheral interface adapters, the 6840 sound IC, memory, or the video IC.

5.3 Target Interface Board

The target interface board is used to combine the 33 conductors from the switch matrix into 16 conductors. At times it can be important to know which pins on the target interface board will give a particular score. This information is in Table 1 and Figure 12. With the game in test mode (at the end of test when the dart head is sensitive) or in game mode, shorting, momentarily, the correct pair of pins in the target interface board with a jumper wire will give a score (see Figure 11). Doing this might save troubleshooting time as you can determine if a problem is in the switch matrix or the electronics.

> - NOTE -

THE SCORE WILL NOT APPEAR UNTIL THE JUMPER WIRE IS REMOVED.

You will note from Table 1 that the 13 pin connector is common to all switches. Since the microprocessor won't score until the switch opens, pulling off the 13 pin connector while in test mode will give you the score of a stuck segment or switch. The effect is that the switch gets opened so the microprocessor can give the score. This can save troubleshooting time. Another method of opening the switch is to disconnect the ribbon cable from the main P.C. board.

Figure 12. Target interface board letter designations

TABLE 1 Letter Designation of Scores			
SCORE	SINGLE	DOUBLE	TRIPLE
1	DN	EN	FN
2	AL	BL	CL
3	AN	BN	CN
4	DL	EL	FL
5	AP	BP	CP
6	GL	HL	GP
7	DO	EO	FO
8	GI	HI	GM
9	AO	BO	CO
10	AI	BI	Cl
11	AK	BK	CK
12	DP	EP	FP
13	AM	BM	CM
14	GK	HK	GO
15	GJ	HJ	GN
16	AJ	BJ	CJ
17	DM	EM	FM
18	DI	El	Fl
19	DJ	EJ	FJ
20	DK	EK	FK
OUTER BULL		HM	
INNER BULL		HN	

5.4 Target Illumination

The target illumination consists of three frosted "show case" bulbs $51 / 2$ " long. These are used for illuminating the dart head during attract mode as well as during play. In the attract mode, the brightness of the lamps should be adjusted so the dart head is barely visible, not bright enough to allow free play. This is adjusted with a screwdriver or thumb and forefinger turning knob on the base of the power supply inside the component tray (see Figure 13).

Figure 13. Adjusting "off" condition target illumination

The off brightness is a result of (see power supply schematic) R4, C10, and a ST-4 DIAC. These components turn on the gate of the Triac (SC146D) for only a portion of each cycle of AC, the same as a wall dimmer switch would do.

When the game is coined up, the gate of the Triac is turned on all the time through the MOC3030. This off brightness also keeps the filament of the bulb warm which greatly reduces the turn-on shock and should give longer life to the lamps and Triac.

5.5 Power Supply

The power supply consists of three voltage levels, +5 V , +12 V , and +21 VDC . The 5 V and 12 V come from the same transformer output. The 12 V supply consists of two regulators, a MC78T12 for the monitor rated at 2 amps and a LM340-12 for the lamps rated at 1 amp .

The 5 V regulator should be $\pm .1 \mathrm{~V}$ with load and line. All of the logic is powered from this supply.

The +21 V supply is unregulated and will vary with line and load. This supply feeds the +15 V regulator located on the main PC board. The 15 V regulator powers the audio circuit.

There are three fuses in the power supply. The main fuse is located on the chassis. It is a 2.0 amp 250 Volt slow blow 3AG size. Nothing will function if this fuse blows.

The other 2 fuses are located on the small printed circuit board on top of the power supply. The one closest to the edge is FSI, a 5 amp 250 volt slow blow 3AG size. This protects the lamps and 5 volt and 12 volt circuits. The fuse next to it (FS2) protects the sound circuit. It is a . 75 amp 250 volt slow blow 3AG size.

-NOTE-

THE GROUND ON THIS GAME IS FLOATING AND MUST NOT BE CONNECTED TO THE POWER SUPPLY CHASSIS GROUND. THEREFORE, ALL VOLTAGE
MEASUREMENTS SHOULD BE REFERENCED TO THE GROUND ON THE SMALL PC BOARD ON TOP OF THE POWER SUPPLY OR GROUND ON THE MAIN BOARD.

5.6 Dart Head

The dart head is set to exact specifications at the factory. The bolts that hold the board together are tightened to finger tight only. Do not tighten any further as this can close switches in the switch matrix and cause the dart head to lock up or misscore.

5.7 Dart Head Disassembly/Reassembly

To clean or replace parts in the darthead remove the back of the game and set it aside. Then disconnect the three switch matrix connectors from the target interface P.C. board, remove the four large nuts holding the darthead in place, and gently pull darthead assembly out of the cabinet. Now, disassemble and assemble the darthead as follows:
a) Remove the 8 nuts and lift off target back.
b) Remove the switch matrix.
c) Remove the matrix cushion.
d) Check for dirt and broken tips or other foreign matter between spider, cups, matrix and cushion, etc.
e) Replace any worn or broken cups.
f) Clean and re-install matrix cushion. (Also see note below)

- IMPORTANT -

THERE SHOULD BE A SMALL U SHAPE CUTOUT ON THIS CUSHION. POSITION IT TO THE LEFT OF CENTER (BEHIND THE "DOUBLE ONE" SEGMENT) AT THE TOP AS SHOWN IN FIGURE 14. THE SWITCH MATRIX ALSO HAS A CUTOUT IN A SIMILAR LOCATION.
g) Place the switch matrix with the tails on the left and the 9 pin connector on top, lining up the U shape cutout close to the one on the matrix cushion.
h) Clean and re-install target back and 8 nuts, tighten only finger tight.

- NOTE -

BOLTS MUST BE FINGER TIGHT ONLY. ANY TIGHTER WILL CLOSE CONTACTS IN THE MATRIX AND CAUSE INACCURATE SCORING OR NO SCORING AT ALL.

-NOTE-

IT IS IMPORTANT TO KEEP DIRT OUT OF THE AREA BETWEEN THE SPIDER AND SEGMENTS AS THIS CAN CAUSE NON-SCORING OR IMPROPER SCORING. ON A HEAVILY PLAYED GAME IT IS A GOOD IDEA TO DO PREVENTIVE MAINTENANCE ON A REGULAR BASIS IN THE FORM OF DISASSEMBLING THE DART HEAD, CLEANING, AND REASSEMBLING. THIS CAN HELP PREVENT SERVICE CALLS IN BETWEEN REGULAR VISITS.

-NOTE-

ALTHOUGH THE DART HEAD IS DISASSEMBLED AND REASSEMBLED AS IN THE PAST (WITH 4500 AND 5000 SERIES GAMES), WITH THE 6300 IT IS INSTALLED WITH THE 3 LEADS IN THE DOWNWARD DIRECTION. THIS MEANS THAT THE "20" ON THE YELLOW SPIDER IS NOT AT THE TOP. THE PROGRAM WAS CHANGED TO REFLECT THIS CHANGE. MAKE SURE THAT IF USING A DART HEAD FROM ANOTHER SERIES GAME THAT THE RED AND BLACK SEGMENTS ARE IN THEIR PROPER PLACE. (SINGLE 20 IS RED).

5.8 Video

The video signal is created with the TMS9118, U11, along with video RAM chips U12 and U13, TMS4416 dynamic memory. The output signal is at pin 36 of the TMS9118 and is buffered to protect the video chips with TRI.

On the main printed circuit board there is one RCA style phono jack. (see Fig. 15 and 16). It is to be used if external TV's are desired to be set up. To do this, run a cable from the RCA jack to an RF modulator or the video input of a VCR. The output of the modulator or VCR is usually on channel 3 or 4 and should be connected appropriately to the TV. This is a great way to display games at tournaments or just to create added interest in the location.

The TMS9118 contains circuitry for a 10.7 MHZ crystal and divides it by 3 to create a CPUCLK signal. This way a separate crystal is not necessary to run the microprocessor.

Figure 14. Dart Head Assembly

D - Spider Assembly

Figure 15. Hooking up a modulator for external TV

Figure 16. External TV

Figure 18 Coin door assembly

Figure 17 Target interface P.C. board

SECTION 6 - PARTS LISTING
 TARGET INTERFACE BOARD
 00-6000-02R
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">FIG.\# ITEM \#</td>
<td style="text-align: center; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">PART</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">DESCRIPTION</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">17</td>
<td style="text-align: center; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">1</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$10-0020$</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Connector-9 pin</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">17</td>
<td style="text-align: center; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$10-0022$</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Connector-13 pin</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">17</td>
<td style="text-align: center; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">3</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$10-0021$</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Connector-11 pin</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">17</td>
<td style="text-align: center; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">4</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$15-0144$</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Ribbon cable-16 wire</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| FIG.\# ITEM \# | PART | DESCRIPTION | |
| :--- | :---: | :--- | :--- |
| 17 | 1 | $10-0020$ | Connector-9 pin |
| 17 | 2 | $10-0022$ | Connector-13 pin |
| 17 | 3 | $10-0021$ | Connector-11 pin |
| 17 | 4 | $15-0144$ | Ribbon cable-16 wire |</table-markdown></div>

		18
18	5	$13-0043-01$
18	5	$13-0043-02$
18	7	$18-0131$
18	7	$18-0130$
18	8	$15-0209$
18	8 A	$18-0029$

00-6200-04R 00-6201-04R 00-6202-04R 00-6203-04R 00-6204-04R 00-6205-04R 00-6206-04R 00-6207-04R 00-6208-04R 00-6209-04R 00-6210-04R 00-6211-04R 00-6212-04R 00-6213-04R 00-6214-04R

13-0043-01
13-0043-02
18-0131
15-0209
18-0029

DESCRIPTION
U.S.A. 25 Cents

German 1DM/5DM
Belgium 20 Bel. Francs
Sweden 1 Krone/5 Krone
Holland 1 Guilder
France 5F/10F
Italy 500 Lire
Spanish 25 Pesentas
England 10 Pence
Swiss 1 Swiss Franc/5 SW. FR.
Japan 100 Yen
New Zeland 50 Cents
Canada 25 Cents
Austria 10 Shillings
Australia 20 Cents
Coin Mechanism - U.S.
Coin Mechanism - Canadian
Cash Box, Plastic
Lid for Plastic Cash Box
Coin Door Harness
CoinCounter, 4.5V.w/Int.Diode

MAIN P.C. BOARD ASSEMBLY
 00-6300-01R (USA)
 00-6301-01R (German)
 00-6305-01R (French)
 00-6307-01R (Spanish)

	EM	PART	DESCRIPTION
	9	01-0014	74LSO4
	10	01-0035	556
	11	01-0056	6809
	12	01-0037	6821 (2)
	13	01-0015	74LS138
	14	01-0052	TMS4416 Memory (2)
	15	01-0053	TMS9118 Video
	16	01-0054	74LS32
	17	01-0055	MK48ZO2 Memory w/ battery
	18	01-O120R	Eprom U.S.A. Plus II
	18	01-0122R	Eprom Spanish Plus II
	18	01-0123R	Eprom German Plus II
	18	01-0124R	Eprom French Plus II
	19	01-0039	6840
	20	02-0045	Resistor Network-2K ohm
	21	02-0001	Resistor Network-10K ohm (2)
	22	19-0018	Transistor Network-HLN2003A (3)
	23	19-0020	Diode Network-TND903
	24	01-0033	LM340-15 (15V Regulator)
	25	01-0027	LM383T
	26	06-0005	Crystal 10.738635 MHZ

	EM *	PART *	DESCRIPTION
19	27	13-0020	Heat Sink
19	28	11-0013	Lamp with Socket (4)
19	29	02-0003	Resistor 2.2 ohm 1/4W
19	30	02-0055	Resistor 75 ohm 1/4W
19	31	02-0011	Resistor 220 ohm 1/4W
19	32	02-0056	Resistor 470 ohm 1/4W
19	33	02-0017	Resistor 1K ohm 1/4W (10)
19	34	02-0047	Resistor 3.3K ohm 1/4W(5)
19	35	02-0021	Resistor 10K ohm 1/4W (3)
19	36	02-0048	Resistor 12K ohm 1/4W
19	37	02-0049	Resistor 510K ohm 1/4W
19	38	02-0036	Resistor 1 MEG ohm 1/4W (2)
19	39	02-0041	Resistor 10K ohm Variable
19	40	03-0044	Capacitor 33pf. 16V (2)
19	41	03-0002	Capacitor .01 mfd 50 V (23)
19	42	03-0005	Capacitor . 1 mfd 16 V (2)
19	43	03-0007	Capacitor .22 mfd 16 V
19	44	03-0008	Capacitor 33 mfd 100 V
19	45	03-0009	Capacitor 47 mfd 16 V
19	46	03-0012	Capacitor 1 mfd 50 V (2)
19	47	03-0021	Capacitor 100 mfd 25 V
19	48	03-0031	Capacitor 1000 mfd 25 V (2)
19	49	03-0032	Capacitor 4.7 mfd 25 V Tantal
19	50	03-0042	Capacitor Network . 01×8 (2)
19	51	19-0007	Diode IN4148 (3)
19	52	19-0011	Transistor, 2N4400
19	53	10-0076	Phono Jack, Panel Mount
19	53A	08-0020	Dip Switch, 4 Position
19	54	10-0069	Video Connector, 2 Pin

Figure 19

MAIN CABINET ASSEMBLY

Figure 21

Figure 23.

DESCRIPTION
Bottom decal lexan
Top cabinet unassembled
Top decal
Competitor strip
Cabinet bottom unassembled
Lock back door
Speaker and harness
Decal, Games List, USA, Plus II
Decal, Games List, Spain, Plus II
Decal, Games List, England, Plus II
Decal, Games List, France, Plus II
Decal, Instructions, USA, Plus II
Decal, Instructions, Spain, Plus II
Decal, Instructions, France, Plus II
Socket, Lamp, Med. Base (3)
Lamp, 120V, 40W, 5 1/2" Long (3)
Deflectors, Lamp (3)
Aluminum Foil Light Reflectors
Main Harness
Switch \& Lamp Harness
Videó Harness
Component Tray Assy.
Switch, Illuminated W/O bulb
Bulb GE658
Monitor, 9" Amber
PC Board, Monitor, Complete,Kristel
PC Board, Monitor, Complete, Omnivision
CRT for Monitor, (9")
Coin Credit P.C. Board

Figure 22.

- NOTE-

THE PART NUMBERS LISTED ARE THE ARACHNID PART NUMBERS. PLEASE USE THESE NUMBERS WHEN PLACING YOUR ORDER. SOME
DESCRIPTIONS ARE FOLLOWED BY A NUMBER IN PARENTHESES. THIS NUMBER IS THE QUANTITY USED IN THAT ASSEMBLY.

Figure 24

POWER SUPPLY CHASSIS ASSEMBLY
 00-6006-17R (230V Version) 0-6000-17R (110V Version)

 00-6008-17R (100V Version)

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 32

DARTHEAD SEGMENTS

FIG \#	ITEM\#	PART\#
30	1	$17-0003$
30	2	$17-0008$
30	3	$17-0005$
30	4	$17-0009$
30	5	$17-0006$
30	6	$17-0010$
30	7	$17-0007$
30	8	$17-0011$
30	9	$17-0004$
30	10	$17-0073$
30	11	$17-0074$

DESCRIPTION
A segment, red, double A segment, black, double C segment, red, single C segment, black, single D segment, red, triple D segment, black, triple E segment, red, pie single E segment, black, pie single B segment, red Bullseye B segment, double bullseye, Center, Black
B segment, double bullseye, outer ring, red

FIG\# ITEM\# PART\#

31	1	$17-0002$
31	2	$17-0076$
31	3	$08-0018$
31	4	$18-0003$
32		$00-6300-06 R$

DESCRIPTION

Spider w/o segments Matrix Cushion Switch matrix double bull Target back Dart head assy., Complete

Problem	Probable Cause	Procedure
Nothing lit on game.	a. Blown fuse b. No power at outlet c. Fuse FS1 on top of power supply blown d. 5 volt regulator bad. e. Game not turned on.	a. Replace fuse in power supply chassis with 2.0 A 250 V slow blow fuse. b. Check main breaker in building. c. Replace fuse with 5 A 250 V slow blow. d. Check for 15 V on input to regulator and +5 V on output. If input is OK but +5 is not present, replace 5 V regulator LM323K. e. Turn on switch located on power supply.
Player change and/or game select switches not functioning.	a. Bad U17 (6821). b. Broken connection from PC board to switches.	a. Replace b. Check and repair wire harness
Coin Switch and/or test mode not functioning.	a. If both are not working, plus lamps on coin door are not lighting, there may be a bad ground to the coin door. b. If both are not working, but the lamps on the coin door are lit, the problem could be U4 (6821). c. If just one switch isn't working, check buffer IC U7.	a. Repair ground. NOTE- System ground is floating (not connected to power supply chassis) and is connected only to the PC board on top of the power supply. b. Swap U4 with U17 to see if the problem goes away; if so replace 6821 . c. Swap U7 and U24 to see if the problem changes. If so, replace the bad ULN2003.
Small lamps on printed circuit board not lighting.	a. Lamp burned out. b. Transistor driver for lamp bad. c. Peripheral interface adapter (PIA) bad.	a. Replace lamp. b. Replace driver U7. c. Replace PIA U4.
Target lamps won't light at all.	a. Lamp burned out. b. Triac bad (if triac were shorted the lamp would be on all the time). c. Opto isolator (MOC3030) bad d. Buffer U 24 is bad. e. PIA U17 (bad 6821).	a. Replace lamp. b. Replace triac located under power supply chassis. c. Replace; located under power supply chassis. d. Replace U24 (ULN2003) e. Swap with U4 to check. If problem moves, then replace bad PIA.
Sound problems	a. Blown fuse, FS2, on top of power supply. b. 15V regulator (LM340-15) faulty on main board. c. Amplifier faulty(LM383T) d. Timer IC U16 (8640). e. Sound is fuzzy or garbled Bad 4700 mid 35 V cap. on power supply board. f. Sound sticks on: game must be shut off to stop it.	a. Replace with 3/4A 250 V slow blow. b. Check for +24 V on pin 1 and +15 V on pin 3. If +15 V is not present on pin 3 replace regulator. If +24 V is zero, replace fuse (FS2 on power supply) or check wiring from power supply to main board. c. Check input (pin 1) with an oscilloscope to see if square waves are coming in (make sure volume is turned up, R22). If no square wave is present, see "d" below. If square waves are present, but not coming out of pin 4, replace U2 1 (LM383T amplifier). d. If no square wave is present on pin 27 of U 16 (during the time that sound is supposed to be present), replace either U16 or U14 (74LS 138 address decoder). e. Resolder connections first to make sure that the problem is not a cold solder joint. If no improvment, replace C2. f. Replace capacitor C19 on the main PC board.

SECTION 7 - TROUBLESHOOTING(CONTINUED)

WARNING - UNPLUG POWER TO GAME BEFORE WORKING ON MACHINE

Problem	Probeble Camase	Procedure
No score	a. Dert or broken tips in dart head holding a switch in the switch matrix closed lgame wont score until switch in the matrix is open). b. If the problem is not in the dart head, may be U4 (6821) on the main board.	a. Clean dart head assembly by disassembling/reassembling and removing any foreign material. When reassembling, make sure to tighten the 8 screws and nuts that hold the target head together only finger tight. b. Swap U4 with U17 to see if the problem changes. If it does, replace bad 6821.
Scloct or pane charge bamps not woriving.	a. Lamp burned out b. Transistor driver for lamp bad c. Peripheral interface adapter (PIA) bad. d. If coin door lamps also out, check LM340-12 or 12V Also check for proper lamps GE 658.	a. Replace with GE 658 (do not use a GE 194 or GE 161 lamps). b. Replace U18 (ULN2003). c. Replace PIA (U17). d. Turn off power supply, let cool. If they come on after cooling, then lamps may be drawing too much current. Make sure that the bulbs are not GE 194 or GE 161.
Popularity screen has garbage for numbers	a. Service person has touched main board or wiring going to main board when he was charged with static. b. Batteries in MK48Z02 RAM bad. c. Game not properly grounded	a. Reset popularity screen by pressing bull's eye while popularity screen is being displayed. Discharge static to front coin door before touching electronics in component tray. b. Batteries inside device are not replacable; replace (IC MK48ZO2) U23. c. Check that the $\mathbf{3}$ prong outlet is properly grounded.
Target lamp in off condition doesn't vary in brightness	a. Variable resistor, DIAC ST-4 or C10 . 1 ufd Capacitor bad.	a. With power off, check variable resistor for proper resistance. Replace defective parts.
No video display	a. No 12 V to monitor. b. Transistor TR1 bad.	a. Check 12 V regulator MC78T12 for 12 VDC or plug in external modulator, then main board circuitry is OK. Problem is with monitor or 12 V regulator or capacitor C 9 on power supply PCB. b. With an oscilloscope check output of TMS9118 for about $1-1 / 2 \mathrm{~V}$ P-P video signal. Then check for same at center connector of video jack. If not present, replace TR1 (2N4400). TR1 is used as a buffer for the TMS9 118 for protection against accidental shorting.
Garbage on display.	a. Video memory bad. b. Video chips bad.	a. Replace U12 and U13, TMS44 16. b. Replace U11 TMS9118.

WARNING: This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user, at his own expense, will be required to take whatever measure may be required to correct the interference. NOTE: Proper grounding through power cord is necessary for compliance.

The Originator of Electronic Darts
6421 Material Avenue
Post Office Box 2901
Rockford, Illinois 61132-2901
$800 / 435-8319$ or $815 / 654-0212$ in Illinois

 (र्र00S SVM) 53W 101 by 68/Lट/6 9

ARACHNID, INC.
 6421 MATERIAL AVENUE
 P.O. BOX 2901
 ROCKFORD, ILLINOIS 61132-2901

WARRANTY
EFFECTIVE: JANUARY 1, 1989
6000 SERIES ENGLISH MARK DART GAME

Abstract

Subject to the terms and conditions hereinafter set forth, Arachnid, Inc. warrants the "Electronic Package to the original purchaser for use of ninety (90) days from the date of original sale. The "Electronic Package" shall be defined as the "Power Supply" chassis and the parts mounted thereon, the "Main Computer Board" printed circuit board, and the "Monitor". This warranty does not extend to darts, tips, lamps or the coin mechanisms.

Subject to the terms and conditions hereinafter set forth, Arachnid, Inc. warrants the cabinet and its component parts to the original purchaser for use for thirty (30) days from the date of the original sale.

These warranties do not apply to damage resulting from misuse, neglect, accidents for which the product warranted herein is not the sole cause, improper installation, improper maintenance or darts and tips used in operation of the dart game that are not factory issue. The product will not be considered defective if it substantially fulfills the performance specifications.

Buyer's sole and exclusive remedy for breach of any or all express or implied warranties pertaining to the product shall be the repair or replacement, at Seller's option and expense, of any defective part thereof, and lowest transportation costs for return to Buyer, at Seller's expense, upon delivery of the product, transportation prepaid by the Buyer, to Arachnid, Inc.; provided however, that Buyer shall not be entitled to such remedy unless Seller shall have received written notice of such defect within the period of ten (10) days after such defect is first discovered and safely delivers the product to Arachnid, Inc. within fifteen (15) days immediately following the date of delivery of such notice. In no event shall Seller have any liability for payment of any consequential, incidental, indirect, special or tort damages of any kind including, but not limited to, any loss of profits, to the extent exclusion is permitted by law. The warranties contained herein do not include reimbursement for field labor but will include factory labor for those warranty items returned to Arachnid for repair under the terms and conditions hereinabove set forth. If it is determined that the repair is not a warranty nature, Arachnid, Inc. will notify the Buyer and labor performed at Buyer's request will be charged at Seller's normal rate. Arachnid, Inc. neither assumes nor authorizes anyone to assume for it any obligation or liability in connection with said product.

THE FOREGOING WARRANTIES ARE EXCLUSIVE. SELLER MAKES NO OTHER WARRANTY OF ANY KIND WITH RESPECT TO THE GOODS, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPÓSE.

Part No. 37-0140 Rev. A

CHANGEABLE COIN CREDIT OPTION FOR 6200 AND 6300 SERIES GAMES

This ENGLISH MARK DARTS game is equipped with special hardware designed to allow the user to choose the number of credits to give for one coin, or the number of coins required for one credit. The electronics for this feature are incorporated onto a separate P.C. board assembly, mounted inside the game. This P.C. board from here after shall be referred to as "Coin Credit Card". (See illustration--fig. 1).

The main wire harness and coin door harness have been modified to accommodate the new coin credit card, and software has been updated to allow the game to accumulate up to 99 credits. Each coin slot is now wired individually , so that different options can be set for each. The coin credit card provided with this game is set up to allow multiple credits per coin, in a 1 coin $/ 1$ credit, or 1 coin $/ 2$ credit type format. A 4 coin $/ 3$ credit or 4 coin $/ 5$ credit option can also be chosen for more versatility. To choose multiple coins per credit (i.e. 3 coins/1 credit) as may be used particularly overseas, requires a minor wiring change. If you wish to use this option, please contact Arachnid, Inc. for instructions on how to do so.

The coin credit card has three 4 position "DIP" switches (see fig.2). Two of these are currently wired to the coin door. The settings of these switches determines how many credits will be given per coin, by each slot. SW1 controls credits given on the right-facing coin door slot, SW2 controls the credits given on the left-facing coin door slot, and SW3 controls the "multiple coins per credit" option described previously and not used here. These switches must be set with a "binary" number between 1 \& 15 to determine the number of credits per coin. Please refer to the Coin Credit Table (fig.5) to find the proper switch setting for the coinage desired.

FIGURE 5
CDIN CREDIT TABLE I
these are the available coinage variances FIR EACH CDIN SLDT. SET SW 1 TI DESIRED POSITIUN SHIWN BELDW, TI CDNTROL THE RIGHT FACING CDIN SLDT. SET SW 2 IN THE SAME MANNER TD CONTRDL THE LEFT FACING CDIN SLIT, SET SWITCH SW 3 SU THAT AT LEAST UNE SWITCH IS 'ロN', IT DUESN'T MATTER WHICH ZNE(S).

\# DF CDINS	GIVES \# पF CREDIT	SWITCH POSITIUNS			
		1	2	3	4
1	1	DFF	UN	DFF	DFF
1	2	DFF	DFF	ON	DFF
1	3	DFF	$\square \mathrm{N}$	ON	DFF
1	4	DFF	DFF	DFF	QN
1	5	DFF	IN	DFF	UN
1	6	DFF	DFF	DN	UN
1	7	DFF	DN	DN	$\square \mathrm{N}$
2	1	IN	DFF	DFF	DFF
2	2	DFF	UN	DFF	DFF
2	3	पN	UN	DFF	DFF
2	4	DFF	DFF	ON	DFF
2	5	UN	DFF	ON	DFF
2	6	DFF	LN	ON	DFF
2	7	UN	ON	QN	DFF
2	8	DFF	DFF	पFF	UN
2	9	[N	DFF	DFF	QN
2	10	DFF	UN	DFF	UN
2	11	ON	UN	DFF	UN
2	12	DFF	DFF	ON	aN
2	13	UN	DFF	QN	UN
2	11	DFF	UN	UN	UN
2	15	[N	[N	[N	पN

 THE SECDND CDIN DRAPPED GIVES THE ODD CREDIT, IR UNE MDRE CREDIT THAN THE FIRST CDIN DID. EXAMPLEI FOR 2 CIIN / 6 CREDITS, CDIN $1=3$ CREDITS CDIN $2=3$ CREDITS
FOR 2 CDIN / 7 CREDITS, CDIN 1 = 3 CREDITS CIIN $2=4$ CREDITS

Here are some examples: If the user wishes to allow 2 coins for one credit in one slot (i.e. .50/1 credit) and 1 coin for two credits in the other slot (i.e. A dollar coin slot in the same game - $\$ 1.00 / 2$ credits), then he would set SW1 to read "ON/OFF/OFF/OFF" and SW2 to read OFF/OFF/ON/OFF (Refer to Fig. 5 to learn how to derive these settings). Figure 3 on the attached page shows an illustration of this example.
If you simply want to allow one coin per credit, (i.e. . 25 per credit) on both coin slots, set SW1 and SW2 to read OFF/ON/OFF/OFF. (Set SW3 for any setting). See fig. 4 for an illustration of this example.

FIGURE 6
COIN CREDIT TABLE 2
THESE ARE ADDITIONAL COINAGE OPTIONS, TO PROVIDE MORE VERSATILITY IN CHOOSING COIN CREDITS

IMPORTANT: When using the main board dip switch coin options, set all three coin credit dip switches so that they read 1 (ON) 2(OFF) 3(OFF) 4 (OFF). When using the coinage options in fig. 4 ,both coin doors will react in the same way.
If you cannot find the coinage combination you want, using the information provided in these instructions, contact Arachnid, Inc. Service Dept. for assistance.

COIN CREDIT CARD

If there are any questions regarding these instructions or you have any other concerns, please call ARACHNID, INC. at 800-435-8319 (in Illinois; 815-654-0212).

FAX 815-654-0447 TLX 270-576
PART\#38-0046 REV.C

The display consists of a 9 " amber monitor. Input is 75 Ohm composite video into pin 8 of the edge connector at the back of the monitor. Power ($+12 \mathrm{v}, 1.2 \mathrm{Amp}$.) is supplied to pin 7 with pins 1 and 10 being system ground. Connections and adjustments are shown in Figure 1.

GENERAL DISPLAY

SPECIFICATIONS
HORIZONTAL FREQUENCY
VERTICAL FREQUENCY
SIGNAL POLARITY
VIDEO
TERMINATION IMPEDANCE
RESOLUTION
BANDWIDTH
LINEARITY
AND
CHARACTERISTICS
15.75 kHz

60 Hz
POSITIVE - THE WHITES ARE HIGH
COMPOSITE - AMPLITUDE 2.5 TO 5 VPP
75 Ohms
900 TV LINES, CENTER
DC TO 18 mHz AT -3dB
CHARACTERS ARE TO BE WITHIN $\pm 10 \%$ OF
ADJACENT CHARACTERS AND WITHIN $\pm 10 \%$ OF CHARACTER HEIGHT

GEOMETRY

GEOMETRIC DISTORTION TO BE WITHIN 1-1/2\% OF EIA

Fig. 1 Monitor circuit card edge connector--component side view and adjustments.
Although the monitor alignment adjustments are preset at the factory, alignment procedure is given below in case adjustments would be necessary.

1. Check size--horizontal and vertical.
A. If the horizontal size requires readjustment, use width coil (L2) to set size to $+1 / 4$ inch of spec.
B. If vertical size requires readjustment, use height control (R38) to set size to $+1 / 4$ inch of spec.

Readjustment of linearity control (R48) may be necessary.
2. Check brightness adjustment - increase remote brightness control to maximum. Raster lines should be just barely visible.
A. Increase master brightness control (R52) until raster lines are visible.
B. Reset remote brightness to normal viewing level.
3. Check horizontal centering - increase remote brightness control until raster lines are just visible. No more than one (1) character width difference should be measured when comparing the right side spacing, between the raster edge and the video, to the left side spacing.
A. If necessary, adjust the horizontal delay control (R19) only for minor correction.
B. If considerable adjustment is required, the following steps should be taken.

1) Disable horizontal sync. input.
2) Adjust horizontal hold control (R18) to achieve a single vertical band of the horizontal blanking interval floating through the video presented.
3) Enable the horizontal sync. input.
4) Adjust horizontal delay control (R19) to center the video in raster.
C. Reset the remote brightness control for normal level.
4. Check focus.
A. If necessary, adjust the focus control (R28) to obtain the best overall focus. Center focus will be compromised in order to gain better corner focus.
5. Check geometry - rectangular presentation of video display.
A. If correction is required, adjust the magnets on the yoke ring as required.

GEOMETRY

The display monitors are supplied with yokes on which a special retainer has been designed to accomodate adjustable magnets. The tabs on this retainer hold the magnets in place and keep them from vibrating loose in transit. These magnets can be rotated in either direction until satisfactory geometry has been achieved.

NOTE!

The geometry has been adjusted at the factory prior to shipment. If, however, adjustments are to be made on the yoke, the directions on this page should prove helpful.

Fig. 2 Geometry adjustments.

SAFETY NOTE!

All CRT's maintain a voltage charge at the anode, even when inoperative. Therefore, when a CRT is to be replaced, always discharge the picture tube anode to ground using an insulated wire or screwdriver. Safety goggles usage is recommended by CRT manufacturers.

TROUBLE SHOOTING

1. NO RASTER
A. Check to see if high Voltage exists at second anode by marginal arcing to chassis (signal should be disconnected) or check with high Voltage meter (approx. 12kV).
B. Check to see if G2 Voltage is 600 Volts or more.
C. Check grid lead for a negative to positive Voltage swing by varying the brightness pot. -100 to +30 Vdc should be present at the green lead (Grid 1).
D. Check positive and negative Voltages derived from flyback.
2. NO VIDEO
A. Make sure that the raster is visible and that the video lead is not broken.
B. Check the Voltage on the collector of Q4. It should be approximately 50 Vdc .
C. Check the bias Voltage at Q4. It should be approximately 6 Vdc . If Q4 defective, check D12.
3. NO VERTICAL SWEEP
A. Check for B+ (12V) to pins \#2 \& 5 of ICU1.
B. Make sure that the yoke and leads are hooked up properly.
C. Check the Voltage on pin \#4 of ICU1. It should be 6 to 7 Volts. If the Voltage is 10, check C56.
D. Shunt C29 with new capacitors.
4. HIGH CURRENT FROM POWER SUPPLY
A. Unsolder one end of C14. If high current still exists, the horizontal output stage (Q2) is at fault. The normal current is from . 7 to 1.1 Amps.
B. Check for shorted Q2, D3, D4 and D5. Defective flyback is the least probability. If disconnecting C14 does not correct high current, ICU2 may be shorted.
5. POOR LINEARITY
A. Vertical - check C56.
6. EXCESSIVE BRIGHT
A. Check negative Voltage on D3. Possible open C21.
B. Check B+ Voltage at the collector of video (Q4). Output should be approximately 40 Vdc .
7. NO SYNC
A. Check pin \#8 of ICU2 for sync pulses. Also, check for feed-back pulses to pin \#6 of ICU2 from the horizontal out section. If both pulses are present, replace the chip. If composite signal is used and present to pins \#8 \& 9 of ICU2, pin \#10 should have vertical sync as output.
8. NO HORIZONTAL DEFLECTION (line up and down)
A. Check the leads on the yoke (C19).
9. NO VERTICAL DEFLECTION (line right and left)
A. Check for open yoke.
B. Check the leads on the yoke (blue and yellow).
C. Check for open D7 or C29.
10. NO HORIZONTAL DEFLECTION, NO HIGH VOLTAGE
A. Check pin \#2 of ICU2. If Voltage is 4.5 Vdc , the chip is OK . If it is 11 Vdc , replace the chip.
B. Check pin \#1 of ICU2. If Voltage is not 10 Vdc , look for open R21, 15 Ohms.
C. Check for pulses on pin \#2 of ICU2, If pulses are present, the chip is OK.
D. The base of Q2 should have a square waveform if not open C14, or shorted Q2. If pulses are not present on pin \#2 of ICU2, C11 may be open.

REPLACEMENT PARTS LIST

REF.\# QTY.	DESCRIPTION			REF.\# QTY. Capacitor, Electrolytic	DESCRIPTION			
R16 1	2.2 meg .	$1 / 4 \mathrm{~W}$	5%					
R42 (Yoke) 1	180 Ohm	$1 / 2 \mathrm{~W}$	5%	C9	1 uF	50 V		
R27 1	2 meg .	1/2 W			4.7 UF	35 V		
Resistor, MF				C10, C56 2	22 uF 35 V			
R15 1	9.09 k	1/4 W	1 \%	C38 1	33 uF 63 V	63 V		
R22 1	33 k	1/4 W	1%	C31, С33, C46				
R17 1	47.3k	$1 / 4$ W	1 \%	C47, C48 5	100 uF	25 V		
R12 1	220 k	1/4 W	1%	C39 1	220 uF 16 V			
Resistor, CC				C40 1	470 uF 16 V2200 uF 10 V			
S1 1	220 Ohm	1/2 W	10%	C 29 1				
S2 1	1 k	$1 / 2 \mathrm{~W}$	5 \%	C19 1	$\begin{aligned} & 12 \mathrm{uF} \\ & 330 \mathrm{uF} \end{aligned}$	25 V Bipolar		
S3, S4 2	47 k	1/2 W	5 \%	Capacitor, Monolytic				
Resistor, Power MO								
R90 1	1 k	$3 W$	5 \%	C11	. 022 uF 50 V			
Pot/Carbon R63				$\begin{array}{ll} \mathrm{C} 8, \mathrm{C} 30, \mathrm{C} 51 & 3 \\ \mathrm{C} 4 \end{array}$			$\begin{aligned} & 10 \times 7 R \\ & 10 \end{aligned}$	
$\begin{array}{ll}\text { R63 } \\ \text { R34 } & 1 \\ R 1\end{array}$	500 Ohm				. 47 uF	$\begin{aligned} & 50 \mathrm{~V} \\ & 50 \mathrm{~V} \end{aligned}$$50 \mathrm{~V}$	10	
$\begin{array}{ll}\text { R34 } \\ \text { R48 } & 1 \\ \end{array}$	100 k			C3, C7 2	. 22 uF		10	
R48 R38 1	200 k			C5, C6, C12,	. 1 uF 50 V			
R38 Pot/Cermet	500 k			C27, C41, C45 6 Transformer, High Voltage			10	
Pot/Cermet $\mathrm{R18}$ 1	30 k			Transformer, High Voltage T1	Flyback			
R19 1	200 k			Diode				
R52 1	$\begin{aligned} & 250 \mathrm{k} \\ & 2 \mathrm{meg} . \end{aligned}$			D1, D6, D12 3	1N4148			
R28 1				Diode, Power				
Yoke(2651D)	2 meg .			Diode, Power D5				
1				D14 1	Gl 1-1200 MR818			
Coil				D7 1	1N4004			
L3 1				D2, D3, D4 3	1N4936			
L1 1	4.7 uF PeakingLinearity			Diode, Zener				
L2 ${ }^{1}$	Width			D8, D9 2	1N4733A			
Capacitor, Ceramic Disc	. 01 F	1 kV	Z5U					
C23 ${ }^{\text {c }}$				R18 to R1) 2	1N5234 B			
$\begin{array}{ll}\text { C22, C37 } \\ \mathrm{C} 42 & 2 \\ \end{array}$	120 pF	100 V	Z5U	Transistor, SS				
C16 1	$\begin{aligned} & 33 \mathrm{pF} \\ & .001 \mathrm{~F} \end{aligned}$	100 V	NPO	Q3, Q5 2 Q1, Q6, Q7 3	$\begin{aligned} & \text { 2N3904 } \\ & \text { 2N3906 } \end{aligned}$			
C49, C57, C52 3		1 kV	Z5U	Transistor, Power Q2	BU806			
C21, C36 2	.01 uF 68 pF	$\begin{aligned} & 500 \mathrm{~V} \\ & 100 \mathrm{~V} \end{aligned}$						
C28 1			5	$\begin{aligned} & \text { Q2 } \\ & \text { Q4 } \end{aligned}$	MPSUO7			
Capacitor, Mylar C1, C34, C35, C26 4 C17	$\begin{aligned} & .1 \mathrm{uF} \\ & .033 \mathrm{uF} \end{aligned}$			Integrated Circuit U1 U2 Cathode Ray Tube				
		$\begin{aligned} & 100 \mathrm{~V} \\ & 400 \mathrm{~V} \end{aligned}$	5		TDA1170S TDA1180			
					CE663W	H194		

KRISTEL

DISPLAY MONITOR - ENGLISH MARK DARTS MODEL 6000

The display consists of a $9^{\prime \prime}$ amber monitor. Input is 75 OHM composite video into pin 8 of edge connector at the back of the monitor. Power ($+12 \mathrm{~V}, 1.2 \mathrm{amp}$) is supply to pin 7 with pins 1 and 10 being system ground. Connections and adjustments are shown in Figure 1.

GENERAL DISPLAY

SPECIFICATIONS
HORIZONTAL FREQUENCY
VERTICAL FREQUENCY
SIGNAL POLARITY
VIDEO
TERMINATION IMPEDANCE
RESOLUTION
BANDWIDTH
LINEARITY

GEOMETRY

AND

CHARACTERISTICS

15.75 KHZ
60 HZ
POSITIVE - THE WHITES ARE HIGH
COMPOSITE - AMPLITUDE 2.5 TO 5 VPP
75 OHMS
900 TV LINES, CENTER
DC TO 18 MHZ AT -3db
Characters are to be within +/-10\% OF ADJACENT CHARACTERS AND WITHIN $+/-10 \%$ OF CHARACTER HEIGHT
GEOMETRIC DISTORTION TO BE WITHIN $11 / 2 \%$ OF EIA

Fig. 1 Monitor circuit card edge connector--component side view and adjustments.
Although the monitor alignment adjustments are preset at the factory, alignment procedure is given below in case adjustments would be necessary.

1. Check size--horizontal and vertical
A. If the horizontal size requires readjustment, use width coil L102 to set size to $+1 / 4$ inch of spec.
B. If vertical size requires readjustment, use height control (R109) to set size to $+1 / 4$ inch of spec. Readjustment of linearity control (R117) may be necessary.
2. Check brightness adjustment-increase remote brightness control to maximum. Raster lines should be just barely visible.
A. Increase master brightness control (R234) until raster lines are visible.
B. Reset remote brightness to normal viewing level.
3. Check horizontal centering-increase remote brightness control until raster lines are just visible. No more than one (1) character width difference should be measured when comparing the right side spacing, between the raster edge and the video, to the left side spacing.
A. If necessary adjust the horizontal delay control (R219) only for minor correction.
B. If considerable adjustment is required, the following steps should be taken.
1) Disable horizontal sync input.
2) Adjust horizontal hold control (R217) to achieve a single vertical band of the horizontal blanking interval floating thru the video presented.
3) Reenable the horizontal sync input.
4) Adjust horizontal delay control (R219) to center video in raster.
C. Reset the remote brightness control for normal viewing level.
4. Check Focus
A. If necessary, adjust focus control (R224) to obtain best overall focus. Center focus will be compromised in order to gain better corner focus.
5. Check geometry-rectangular presentation of video display
A. If correction is required, adjust magnets on yoke ring as required.

GEOMETRY

The display monitors are supplied with yokes on which a special retainer has been designed to accommodate adjustable magnets. The tabs on this retainer hold the magnets which retain their position and do not vibrate loose in transit.

The magnets can be rotated in either direction until satisfactory geometry has been achieved.
NOTEI The geometry has been adjusted at the factory prior to shipment. If however, adjustments are to be made on the yoke, the directions on this page should be of assistance.

Fig. 2 Geometry adjustments

SAFETY NOTE

All CRT's maintain a voltage charge at the anode, even when inoperative. Therefore, when a CRT is to be replaced always discharge the picture tube anode to ground using an insulated wire or screwdriver. Safety goggles usage is recommended by CRT manufacturers.

TROUBLE SHOOTING

1.NO RASTER

Check to see if high voltage exists at second anode by marginal arcing to chassis (signal should be disconnected) or check with high voltage meter (approx. 12KV).
Check to see if G2 voltage is 600 volts or more. Check grid lead for a negative to positive voltage swing by varying the briteness pot.
-100 to +30 VDC should be present at green lead (Grid 1). Check positive and negative voltages derived from flyback.
2.NO VIDEO

Make sure the raster is visible. Verify that video lead is not broken.
A.Check voltage on collector of Q302. Should be about 40 VDC
B.Check bias voltage at Q302. Should be about 6 VDC
C.Check SG301 and SG302 for defective components.

3.NO VERTICAL SWEEP

A.Check for B + (12V) to pins no. 2 \& 5 of IC101.
B. Make sure yoke and leads are hooked up properly.
C.Check voltage on pin 4 of IC101. Should be 6 to 7 volts if the voltage is 10 V check C 109 .
D.Shunt C108 and C102 with new capacitors.
4.HIGH CURRENT FROM POWER SUPPLY

Unsolder one end of C212. If high current still exists horizontal output stage Q202 is at fault.
Normal current is from .7A to 1.0A.
Check for shorted Q202, D207, D205, D206. Defective flyback is last probability.
If disconnecting C212 does not correct high current IC101 may be shorted.
5.POOR LINEARITY

Vertical - check C109.
Horizontal - check C212, reversed linearity control wrong value C221.

6.EXCESSIVE BRITE

Check negative voltage on D205. Possible open C222. Check B+ at collector of video (Q302). Output to be around 40VDC.

7.NO SYNC

Check pin 8 of IC202 to have sync pulses. Also check for feed back pulses to pin 6 of IC202 from horizontal out section. If both pulses are there replace chip. If composite signal is used and present to pins 8 and 9 of IC202 pin 10 should have vertical sync as output.
8.NO HORIZONTAL DEFLECTION (line up and down)

Check yoke leads, yoke, C221
No Vertical Deflection (line left to right)
Check for open yoke, check for broken yoke leads (blue and yellow), check for open D101 or C108.
9. NO HORIZONTAL DEFLECTION, NO HIGH VOLTAGE

Check pin 2 of IC202 if DC voltage is 4.5 VDC the chip is $\mathrm{O} . \mathrm{K}$.
If 11VDC replace chip.
Check for voltage on pin 1 of IC202 if not 10VDC look for open R 230, 15 to 27 ohms.
Check for pulses on pin of IC202 if pulses exist IC202 is OK.
Base of Q202 should have a square waveform if not open C212, or shorted Q202, or open Q101. If pulses are not present on pin 2 of IC202, C210 may be open.

REPLACEMENT PARTS LIST

SCHEMATIC DESIGNATOR DESCRIPTION

C223, C218	CAPACITOR, CER. DISC.	0.01-500-Z5U
C217,C110		$0.001-1 \mathrm{KV}$-Z5U
C222	" " "	$0.01-1 \mathrm{KV}-\mathrm{Z} 5 \mathrm{U}$
C106, C227, C214, C229	" "	"0.1-100-Z5U
C211	CAPACITOR, MYLAR FILM	0.22-75
C101, C302, C303	CAPACITOR, CER. DISC.	0.01-100-Z5U
C105, C306		33PF-500-NPO
C210	" " "	0.0047-100-NPO
C301	" " "	560PF-100V-NPO
C231	" " "	68PF-100V-NPO
C301	" " "	220PF-100V-NPO
C207	CAPACITOR, MYLAR FILM	0.022-50-10\%
C111, C112		0.1-100-10\%
C102	" " "	0.15-100-10\%
C220	" " "	.1-630-10\%
C215	" " " "	0.023-400V-5\%
C208, C209	CAPACITOR, ALUM. LYTIC,	RAD. 1UF-50V
C212		RAD. 4.7-35V
C213	" " "	RAD. 1500UF-16V
C401	" " "	AXIAL, 1UF-50V
C109	" " "	RAD. 10UF-25V
C305	" " "	RAD. 220UF-16V
C103, C104	" " "	RAD. 100UF-25V
C108	" " "	RAD. 2200UF-25V
C216	" " "	RAD. 220UF-35V
C304	" " "	RAD. 33UF-63V
C228	"' ${ }^{\text {" }}$	RAD. 22UF-35V
C221	CAPACITOR, BI POLAR,	10UF-25V
SG301, SG201, SG202	SPARK GAP, 0.001-1 TO 2KV	
D208, D302, D102, D201	DIODE, 1N4148	

SCHEMATIC DESIGNATOR DESCRIPTION

D301	DIODE, ZENER (6.2V) 1N4627
D204	DIODE, 1N4936
D203	DIODE, FR304
D101	DIODE, 1N4001
D205	DIODE, FR105
D206	DIODE, FR102
D207	DIODE, FR107
Q303	TRANSISTOR, PNP, MPSA55
Q302	TRANSISTOR, NPN, D40P5
Q301	TRANSISTOR, NPN, 2N4400
Q201	TRANSISTOR, NPN, 2N3904
IC101	IC, TDA 1170S
IC202	IC, TDA 1180P
R306	RESISTOR, WIRE WOUND 1.5K-5-10\%
R306	RESISTOR, WIRE WOUND 1K-3-10\%
R217	POT, 30K CERMET
R311	POT, 500 OHM-PIHER CARBON
R106	POT, 100K-PIHER CARBON
R117	POT, 200K-PIHER CARBON
R109	POT, 500K-PIHER CARBON
R224	POT, 2MEG, CTS 5X-201-RS
R234	POT, 250K-CERMET
R219	POT, 200K-PIHER CERMET
L301	COIL, PEAKING 4.7UH
L301	COIL, PEAKING 12UH
L202	COIL, WIDTH
L201	COIL, LINEARITY
$--101 ~$	YOKE
T101	TRANSFORMER FLYBACK
HS-1	HEATSINK ASSY
$---~$	SOCKET. CRT ASSY

