- T 199/4
PERSONAL COMPUTER
SYSTEM SOF TWARE
Desiqn Specification

T 199/4
PERSONAL COMRUTER
SYSTEM SOFTWARE
Design Specification

Personal Computer Division

January 21,

1980

Versinn 1.0 *

29FEB 80

T I 99/4 System Software Design Specification

a
WO O=+O

w
WOWROWNE OO WWW-

PR RS

b bk pd b ek ek

S

CAEWMN-=0 0 U BN

RO

Fay
REPEOPEEEEEOL S BN

1

(NENEN
n

3

.1

SE%
3 0

G

SRR

RO = QP =

P

oo

Appendix
Appendix
Appendix
Appendix

Appendix

A

Table of Contents

Introduction
1 Purpose
.2 Scope
Applicable Documents
General Description
Hardware Description

Keyboard

Application software port
1/0 Port

CPU Memory Map

Yideo Display Processor
GROM Memory Map

ftware Description
Features ’
Supported Options

ROM Usage

GROM Usage

CPU RAM Usage

VDP RAM Usage

Console software
System Power—-up Sequence
GPL Application Support

GPL Interpreter
Support Subroutines
Application Configuration

BASIC Interpreter

Design Features

System Integration

UM BASIC Program Support
Concept

Program Execution
Hybrid GPL/BASIC Programs
ripheral Support

General Concepts
Power-up

1/0 Calls

Interrupts

Future Expansion
Multi—linguai Support
Software Development Methods
Compatibility

Hardware Diagnostic Methods

29FEB

80

f
T I 99/4 System Software Design Specification 29FEB B0

1.0 Introduction

This document contains an overview of the Tl 99/4 Personal
Computer system software. It discusses details pertaining to the
design and implementation of software for the product.

1.1 Purpose

The 1information provided herein is for use in maintenance
of the system software for the 99/4 computer. It will serve as
reference for the development of peripherals and for the design

and development of future Personal Computer products. This .

document Tefers heavily to information in the other dosuments
listed in section 2.0 and thus serves as a reference document.

1.2 Scopse

This ~ document is not intended to provide a detailed
presentation of the hardware characteristics of the product
although detail will be present where it is not available +from
nther sources. More detail on the hardware characteristics can
be found in the haerdware specifications referred in 2.0. This
document discusses the design and features of the 99/4 console
software and the software interface provided for software which
may be plugged in on the Solid State Software and peripheral

ports.

PAGE 1

T I 99/4 System Software Design Specification 29FER B8O

-2.0 Applicable Documents

Home Computer File Management Specification
{Vers. 2.4, 16 November 197%9)

TMS 92918 VDP Video Display Processor Data Manual
{(Revised 25 June 197%)

TMS 9919 Sound Generatcor Controller Specification
(Released 1& October 1979)

2900 Family Systems Design and Data Book (Learning Center
Manual LCC-4400)

Graphics Programming Language Programmer ‘s Guide
(Revised 3 December, 1979)

Home Computer System PFemory, CRU, and Interrupt Mapping
Specification (Revised 3 December, 197%)

Home Computer Software Development System Programmer’s Guide
(Revised & November 1279)

Tl 99/4 Home Computer BASIC Interpreter Design Specification
(Revigsion 1.0 7 December 1979)

Home Computer BASIC Language Specification
(Revision 4.1 12 April 197%)

Texas Instruments Home Combuter User ‘s Reference Guide
(Learning Center Manual LCB-4491)

1/0 Bus Specificationi document number 1037185

PAGE e

T I 99/4 System Software Design Specification 29FEB 80

2.0 General Descriptiaon

This section provides an overview of the system features

provided in the hardware and software. The sofftware exploitation
of the hardware (e.g9g. ROM,RAM) is also discussed.

2.1 Hardware Description

This product wuses a plastic case with a number of plug-in
ports for software modules and hardware extensions. Specifically
two major ports are provided: one for an application cartridge
and one for peripheral wunits. The application cartridge port
allows a user to plug in a solid state command module with up to
40K bytes of software. A peripheral unit (such as a disk or
RS-222 interface) will contain it‘s own software Device Service
Routine (DSR) within the unit but will not, in general, contain
it’s own microprocessor. Other ports allow connection of the
Handheld Controllers (joysticks) and up to two audio <cassette

recorders for date or BASIC program storage

Speech capability 1is provided as a peripheral device. The
software required to access the speech peripheral from the BASIC

language 1is provided 1in a application plug—in module
Solid-state applications for the 99/4 which use speech must
include software to access the speech hardware 1in the

application software module.

3.1.1 Keyboard

The ?9/4 keyboard consists of 40 keys in a staggered array.
The stagger of the keys is achieved by placing the keytops off
center on the actual keys. The 99/4 keyboard does not include
lower <case letters or enough special <characters to support
international character set requirements. -A detailed keyboard
layout is given on page 165 of <the Home Computer User’s

Reference Manual.

The. keyboard does not include any hardware to scan the keys
and provide interrupt signals to the 900 microprocessor.
heystrokes are not buffered in any way and the keyboard is not
scanned by the software except on request of an application
program. An exception to this is that the keyboard is scanned
for the shift-Q key on every VDP wvertical retrace interrupt
which occurs 60 times a second.

Z.1.2 Application Software Port

The application module port provides plug=-in capability for
software provided by TI or third party authors (Milton Bradley
is one) in Solid State Command Modules. A Command Module will
contain 1 through 5 TMS0430 "GROM" chips and up to BK bytes of

PAGE 3

T I 29/4 System Software Design Specification 29FER BO

ROM in the form of 4764, 4732, 4716, etc. As mentioned in
4ppendix A the ROM space may be expanded through the use of a

paging scheme.

The port is designed such that when & command module 1is
plugged in the machine is reset. This reset appears identical to
the reset that occurs when the computer is powered up. This is
done because the chips in the command module may cause spurious
zignals on the data and address busses when the module is
plugged in. In particular the GROM chips in the module will not
be synchronized to the same internal address as the GROMs built
into the console. If the system software would read the GROM
address at this time (the GROM address is tead often) garbage
would be obtained.

2.1.2 1/0 Port

The peripheral port provides all of the signal lines
required to access the memory and CRU (Communication Register
Unit &s described in the 9900 Family Systems Design and Data
Book}) ports. The I/D port is fully described in the I1/0 Bus
Specification.

32.1.4 CPU Memory Map

This section essentially duplicates information contained
in the Home Computer System Memory, CRU and Interrupt Mapping
Specification. "

The CPU memory map is designed to provide a great deal of

expansion for future accessories and for compatibility with
future products. The memory map is5 as follows:

PAGE 4

T I 99/4 System Software Design Specification 29FER 80

0000 +—-————-m—— +
H ! ROM contained in the console
o ———— +
2000 | H
i i Unused
o ————— +
4000 | {
: ! ROM in peripheral (mapped)
1])
o ——————— +
6000 '
: ! ROM in application module (optional)
o ————————— +
8000 | H
i !+ CPU RAM and memory mapped devices
o —————————— +
AQQO

1]
H Unused

R VY e " "R AV V VY E v

NN A N AN e e e N

FFFF ! !

The peripheral ROM is mapped in to memory by selection
through the CRU. The peripheral devices each have a unique CRU
address. An access to that address maps the ROM for that device
into the memory map. This addressing is further described in
“"Home Computer GSystem Memory, CRU, and Interrupt Mapping
Specification.”

The block from 8000 *to ' AOOO contains the memory mapped
devices and the 256 byte block of RAM on +the CPU bus. Memory
mapped devices (i.e. VDP, GROM, and SOUND chips) do not have
fully decoded addresses. This causes certain locations in this
block to be "unmavailable". Actually the addresses of the chip
memory mapped locations Tepeat in these lost areas. Only the
recommended (primary) locations are explicitly i1dentified below.
Other locations are either unused or unavailable for use because

nf the partial decoding’ All locations are one-byte data
transfers except for CPU RAM This area is subdivided as
follows;

PAGE S

T I 992/4 System Software Design Specification 29FEBR 80

B83C0-83FF 256 byte CPU RAM

8400 Sound chip write data
88060 VDP read data

8802 VDP tead status

8COO VDP write data

B8Co2 VDP write address

000 Speech read data

2400 Speech write data

7800 GROM page O read data
2820 GROM page 1 read data
7C00 GROM {(GRAM) page O write data
PC02 GROM page O write address

The explanation of GROM pages and the expansion capability
for GROM 1is given in section 3.1.6&.

3.1.5 Video Display Processor

The Video Display Processor (VDP) is accessable as a memormy
mapped device. Access to the VDP chip is through certain memory
mapped locations. The uses of these locations are read status,
write address and read data. The memory addresses are listed in
2. 1.4, Details on the wuse of the VDP chip from 2900 assembly
language is given in "TMS 9918 VDP Video Display Processor
Data Manual", The &Graphics Programming Language Programmer’s
Guide describes the methods of accessing the VDP from that

language.

2.1.6 GROM Memory Map

The GROM memory map comprehends 3 GROM chips within the TI
79/4 console and up to 5 chips in a plug-in command module. Each
GROM chip contains &K bytes of data but resides on a BK byte
boundary. This leaves 2K "holes" in the address space which
cannot be usad. The mask program of each GRUOM chip contains the
base address of the data in that chip. This corresponds to a
chip number as illustrated in the figure belouw.

PAGE b

T I 99/4 System Software Design Specification

29FED 80

{ chip & . base COOO H

PN NN N NN N TN Y T e e A A N e N e N Py A Ty

application

module

PPN AL P N2 N N P P N D PNy P D0 Pt N N N D N P N N P
i chip 3 base &000 i

P e e + -+
i chip 2 base 4000 : {
e Fmm———— o —— +
i chip 1 base 2000 ; i built into
o e e e e e + console
i chip O base 0000 i H
o e e + -+

The 5 chip limitation in an application module can be overcome
if additional hardware can be provided in the application. The
additional hardware would probably require a larger than
standard application plastics or a separate box on the end of a
cable. It may also require a power supply since the amount of
power that can be drawn from the GROM port 1s very limited. The
additional circuitry can decode the the address lines for the
ROM to provide several "pages" of GROM in the cartridge. These
pages are than accessed by using different memory map locations
for the device registers. The GROM register addresses listed in
section 3. 1.4 correspond to page O in this expanded scheme. The
system software is designed to access 15 other pages as listed
in the table below.

READ READ WRITE WRITE

PAGE DATA ADDRESS DATA ADDRESS
0 2800 7802 2C00 2Ccoz2
1 9804 806 9C0o4 C04
2 9808 280A 2C08 FCOA
3 ?80C F80E COC FCOE
4 9810 9812 @C10 C12
S 814 9816 ?C14 ?C1é6
5 %818 7814 9C18 GC1A
7 981C YB1E gC1cC PC1E
8 980 7822 9C20 gCa2
? 2824 2826 eC24 IC26
10 7828 782A 9C28 GC2A
11 ?82C ?82E ?Cac eC2E
12 ?e30 2832 ?C30 FC32
13 9834 836 9C34 GC36
14 838 F83A ?C38 QC3A
15 983C 933E 2C3C 9C3E

The three GROM chips built into the console are éccessed at
any of the application pages. This scheme is illutrasted in the
figure below.

T I ?9/4 System Software Design Specification 29FER 80

page O page 1 ...
+= Fmm—m———— + o +
i i chip 7 | I chip 7 i
e T + o ———— +
application: i chip 6 | i chip & |
mo d U l e ; P Fr P P N N N Ny T P DU P A Py Py B Su Doy
: N AN Du DN NN P e N\ Y A Tha VYR R VI V]
' i chip 3 1 i chip 3 |
+— m—m————— t—————— o —————— t——— -+
! chip 2 / !
e e / g
: chip 1 / i built into
Fom e e / i console
i chip O / :
e e e -+

The initial program menu seletion searches all 146 pages for
valid programs and enters the correct page according to the user

selection. Programs may branch between pages with the CaALL
subprogram feature describes on page H-& of the GPL Programmer’s
Guide.

PAGE 8

T

I 9974 System Software Design Specification 29FEB BO

2.2 Software Description

The 99/4 software includes support for applications modules
containing interpretive Graphics Progremming Language (GPL)
object code. GPL i3 a powerful assembly type language designed
especially to provide easy access to the special graphics and
sound features of the 99/4 harduare. Included within the 99/4
are a8 BASIC programming language and an Equation Calculator.

3.2.1 Features

The console will swupport .application modules <containing
programs written 1in GPL or BASIC {or a <combination). The
intarpreter for GPL 1s contained in the 'system ROM. To reduce
the size of application modules certain subroutines needed in
the computer console have linkage provided +for the wuse of
applications modules. These subroutines are contained in the
console GROM chips and include such festures as trig functions

etc.

A power—up program is contained in the console GROMs. This
program initializes the system hardware and prompts the user for
a menu selection of the desived application.

2.2.2 GSupported Options

Linkage to peripheral devices is provided in the computer
console. The 9%9/4 peripherals contain suftware to service the
device. The linkage routines allow spplications to call a Device
Service Routine (DSR) for a device by name and in a device
independent manner. A detailed description of the requirements
for an applicaton to request service from a peripheral is
described in the GPL Programmer’s Guide and the Home Computer
File Management Specification.

The 99/4 console contains 16K bytes of RAM attached to the
YDP chip. This RAM is not expandeble beyond 18K bytes. The
software is self-configuring with respect to the amount of VDP
RAM so that a ?29/4 derivitive could be sold with less than 16K
bytes of RAM. The amount of VDP RAM i3z placed in the GPL status
block as part of the power-up sequence and must be tested by
applications programs to ensure that enough RAM is available for
the program to run. Peripheral devices may "steal” some of the
VDP RAM at power-up time for use as buffers etc. The peripherals
will modify the location in the status block which specifies the
memoTy size to reflect the amount of memory pre-empted.

2.2.3 ROM Usaqe

T 1 99/4 System Software Design Specification 29FEB BO

The console ROMs contain the following software functions;

GPL interpreter
Radix 100 floating point package (+, -, % and /)
Keyboard scan routine
Subprogram/DSER search routine
Low level audio cassette Device Service Routine (DSR)
Interrupt processing including;

Auto—-sound

Sprite motion

Interval timer

DSR interrupt

3.2.4 GROM Usage

The console GROMs contain the following software functions:

GPL support routines including;
Subprogram and DSR linkage
Arithmetic and trigonometric functions
System power up and program selection
High level Audio Cassette DGSR
Keyboard character (translation) tables
User BASIC language editor and interpreter
Equation Calculator interface to the BASIC interpreter

2.2.9%5 CPU RaM Usage

The CPU RAM has several uses as follows;

Free space for use by GPL applications
P3C0 workspace area (one workspace)
Partial workspace for interrupt handling
Work area for the GPL interpreter

GPL status block

Device Service Routine work area

CALL routine work ares

These areas are described in detail in the GPL Programmer ‘s
Guide. The 9900 code uses o6nly one workspace for all processing
Interrupts are only allowed when most workspace registers can be
destroyed. The interrupt 15 taken into a second workspace where
only registers 13 through 15 are wused to save the interrupt
status. Immidiately after the interrupt 1is taken a LWPI
instruction 1s executed to restore the context back to the one
worTkspace. Another LWPI instruction is executed before the RTWP
to return from the workspace context

PAGE 10

T 1 99/4 System Software Design Specification

2PFEB 80O

The unused space in the interrupt worTkspace is used by the
GPL interpreter to save various information such the last key
pressed on the keyboard in order to debounce the keyboard. The
two workspaces (one is partial) and this work ares occupy 32
bytes of the 2546 byte CPU RAM from address »83C0 to »B3FF.

The GPL status block occupies location »83&E through »BI37F.
The use of these locations is documented in section 3. 3.1 of the
GPL Programmer ‘s Guide. lLocations *B36E and »834F contain the
Floating Point &tack pointer as described in Appendix K of the
same manual.

3. 2.6 VDP RAM Usage

The system uvtilization of VDP RAM can be closely controlled
by @ GPL application program. Many of the data structures for
display on the screen are programmable through VDP registers and
are described in the GPL Programmer’s Guide. Certain datea
structures for sprites and the floating point roll out area are
at fixed locations but may not be wused by a particular
application program.

The use of the VDP RAM by the BASIC language interpreter is
described in +the Home COmputer BASIC Interpreter Design

Specification.

T I 99/4 Syctem Software Design Specification 29FER 80

4.0 Consnle Software

This section provides an overview of the system features
provided by the software contained in the 99/4 computer console.
These features are provided to support applicetion program
modules and access to peripheral units from application modules.

4.1 System Power—up Sequence

Most of the system power—up initialization is written in
the interpretive GPL language. When the system is powered up the
level G interrupt is taken. This interrupt vactor is at address
G and loads the workspace to *B3EO. After loading R13 with the
GROM read address the GPL interpreter starts interpreting GPL
codes at GROM location »20. The GPL code performs the rest of
the initislization as follows:

Load R15 with the VDP write address address (»8C02)

Load R14 with status flags

Clears the sound list indicator used for auto-sound
(location >B3CE}

Turns off the speech chip (when attached) and the sound
generators

Initializes the two GPL stacks (subroutine and data)

' in the status block :

Initializes the VDP registers to defavult values

Zeros much of CPU RAIM
»>8300 - »8371, »B3B2 - »83BF, »B3C2 -:83C?

Clears the Handheld Units (not needed)

Enable the audio gate so that the cassette data will be heard
on the monitor speaker

Enable the Handheld Unit interrupt (not needed)

Enable the VDP 60 Hertz interrupt

Enable the extermnal interrupt

Enable audio cassette motors (to on state)

Issue a beep to signal powered up

Determine the VYDP memorty size and set the VDP register bit
accordingly

Clear the first 4K bytes of VDF RAM

Load the default color and character tables

Initialize all keyboards by scanning them

Display the power-up screen (screen turned of+f)

Call possible Power—up screen modification routine in
cartridge. This is done for foreign languages.

Call power—-up routines in ROM and GROM (see a description of
the GROM/ROM header). Power up routines may modify the
VOP RAM size placed in location »8370.

Turn on VDP screen (it is turned off during initialization)

Wait for a key on the console keyboard then beep

Build a list of the available programs including looking
for a library. Only GROM is searched

Display the program menu screen (screen turned off)

Call possible menu screen modification routine in cartridge.
This is done for foreign languages

PAGE 12

T I 99/4 System Software Design Specification 29FER 80

Turn the screen on
Wait for user menu selection
Branch to starting address of program

I1f the console only ctontains GROM O (as a future product)
and no cartridge is inserted then the menu screen will display
“INSERT CARTRIDGE" instead of the menu. This cannot happen 1n
the 99/4 because DBASIC and the Equation Calculator are aluways

present.

A user selected program must always be a GPL program or
must at least be started in GPL. The GPL program may initiate
assembly language by the XML intruction or may initiate BASIC
from GROM as described in the Home COmputer Software Development
System Programmer’s Guide. ‘

4.2 GPL Application Support

The GPL application support consists of the GPL obyect code
interpreter and the <callable <console GPL subroutines. In
addition the perpheral support described in section 4.5 3 allows
access to peripherals from an application program. These
applications are developed on a 9920/10 or 990/4 minicomputer
vusing the development aids described in Appendix C. Development
of GPL application programs by the end user of the computer 1is
not supported and there is no plan to do so for the general
user.

4. 2.1 GPL Interpreter

The GPL objyect interpreter consists of 9200 assembly
routines to interpret the object <code generated by the GPL
assembler. A floating point arithmetic package is also included.
This package «consists of assembly langusge voutines accessable
by the GFL XML instruction and GPL routines accessable by the
CALL statement. The floating point routines use an B-byte radix
100 floating point representation which provides a3t least 13
digits of significance.

4.2. 2 Support Subrowutines

Certain GPL subroutines in the 99/4 console which could be
useful to application programs are made accessable by a branch
table at a fixed location in the console GROMs. The use of this
branch table provides a fixed address to enter the routines sven
if the console code <changes. The routines are discussed in
Appendix K of the GPL Programmer’s Guide. The complete list of
routines is given below;

PAGE 13

[@2/4 System Software Design Specification 29FEB 80

address name use ref

10 LINK Link to subprograms and DSRs GPL App H
12 RETN Return from subproegram or DSR GPL App H
14 CNS Convert floating point to ASCII GPL App K
16 CHR1 LLoad 8 dot high character set GPL App H
18 CHR2 Load & dot high character set GPL App H
1A BWARN Warning message from BASIC

subprogram in GPL
1C BERR Error message from BASIC subpro-

gram in GPL
1E BEXEC Begin execution of GROM BASIC

program
20 PWRUP Restart system (used at power up)
22 INT Greatest integer of a floating GPL App K

' point number ;

24 PWR Exponentiation GPL App K
26 8GR Square ToO0t GPL App K
2 EXP Inverse natural logarithm GFL App K’
2A LOG Natural logarithm GFL App K
2C c0s Cosine GPL App K
2E - SIN Sine GPL aApp K
30 TAN Tangent GPL App K
32 ATN Arctangent GPL App K
34 TON1 Good prompt tone GPL App H
3& TONZ2 Bad prompt tone GPL aApp H

Certain 9900 routines are accessable from GPL through the

ZML instruction. Many of these Toutines are also accessable as
subroutines (with R11 as the link) to the 9900 code in the
console, However they are not available to external 9900 code

(in peripherals or Command Modules) because their addresses are
not fixed. The XML routines are as follouws;

XML
number name use ref

00 unused unused

01 ' GPL App K
02 GFL App K
03 GPL App K
04 . GPL App K
05 4 GPL App K
0é& FADD GPL App K
07 FSUB . GPL App K
0B FMUL GPL App K
09 _FDIV GPL App K
oA - ,BCOMP GPL App K
OB SADD GPL App K
oC SSUB GPL App K
OE SD1V GPL App K
OF SCcomMP GPL App K
10 CeN GPL App K

T I 99/4 System Software Design Specification 29FER 80

11 ’ GPL App K
12 CF1 Rounded convert f.p. tn integer GPL App K
13
14

More information on the general use of XML instructions i
given in the H/C Bystem Memory, CRU, and Intertupt Mapping
specification.

i =
>
[a]

4. 2.3 Application Configuration

Application programs may only be contained in GROM. The
Jyser selects an application program from fhe system menu. A
program is placed in the system menu by its reference in a GROM
header. The GROM header is defined in Appendix H of the GPL
Programmer ‘s Manual. An example of & GROM header for an
application program is given below

GROM 3
ORG O
DATA :AA HEADER IDENTIFIER
DATA O VERSION NUMBER (NOT REALLY USED)
DATA 1 NUMBER OF PROGRAMS (NOT REALLY USED)
DATA O NOT USED (RESERVED)
DaTA #0O ADDRESS OF POWER-UP HEADER (MONE HERE)
DATA #PROG! ADDRESS OF APPLICATIOCN PROGRAM HEADER
DATA #0 ADDRESS OF DSR HEADER (NONE HERE)
DATA #0O ADDRESS OF SUBPROGRAM HEADER (NONE HERE)
DATA #O ADDRESS OF INTERRUPT LINK (NONE IN GROM)
DATA #0O UNUSED

*

PROG1 DATA #0 LINK TO NEXT HEADER (NONE)
DATA #START ENTRY POINT
DATA 19 LENGTH OF PROGRAM NAME

DATA : APPLICATION PROGRAM: PROGRAM NAME

The GROM header may be placed at the beginning (address Q)
of any GROM chip. When the system starts an aspplication program
the system memory is initiaslized to mostly z2eros as described in
Adppendix H of the GPL Programmer’s Guide

A link editor is not brovidestor GPL to resolve Teferences

between separately assembled modules. A technique that has
proven wuseful 1is to place a branch table a the beginning of a
module for those routines which are referenced by other
assemblies. In +this way the addresses of external routines

remain fixed although the actusl routine address may move within
the separate assembly.

T I 99/4 System Software Design Specification 29FEB BO

4.3 BASIC Interpretar

The BASIC interpreter is a GPL applicatiom program which is
built into the 99/4 console. To provide sufficient speed many of
the core execution Toutines are written in 9900 assembly
language. Linkage to these routines is through system defined
XML instructions. All of the edit and symbol table generation
portions of the BASIC interpreter are written in GPL. PMuch more
detail of the design of the BASIC interpreter can be found in
the TI ?9/4 Home Computer BASIC Interpreter Design

Specification.

4.4 GROM BASIC ProqramkSUpport

The $9/4 computer allows BASIC programs to be placed 1in
GROM cartridges and executed from there,. This 1is provided
through extensions to the BASIC interpret which allow & program
to be interpreted either frem GROM or VDP RAM. The program
contained in the GROM is in the same memormTy image as a program
would be if <contained in VDP RAM. A processing program on the
390/10 computer converts +the BASIC source program into the
memory image form. A GROM BASIC program is limited to 1500 lines
since one 'of the GROM tables cannot cross a GROM boundary and
contains 4 bytes for each line in the program.

4. 4.1 Program Execution

A GROM BASIC program contains & GPL program header since
all applications must at least be initiated in GPL. For a GROM
CEASIC program this GFL header places a mesage on the screen and
then «calls +the BASIC interpreter. The BASIC builds the symbol
table and then starts interpreting the BASIC program. Program
execution is identical to that of a program contained in VDFP RAM
with the exception that more memory is aveilable and a program
can be much larger than if placed in the VDP RAM.

. Because of a bug in BASIC the CALL CHAR statement will not
work in a GROM BASIC program. The space is allocated properly in
the character table but the character definition is not properly
placed in the character table. A solution to this problem 1s to
allocate the space with the CALL CHAR statement (using the
highest numbered character) and use a custom GPL subprogram to
set up the character definttions.

4.4, 2 Hybrid GPL/BASIC Programs

A GROM BASIC program may call GPL subprograms which are
also contained 1in the GROM cartridge. The GPL subprograms are
defined through the GROM header and are called by name with the
CALL statement. Typical GPL subprograms would be to avoid the
CALL CHAR bug described above or to do screen formatting when

PAGE 16

T I 99/4 System Software Design Specification 29FED 80

more speed is needed.

Another special purpose for hybrid programs is to speed the
sysbol table generation process. The symbol table generation can
be wvery slow +for a long program since it is written in GPL. A
trick that can be done is to include a second BASIC program 1in
the GROM cartridge which defines the same BASIC variables. The
small program is the one selected when BASIC is «called. The
first executable . statement in the small program is a CALL to a
subprogram which changes all of the BASIC pointers to start

execution of the large program. The programmer must be very
careful to include all DBASIC wvariables and user defined
functions in the small program including the same dimensions
etc.

The construction and use of hybrid GPL/BASIC programs 1is
not documented at this time. Programming experiments have shouwn
that pure GPL programs can be developed much weasier with only
slightly more time in most cases.

4.5 Peripheral Support

The 99/4 system provides for peripheral Device Service
Routines to be contained in peripheral ROM or 1n system or
application cartridge GROM ROM DERs are written in 9200
assembly language while GROM DSRs are written in GPL. A DSR may
contain a power up Toutine 1f that is required for the device.
An interrupt entry is only provided for ROM (9900 assembly

language) DSRs.

4.5.1 General Concepts

The three entry poi;ts (power up, I/70 call, interrupt) are
defined in the ROM/GROM header. The same header structure 1is
used in either ROM or GROM although some fields are not used in
one or the other. For example the interrupt field in 2 GROM
header and the application program field in a3 ROM header are not
used. The ROM header must be placed at the beginning (address
»6000) of a ROM DSR.

PAGE 17

T I §9/4 System Software Design Specification

29FER 80

DATA AAQO HEADER IDENTIFIER, VERSION NUMBER
DaTA O NOT USED
DATA PWR ADDRESS OF POWER-UP HEADER
DAaTA © NOT USED
DATA DSR ADDRESS OF DSR HEADER
DATA O ADDRESS OF SUBPROGRAM HEADER (NONE HERE)
BATA INT ADDRESS OF INTERRUPT LINK
DATA O UNUSED
#*
PWR DATA © LINK TO NEXT HEADER (NONE)
DATA FWRUP POWER UP ENTRY
%
SR DATA O LINK TO NEXT HEADER (NONE)
DATA START ENTRY POINT
BYTE 19 LENGTH OF PROGRAM NAME
TEXT ‘APPLICATION PROGRAM’ PROGRAM NAME
#*
INT DATA O LINK TO NEXT HEADER (NONE)
DATA INTENT INTERRUPT ENTRY
The power up and interrupt headers do not have name entries
in them.
4. 5.2 Power-up
The power up entry of every DSR is executad before the
power wup ‘"press any key" screen 1s placed on the monitor. ROM
powetrT up routines are executed before GROM power up Toutines.
Power up routines may use CPU RAM locations B304 through »83BF.
Note that these locationsz cannot all be used in the other DSR
entries. ROM power up toutines may use registers RO through R10
at will. Dther registers contain the following;
R11 return address
R12 CRU base address
R132 GROM read date address
R14 system flags
R15 VDP write address address
R12 must contain the zame valus on the return to monitor as
it contained on entry to the DSR. DERs will oftan change the
address in R12 but since peripherals reside on 100 boundaries

Riz can be restored with an ANDI RiZ, *FFO0O

PAGE 18

instruction.

T I 99/4 System Software Design Specification 2PFER 80O
4.5.3 1/0 Calls '

Puring &an I/0 call the DSR may use CPU RAM locations 8344
through >»8346D. A ROM DSR may also use »83EA through 83EF if it
does not enable interrupts. A ROM device service routine may use
registers RO fthrough R10 at will. Other registers contain the
following;

R11 Treturn address

R12 CRU base address

R13 GROM read date address
R14 system flags

R1S VDP write address address

R12 must contain the zame value on the return to monitor a=
it contained on entry to the DSR. DSRs will often change the
address in R12 but since peripherals reside on 100 boundaries
R12 can be restored with an ANDI Ri2, >FFO0O instruction.

A GPL 1/0 routine returns to the monitor with a CALL RETN

(see section 4.2 2). Note that a CALL must be used and not a
branch. A ROM (9900) 1/0 routine must return with the following
code.

INCT R11

RT

4. 5. 4 Interrupts

When an external interrupt occurs the system interrupt
handler enters the interrupt entry of each peripheral device.
Each device service Troutine must determine if its device
requires service and handle it. An interrupt routine returns to
the monitor with a $9C0 “RT" instruction.

ROM interrupt routines may wuse RO through R7 and R10 at
will. RE may be used but must be cleared (set to z1ero) before
exiting the interrupt routine. RY cannot be destroyed. The use
of R11 through R15 is as described above. OUther areas of CFU RAM
are not available for use in an interrupt routine.

PAGE 19

T I 69/4 Syctem Software Design Specification 2%FEB BO

Append_ix A Future Expansinon

PAGE 20

T I 99/4 System Software Design Specification 29FEDR 80

appendix B Multi-lingual Support

PAGE

)
—

T I 99/4 System Software Design Specification 29FEDR 80

éppendix C CSoftware Development Methods

PAGE

[\N]
(L8]

/4 System Software Design Specification 29PFEDR 80

Appendix D Compatibility

In general there will be no deéignated compatibility

between the TI®%/4 and any previous computers. There 1s no
compatibility with products of Texas Instruments calculator

line. The BASIC language is very similar to other microcomputer
BEASICs, however, most programs will nesd some changes to Tun on
the 9%9/4. Any programs which use the graphics capibilities of

other computers will need to be totally rewritten to Tun on the
?9/4. The memory format of a BASIC program is unique as are most
personal computers. The image which is recorded to mass—storage
in a SAVE command 1is this memory image which 1limits the
capability of transporting BASIC programs to other computers
even if they could read our mass storage media.

Application cartridges from the 99/4 computer will rTun on
the 99/3 when a GPL interpreter personality module is inserted.
This personality module will be bundled with the user
programmable BASIC language since the DBASIC interpreter is

partly written in GPL.

Peripheral devices for. the 99/4 1including the Thermal
Printer, Mini—-floppy Disk and RS-232 Interface will not work on
any other personal computer. Peripherals from other computers
will net work on the 992/4 except for those with RS5-232
interfaces which can be attached to our RS-232Z peripheral. The
media of other mass storage peipherals (audio tape or disk) will
not be transportable to the 99/4.

Very little grouvudwork has been done to determine the
requirements to make future personal computer products
compatible with the 99/4 although this is a necessary goal.

PAGE 23

T I‘9?/4 System Software Design Specification

Appendix E Hardware Diagnostic Methods

PAGE 24

29FED B8O

