)

)

)

)

)

)

)

$14.95

From the Publishers of COMPUTE! Magazine

Programmer’s
Reference

TI-99/4A

C. Regena s

Clear explanations of BASIC TI-99/4A™
programming plus dozens of programs
you can type in and run.

COMPUTE' Publications,Inc. @

of the ABC Publishing Companies

From the Publishers of COMPUTE! Magazine

Programmer’s
Reference
Guide
to the
TI-99/4A

—ee——— C. REgENa o——

COMPUTEI Pubhcohons INnC. @

Greensboro NorTh Cc:rolmo

When You Type In Programs. . .

You may encounter braces enclosing a specified number of
spaces, i.e.:
{ 4SPACES }

In these (and only these) instances, type the appropriate number
of spaces, but do not type the braces.

Copyright © 1983 COMPUTE! Publications, Inc.

Reproduction or translation of any part of this work beyond that permitted by Sections
107 and 108 of the United States Copyright Act without the permission of the copyright
owner is unlawful.

Printed in the United States of America.

ISBN 0-942386-12-4
1098765432

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is an independent publisher of quality consumer products for the personal
computer industry, and is not associated with any manufacturer of personal
computers. TI-99/4 and TI-99/4A are trademarks of Texas Instruments.

i

S

Table of Contents

PreRECR! . oa va vamaviin v wakintanie s sawaiiee oa s e v
Publisher’s ForewWord : ...co.u: o savsvis o snsonss s vii
Chapter 1: Introduction 1
Chapter 2: Getting Started« «cvvsmere s memen s son 13
Program Listing
2-1. Defining Characters.................. ... 43
Chapter 3: GraphicsandSound 47
Program Listings
3-1.HOrSe ..ot 56
3:2. Color CombInations . - .« visssmsessvis ssmivs sie womse 60
33 OMBABTUATE <. 5 o sssicavscs miseacusma e wi i Wi o #iw atoiss 66
3-4. Musical Tempo Demonstration 70
30 Name thE NOE ..ovi vniasinsmmms v sseay 76
3-6. Music Stepsand Chords 88
37 Il SUBANTAR"" soii i shvii i swel SEeaaEs Ve wean 103
3-8. “Hey, Diddle, Diddle””coouune. 107
3-9. ““We Wish You A Merry Christmas”.............. 111
SN0 B IIOME . ;.o sm samosisie ssosinmnm swinses snnes 124
3-11. Language Demonstration 128
12 SPEINNE Practice oo cuwvvvs sunivvas sawaisni s 134
813 COIOE 1.5 54 swwnans vowsves seliveiy PRGRTS GRS 137
B4 GETINAN o vitass isvsasn sHnReEE SRR SiEEe 139
Chapter 4: Going Somewhere...................... 145
Program Listings
4-1. Homework Helper: Factors 155
4-2. GOSUB Demonstrationc.covun... 162
43, DHoe TREOW 1o o sonins wommon swvmans weswmiss v 164
4-4. Coordinate GEOMETY ...« «vs viswviuwn inwie e soswss 170
Chapter 5: Built-inFunctions 185
Program Listings
5-1. Electrical Engineering Circuit Design1 196
5-2. Electrical Engineering Circuit Design2 208

5-3. LeHOr PUZZIES «cuui somvvans s ssme s, s
BB BIQO: i wlsiviiinn vowiiewi e aaio s sRleass Foinaey o
55, Brrthday List oo sumcows sainns ssemins iieues 3

Chapter 6: Programming Techniques

Program Listings
6:=-1: Cookie Flle: vx ouvu: 2u viim: w5 eunmt 55 osmsm o dnes
AN BUll” siuvns sesns s suien vnevean v 08 e
. Western States
: New England States . c.uavs swimsni smissas we v
‘ Type-ette, Unit 2 .o
ype-etteTimer
SOt 1: BUBBIE SOTE : ivin i siiesa st cne i s s sl ok
L BorE2: SHell SOt o s iwmuse o5 SacnD. 55 8% L
L Sort 3: MinimummSearch . cvwse o vesni s o ow o
10 Sort 4: Minimum and Maximum
6-11. Name and Address File (Cassette)
6-12. Monthly Payments ceess saswsns s s v

@mﬂ@@%mm

6-
6-
6-
6-
6-
6-
6-
6-
6-

Chapter 7: A Dozen More Programs

Program Listings

7=1. Division with Remainder .« vssssmnsssan szoneams
7-2, Bquivalent FraCtons' ..o swvewiin sumiaen sowes
7-3. SImplEying Frachions o u.euu sowsans sabaves sslas
7-4. Multiplying Fractions
7-5. Dividing Fractions
76, AQding FIaCtHONS ..o vyvmmms smmsiene swvnmss s s
7-7. Solving Simultaneous Equations
7-8. Math Competency: EarningMoney
7-9. Math Competency: BuyingItems
7-10. Typing Drill: Musical Bugle
7-11. Typing Drill: TypeInvaders
7-12. Car Cost Comparisonoovenvenn..

Appendix — Characters: Code Numbers and Sets

iv

Preface

You have your TI-99/4 or TI-99/4A home computer —
now what can you do with it? In this book I present TI
BASIC programming explanations and techniques and a
great variety of programs for you to key-in and RUN.

I would like to offer a special thanks to Richard
Mansfield and Kathleen Martinek for their encouraging
words and their confidence in me. Thanks also to Robert
Lock, President of Small System Services, Inc.; Ottis
Cowper, technical editor; and other members of the
production staff at COMPUTE! Magazine and Small
System Services, Inc.

[also acknowledge my husband, Chandler Whitelaw,
for his patience while I was writing or programming and
would answer his queries with ““Uh-huh’’ or “/just one
more thing here . . . ”’ I also appreciate my own in-house
quality control department — Chery, Richard, Cindy,
Bob, and Randy — for their help in testing programs and
keeping me supplied with new ideas.

) DD DO XD OQ DT YO0 QO

To: The Texas Instruments 99/4A User Community

From: Robert Lock, Editor In Chief/Publisher,
COMPUTE! Publications, Inc.

When C. Regena began writing a tutorial applications and
programming column in COMPUTE! Magazine, we took our
first steps toward an ongoing commitment to the support of the
owners and users of personal computer products from Texas
Instruments. We're doubly pleased to be introducing the
Programmer’s Reference Guide as the first book solely for TI

from our COMPUTE! Books Division.

From “*Getting Started’’ to “"Programming Techniques,”” you'll
find this guide an invaluable tool. The author is an experienced
teacher and tutor for the range of users from beginner to most
advanced. You'll find dozens of applications, tutorials, fully
documented programs, and utilities designed to enhance and
support your full utilization of the power of your personal
computer.

Whether you use the book as simply a source of a tremendous
amount of ready-to-run software, or as an equally valuable
reference guide, you'll enjoy the easy-to-use format and the
quality of the writing. Welcome to COMPUTE! Books.

Our thanks to the many members of our production and
editorial staffs who assisted in the development of this guide.

vii

3OO0 DDDDIIDO00IO0D00DDD00D0O000

—— Chapter | a——
Introduction

2000008000000 00000C0000O000C0O00O00

Chapter 1

Introduction

The Texas Instruments 99/4 home computer cost over $1000 in
1980 and included a TI color monitor. Soon the computer was
sold separately from the monitor for about $600. One of its
most appealing features was the plug-in command modules for
programs, which made the computer very easy to use.

In late 1981, after making improvements on the TI-99/4
calculator-style keyboard, Texas Instruments introduced the
new TI-99/4A console and lowered the price to under $500.

Within a few months, most dealers offered a price near
$400. In September 1982, Texas Instruments changed its
advertising campaign for the TI-99/4A and started offering a
rebate of $100. Many stores were selling the TI-99/4A for $295,
so it was possible to own this very powerful computer for about
$200.

By now, more than 75 command modules are available.
You can do anything from playing a video game to
keeping track of a school district’s accounts, simply by using
the command modules.

It’s Time for You to Take Command

Valuable as those pre-packaged programs are, you will enjoy
your computer even more when you write your own programs
with the built-in TI BASIC computer language. This book will
help you design your programs, provide you some hints and
techniques, and remind you of good programming habits. Best
of all, there are some actual programs for you to try.

To use this book, all you need is your TI-99/4 or TI-99/4A
computer and a color monitor or television set with the
appropriate cables. You will probably want a cassette recorder
and the dual cassette cable so that you can save the programs
you write.

If you sit at the computer while you're reading this book,
then you can type in each sample program as you come to it
and RUN the program to see what happens. On many of the
programs, you may experiment by changing some of the
numbers in the commands to see how the program changes.

All the programs in this book use TI BASIC, the BASIC
language that is built into the TI-99/4 or TI-99/4A console; no
other memory or language cartridges are necessary.

Differences between the T1-99/4 and the TI-99/4A

This book is written for users of the TI-99/4 or TI-99/4A home
computers. For simplicity’s sake, I will usually use “‘TI-99/4A""
to refer to both computers, since TI BASIC is the same for both.

The main differences between the TI-99/4 and the TI-99/4A
consoles are:

1. The TI-99/4 has a ““calculator-style”” keyboard. The
TI-99/4A’s keyboard is more like a typewriter.

2. The placement of several keys and symbols is different.
On the TI-99/4, you use SHIFT plus a key for many of the
functions; on the TI-99/4A, you press the FUNCTION key plus
another key for the functions.

3. The TI-99/4A has an ALPHA LOCK key and shifted and
unshifted letters. The letters are actually large and small capital
letters; but if you use a printer with lowercase letters the small
capital letters will turn out to be lowercase letters.

4. The TI-99/4 has an Equation Calculator option that the
TI-99/4A does not have. Essentially, the Equation Calculator
allows you to evaluate mathematical expressions without
actually writing a program.

5. The TI-99/4A has 256 fewer bytes of Random Access
Memory (RAM) than the T1-99/4. If you have a program that
uses almost all of the memory on a TI-99/4, it may not work on
the TI-99/4A.

6. Some of the key codes returned by a CALL KEY
statement are different on the two consoles.

Special Features of the TI-99/4A

I'll briefly review some of the advantages of the TI-99/4A. Later
chapters will show you in some detail how you can use some of
these features in your own programs. Don’t worry if some of
these features aren’t yet clear to you. By the time you’ve read
the appropriate chapters, everything will make sense.
Graphics and color. Probably one of the most enjoyable

things to do with your computer is drawing pictures. There are
16 colors, and you can use all of them on the screen at the same
time, even in high-resolution graphics. High-resolution means
more detailed drawing. You can easily create your own high-

4

s e ——, Chapter T

resolution graphics characters, and you can also use text
(words) anywhere on the screen at the same time you use high-
resolution graphics (drawings). Many other microcomputers
limit your use of text with high-resolution graphics and limit
the number of colors you can use with higher resolutions.

Music. You may play up to three notes and one noise for a
specified time using one statement. The musical tones are
selected by using a number which represents a frequency of
110 Hz to 44733 Hz, which is a tone from low A on the bass clef
to out of human hearing range. The tone may be between
regular musical notes.

Noises. Using different combinations of musical tones and
noise numbers, you can make all sorts of synthesized noises —
everything from crashes and explosions to outer-space tones.

Combining sounds and graphics. ““Computer
choreography’’ is possible because, while music is played,
other statements (including graphics) may be executed. You
may illustrate a song, for example. If you have a game
program, you may make calculations while you are making a
noise.

Built-in programming language. TI BASIC is built into the
main console — there’s nothing extra to buy. TIBASIC is an
excellent language to learn how to program; it is easy enough
for a beginner, yet powerful enough for an experienced
programmer because of the built-in functions.

Speech. Even though speech is not built-in, I am going to
include it in this list of features. Since Texas Instruments
offered a TI Speech Synthesizer free with the purchase of six
command modules (for about eight months), many TT owners
have a speech synthesizer. The speech synthesizer is a small
box that attaches to the side of your computer console. The
speech feature is relatively inexpensive and very easy to use.
Plug in any of the command modules that contain speech, such
as the game of Parsec or any of the Scott, Foresman educational
command modules, and you can hear the computer speak to
you. Other command modules are available for you to program
your own speech.

16-bit microprocessor. The TI-99/4A uses the TI-9900 16-bit
microprocessor, which offers more computing power and
greater expansion and configuration flexibility than an 8-bit
microprocessor. You can achieve higher numeric precision,
simplified memory addressing, and impressive efficiency.

e Chapter [e

Plug-in modules. The easiest way to use the TI-99/4A is to
insert a command module which contains a program. Modules
are available for a variety of applications. The price depends on
the amount of memory built into the module. The modules
actually add memory to the computer.

Variable naming. In your own programming, you may
use meaningful variable names. In many microcomputers, the
BASIC language recognizes only two letters or a letter and a
number for a variable name. If you have a program with the
variable name BLUE and another variable name BLACK, other
computers may think they are the same variable, BL, but the
TI-99/4A knows you are using two variables. You also do not
have to worry about embedded reserved words in variable
names. For example, many computers would not allow the
variable name AFFORD because it contains the word FOR. The
TI doesn’t mind.

String manipulation. TI BASIC offers powerful string
operations. Your computer has two ways of interpreting the
letters and numbers you enter from the keyboard. Usually, the
computer assumes you are entering commands and numbers,
to perform mathematical operations. However, when you tell it
to, the TI-99/4A can also interpret letters, numbers, and
symbols as strings. You would enter a list of names and °
addresses, for instance, as strings. It wouldn’t make any sense
for the computer to add up your friends” house numbers, or
treat their names as numeric variables. But you might very well
want to arrange those names in alphabetical order. That is just
one example of a string operation that TI BASIC can perform.

It can also find out the length of a word or phrase, search
for one group of letters contained within another, or cut up
words or phrases into smaller segments. And just as you can
use numeric variables to stand for numbers, you can use string
variables to represent strings. With TI BASIC you can even use
string variables in arrays.

Line editing. Programmers will enjoy the easy line editing
features. Function keys allow you to change, insert, or delete
characters without retyping the entire line.

Automatic line numbering. You may specify a beginning
line number and an increment, and the computer will
automatically number your lines for you as you are typing
them in.

e Chapter 1

Automatic renumbering. After you have programmed and
added or deleted statements here and there, the automatic
resequencing command, RES, will automatically renumber
your statements, including all statement numbers referenced
by other commands.

Trace. If you use the TRACE command, TI BASIC will
follow the line numbers of statements as they are being
executed to help you in debugging programs. You may stop the
program at any time and print out the value of any variables.

Peripherals

Unless otherwise specified, none of the programs in this book
require extra equipment. However, to give you an idea of the
capabilities and expandability of your TI computer, I will briefly
describe peripherals you can add on to your basic console.
Keep in mind that improvements and enhancements are
constantly being developed and that prices fluctuate.

Software. Your computer is hardware; software is the
programs that will make the computer do what you want it to
do. The easiest way to load a program into the TI computer is to
use a command module. Just plug it in.

Another way to load a program is to type (“’key in”’) the
program each time you wish to use it. If a program is long,
you'll find that it saves a lot of time to store it on a cassette or a
diskette. Most “‘third-party’’ (not produced by Texas
Instruments) software is produced on cassette or diskette. A
cassette program requires a cassette recorder and the dual
cassette cable. A diskette program requires a disk drive and the
disk controller.

Software is available for a variety of applications, like
games, education, finance, inventory, engineering, business,
and music.

When you purchase software, the literature or your dealer
should tell you what hardware is required. For example,
business software often requires a printer and two disk drives
(and thus the peripheral box, RS-232 interface, and disk
controller), plus perhaps the Extended BASIC module and
maybe the 32K memory expansion. Some game programs
require joysticks.

Cassette recorder and cassette cable. Probably one of the
first items you will need is a cassette cable to connect a cassette
recorder to the computer to save your own program or to load

Chapter | e—s———————————

other cassette programs for your use. Nearly any cassette
recorder is acceptable; however, the TI-99/4A is more critical on
volume control than the TI-99/4 is, and some brands work
better than others. In general, a battery-operated recorder will
not work well enough for accurate data retrieval all the time.
Also, your recorder should have both a tone and volume
control. Texas Instruments publishes a list of recommended
cassette recorders.

The User’s Reference Guide (page I-9 for TI-99/4A, page 15 for
TI-99/4) tells how to connect the cassette cable and how to save
and load data when you're using a module. The Guide also tells
how to save and load a program you have written (pages
11-40-42 for TI-99/4A and pages 68-70 for TI-99/4). Some other
hints for using the cassette recorder are:

® Turn the tone control to the highest setting.
¢ Start with the volume about midrange.
® Type in OLD CS1 and follow the instructions printed on

the screen.

¢ If you get the message ““NO DATA FOUND, " increase
the volume.

e If you get the message "ERROR IN DATA,"” decrease the
volume.

With some of the TI-99/4A consoles, a fraction of a change
in volume can determine your success in reading a program.
On a couple of consoles, I alternated between the two error
messages at a volume setting near 2 or 3, then turned the
volume up to about 8 or 9, and the program loaded with no
problems.

The smallest plug of the cassette cable goes into the remote
jack of the cassette recorder, so the computer can turn the
recorder on and off automatically. If the recorder does not turn
on and off properly, simply remove the remote plug from the
jack.

You can operate the cassette recorder manually to save and
load programs. For programs using the cassette recorder for
data entry, you will need the remote capability. An adapter is
available for the remote switch.

Two cassettes are used in some programs where you need
to read and write data, such as updating files.

Speech. The TI Speech Synthesizer is a small box that
attaches to the side of the computer and lets the computer

8

R T T ST Chapter | e

speak to you. You will need a command module with built-in
speech to hear the computer speak.

To program your own speech or to use any cassette or disk
programs that use speech, you will need a module. Speech
Editor and Extended BASIC are two modules that have speech
capabilities with a given list of words. The Terminal Emulator I
command module allows unlimited speech, and comes with
documentation that gives you ideas and suggestions about
programming speech. The easiest way is to spell something
phonetically for the computer to pronounce.

Extended BASIC. TI Extended BASIC (XBASIC) is a pro-
gramming language contained on a module. It comes with a
programming reference card and a thick manual. No other
peripherals are required to use XBASIC; if you want a powerful
programming language, this may be the first “extra’’ you'll
want to buy for your computer. If a program has been written
in XBASIC, the XBASIC module must be inserted for the
program to run properly. Some of the advantages of XBASIC
are multi-statement lines, complex IF-THEN-ELSE logic, sub-
routine and MERGE capabilities, program security (save
protection), excellent formatting, and moving sprites for
graphics. If you like to write action games, Extended BASIC
with the sprites is essential.

Hardware. There are two main ways to add peripherals to
your TI computer. The old method has each peripheral in a
separate box that connects to the side of the computer or the
previous peripheral. The RS-232 Interface, 32K Memory Expan-
sion, and Disk Controller look like identical boxes. The disk
drives are hooked by a cable to the disk controller or another
disk drive.

The new method is to add a Peripheral Expansion Box. With
it, each peripheral is a ““card”’ that is placed in the expansion
box. The expansion box is attached to the computer (or speech
synthesizer) by a thick cable, and it has its own power supply,
so there aren’t as many power cords dangling around as in the
old system. The RS-232 Interface, 32K Memory Expansion,
Disk Controller, and Disk Drive are ““cards’’ that plug into the
expansion box. Other cards are planned.

RS-232 Interface. The RS-232 Interface was my first add-

on, because [wanted a printer, and the Interface allows the
computer to ““talk’’ to the printer. The RS-232 Interface has two

T ST A ——— Chapter | s

TI-99/4A with Peripheral Expansion Box

ports so that you may be connected to a printer and a modem at
the same time. The instruction book that comes with the
RS-232 tells you how to operate the computer under different
conditions.

Printer. You may use a number of different brands of
printer with your TI-99/4A. To connect your printer, you'll
need a cable to go from the RS-232 Interface to the printer. The
cable should be sold where you buy the printer.

Modem. Modems allow you to use phone lines to send
information from one computer to another. There are several
kinds of modems and acoustic couplers that will give you
access to large computer networks, data bases, or other
services. You will need the RS-232 Interface and either the
Terminal Emulator I or Terminal Emulator Il command module.

Disk controller and disk drives. You can save and retrieve
data or programs with a diskette much more quickly than with
a cassette system. To connect a disk drive, you also need a TI
Disk Controller. One disk controller can handle up to three
disk drives. Many business applications require two disk
drives. The TI-99/4A presently uses single-sided 5%-inch
soft-sectored diskettes.

10

Chapter 1

Memory expansion. The TI Memory Expansion gives your
computer 32K RAM. However, that memory won’t do you
much good unless you use a module that will access it. You
cannot use it with console BASIC alone. TI Extended BASIC
does not require the memory expansion, but it can access it.
Other programming languages may require the memory
expansion.

Monitor. Although the TI-99/4A may be connected to your
regular television set, a color monitor gives a clearer picture.

Logo. TI Logo is a fascinating programming language
designed especially to teach computer literacy to young
children. TI Logo is contained in a command module, and the
32K memory expansion is required. Logo I can print using the
TI thermal printer only. Logo Il has RS-232 capability so you can
print listings on a regular printer, and it also has music. There
are several manuals and books available to help teachers
implement Logo in their classrooms.

Editor/Assembler. This language requires the memory
expansion, disk controller, and one disk drive. It allows you to
program in the machine language of the computer’s T1 9900
MiCroprocessor.

UCSD PASCAL. This language requires the memory
expansion, P-code peripheral card, disk controller, and at least
one disk drive (preferably two).

11

SO D DO QDO ODOTDO I

Chapter 2 m——

Getti
Started

0000000000000 00CO0O0OCOVAOO0O00 0000

Getting
Started

The best way to learn to use your computer is by using it. Most
parts of this book will be more understandable if you are
actually sitting at your computer, typing in the sample
programs and RUNning them as you go along.

Whenever you start writing a new program, it’s good to
keep in mind that there are certain things that must be done
before you can do other things. That’s what this chapter is
about. Along the way, I'll briefly introduce each command and
concept of TIBASIC as we come to it.

What You See

The TI-99/4A keyboard is much like a typewriter keyboard. The
letters are all in the same positions, and so are most of the
symbols. If you aren’t already a touch typist, you will gradually
learn to type as you program.

When you turn on your computer, you get the title screen.
To do your own programming, press any key; then press 1. TI
BASIC is now ready, waiting for you to begin programming.

The little black square that is blinking or flashing is called a
cursor. Whatever you type in at the keyboard will appear right
where the cursor is; the cursor will then move one space to the
right (or to the next line), waiting for you to type something
else.

How to Make Things Happen

The ENTER key is probably the most important key on the
keyboard. You can find it easily — it is the key with a yellow dot
on the front. Simply typing commands won’t make the
computer do anything except put the letters and numbers you
typed on the screen. Things only start happening when you
press ENTER.

As soon as you press ENTER, TI BASIC tries to follow your
instructions. If your instructions begin with a line number, TI
BASIC stores that line as part of your program, to be carried
out later, in its proper order. If there is no line number, TI
BASIC will try to carry out your instructions at once.

15

T wee e ————— Chapter T e e me—

Some BASIC Commands

A command is a word that tells the computer to do something.
The command must be typed correctly; if a word is spelled
wrong, TI BASIC won’t understand the command. The Tl is
also very particular about spaces, and when a command
requires numbers, those numbers have to be within certain
ranges.

For example, type CALL CLEAR. Then press ENTER. The
screen clears immediately. This is the command we use
whenever we want to erase the whole screen — I often use it
near the beginning of a program to get rid of words or pictures
left over from the last program I ran.

Line Numbers

A program consists of a series of commands for the computer
to perform. The commands are numbered with line numbers so
the computer will perform them in a certain order. No matter
what order you type your lines in, when you enter RUN the
computer will start with the lowest line number and carry out
the commands on each line in numerical order, unless one of
the commands directs it to do otherwise. The main thing a
programmer does is arrange commands in a certain order to get
the computer to do something.

If you would like the computer to number your lines for
you as you are typing a program, type NUM. Then press
ENTER. The number 100 will appear on the screen. After you
type in the statement for line 100 and press ENTER, the
number 110 automatically appears.

You do not have to start with line 100. For example, if you
want to start at 20000, type NUM 20000.

The computer automatically increments the line numbers
by ten unless you specify another number. If you prefer to start
at line 50 and number by fives, enter the command NUM 50,5.
The first number is always the beginning line number; then,
after a comma, the second number is the increment between
line numbers. If you don’t specify your own choices when you
enter NUM, by default TI BASIC will start at line 100 and
number by tens.

Why should you skip line numbers when you are
programming? If you don’t, you may find that you need to
insert a few instructions between lines 7 and 8; you would have

16

EE————— Ty T e Chapter P

to renumber your program to do it. By leaving nine unused
numbers between every two lines, you have plenty of room to
insert lines later.

The PRINT Command

One of the most used commands in computer language is
PRINT. You may print messages by typing PRINT, followed by
the message in quotation marks. To type the quote marks on the
TI-99/4A, you will need to simultaneously press the function
key (FCTN, the key with the gray dot) and the letter P. In fact,
all the symbols on the fronts of the keys are obtained by
pressing FCTN and the appropriate key.

You can put more than one message in the same PRINT
command. Just put each message in its own set of quotation
marks, and separate the messages with one or more print
separators — either a colon, a comma, or a semicolon. TI BASIC
interprets the print separators as instructions. A colon tells the
computer to go to the next line; several colons in a row make
the computer skip several lines. Semicolons tell the computer
to join two messages together, with no space between them at
all on the screen. Commas tell the computer to tabulate before
printing the next message. Remember, though, that print
separators must be outside the messages. If they occur inside
the quotation marks, the computer will assume they are part of
the message and simply print a colon, comma, or semicolon on
the screen.

100 REM PRINT

110 CALL CLEAR

120 PRINT "HI"

130 PRINT "HELLO THERE"

140 PRINT "HERE ARE EXAMPLES"

150 PRINT :::"HERE ARE THREE COLONS"

160 PRINT :"GEORGE ";"SUSAN"
170 PRINT :"DOUG","SHEILA"
180 PRINT :"ROGER":"SHERYL"
190 END

Did you remember to type in the space after “GEORGE"’
in line 160? It makes quite a difference in what you see on the
screen.

17

R s] Chapter 7 e

REM and END

You probably noticed that in the sample program you just ran,
there are two new commands: REM and END.

REM means “‘remark.’” Anything that comes after that
word is ignored when the computer runs the program. Why
include REM statements if they have nothing to do with the
program? Theyre really a guide for you — or for any other
programmer who looks at your program and tries to figure out
what you're doing. In a simple program like the one we just
wrote, it’s easy to see what’s going on. But when a program
has a few dozen lines and the variables start coming thick and
fast, a REM statement here or there can help you keep track of
what those lines of code are doing. REM statements use up
memory, however, so if your program starts getting too large
for your computer, you can always delete a few REMs to make
space.

i The command END stops the computer and tells the
computer that is the end of the program. I like to put END as
the last statement of my programs so that you will know you
have all of the lines when you are typing in these programs.
Actually, you may leave off the last line, and the computer will
end by itself. A similar command is STOP, which also stops the
computer as if at the end of a program. I usually use STOP
when [want the computer to stop within a program (such as
between subroutines or different sections of a program), and
END as the last line of the program.

Skipping Around with GOTO

Remember that the computer executes a program line by line,
taking the lines in numerical order. One way that you can
change that order, though, is with a GOTO statement. GOTO
is always followed by a line number: GOTO 150. If you GOTO
the first line in the program, you start the program over again.
You can create loops by telling the computer to GOTO an
earlier line. You can even make the computer stand completely
still by telling it to GOTO the very line it is already on:

320 GOTO 320
The only way to stop the program then is to press CLEAR. You
can also GOTO a later line, skipping as many program lines as

you like along the way.
Type in the following program. It is very inefficient, but it

18

T R — Chapter 7 s r————

illustrates how you can GOTO all over the place. Press CLEAR
to stop the program.

100 REM GOTO

110 CALL CLEAR

120 GOTO 150

130 PRINT "SECOND"
140 GOTO 170

150 PRINT "FIRST"

160 GOTO 130

170 PRINT "THIRD"

180 GOTO 180

190 END

The CALL SCREEN Command

A command I often use at the beginning of a program or at the
beginning of a section of a program is CALL SCREEN. The 16
colors available on the TI are numbered, and the CALL
SCREEN statement allows you to specify what screen color you
want. For example,

100 CALL SCREEN(14)
110 GOTO 110

RUN this program and you will see a magenta screen.

Housekeeping Commands

Some TI BASIC commands almost never appear in programs,
but programmers use them often while they are creating
programs. NEW is like a broom. When you enter NEW, it
sweeps away every bit of the program that is currently in
memory. You'll use it to make sure you aren’t getting old
program lines mixed in with the new ones. But be careful —
NEW sweeps clean. If you want to keep whatever you’ve been
working on before, make sure to save it on cassette or disk
before you enter NEW.

RUN is the command that tells the TI-99/4A to start at the
lowest-numbered line of the program currently in memory and
begin executing the commands it finds there. Any time during
your programming you can enter RUN and see how your
program is working so far.

LIST is the command that lets you look at the program lines

19

[e Chapter P e

that are currently in memory. If you simply enter LIST, the
TI-99/4A will display the entire program, from the first line to
the last. If the program is short, it will all fit on the screen. But if
the program is long, only the last few lines will stay on the
screen for you to examine.

One solution is to watch carefully as your program scrolls
up the screen. When the lines you want to examine are on the
screen, quickly press CLEAR. This will stop the scrolling and
let you look at whatever was on the screen at the moment you
pressed CLEAR.

A better solution is to LIST only a portion of the program. If
you wanted to look only at line 320, you would enter LIST 320.
If you want to look at a range of lines, then enter LIST plus the
beginning and ending line numbers, with a hyphen (minus
sign) in between:

Command Lists:

LIST Whole program

LIST 200-300 Lines 200 through 300

LIST -150 All lines from the beginning
up to and including line 150

LIST 300- All lines from 300 to the end

If you ask for a range of lines that doesn’t exist, there’s no harm
done — the computer just doesn’t LIST anything.

Editing

Not so long ago, to try a program out you had to punch
computer cards and then submit the deck to a computer center.
Hours or days later you could pick up your results. Of course,
sometimes there were typing (or syntax) errors or logic errors
which would need correcting. The job would be resubmitted,
and another day would go by before you could see the results.

Now, with home computers and terminals, the whole
process of programming, correcting, and getting results is
much, much faster. Within seconds you may change a number
in a statement and see the results.

The TI has very easy-to-use editing capabilities built in.
Either before or after you have pressed ENTER, you may
correct typing errors on any line in the program. On some
commands, if you have typed the statement incorrectly, and

20

e e e] Chapter D e

then pressed ENTER, the computer will immediately remind
you that something is wrong (for example, if you spell CALL
with only one L).

For simplicity, I will describe editing using the TI-99/4A. If
you have the TI-99/4, be sure you have the programming
overlay. You will use the SHIFT key and the appropriate key
marked on the overlay.

The Editing Function Keys
Most of the editing on the TI-99/4A can be done by pressing the
function key (FCTN, the key with the gray dot) with another
key. You should have a narrow strip overlay that fits above the
number keys. The bottom line of the overlay has a gray dot at
the right. If you push the key with the gray dot (FCTN) plus the
number key, the computer will do the corresponding
command. For example, FCTN 4 is CLEAR. To stop a program
at any time, you may press FCTN 4, CLEAR. The function keys
used in editing are the arrow keys and numbers 1, 2, 3, and 4.
The other numbers are used with some of the modules.

Now take a look at the arrow keys (found on letter keys E,
S, D, and X). These are the same arrow keys you use to move in
games; you also use them with the FCTN key to edit. If you want
to back up as you are typing in a command, just press FCTN
and the left arrow key. Type over whatever it is you want to fix;
then press FCTN and the right arrow key to get back where you
were. The right arrow and left arrow keys will repeat if you
hold them down longer than a second.

Let’s try some examples. Type in the following example
program exactly as shown, including errors.

108 CALL CLEAAR
110 CALL SCREEN(14)
12¢ PRINT "HI"

130 GOTO 130

140 END

Correcting Errors

Of course you noticed that in line 100, the word CLEAAR is
misspelled. One way to correct the error is to type line 100 over
again, but you can save yourself some retyping by using the
editing keys. To edit line 100, type 100; then press FCTN and

21

the ¢ key. (You could also have typed in EDIT 100
and then pressed ENTER, but the first method is quicker.)
You'll notice that line 100 appears at the bottom of the
screen with the cursor on the first character of the line. Now
press FCTN and the right arrow key until you are directly over
one of the extra A’s in CLEAAR. Now press FCTN and 1 (for
DELete). The word should now appear as CLEAR.
Watch out, because DELete is also a repeating key. If you
hold it down too long, you'll lose more letters than you want.
When you press ENTER, the new line as corrected will
replace the old line.

Revising a Program

Let’s assume you don’t like my magenta screen. First we need
to find out which line we need to change. LIST your program
by typing LIST, then pressing ENTER. The line you need to
change is 110, so type 110 and then press FCTN ' .

Use the right arrow, FCTN—*, to move the cursor to the 4 in
14. Type 6 and then press ENTER. This time your screen color
is 16. RUN the program again.

Suppose you don’t like that color either. Press FCTN 4
(CLEAR), then type 110 and press FCTN ¥ . Say you want color
6. Use FCTN— to get to the 1. Press FCTN 1 for DELete: Then
press ENTER.

Did the editing work? Enter LIST 110 to see. Line 110
should say CALL SCREEN(6).

You have probably noticed that you do not have to be at the
end of the line to press ENTER. No matter where you are on
the line when you press ENTER, the entire line will be stored in
the program.

Now RUN the program again. This time let’s edit line 120.
Type 120 and press FCTN ¥ . Use FCTN- to get to the I in
“’HI"". Stop right on top of the I and type ELLO"’ to replace
““HI'’” with ““HELLO.""ENTER and RUN to see the change.

Inserting Characters
Let’s try another function key. INSert is used to add characters
to a line without having to type the whole line over. Type 120
and press FCTN ¢ to bring line 120 into editing mode. Press
FCTN-> until the cursor is directly over the H.

Press FCTN 2 for INSert. Then type JIM, and notice how

22

e ——e———— Chapter P e

the rest of the line moves over. (Remember to type a space after
the comma so the phrase will look right.)

When you are through inserting characters, press FCTN =
and go to the second quote mark (after the O in HELLO). Now
insert an exclamation mark. Be sure you use the SHIFT key and
not the FCTN key when you press 1. After your line looks
right, press ENTER.

Changing Your Mind

If you are editing a line and decide you don’t want to change it
after all, press FCTN 4 for CLEAR and the line will stay as it
was before you began editing it.

When you are typing in a program, FCTN 4 will get you off
aline, and the computer will ignore that line. If it is a new line,
it will not be entered as part of the program.

FCTN 3 for ERASE will erase the line you are typing. You
may wish to pause here a few minutes and experiment with
ERASE and CLEAR to see the difference.

To delete or get rid of a whole line, type the line number
only; then press ENTER. The left arrow, right arrow, and
DELete keys have the automatic repeat feature; just hold the
key down for longer than one second and it will start repeating.

The INSert key needs to be pressed just once, and
characters will keep being inserted as you type until you press
ENTER, DELete, or one of the arrow keys.

Up and Down

When you are editing more than one line, the up arrow and
down arrow keys will come in handy. Let’s assume you have
the following lines in your program:

200 CALL HCHAR(3,5,42)
210 CALL HCHAR(3,8,42)
220 CALL HCHAR(3,20,33)

You RUN your program and discover the graphics needs to be
a line lower — the row value needs to be changed from 3 to 4 in
all three lines.

Type 200 and press FCTN ¥ to begin editing line 200. Use
the right arrow to go over and change the 3to a 4.

Now, however, instead of pressing the ENTER key, press

23

T ——ees (AT . s ——————

FCTN { . The very next line, line 210 in this case, will appear
for editing; line 200 has also been entered. Likewise, the up
arrow will give you the line just before the one on which you
were working. You can scroll up and down from line to line
through your whole program using the up and down arrows.

If you have pressed either the up arrow or the down arrow
and find yourself on a line that does not need editing, you may
press CLEAR to get out of the editing mode.

Renumbering

RES is a command that stands for resequence. If you have been
programming, adding lines here and there, your program can
get quite crowded and confusing. If you were to renumber all
the lines yourself, it could take a long time, especially because
you would have to find and change every reference to a line —
every GOTO or GOSUB or THEN command that sends the
computer to the line whose number you have changed.

The TI-99/4A makes it easy. Just type RES and press
ENTER. As soon as the cursor reappears, your program has
been resequenced, or renumbered, including all line numbers
referenced in other lines. Try this sample:

100 REM RES SAMPLE

110 CALL CLEAR

120 GOTO 300

150 CALL SOUND(150,440,2)

200 CALL HCHAR(INT (RND*24+1) ,INT (RND*32+1)
+42,5)

210 RETURN

300 GOSUB 150

310 GOsSUB 200

320 GOSUB 150

330 GOTO 300

500 END

First LIST the program and notice the line numbers. Now
type RES and press ENTER. LIST the program again. The lines
are resequenced, starting with 100 and incrementing by 10.
Notice that the numbers after GOSUB and GOTO have been
changed.

As with the NUM command, you may specify the starting

24

line number and the increment. The first number after RES is
the starting line number; the second is the increment.

Try RES 10. Then LIST to see the line numbers.

Try RES ,5. Then LIST.

Try RES 1,1. Then experiment with your own numbers.

Organizing the Program

Quite often when I am writing a program, I start off with the
command NEW, then NUM, and then enter the preliminary
statements of the program. If the program is gong to have
several sections, I start the first section with line 1000; I use the
command NUM 1000 to start typing in lines. Then I start the
second section with line 2000, and so on. After the program is
finished, I can RES so the line numbers are arranged starting
with 100 and incrementing by 10.

You can also use the RES command to help you add lines.
Suppose the lines are numbered in increments of 10, but you
discover you need to add 15 lines between two statements.
RES ,50 will spread the line numbers apart so you'll have
plenty of in-between numbers to use.

Another reason I RES when I'm finished with a program is
so others who look at my program can’t tell where I planned
poorly and had to add lines.

Initializing Variables

All that your computer understands is numbers. Even the
letters that make up commands are just numbers to the
computer. Fortunately, TI BASIC takes care of letting the
computer know whether to treat any particular number as a
command, a character, or a number. All you have to worry
about are a few rules for entering your commands, characters,
and numbers. I've already gone over some of the commands.
Now it’s time to start giving the computer some numbers and
getting back results.

Numeric Operations

Arithmetic is simple. Just enter a statement like PRINT

456 + 5997 and your TI-99/4A will give you a quick answer. The
four simple arithmetic symbols are + (add), - (subtract),

* (multiply), and / (divide). You can make your problems as
complex as you like: PRINT (4*(99/3))-(1111+(88/4)).

25

T TR T e s . A e—" Chapter 2 T T e I e A]

There are three ways that numbers can get into your
program. The first way is the one I just used, putting the
numbers directly in a program statement: PRINT 88/(14*2-6).
Another way is to have a list of data in a DATA statement, and
have the program read the DATA — I'll explain more about that
later. A third way is to use INPUT statements, and have the
computer user enter the numbers while the program is
running.

Storing Numbers as Variables

But the real power of the computer is that you don't have to
put the numbers directly into your programs. Instead, you can
use variables. Variables are like a very long row of cupboards.
When you start your program, the cupboards have no labels.
So you label the first cupboard A, and then store a number
inside it. From now on, whenever your program uses the
variable A, TIBASIC goes to the memory location named A and
brings back whatever number is stored there.

You can name quite a few variables in each program, and
you can change the value of that variable (the number stored in
that cupboard) as often as you like. When your program uses a
variable name, TI BASIC will use the most recent value you
assigned to it.

Types of Variables

There are two types of variables, string and numeric. The
difference is that string variables are given names that end with
a dollar sign, like A$, NAMES$, or R55%, and whatever value is
assigned to a string variable is treated as characters rather than
numbers. String operations are performed on string variables;
numeric operations are performed on numeric variables.

Naming Variables
There are a few simple rules in naming variables. First, variable
names have to start with a letter. Second, variable names can
only consist of letters and numbers. A1, B53RN,
NUMBEROFPEOPLE, and WATERGATES5 are all legitimate
variable names. A@, 15B, WHAT’S THIS, and #OFDOCTORS
are not legal variable names.

Third, no two variables can have the same name — if two
variables have the same name, the computer assumes they are
the same variable. But it doesn’t take much to make the names

26

T ———— Chapter 7 s s—

different. If even one character in the variable names is
different, your TI-99/4A will always be able to tell which is
which.

Fourth, your variable name can’t begin with a complete
command. LIST14 is not a legal variable name.

Your variable names don’t have to mean anything, but it’s
often a good idea to use words that have some meaning. In a
long program, you'll sometimes have dozens of variables at
once, and it’s a lot easier to keep track of what each one means
when, instead of naming them A, B, C, D, and so on, you have
named them SCORE1, SCORE2, TIME, SPEED, and TVCOL.

Assigning Values to Variables

In many BASIC languages, when you want to use regular
statements of your program to give values to variable names,
you have to use the LET statement: LET A=7. However, in TI
BASIC, the word LET may be omitted, so all you need is the
variable name and the value: A=7. This tells the computer to
use 7 whenever your program calls for the variable A.

If you use a variable in a calculation without previously
assigning a value to it, the computer automatically assumes a
value of zero.

Here is a sample program.

100 A=7
110 B=10
120 PRINT A*B
130 END

If you RUN this program, the result printed would be 70.
Now suppose you had entered this program:

100 A=7
110 PRINT A*B
120 END

This time the value of B was never assigned. The computer
assumes that B equals 0, and the result printed is zero.

The TI-99/4A sets all variables to zero each time a program
is run. If you want your variables to start at zero, you won't

27

et S Chapter 2

need to define them. However, any time your program has an
option to do a process more than once, you will need to make
sure your variables have the right value each time the process
begins again. Many of the variables will need to be
re-initialized, while others will not.

Where Should Variables Be Initialized?

For example, let’s say you are designing a game in which two
players take turns moving a figure around a screen for a limited
amount of time. At the end of the game, the players have the
option of starting over.

While I won’t try to show you the whole program, I can
show you the basic design of it. There are three principal loops.
The inner loop is the player movement loop. This one repeats
hundreds of times in a game, each time the player moves his
on-screen figure. The program keeps track of where the
on-screen figure is with the variables X and Y. (In this book, X
represents the row numbers, or vertical placement of the
character; Y is the column number, or horizontal position.)

The next loop is the player-turn loop. When Player One’s
time is up, it is Player Two's turn; when his or her time is up, it
is time for Player One again. The program keeps track of the
amount of time that has passed with the variable TIME. -

The outer loop is the play-again loop. When a game is over,
the players are asked if they want to play again. If their answer
is yes, then the whole game starts over again from the
beginning, and their scores are set at zero. The program keeps
track of their scores with the variables SCORE1 and SCORE2.

Figure 2-1is a diagram of the program, including five LET
statements. If the variable assignment statement is inside a
loop, then each time the loop repeats that variable is initialized
— set back to its original value. Otherwise, the variable keeps
whatever value it received during the last time through the
loop.

Notice where the values of the variables are initialized. X
and Y are set to their starting position only at the beginning of a
turn, outside the movement loop. If those values were
initialized inside the movement loop, then every time the
figure moved, it would immediately come right back to the
starting place. TIME is also initialized at the beginning of each
turn. But SCORE1 and SCORE2 are only initialized at the start

28

e Chapter P e]

Figure 2-1. Planning Program Loops

(Initialize the program — define characters, draw the
screen.)

—> (Beginning of play. The play-again loop starts here.)

200 SCORE1=0
210 SCORE2=0

> (Beginning of the player’s turn. The player-turn loop
starts here.)

300 TIME=0
310X=16
320Y=12

>(Check to see if the player wishes to move the figure. The
player movement loop starts here.)

> (Move the figure by changing the values of X and Y. Check
to see if the time is up. If no, then return to the beginning
of the player movement loop. If yes, then return to the
L beginning of the player-turn loop.)

play-again loop
movement loop

player-turn loop

(End of play.)

1000 PRINT “‘PLAY AGAIN? (Y/N)"’
L_> (If yes, return to the beginning of the play-again loop.)
1200 END

of each new game — otherwise, every time a player’s turn
ended, the scores would be reset to zero.

Variables in FOR-NEXT Loops

Another way variables are given values is in FOR-NEXT loops.
(FOR-NEXT loops are described in more detail in Chapter 4.)
Briefly, a variable is used as a counter in the loop, and each
time through the loop, the counter increases or decreases by a
set amount. Try this program:

100 FOR C=5 TO 10
110 PRINT C

120 NEXT C

130 END

29

AT T————— Chapter 7 rrsceesnemrosme———

The first time through the loop, C has the initial value of 5.
When the computer executes line 120, it increments (adds 1 to)
C and then checks to see if it is less than or equal to 10. If C is
less than or equal to 10, the computer goes back to line 100 and
begins the loop again. After the loop is finished, C has the
value of 11 because it was incremented one last time after it
reached the target value of 10.

This can be very powerful in programming. Add these
lines to the program you just ran:

112 D=D+(23*C)
114 PRINT D,
116 PRINT 400-(10*C)

Now RUN the program. By performing various operations
using the counter variable, you can produce many different
effects in the same loop.

DATA and READ

Directly defining variables in statements or using FOR-NEXT
loops is the easiest way to keep track of the value of a variable.
That way, however, each variable needs a separate statement
every time its value changes. If you need to save memory or
prefer to use fewer statements, then the DATA method may be
used.

A DATA statement consists of the command DATA
followed by as many items of data as will fit on a line. DATA 9
is a complete, valid statement. So is DATA 9,50, DONNA
SMITH, 3,-580,0,0,28,1899,10, FRANK WADE. There can be as
many DATA statements as you like in a program, and you can
put them anywhere in the program you want. The computer
doesn’t do anything with them until it comes to a READ
statement.

The READ statement is always followed by as least one
variable name. READ A is valid. So is READ
A,B,C$,D,E,F,G,H,I,],K$. (Notice that when the DATA is a
string, it must be READ into a string variable.) When the
computer encounters the first READ statement in a program, it
starts at the beginning of the program and looks for the first
DATA statement. The first variable after the READ statement is
assigned the value of the first item of data after the DATA

30

T E—— T Chapter D o

statement. The second variable after READ is given the value of
the second item of data, and so on. (READ and DATA are
described in more detail in Chapter 6.)

Following this paragraph are two programs assigning the
same values to the same variables. The one on the left assigns
the values in separate statements. The one on the right uses
READ and DATA. The DATA statement happens to come after
the READ statement. It could have come before; it makes no
difference.

100 A
110 B
120 C
130 D
E
P

7 1606 READ A,B,C,D,E

10 118 PRINT A*B+C/D+E
6 12¢ DATA 7,10,6,2,5
2
9
I

140
150

R

NT A*B+C/D+E

User INPUT

One more way to get information into the computer is to let the
user of the program INPUT the data. Here is an example:

100 CALL CLEAR

110 INPUT "ENTER A NUMBER ":A

120 PRINT "YOUR NUMBER SQUARED IS ";A*A
130 END

In line 110, the computer waits for the user to type something
in and then press the ENTER key. The variable A is assigned
the value of whatever number the user enters.

Line 110 shows only one way of using the INPUT
statement. Another way is to use a PRINT statement and an
INPUT statement:

110 PRINT “ENTER A NUMBER"’
115INPUT A

If your message to the user, or prompt, is part of the INPUT
statement, then it must come immediately after the command
INPUT. After the message, type a colon and the variable name.

31

User Errors

What happens if the user doesn’t follow your instructions, and
enters a letter or symbol, or a number too large for your
program to handle? If the user INPUTs a letter or symbol, the
computer gives him or her a chance to try again. If the user
INPUTs a number too large to handle, the program crashes — it
stops abruptly and won’t go on. So it’s a good idea to test the
value entered and make sure it is within reasonable limits for
your particular program before you actually try to do anything
with the INPUT variable. For example:

100 CALL CLEAR
110 PRINT "ENTER A NUMBER"::"FROM 1 TO 100

120 INPUT N

130 IF N>=1 THEN 160

140 PRINT :"SORRY, TRY AGAIN.":::

150 GOTO 110

160 IF N<=100 THEN 190

170 PRINT :"SORRY, MUST BE LESS THAN 100"
180 GOTO 120

190 PRINT ::"YOUR NUMBER SQUARED IS";N*N
200 END

The symbol < means “‘less than.”” The symbol > means
““greater than.”” Combined with the equal sign (=), these
symbols mean ““less than or equal to”’ or “‘greater than or equal
to.”

Testing with the IF-THEN Command

The IF-THEN command is very powerful. It tests to see if a
particular condition is true or not. If it is false, then the
computer goes on to the next line of the program. But if the
condition is true the computer goes somewhere else.

In line 130, the command IF was followed by the test
condition. Is it true that the value of variable N is greater than,
or equal to, 1? If not, the computer will go on to line 140 — the
user entered a number that the program cannot use. If N is
greater than or equal to 1, however, the program branches to
the line number that follows the command THEN. If the

32

e ——_ADET)

statement following IF is true, the program will always go to
the line number following THEN.

CALL KEY for User-proof Input

One way to avoid user errors is to give the user fewer choices.
If you ask a yes or no question and use the INPUT method of
getting the user’s answer, what is to stop the user from typing
YEP or AFFIRMATIVE or OF COURSE NOT? A better way is to
give him only two choices, each consisting of only one letter.
Then use the CALL KEY statement to find out what letter the
user chose.

The CALL KEY statement is always followed by a zero and
two variables, all in parentheses: CALL KEY(0,K,S). All that
concerns us now is the first variable — in this case, K. After the
CALLKEY statement is executed, the value of that variable will
be the numeric code for the last key that the user pressed.

800 PRINT "PRESS Y FOR YES, N FOR NO"
810 CALL KEY (0,K,S)

820 IF K=89 THEN 200 (Y WAS PRESSED)

830 IF K<>78 THEN 810 (ANY KEY OTHER
THAN N)

840 (PROGRAM CONTINUES FOR N)

If the user presses Y, the program branches to line 200 for the
YES procedure. If the user presses N, the program continues to
line 840 for the NO option. Any other key pressed sends the
computer back to line 810, to ask for another key. The program
will not continue until the user presses either Y or N.

Menus
The CALL KEY method isn’t limited to “‘yes/no’’ situations.
You may have a menu of options on the screen. Label each
option with a letter or number; then use a CALL KEY
statement to read which key was pressed and branch
appropriately. If the user presses a key that is not one of the
choices, you can send the computer back to ask for a new key.
In the following example, the user must press 1, 2, 3, or 4.
If any other key is pressed, the value of K is less than the ASCII
code 49 (the code for the character ““1"’) or greater than 52 (the

33

. ——————) Chapter e see———

code for the character ‘“4"’), and the computer will return to the
CALL KEY statement in line 120.

100 CALL CLEAR

110 PRINT "CHOOSE 1, 2, 3, OR 4"
120 CALL KEY(O,K,S)

130 IF (K<49)+(K>52) THEN 120
140 ON K-48 GOTO 1000,2000,3000,4000
1000 PRINT "1"

1010 GOTO 120

2000 PRINT "2"

2010 GOTO 120

3000 PRINT "3"

3010 GOTO 120

4000 PRINT "4"

4010 GOTO 120

5000 END

The ON Command

In line 140, we used the ON command. ON is similar to
IF-THEN, because it can cause the program to branch to
another line. This time, though, instead of having only one
possible branch, there can be many.

Instead of testing the statement that follows ON to see if it
is true or false, TI BASIC finds out the numerical value of the
expression. In line 140, the expression after ON was K-48. The
variable K held the value of the ASCII code for the key the user
pressed; because of the test in line 130, you know that Kis a
number from 49 to 52. Now we subtract 48, so that the value of
the expression is a number from 1 to 4.

Now comes the multiple branching. If the value of the
expression is 1, the program will branch to the first line number
following the GOTO command. If the value is 2, the program
branches to the second line number, and so on. If our menu
had 10 options, we could have specified ten line numbers after
the GOTO statement.

However, you must be careful when using ON statements
to make sure that the expression tested by ON has a value no
less than one and no greater than the number of line numbers
specified after the GOTO command. The program will crash if

ON finds a value for which there is no corresponding line
number after GOTO.

Initializing Arrays with DIM

Earlier in this chapter we noted that variables all need to have
different names so the computer can tell them apart. There is
an exception. A variable array is a group of variables with the
same name. However, the computer can tell them apart
because the variable name is followed immediately by a
number in parentheses, called a subscript. Arrays are discussed
in more detail in Chapter 6; what matters now is how you
initialize a variable array.

Since each variable in an array takes up space in memory
(whether you are using it or not), it is important to make sure
that each variable array has as many individual subscripted
variables as you need — and no more. The DIM (“’dimension’’)
statement does this. If you use a subscripted variable, like A(7),
before DIMensioning the array, TI BASIC will automatically
DIMension that variable array as if you had entered the
statement DIM A(10). That will allow you to use subscripted
variables from A(0) to A(10). If you tried to use a variable like
A(11), however, you would crash your program.

So it is usually a good practice to use a DIM statement early
in the program for all the variable arrays your program will use.
The DIM statement should come right at the beginning of the
program, so that in editing you don’t accidentally add a line
that uses a subscripted variable before the DIM that creates it.

A DIM statement can create several arrays, separated by
commas, and each array can provide for up to three subscripts,
like this:

100 DIM A(7),B(2,30),C(5,2,7),D(3)

Subscripts may be zero, and the computer automatically
reserves a spot for the variable with zero subscripts. The
statement DIM A(7) actually creates eight subscripted variables,
from A(0) to A(7). If you need to save memory and prefer to
start the subscripts numbering with 1, use the following
procedure:

100 OPTION BASE 1
110 DIM A(7),B(2,30)

35

T e Chapter R =]

Defining Functions

Another statement that needs to be near the beginning of the
program is a DEF (*“define function’’) statement. It is used to
DEFine a function, or series of commands, that will be used
often in the program.

Here is a segment of a program that could be used to check
homework. Assume the algebra teacher wanted you to
evaluate F(X)=X3+2X2+ X[2 for various values of X. The
program is:

1090 CALL CLEAR

110 DEF F(X)=X"3+2*X"2+4X/2

120 INPUT "ENTER VALUE FOR X: ":Q
130 PRINT :"ANSWER =";F(Q):::

140 GOTO 1240

1560 END

The symbol © means “‘to the power of”’; X”*2 means ‘‘X to
the power of 2,”” or “’X squared.”’

RUN this program and INPUT values of 3, 7, 4, or any
other numbers.

Function Variables

In this program the name of the function is F. In line 110, the X
in parentheses immediately after F is a variable name used
inside the function. That is, when the computer carries out this
function, it will use whatever value it finds inside the paren-
theses after the function name as the value of the variable X.
When the function was carried out in line 130, the value inside
the parentheses was the value of the variable Q, which got its
value from the INPUT statement in line 120.

Also, the variable X in this program is used only within the
function. It has no value outside the function. You can even use
X as a variable elsewhere in the program, and function F will
have no effect on it. To test this, add the following lines to the
program:

90 X=1000

135 PRINT X

Now RUN the program. You can see that no matter what value

36

I ——— Chapter 7 e e———

X has inside the function, it has no effect on the rest of the
program.

Functions don’t have to have variables associated with
them. They can also be used as often as you like within a
program. Try this program:

100 CALL CLEAR

110 DEF R=INT(RND*10)+l
120 CALL HCHAR(R,R,47+R,R)
130 GOTO 120

140 END

R is first defined as a random number from 1 to 10. In the CALL
HCHAR statement, a random number from 1 to 10 is placed a
random number of times on the screen starting at a random
row and random column.

Using Random Numbers

One other statement that needs to be used before a related
statement is RANDOMIZE. Random numbers are used many
times in computer applications. TI BASIC uses the RND
function to specify a random number. Try this program:

100 CALL CLEAR

110 FOR I=1 TO 10

120 PRINT INT(100*RND)+1
130 NEXT I

140 END

This program will print ten random numbers from 1 to 100.
RUN the program and note the results.

Now RUN the program again. And again. You'll notice that
the same sequence of numbers is printed each time.

It could be very handy in debugging a program to know
exactly what sequence of numbers will appear. However, in
most situations you really want random numbers — different
every time.

To get it truly random, use RANDOMIZE. Add this line to
the program:

115 RANDOMIZE

37

Chapter s

Now try the program several times; the results will be
different.

Sometimes it works to place one RANDOMIZE statement
near the beginning of the program, but not always. It’s
probably best to use RANDOMIZE just before you use a
statement involving the RND function.

Defining Graphics Characters

Chapter 5 of Beginner’s BASIC, the manual that comes with the
TI-99/4 or TI-99/4A, teaches you how to place graphics
characters on the screen, how to define your own graphics
characters, and how to set colors for your graphics. Let’s look
at some additional graphics concepts.

Defining graphics characters is part of getting started
because usually you will want to define colors and characters
before you place them on the screen. Chapter 3 of this book will
give you more ideas about graphics and colors, along with
some programs using graphics for you to try.

How the Screen Is Organized

The TI-99/4A divides the television into squares. These are
arranged in 24 rows and 32 columns.

Each of those squares is further divided into 64 tiny dots
arranged in eight rows and eight columns. Each dot in that 8 by
8 square can be turned on or off — colored in or not. The
arrangement of colored and not-colored dots gives the shape of
each character.

To define a character of your own, think of that square as if
it were divided into half. Each half is four dots wide.

Figuring Out the Character Code

Each four-dot row can have any one of sixteen possible
combinations of colored and not-colored dots. Each possible
combination has a code which you can use to tell your
computer what arrangement of dots you want in the character
you're defining. The following chart shows each combination
of dots and the corresponding codes.

Pattern Code

0

—

Lo S TN < B o I N - - A R - T~ - TR BN - SN, B S ¥ B 8

To design your character, figure out which dots on your
eight-by-eight grid should be colored or filled in. Then, using
the code chart, figure out what the code for each four-dot
segment is. Then arrange the code for all the segments in
order, starting in the upper left-hand corner of the character

39

e Chapter D e me——— =

and proceeding just as you do when you read a book — left to
right, then down to the next line, then left to right again. There
will be sixteen segments in each finished character code.

For a ball, the pattern might be

|

The finished code is *“00183C7E7E3C1800."”

The String Method

Once you get the code in proper order, there are several ways
to tell the computer how you want to define the character. The
easiest way is using one statement to define each character.

120 CALL CHAR(128,"FF818181818181FF")
130 CALL CHAR(129,"FFFFFFFFFFFFFFFF")

If your character definition ends with zeroes, you may omit
them. The computer assumes that if you use fewer than sixteen
codes to define a character, all the rest of the character will be
blank. For the ball shown above, the definition could be CALL
CHAR(130,“00183C7E7E3C18"’), leaving off the two final
zeroes, but not the two beginning zeroes.

The String-Variable Method

Another method of defining characters is to assign the code to a
string variable first and then use the CALL CHAR statement:

120 AS$="FFFFFFFFFFFFFFFF"
130 CALL CHAR(128,AS)
140 CALL CHAR(136,AS)

The DATA Method
One more method of defining characters is to use DATA
statements. Here are two examples:

40

Chapter 2 =————

100 CALL CLEAR

110 FOR C=1 TO 10

120 READ C1,C$

130 CALL CHAR(C1,CS$)

140 NEXT C

150 DATA 96 ,000000FFFF,97,2070D08809050602
»102,0808080F0F,104,080808FFFF

160 DATA 110,0070888F8F887,111,06137CFFFF7
C1306,117,071820404380808

170 DATA 118,3018848232818101,120,FF,136,0

Notice that in line 120 the program reads the character number,
then the code string, and assigns them to the variables C1 and
C$. If you are defining a series of character numbers in order,
use the counter variable to specify the character number, like
this:

100 CALL CLEAR

110 FOR C=96 TO 105

120 READ C$

130 CALL CHAR(C,CS)

140 NEXT C

150 DATA FF,FFFF,FFFFFF,FFFFFFFF,FF8181818
18181FF,FFFFFFFFFFFFFFFF

160 DATA 0808080FOF,080808FFFF,080808F8F8,
FFE

A Character Definer Program
The following program allows you to design a graphics
character without resorting to paper and pencil. You will see a
large square which has been divided into sixty-four smaller
squares, representing the eight-by-eight character grid. Use the
arrow keys to move the cursor. Press F if you want the square
filled in and the space bar if you don’t want the square filled in.
Press ENTER when you are finished with your square. The
computer will calculate the pattern of on and off dots and will
print the code values. Then an actual-size character will be
laced on the screen so you can see what your character looks
like. The definition is then repeated in string form so you may
write it down and use it in your own program.

41

et e —— Chapter 7 eemesrmre—————

After the character is defined, you have the option of
modifying it, defining a new character, or ending the program.

If you choose to modify, the character you just drew will
reappear. You may alter any squares you wish.

If you choose the new-character option, a blank square
appears.

How the Program Works

Naturally, some characters were defined in order to create the
screen display in this program. Character 97, g, is re-defined as
an open square, [J, and Character 98, b, is defined as a filled
square, M (lines 200-210). When the 8 x8 grid is drawn on the
screen, it is done by printing the string ““aaaaaaaa’’ eight times
(lines 420-440).

The character codes as they will appear on the screen are
READ in as DATA (lines 120-170). The string array H$(0,1)
through H$(15,1) holds the sixteen patterns of blank (“‘a’’) or
filled-in ("’b"’) squares. The string array H$(0,2) through
H$(15,2) holds the corresponding code number or letter as you
would use it in your programs later.

The flashing cursor is red so that you can tell where you are
on the pattern you are designing (lines 180-190).

CALL GCHAR(X,Y,C) determines what character number
Cis at row X and column Y (line 480).

Lines

120-170 READ in from DATA statements the pattern and
corresponding hex code.

180-190 Define red cursor as Character 128.

200-210 Define ““a’’ as a blank square and “’b’’ as a filled
square.

220-270 Clear the screen and print the instructions.

280 For the first run of the program and for Option
2, to design a new character, branch to line 420.

290-410 For the option to modify the previously
designed character, evaluate the character
definition code numbers one at a time and print
the corresponding patterns on the 8 x 8 grid.

420-440 Print new 8 x 8 grid to begin character designing.

450-460 Assign starting values to the cursor position

variables, X (horizontal) and Y (vertical).

42

S T b e TR e S T Chapter 2 TSR TR ST I R e

470
480

490-520
530-750

760
770-950

960-970
980

990-1040
1050-1100

1110-1120

Beep a tone to indicate user may move.
Determine the cursor character and put it at X
and Y.

Blink the cursor over square while waiting for
user to press a key.

If a key is pressed, branch appropriately. If an
arrow key is pressed, move the cursor in the
correct direction, making sure of the boundaries
first. If the space bar is pressed (K=32), print a
blank square. If “F”” is pressed (K=70), print a
filled square.

If ENTER was pressed (K=13), beep a short
tone.

For eight rows, determine the character pattern
of the first four squares and print the corres-
ponding character code; then find the pattern of
the second four squares and print the corres-
ponding code. D$ collects the codes for the
string definition.

Draw the actual size character, as defined by the
user, at row 20, column 20.

Print the code string that defines the character.
Print the options and branch appropriately.
Subroutine to compare user’s pattern with pre-
assigned patterns to determine corresponding
hex code.

End.

Program 2-1. Defining Characters

119 REM DEFINING CHARACTERS
120 DIM H$(15,2)

130 FOR I=@ TO 15

148 READ H$(1,1),HS$(I,2)

150
160

170

180
190

NEXT I

DATA aaaa,d,aaab,l,aaba,2,aabb,3,abaa,4
,abab,5,abba,6,abbb,7,baaa,8,baab,9
DATA baba,A,babb,B,bbaa,C,bbab,D,bbba,E
, bbbb, F

CALL COLOR(13,9,1)

CALL CHAR(128,"FFFFFFFFFFFFFFFF")

43

ST ————— Chapter 7 omssmawsessem—— T

20@ CALL CHAR(97,"FF818181818181FF")
210 CALL CHAR(98, "FFFFFFFFFFFFFFFF")
220 CALL CLEAR

23@ PRINT "DEFINE A GRAPHICS CHARACTER"
240 PRINT :"PRESS F TO FILL THE SQUARE"
25@0 PRINT "PRESS SPACE TO CLEAR SQUARE"
260 PRINT "PRESS ARROW KEYS TO MOVE"
270 PRINT :"PRESS ENTER WHEN FINISHED": : :
28¢ IF (K=50)+(K=0)THEN 420

299 FOR I=1 TO 15 STEP 2

300 FOR L=0 TO 15

310 IF SEGS$(DS,I,1)=HS$(L,2)THEN 339
320 NEXT L

330 c$=HS$(L,1)

349 PRINT "{3 SPACES}";C$;

350 FOR L=0 TO 15

360 IF SEG$(D$,I+1,1)=HS$(L,2)THEN 380
370 NEXT L

380 c$=HS$(L,1)

39@ PRINT CS$

40@ NEXT I

410 GOTO 450

420 FOR I=1 TO 8

430 PRINT "{3 SPACES}aaaaaaaa"

440 NEXT I

450 X=16

460 Y=6

47@ CALL SOUND(150,1397,2)

480 CALL GCHAR(X,Y,C)

490 CALL KEY(@,K,S)

50@ CALL HCHAR(X,Y,128)

510 CALL HCHAR(X,Y,C)

520 IF S<@ THEN 490

530 IF K=13 THEN 760

540 IF K=70 THEN 740

55@0 IF K=32 THEN 720

560 IF K<>68 THEN 600

57@¢ IF Y=13 THEN 470

580 Y=Y+1

590 GOTO 480

600 IF K<>88 THEN 640

610 IF X=23 THEN 470

620 X=X+1

630 GOTO 480

640 IF K<>83 THEN 680

650 IF Y=6 THEN 470

660 Y=Y-1

678 GOTO 480

680 IF K<>69 THEN 490

690 IF X=16 THEN 470

7083 X=X-1

710 GOTO 480

720 CALL HCHAR(X,Y,97)

738 GOTO 4790

740 CALL HCHAR(X,Y,98)

750 GOTO 470

76@ CALL SOUND(150,440,2)

779 p$=""

78@ FOR I=1 TO 8

790 cs=""

80@ FOR J=6 TO 9

81¢ CALL GCHAR(I+15,J,C)

820 C$=C$&CHRS$ (C)

830 NEXT J

840 GOSUB 1050

850 CALL HCHAR(I+15,16,ASC(D1$))
860 DS$=DS$&D1S

879 c$=llll

880 FOR J=10 TO 13

89¢ CALL GCHAR(I+15,J,C)

99@ C$=CS$S&CHRS(C)

910 NEXT J

92@ GOSUB 1050

93¢ CALL HCHAR(I+15,17,ASC(D1$))
940 DS$=DS$&D1$

95¢ NEXT I

960 CALL CHAR(136,D$)

97@ CALL HCHAR(20,20,136)

98¢ PRINT :"DEFINITION = ";D$
999 PRINT : :"PRESS 1 TO MODIFY"
1000 PRINT "{6 SPACES}2 TO START OVER"
161¢ PRINT "{6 SPACES}3 TO END PROGRAM";

45

e ————— [ADTOT) ewmcmmm——m——

1020 CALL KEY(@,K,S)

1030 IF (K=49)+(K=50)THEN 220
1040 IF K=51 THEN 1110 ELSE 1020
1050 FOR L=@ TO 15

1960 IF CS$=HS$(L,1)THEN 1090
1078 NEXT L

1080 L=L-1

1099 D1$=HS$(L,2)

1104 RETURN

1119 PRINT : :

1128 END

46

ICS

Gra

ph
and
Sound

20000000V O0000CO00VO0OQO0DOO000

Chapter 3

Graphics
and
Sound

Planning Graphics

The screen display for the TI computer is a rectangle of 24 rows
and 32 columns. PRINTed characters are in the middle 28
columns (columns 3 through 30), but graphics characters may
be placed in all 32 columns. (Some television sets may cut off
the outer columns of a 32-column display.)

Designing the Screen
To plan graphics, I use a sheet of graph paper with the rows
and columns numbered (Figure 3-1). The numbers start with
1, not "‘0.”" I sketch the basic screen with colored pencils.
Each square represents one character. It’s a good idea to
use full squares of color as much as possible. The more odd
shapes you use, the more special graphics characters you’ll
need to define. That will use up memory and slow down the

program.

Designing the Characters

Each square of the 24 x 32 rectangular screen can be thought of
as an 8 x 8 character grid (Figure 3-2). Take part of your basic
screen design and draw it in more detail on this high resolution
graph paper.As you draw, you’ll begin to see where you need
to create new characters to express vital details. Try to define as
few characters as possible, even if it means your drawing is less
than perfect in unimportant areas.

You may be able to use one defined character in several
places. For example, in a map of the United States, the same
character can be used as part of the slope of the coast of
California, part of the border along the Rio Grande of Texas,
and part of the southern coast of Florida.

49

Chapter 3

-a8ed sny3 Adodojoyd o3 pajueis uorssnura, |

¥: Ei T: &

¥Z
EZ|
[44
(X4

(-1}
13
Ly
91
Sk
L
El

Zi

ZE IE_ OE

m—un— i 01 6: B8: L 9, §
PP o7 409 F vz

ez
lez
iz

les
L
o
e

.

€

=

v 0 ©

]

TE 1€ O 6Z BZ

IT792 SC ¥Z EC CC 1C O 61 Bl LI 91 G v Bl i 1T 0l 6 8 L 8 S v &z 7

suwnjo) g€
pPue smoy ¢ Jo 3[Suelday e — Aejdsiq uaa.S *|-¢ N4

50

Chapter B e

- Figure 3-2. High Resolution Graph Paper — Each 8x8 Grid
Is One Character

Permission granted to photocopy this page.

51

e Chapter D e —————

Economy in Character Design

In an electric circuit analysis program, I needed to draw a
resistor that looked like this: =AAA— . I might have done it
this way:

The program to produce that drawing takes five different
character definitions:

100 CALL CLEAR

110 CALL CHAR(128,"000000FF")

120 CALL CHAR(129,"207051890A0604")
130 CALL CHAR(130,"40E1A312140C08")
140 CALL CHAR(131,"80C040272C181")
150 CALL CHAR(132,"000000FC")

160 CALL HCHAR(12,12,128)

170 CALL HCHAR(12,13,129)

180 CALL HCHAR(12,14,130)

190 CALL HCHAR(12,15,131)

200 CALL HCHAR(12,16,132)

210 END

52

e —— Chapter 3 e

But a more efficient way is:

And the program must define only two characters:

100
110
120
130
140
150

CALL CLEAR

CALL CHAR(128,"000000FFFF")

CALL CHAR(129,"2070D08809050602")
CALL HCHAR(12,12,128,5)

CALL HCHAR(12,13,129,3)

END

If you have a diagonal line, go through corners of squares to
economize on graphics. For example, this method requires two
character definitions and places four characters on the screen.

53

T Chapter 5 e —ceea— e

100
110
120
130
140
150
160
170

CALL
CALL
CALL
CALL
CALL
CALL
CALL
END

CLEAR

CHAR (128,"081020408")

CHAR (129,"0000000000010204")
HCHAR (12,17,128)

HCHAR (12,16 ,129)

HCHAR (13,16,128)

HCHAR (13,15,129)

The following method produces the same line, but needs only
one character definition and places only two characters on the
screen.

100 CALL CLEAR

110 CALL CHAR(128,"010204081020408")
120 CALL HCHAR(12,17,128)

130 CALL HCHAR(13,16,128)

140

END

Keep Track of Color Sets

Each color set can have up to eight different characters. If you
want a magenta hat and a magenta purse, you should design
one color set so that only eight characters will be enough to .
draw both the hat and the purse.
You can, of course, assign the same color to two different
sets of eight characters — but not only does that reduce the
total number of colors you can place on the screen, it also

54

eErE— T e Chapter Bl e

requires a separate color set definition for each set, even if they
are the same color. For example, suppose you have designed a
green tree that requires nine special characters. Can you
redraw the tree so you’ll need only eight characters? Then
you’d need to define only one color set, rather than two.

Putting Your Characters on the Screen

To display your graphics on the screen, you may use CALL
HCHAR, CALL VCHAR, PRINT, or DISPLAY statements.
CALL HCHAR is used to draw a horizontal row that repeats
the same character. CALL VCHAR is used to draw a vertical
column repeating the same character.

Both statements work the same way if you are placing a
single character on the screen. Three numbers in parentheses
follow the CALL statement. The first number is the row
number, the second is the column number, and the third
number is the character number. But if you are placing a row or
column on the screen, a fourth number is added within the
parentheses, telling TI BASIC how many times you want the
character repeated. Then, when the statement is executed, the
computer starts at the row and column you specified and then
repeats the character, either downward (CALL VCHAR) or to
the right (CALL HCHAR).

Try to take a good look at the drawing you have designed.
If there are places where the same character (for instance, a
solid square of color) is repeated several times in a row or
column, you can save quite a few program lines by figuring out
what arrangement of horizontal or vertical rows you can put on
the screen with the fewest single HCHAR and VCHAR calls.

The DISPLAY and PRINT statements give identical results
when you are printing something on the screen. Using PRINT
will draw something faster than using HCHAR and VCHAR, if
there are a lot of characters and very few horizontal and vertical
repetitions, and if you don’t mind having the screen scroll.

Before using PRINT, redefine the characters you’ll need. Be
sure not to change a character that you will need to use
elsewhere, unchanged. If you are going to PRINT the word
MISSISSIPPI, don’t redefine S.

In the following example, the characters from 96 through
126 are graphically defined. These are the lowercase letters and
a few seldom-used symbols. (See Appendix.) When you use
these letters and symbols in the PRINT statement, the listing

55

e — Chapter e —

will show the original letters and symbols; but when you RUN
the program, the characters are redefined.

Drawing a Horse =
Figure 3-3 is a picture of a horse. Method 1 of drawing the
horse uses PRINT statements; the horse appears as the lines on
the screen scroll upward. Method 2 uses CALL HCHAR to
place each character on the screen.

In Program 3-1, line 110 clears the screen. Lines 120-150
define graphics characters from character number 96 through
126, using definitions in the DATA statements of lines 160-210.
Line 220 labels the two drawings. Lines 230-250 use PRINT
statements to draw the horse. Lines 260-290 draw the horse on
the screen again, a character at a time, READing the row,
column, and character number from DATA in lines 300-340.
Line 350 keeps the picture on the screen until you press
CLEAR. Notice that when you stop the program all characters
return to their original definition.

Program 3-1. Horse

109 REM HORSE

11¢ CALL CLEAR -

1280 FOR C=96 TO 126

138 READ C$

149 CALL CHAR(C,CS$)

150 NEXT C

160 DATA 0000000001010103,42227DFFFFFFFFBF,
P@P6@FEFFFFFFFFFF, 00000000 8080JEDF ,2300
000103078707 »

178 DATA 67E7EFFFFFFFFEFD,FFFFFFFFFFFFFFFF,
FOEOFOFOFOFOF2FE, 0030307 1F1F3F3F, 000
J8OCOEQFOFAF9

180 DATA 0700000000000 E,83030307070F1F3F,7 -
E7EBCB8RB8BA8AC,0003030100013703, 7FFFF
FFFFEFEFEFE

190 DATA FFFF9F3F7F7F7F7F,COCOCO8080C6FFFF,
BE3E3EFFFF3F3E3E,3F3F1F1F1F1F3F7F,F7F
7F7EFDFBFS8

20@ DATA FFFFFFFFFEFCE,FFFFFCFOFOFOFOF, CF8F
1F3E7CF8FQE, 31030301, 7EFCFCF8, 7F3FOFQ
793030101

56

Figure 3-3. Graphically Defined Horse

4

/8

9

20

Zf

22

Z3

24

Cha pter Y e ——

iof -

g

i,

17 I;Ij:

e

Liox

[t/

{H

&I

I

L d22]

77

o

B O

it

"

:.f23l' E

o3

L

.

el

JZ;?'.] :

j25]

j26

57

210

220
230

240
250
260
270
280
290
300

310

320

330

340
350
364

DATA F8FEFFFFS8E80COC,FOFOFOFOFIFOFQ78,0
303030101491 ,EQEJEAFAF8F87,787C3C

PRINT "METHOD 1:";TAB(15);"METHOD 2:"
PRINT : : :"{3 SPACES} abc":"

{3 sPACEs}defg":" hijkfl"

PRINT "mnofffp":" grstuv"

PRINT "wxyz {":" &} “": : : : :

FOR I=1 TO 35

READ X,Y,G

CALL HCHAR(X,Y,G)

NEXT I

DATA 13,21,96,13,22,97,13,23,98,13,24,9
9,14,21,109,14,22,101,14,23,102,14, 24,
133

DATA 15,19,104,15,20,105,15,21,106,15,2
2,167,15,23,102,15,24,108,16,18,1@9,16,
19,110

DATA 16,20,111,16,21,102,16,22,102,16,2
3.102,16,24,112,17,19,113,17,20,114,17,
21,115

DATA 17,22,116,17,23,117,17,24,118,18;1
8,119,18,19,120,18,20,121,18,21,122,18,
23,123

DATA 19,20,124,19,21,125,19,23,126

GOTO 350

END

Remember that the computer performs each statement in
turn by number. Plan your graphics so the picture appears in
the right order. You will usually want to define the colors
before the characters are drawn. You may wish to change the
colors at a certain place in the process of drawing. I drew the
horse from the head down. You may prefer to draw the head
first, then the forebody, the legs, the rest of the body, and
finally the tail. You can tell the computer exactly which
character must be drawn before another.

Colors

With your TI you may use all 16 colors at any time, even in high
resolution graphics. To see all the colors, try this program:

58

T T—————— Chapter 2 emee—erE—rm———

100 FOR COLOR=1] TO 16

110 CALL CLEAR

120 CALL SCREEN (COLOR)

130 PRINT "COLOR NUMBER";COLOR
140 CALL SOUND(1000,9999,30)
150 NEXT COLOR

160 CALL CLEAR

170 END

Change the 1000 in line 140 if you want to see the colors for
a different length of time.

Each color has a number, and these same numbers are used
in any statements requiring a color number. Color 1 is
transparent. If you have a transparent graphics character, it
will be the same color as the existing screen color. However, if
you specify CALL SCREEN(1), the screen will be black. Color
number 2 is black; and since printing is also black, you will not
see a “COLOR NUMBER"" message for black in the above
program. For the first second of this program, your screen will
be black for color 1, and the next second the screen will be black
for color 2.

Enter 155 GOTO 100 if you want to keep cycling through
the colors — then press CLEAR to stop your program. You may
need to adjust your television or monitor to get the proper
colors.

Another program to see the colors is:

100 CALL CLEAR

110 FOR COL=1 TO 16

120 CALL COLOR(COL,COL,COL)

130 CALL VCHAR(1,COL*2-1,32+8*(COL-1),48)
140 NEXT COL

150 GOTO 150

160 END

The colors may vary depending on the screen color, the

adjacent colors, and the character shapes. Notice in this
program how the sky darkens as more stars appear.

100 CALL CLEAR
110 CALL SCREEN(2)
120 CALL COLOR(2,16,1)

59

T T ——————— Chapter % e e

130 CALL HCHAR (INT (RND*24+1),INT (RND*32+1)
42)

140 GOTO 130

150 END

Press CLEAR to stop the program.

Setting the Foreground and Background Colors

Each graphics character you define may have a foreground
color ana a background color. This is done with the statement

CALL COLOR(set, foreground, background)

Keep in mind that if you specify the color to be number 1, it will
be the screen color. To get an idea of what the combinations of
screen color, foreground color, and background color look like,
run this program:

Program 3-2. Color Combinations

100 REM COLOR COMBINATIONS

118 DIM c$(16)

120 DATA TRANSP,BLACK,MED GREEN,LT GREEN

130 DATA DARK BLUE,LIGHT BLUE,DARK RED

148 DATA CYAN,MED RED,LIGHT RED,DARK YELLOW

150 DATA LT YELLOW,DARK GREEN,MAGENTA,GRAY,
WHITE

16@ FOR I=1 TO 16

170 READ CS(1)

180 NEXT I

190 CALL CLEAR

208 CALL CHAR(96, "FFFFFFFFFFFFFFFFF")

219 CALL CHAR(92,"3C4299A1A199423C")

228 PRINT TAB(6);"COLOR COMBINATIONS"

230 PRINT : : : : : : : :

240 CALL CHAR(97, "FFO@55AAS5AAQQFF")

250 CALL CHAR(98,"@")

260 PRINT "YOU MAY CHOOSE A COLOR"

273 PRINT "NUMBER FROM 1 TO 16."

280 PRINT :"FIRST CHOOSE A SCREEN COLOR"

29@ PRINT "THEN A FOREGROUND"

300 PRINT "THEN A BACKGROUND."

31@ PRINT : : : :"PRESS ANY KEY TO START."

320 CALL KEY(@,K,S)

60

339
340
350

360
370
380
390
400
410
429
430
449
450
460
470
480
490
500
51@
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720

IF S<1 THEN 320

CALL CLEAR

PRINT " 1 TRANSPRNT{3 SPACES}9 MEDIUM R
ED L]

FOR I=2 TO 8

PRINT I;CS$(I);TAB(14);I+8;C$(1+8)
NEXT I

PRINT : :

INPUT "SCREEN COLOR: ":SC
CH=SC

GOSUB 740

IF R=1 THEN 400

INPUT "FOREGROUND COLOR: ":F
CH=F

GOSUB 740

IF R=1 THEN 440

INPUT "BACKGROUND COLOR: ":B
CH=B

GOSUB 740

IF R=1 THEN 480

CALL CLEAR

CALL SCREEN(SC)

FOR I=1 TO 8

CALL COLOR(I,2,16)

NEXT I

CALL COLOR(9,F,B)

CALL HCHAR(7,1,96,198)

CALL HCHAR(13,1,97,198)

CALL HCHAR(19,1,98,198)

PRINT :"SCREEN COLOR";SC;cC$(sC)
PRINT "FOREGROUND ";F;C$(F)
PRINT "BACKGROUND ";B;C$(B)
PRINT :"PRESS C TO CHANGE; N TO END"
CALL KEY(9,K,S)

IF K=78 THEN 810

IF K<>67 THEN 650

CALL CLEAR

CALL SCREEN(8)

FOR I=1 TO 8

CALL COLOR(I,2,1)

NEXT I

61

T ———— Chapter 3 receere—c—————

730 GOTO 350

740 R=0

758 IF (CH>@)+(CH<17)=-2 THEN 800

768 CALL SOUND(150,131,2,-1,2)

779 PRINT :"SORRY, COLOR NUMBER MUST BE"
78¢ PRINT "FROM 1 TO 16. TRY AGAIN.": :
790 R=1

800 RETURN

810 CALL CLEAR

820 END

Each character number is assigned to a color set, and there are
eight characters per set. The Appendix includes a character
chart with the eight-character sets marked off for easy
reference. In the stars program above, I used color set 2
because the asterisk, character number 42, is in color set 2.

If you do not define colors in a set, the characters will
automatically be black on a transparent background. When you
use a CALL COLOR statement, all characters in that set will be
the color you specified. If there are already characters on the
screen, their color will change as soon as the CALL COLOR
statement in the program is executed.

Flash and Twinkle

It’s possible to make objects flash by using CALL COLOR
statements. If you want stars to twinkle, you can use this
technique:

100 CALL CLEAR

110 CALL SCREEN(5)

120 CALL COLOR(2,16,1)

130 FOR I=1 TO 15

140 CALL HCHAR(INT (RND*24+1) ,INT (RND*32+1)
r42)

150 NEXT I

160 CALL COLOR(2,11,1)

170 CALL COLOR(2,16,1)

180 GOTO 160

190 END

62

= s S Chapter e

Using color 1, you can draw something invisible, then
make it appear all at once with another CALL COLOR
statement:

106 CALL CLEAR

118 CALL COLOR(6,1,1)

120 CALL VCHAR(8,10,72,7)
130 CALL VCHAR(8,14,72,7)
1490 CALL HCHAR(11l,11,72,3)
150 CALL VCHAR(8,18,73,7)
160 CALL VCHAR(8,23,73,5)
170 CALL HCHAR(14,23,73)
1860 CALL COLOR(6,9,9)

196 GOTO 199

200 END

Press CLEAR to stop the program.

All the characters in any one set will be the same color. To
get varied colors, you need to use characters from different
color sets. You will need to plan so that your characters will be
in the right color sets. (The Choreography section of this
chapter illustrates planning and using color with music.)

Solid Squares

There are several ways to get a solid square of color for a
character. One way is to assign the same color to both
foreground and background in the CALL COLOR statement.
In the program above, the characters in set 6 are first defined to
be transparent on transparent, or invisible. To make the design
appear, the color set is assigned a red foreground and a red
background; all characters in the set then become red squares,
regardless of the on-off patterns of the characters. Only when
you break the program can you see what the actual characters
are.

Another way to get a solid colored square is to define the
character as ““0,”" or as completely filled:
“’FFFFFFFFFFFFFFFF’’. The ‘Kinder-Art’’ program (Program
3-3) illustrates this technique. I gave a group of children graph
paper marked off in 24 rows and 32 columns, representing the
computer screen. The children were instructed to draw a
design, people, animals, buildings, or whatever they wanted to
by coloring in the squares.

63

e —— N ADTET Y ————

Kinder-Art redefines printable characters as solia colors.
Each drawing is converted a line at a time into a string of
characters representing the colors. The strings are stored in
DATA statements. Depending on the complexity of the
artwork, from fifteen to twenty drawings can be put into one
program without exceeding available memory.

With the Speech Synthesizer and Terminal Emulator I
command module, Kinder-Art greets the students by name.
(Be sure to try out the pronunciations ahead of time.) If you
want to try this program without speech, delete lines 170, 1030,
1090, and 1160.

RESTORE with DATA

When I used this program, I had one child at a time come up
and type in his or her name. The computer would then search
the array of names to find a match and RESTORE the proper
DATA. The computer says ““HELLO, "’ followed by the child’s
name, prints the child’s picture, repeats the child’s name, and
declares, “THIS IS YOUR PICTURE."" To continue the cycle for
the next child, press ENTER and type in the next name. To end
the program, type END instead of a child’s name.

When you use DATA statements, the computer usually
READs the DATA in order. This is fine for work that is always
done in the same order, like defining character sets and
drawing screens. But in this case, you don’t want to have to
bring the students to the computer in any particular order.
RESTORE, followed by a line number, tells the computer that
the next READ statement should begin with the first item in the
DATA statement at that line number. This gives you random
rather than sequential access to your data.

Repeating Procedures Keeps a Program Brief

Since each drawing is PRINTed a line at a time, a general
procedure can be used for all drawings — no need to figure out
individual HCHARs and VCHARSs for each. The first character
of each color set is defined as ‘‘0,”” and the second character is
"’FFFFFFFFFFFFFFFF, "’ to give solid colors. Orange and brown
are simulated with mixtures. Table 3-1 gives the character and
the square of color it represents.

e N = Chapter 3

Table 3-1. Characters and Colors for Kinder-Art Program

Character Color Command
(space) Cyan CALL COLOR(1,3,8)

! Green

(Red CALL COLOR(2,12,7)

) Light Yellow

® Orange

0 Dark Yellow CALL COLOR(3,14,11)
1 Magenta

2 Brown

8 Blue CALL COLOR(4,16,5)
9 White
@ Black Color set 5 is already black

Only 23 lines of the drawing are PRINTed, so one line remains
to print the child’s name.

Recognizing Strings in an Array

The list of all the names in the class is READ in as an array
A$(I). The DATA for the drawings is in the same order as the
children’s names in the A$(I) array. When a child’s name is
entered, the program compares it with each name in A%(I) to
determine what position the DATA is in, so the program can
branch to the appropriate RESTORE statement. I did not
RESequence the line numbers in this program, so you could
more easily see how to add DATA.

I included only two of the pictures to illustrate how to
arrange the DATA. You will, of course, draw your own pictures
and change the names when you use this program.

In the DATA statements, remember that blank lines are
included as "’’” and that leading spaces require quote marks:
" @@ 889", not @@ 889"

What's Happening in "Kinder-Art”

Lines

150 Dimension array for number of names.
160 Clear screen.

170 Open speech output device.

180-260 Define characters and colors for graphics.
270-310 READ array of names.
320-350 Clear screen and receive child’s name.

65

I e — Chapter % oms—emreseemTmE e

360-400 Compare input name with array of possible
names and determine position of name.

410-680 RESTORE appropriate DATA depending on
name.

1000-1030 Clear screen, PRINT child’s name on screen,
and greet child by name with Speech
Synthesizer.

1040-1070 Draw child’s picture.

1080-1090 PRINT child’s name on screen. Say child’s name
and “'This is your picture.”’

1100-1110 Wait until ENTER is pressed before continuing.

1150-1170 If END is entered, clear screen, CLOSE speech
device, and stop program.

2000-2050 DATA for Bob'’s picture.

2100-2170 DATA for Cindy’s picture.

2200- User adds more DATA here.

Program 3-3. Kinder-Art

108 CALL CLEAR
119 CALL CHAR(92,"3C4299A1A199423C")
120 PRINT TAB(8);"KINDER-ART": : : : : : :

130 FOR I=1 TO 600

140 NEXT I

150 DIM AS$(14)

160 CALL CLEAR

170 OPEN #1:"SPEECH",OQUTPUT

180 FOR I=32 TO 56 STEP 8

199 CALL CHAR(I,"@")

20@ CALL CHAR(I+1,"FFFFFFFFFFFFFFFF")
210 NEXT I

220 CALL CHAR(64, "FFFFFFFFFFFFFFFF")
222 CALL CHAR(5@,"5BB55BB55BB55BB5")
224 CALL CHAR(42, "AAS55AA55AA55AA55")
23¢0 CALL COLOR(1,3,8)

240 CALL COLOR(2,12,7)

250 CALL COLOR(3,14,11)

260 CALL COLOR(4,16,5)

270 RESTORE 310

280 FOR I=1 TO 14

66

290
300
310

320
330
340
350
360
379
380
390

400
410

420
430
4490
459
460
479
480
490
500
510
520
530
540
550
560
570
580
590
600
619
620
630
640
650

READ AS(I)

NEXT I

DATA BOB,CINDY,CHERY, RICHARD, RANDY, LENA
,ANDY, AURA, GRANT, KELLY,JENNIE, ANGELA,
BRYAN, LEWIS

CALL CLEAR

PRINT "TYPE YOUR NAME": : :

INPUT NAMES

IF NAMES$="END" THEN 1150

FOR I=1 TO 14

IF NAMES$=AS$ (I)THEN 410

NEXT I

PRINT : :"DID YOU TYPE YOUR NAME": :"CO
RRECTLY?": :"DO IT AGAIN PLEASE.": : :
GOTO 340

ON I GOTO 420,440,460 ,480,500,520,5408,5
60,580,600,620,640,660,680
RESTORE 2000
GOTO 1000
RESTORE 2100
GOTO 1090
RESTORE 2200
GOTO 1000
RESTORE 2300
GOTO 1000
RESTORE 2400
GOTO 1000
RESTORE 2500
GOTO 1000
RESTORE 2600
GOTO 1000
RESTORE 2700
GOTO 1000
RESTORE 2800
GOTO 1000
RESTORE 2900
GOTO 1000
RESTORE 3000
GOTO 1009
RESTORE 3100
GOTO 1909

67

T R T S LT S A S Chap‘ter 3 PSR WY VR S g

660 RESTORE 3200
670 GOTO 10090
680 RESTORE 3300

1000
1010
1020
1039
1040
1050
1060
1070
1080
1090
1100
1110
1150
1160
1170
2000

2010

2020

2030

2040

2058

2100

68

CALL CLEAR
READ N$

PRINT NAMES

PRINT #1:" "HELLO.";N$

FOR I=1 TO 23

READ D$

PRINT D$

NEXT I

PRINT NAMES;

PRINT #1:NS$:". "THIS IS YOUR PICTURE."
CALL KEY(@,K,S)

IF K<>13 THEN 1100 ELSE 320

CALL CLEAR

CLOSE #1

STOP

DATA “BOB,"{4 sSPACES}(((CCCCCCCCCCCCC"
i "4 SPACES] (**aek(((*hakhx(n 8 {41 SPAC
??25:::**(((******(“.(((((((((((((((((
DATA ((CCCccceccceceeeeeec(((, (ss88(tl
LL(((rr11(88888(,(8888(1LLL(((L1111(88
888(, (8888 (1111 (((1L1L11(88888(

DATA (8888(11L1(((L1111(88888(,(8888(1!
Li(((rrri(sssss(,(s8ss8g(iiii(((1111(88
888(, (8888 (1111 (((1111(88888(

DATA (8888(lLiLl(((LL1L1(88888(,(8888(11I
LL(((L111(88888(,(8888(L1Li(((LLli(88

888 (
DATA (88((((((

((((((((88(,(88(1111
11(((1111111(88

1

1

(CC((

(,(88(111111(((1111111

(88(,(88(111111(((1111111(88(

DATA (88(111111(((1111111(88(, (CCCCC((
('(dedede ke kkk

CLCCRELECLL ULl (vonakawun]({

kR (i (*********(((**********(

DATA “SINNDY,9991111199999999999999911
111,9991{4 SPACES}1@@RRER999@RRReL
{4 SPACES}1,999111! 1999@@@Q@E9991 1l 1

T A ST Chapter I e e s

21108 DATA 9991 1111 199@@Q@ER991 111! 1,9991
11(1! 11@e@Ee@11 I1(1! 1,9991 I111 1
100@E@ER1 1 111! 1

2120 DATA 99991 !l 1 1@@@ERLI 1 Il 19,9999
91 1 | 1@@Q@EeEe1 ! 1 199,99999911 !!I
1@RAEAAL Il 11999

2130 DATA 9999991 11! 1@@REE1 11! 1999,9999
91 1111 1@@E@E@Ee1 111! 199,99991 11(1!
1@@E@RAR1 11(11 19

2140 DATA 9991 11((1! 1@@EEE1 !1((1! 1,9991
11((11 1@@@E@A@1 11((1! 1,9991 11((1!
10@RE@EeEeYL 11((1! 1

2150 DATA 99991 11(1! 1@@EEGE1 11(1! 19,9999
91 111! 1@REERE1 111! 199,999991 il
1@@e@Eee1 1111l 199

2160 DATA 999991 | | 1@@@EGE1 ! 1 199,9999
991 11 11@RERE11 11 1999,999999919919
9@Q@RERA@9919919999

2170 DATA 9999999999999999999999999999,9999
999999999999999999999999

2180 END

Music

Music is produced by using a CALL SOUND statement. In the
parentheses following the CALL SOUND statement, the first
number (parameter) is the duration of the sound in
milliseconds. It can be any integer from 1 to 4250.

The second parameter is the frequency (pitch) of the tone
you want to hear (for example, the note A is 440). The
frequency may be from 110, low A on the bass clef, to 44733,
which is out of human hearing range. You may specify any
number between these limits: you are not limited just to the
notes of a scale.

The third parameter is the loudness, and can range from 0
(loudest) through 30 (softest). Of course, the volume also
depends on the loudness setting of your monitor or television
set.

You may specify up to three musical tones, with a loudness
for each, in one statement; thus you may play a three-note
chord.

69

Chapter 3 =————————

Setting Sound Durations

I like to specify the tempo (speed) before I use any CALL
SOUND statements by assigning values to variables and using
them as the duration parameter in each CALL SOUND
statement. This method makes it possible to change the tempo
of the whole tune by changing only the variable assignment
rather than each CALL SOUND statement. For example:

100 T=350

110 CALL SOUND(T,440,2)
120 CALL SOUND(T/2,554,2)
130 CALL SOUND(T/2,659,2)
140 CALL SOUND(2*T,880,2)
150 END

Line 100 sets the variable T to represent a duration of 350
milliseconds. If I want T to be a quarter note, T/2 is an eighth
note and 2*T is a half note. Line 110 plays a quarter note, lines
120 and 130 play eighth notes, and line 140 plays a half note. To
change the tempo of the arpeggio here, change line 100 to have
a different value for T.

This program allows the user to INPUT a number for the
duration. The number entered will determine how fast or how
slow the computer plays the tune.

Program 3-4. Musical Tempo Demonstration

108 CALL CLEAR

119 PRINT TAB(8);"** MUSIC **"

120 CALL CHAR(64,"3C4299A1A1994237")

130 PRINT : : :

140 PRINT : : :"THIS COMPUTER CAN PLAY"
15¢ PRINT :"UP TO THREE TONES AT A TIME"
16@ PRINT :"USING ONE STATEMENT."

170 PRINT : :"HERE IS A SAMPLE TUNE."

180 PRINT :"YOU MAY ENTER A NUMBER"

199 PRINT :"FROM 6 TO 1062 FOR DURATION."
200 PRINT :"FOR EXAMPLE, DURATION = 450":

210 I&PUT "DURATION = ":T
220 IF (T>=6)+(T<=1062)=-2 THEN 250

70

T —————— Chapter 3 ee———— e

230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

PRINT :"SORRY, 6<D<1@062": :

GOTO 210

CALL CLEAR

PRINT "DURATION =";T

CALL SouNnND(T,392,1,3390,6,131,9)
CALL SOUND(T/3,262,2,165,8)

CALL SounD(T/6,339,2,165,8)

CALL SOUND(T/6,339,2,196,8)

CALL SOUND(T/3,392,2,196,8)

CALL SOUND(T,349,2,196,7,123,9)
CALL SOUND(T,349,1,196,6,123,8)
CALL SOUND(T/2,330,2,165,7,131,9)
CALL SOUND(T/2,294,2,165,7,131,9)
CALL SOUND(T/2,262,2,165,7,131,9)
CALL SOUND(T/2,294,2,165,7,131,9)
CALL SOUND(2*T,330,2,165,6,131,8)
CALL SOUND(T,449,1,220,6,175,6)
CALL SOUND(T*3/4,440,2,175,6)
CALL SOUND(T/4,449,3)

CALL SOUND(T,523,1,220,6,175,8)
CALL SOuUND(T,523,2,220,7,175,9)
CALL SOUND(T/2,659,1,208,7,165,9)
CALL sounDp(T/2,587,1,208,7,165,9)
CALL SOUND(T/2,523,1,208,7,165,9)
CALL SOUND(T/2,587,1,208,7,165,9)
CALL SOUND(T*2,659,0,165,6,131,8)
CALL SOUND(T/3,784,0,165,6,131,8)
CALL SOUND(T/3,659,1)

CALL SOUND(T/3,523,1)

CALL SounD(T/3,392,1,165,6,131,8)
CALL SOUND(T/3,330,1)

CALL SOUND(T/3,262,1)

CALL SOUND(T*2,330,0,196,6,131,8)
CALL SOUND(T/4,294,1,175,6,123,8)
CALL SOUND(T*4,262,2,165,6,131,8)
PRINT : : :"TRY AGAIN? (Y/N)": :
CALL KEY(@,K,S)

IF K=78 THEN 620

IF K=89 THEN 210 ELSE 590

CALL CLEAR

END

71

R T —— Chapter 5 e e————r—

Setting Up Pitch Values

At the beginning of the program, you may wish to assign to
variables the frequencies or pitches you want to use in the
music in your program. If you use the letter names of the notes
as the corresponding variable names, the values will be much
easier to remember.

100 T=400

110 C=262

120 D=294

130 E=330

140 F=349

150 G=392

160 CALL SOUND(T,E,1l)
170 CALL SOUND(T,D,2)
180 CALL SOUND(T,C,2)
190 CALL SOUND(T,D,2)
200 CALL SOUND(T,E,2)
210 CALL SOUND(T,E,1l)
220 CALL SOUND(T*2,E,0)
230 END

If you read music, you can translate any written music to
the computer, though only three notes will play at any one
time. You can also use a frequency chart (Figure 3-3).

Figure 3-3. Frequencies of the Musical Scale

A Ab G GP F E EP
880 831 784 740 698 659 622
o b | e I
)* 4 \T‘l Ly 1
% 52
J |
D pb c B b A AP
587 554 523 494 466 440 415
& GPb F E EP D pb S
392 370 349 330 311 294 277 262
2 B N
e

I

—tEeT ¥ v g4

72

RS ST Chapter Y O s S e

& B Bb A Ab G GP
262 247 233 220 208 196 185
% A Y] L4 1
y o + < L L
.
F E b D pb C B
175 165 156 147 139 131 123
1
] P 1 e \'I i
LN o B 4 /I d
Bb A
117 110

Melody and Accompaniment

It’s convenient to use the first frequency and volume as the
melody tone, then the second and third frequencies and
volumes as the accompaniment tones. This is just so you can
keep track of which number is the melody; the order doesn’t
matter to the computer.

If you start to run out of memory in a piece, you can go
back to the CALL SOUND statements and delete
accompaniment tones. It’s easy to find them if the first
frequency and volume are always the melody. Also, you might
want to use a lower volume setting for the low notes in order to
emphasize the melody note.

One method of accompaniment is to use two notes of the
three basic chords of the key in which the music is written. For
example, if a song is written in the key of C Major (no sharps
and no flats), the basic chords are C, F, and G;. When you play
Middle C as the melody note, two notes of the C major triad
may be chosen for accompaniment — perhaps E and G. The
program statement is:

CALL SOUND(400,262,2,196,6,165,8)

Translating Published Music

Rather than compose your own music, you may prefer to work
from a copy of published music. The top note is usually the
melody note. Any two notes written directly under that note
may be chosen for the accompaniment in your CALL SOUND
statement.

73

o c— (_hapter 3

If you have two successive CALL SOUND statements
which specify the same frequency and volume, the notes may
sound like one long note rather than two separate notes. To
make the notes sound distinct, just change the volume number
for one of the notes. To make a bass note sound tied while two
melody notes are played, keep the frequency and the volume
the same in both statements.

Here is the written music for the Musical Tempo
Demonstration (Program 3-4) so you can see how I translated
the music for the computer version.

FE=sas E=t
-+ —® - 7
D —

=

o=

-
T s

|
h)

=

i

L'

%?z!r—?
4 y 4

What You Can Do with Music

There are all kinds of applications using the computer’s music
feature. Writing music on the TI-99/4A is fun because you can
immediately hear any changes you want to implement as you

74

s E———rs Chapter 3 e

are composing. You can put some music on the computer and
have a sing-along.

Or perhaps you are trying to learn a piece that has a
difficult rhythm. Program it onto the computer, play it at a slow
tempo, then gradually increase the tempo as you practice the
piece along with the computer.

You might also wish to program an accompaniment on the
computer, then play along with a melody instrument like the
clarinet or violin.

Musical tones also work well in interactive programs. For
example, in an educational program you might use a happy
musical interlude for a correct answer.

Learning Musical Notation

““Name the Notes’’ and ““Music Steps and Chords’” are
educational programs for music students. A piano or organ
teacher can use them before or after a student’s regularly
scheduled lesson as enrichment, drill, or as a different
approach to teaching. Music students could use these
programs at home for additional practice. A programmer who
doesn’t read music may be interested in using the first program
to learn enough about reading notes to incorporate printed
music in his or her own programs.

“Name the Note”’ is a tutorial program designed for the
beginning music student. The first option, Keyboard, shows
the letter names of the keys on a piano or organ keyboard and
then presents a drill of ten keys chosen at random. A question
mark appears on a key, and the student must press the correct
letter name. When the correct letter is pressed, the name of the
key appears and the tone is played.

The second and third options are ‘‘Treble Clef’” and ‘‘Bass
Clef.”” These two sections display the appropriate staff and
clef, and present words and phrases to help the student
remember the letter names of the notes. A drill of ten notes is
then presented.

How "Name the Note” Works
Lines

110-120 Option Base 1 sets the lowest numbers in the
array to 1 rather than 0. N is an array that keeps
track of the ASCII code of the letter name of a
note and the note’s frequency.

75

TS R —— Chapter 4 s s

130-220 Define graphics characters and colors.

230-320 Print title screen with options; branch
appropriately after student presses number of
option.

330-530 Subroutine to draw piano keyboard (may be
entered at line 380).

540-580 Subroutine to PRINT “‘Press Enter’” and wait for
student to respond.

590-630 Subroutine to play arpeggio for right answer.

640-710 Subroutine to PRINT ““Try Again’’ and wait for
student to respond.

720-770 Subroutine to define graphics characters.

780-820 Subroutine to draw treble clef and staff.

830-860 Subroutine to draw bass clef and staff.

870-920 Subroutine to draw graphics characters that put
phrases on staff.

930-1090 Instruction for learning the names of the keys.

1100-1370 Drill for keyboard.

1380-1450 Define graphics characters for treble clef.

1460-1600 Present instruction for learning the names of the
treble notes.

1610-2020 Drill for treble clef.

2030-2070 Define graphics characters for bass clef.

2080-2210 Present instruction for learning the names of the

bass notes.
2220-2260 Drill for bass clef.
2270 End.

Program 3-5. Name the Note

100 REM{3 SPACES}NOTES

110 OPTION BASE 1

120 DIM N(11,2)

130 CALL CHAR(96, "000Q00OFF")

149 L$=“\\\\\\%\\\\Q\\\‘\\\\\\"

150 CALL CHAR(64,"3C4299A1A199423C")

160 RESTORE 170

179 DATA 0000000900 3F30C, 0000030000 F03CA3,0d
102020404040201,708808304040004 ,80404
3202020408 ,8060100F,010608F

180 FOR C=144 TO 150

76

190
200
210
220
230
240
250
260

270

280
290
300
310
320
330
340
350
360
378
380
390
400
419
420
430
440
450
460
470
480
490
508
518
520
530
540
550

READ C$

CALL CHAR(C,CS$)

NEXT C

CALL COLOR(15,7,1)

CALL CLEAR

CALL COLOR(4,2,1)

CALL SCREEN(8)

PRINT " N A M E{3 SPACES}T H E
{3 SPACESIN O T E":::::"{6 SPACES}CHOOS
E:"::::"{6 SPACES}1 KEYBOARD"
::"{6 SPACES}2 TREBLE CLEF"
PRINT :"{6 SPACES}3 BASS CLEF"::"
{6 SPACES}4 END PROGRAM"::::::
CALL KEY(@,K,S)

IF (K<49)+(K>52)THEN 2840

CALL CLEAR

F=K-48

ON F GOTO 930,1380,2030,2270
CALL CHAR(152,"@g")

CALL CHAR(153, "FFFFFFFFFFFFFFFF")
CALL CHAR(154,"01901010101010101")
CALL CHAR(155, "8080808080808d8")
CALL COLOR(16,2,16)

CALL HCHAR(1,1,152,480)

RESTORE 400

DATA 3,6,12,15,18,24,27,9,21,30
FOR C=1 TO 7

READ J

CALL VCHAR(1,J,153,12)

CALL VCHAR(1,J+1,153,12)

CALL VCHAR(13,J,154,3)

CALL VCHAR(13,J+1,155,3)

NEXT C

FOR C=1 TO 3

READ J

CALL VCHAR(1,J,154,15)

CALL VCHAR(1,J+1,155,15)

NEXT C

RETURN

PRINT TAB(16);"PRESS <ENTER>";
CALL KEY(@,K,S)

77

PR T TR R TIT TT Chapter Bl e

568 IF K<>13 THEN 550

578 CALL HCHAR(24,18,32,13)

588 RETURN

590 CALL SOUND(15@,262,2)

60@ CALL SOUND(15@,339,2)

619 CALL SOUND(15@,392,2)

620 CALL SOUND(308,523,2)

630 RETURN

640 FOR C=1 TO 15

650 CALL HCHAR(24,C+12,ASC(SEGS("TRY AGAIN
(y/N)",c,1)))

660 NEXT C

678 CALL KEY(@d,K,S)

680 IF K=78 THEN 230

690 IF K<>89 THEN 670

7008 CALL HCHAR(24,13,32,15)

718 RETURN

72@ READ C

730 FOR J=97 TO C

743 READ AS

750 CALL CHAR(J,AS)

768 NEXT J

778 RETURN

78@ CALL CLEAR

79@ PRINT TAB(9):"TREBLE CLEF":::

80@ PRINT "{3 SPACES}a":"{3 SPACES}b":
“II&L$=“ de":““fg”"&L$:" h i":"‘jklrn
‘u&L$

810 PRINT " nop gq":""rst't"&L$:" u v w":
xyz "&L$:"{3 sSPACES}{":"{3 sPACEs}{":"
{3 SPACES}}"

820 RETURN

830 CALL CLEAR

840 PRINT TAB(10);"BASS CLEF":::

850 PRINT ::" ‘abc "&L$:" d{3 SPACES}e k":"
‘£ g"&L$:"{5 SPACES}h k":" " T Ti"&L$:
"{4 SPACES}h":""***i*"&L$:"{3 SPACES}j"
:"H”H"&L$:::

860 RETURN

878 READ C,J

880 FOR I=C TO J

898 READ K,G

T

we s

78

—————e {3157 e em————————

900
910
920
930

949
950
960

970
980
990
1000

1010
1020

1030
1040
1050

1060
1070
1084
1299
1100
1110
1120
1130
1140
1150

YY)
1170
1180
1190
1200
1210
1220
1230
1240

CALL HCHAR(K,I,G)

NEXT I

RETURN

PRINT "A KEYBOARD HAS GROUPS OF"::"TWO
BLACK KEYS AND GROUPS"::"OF THREE BLA
CK KEYS.":::
GOSUB 330
GOSUB 540

PRINT "THE NAMES OF THE KEYS ARE"::"THE
FIRST 7 LETTERS."::
RESTORE 980
DATA 67,68,69,70,71,65,66,67,68,69,70
FOR J=2 TO 32 STEP 3

READ G

CALL HCHAR(9,J,G)

NEXT J

GOSUB 540

CALL CLEAR

PRINT "YOU MAY REMEMBER THAT JUST"::"L
EFT OF THE TWO BLACK KEYS"::"IS THE K
EY CALLED 'C'.%ss:

GOSUB 380

CALL HCHAR(14,2,67)

CALL HCHAR(14,23,67)

GOSUB 540

CALL CLEAR

CALL SCREEN(12)

PRINT TAB(8);"NAME THE KEY"::::

GOSUB 380

RESTORE 1150

DATA 67,262,68,294,69,330,79,349,71,39
2,65,440,66,494,67,523,68,587,69,659,
70,698

FOR C=1 TO 11

READ N(cC,1),N(C,2)

NEXT C

FOR T=1 TO 1@

RANDOMIZE

X=INT(RND*11+1)

J=3*X-1

CALL HCHAR(14,J,63)

CALL KEY(@,K,S)

79

s =] Chapter L e ————

1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400

1410

1420

1430

1440

1450
1460
1470

1489
1490
1500
1510
1520
1530
1540

1550

80

CALL COLOR(4,16,16)

CALL COLOR(4,7,16)

IF S<1 THEN 1240

IF K=N(X,1)THEN 1310

CALL SOUND(50@0,-8,2)

GOTO 1240

CALL HCHAR(14,J,K)

CALL SOUND(600,N(X,2),2)

CALL SOUND(1,N(X,2),30)

CALL HCHAR(14,J,152)

NEXT T

GOSUB 640

GOTO 1190

PRINT TAB(9);"TREBLE CLEF":::

RESTORE 1400

DATA 124,0000384482828282,828282828282
8282,848488FF889090A,0000000000013102
,AOABCOACACO40404,040810FF2040808

DATA 404040FF2020202,010204040810101,2
02020202020202,202040FF4040404 ,000000
FF@304081,101010FF10101081

DATA OO0JQOFF18040201,808080808080808,
102020202040404 ,0808080808080808, CO20
201010080808 ,808080FF4040402

DATA 404040FF2020100C,040404FF04040404
,2020101008040403,0202020202010101,08
0808101020408 ,804038FF

DATA @10101FF01010101,930C30FF,2101010
101010101 ,0101010111110FE

GOSUB 720

GOSUB 80@

PRINT :"THINK OF THE WORD 'FACE' FOR":
:"THE NOTE NAMES ON SPACES."::

CALL HCHAR(14,14,70)

CALL HCHAR(12,17,65)

CALL HCHAR(10,20,67)

CALL HCHAR(8,23,69)

GOSUB 540

GOSUB 780

PRINT :"MEMORIZE THIS PHRASE TO HELP":
:"LEARN LINE NOTES E G B D F."::
RESTORE 1560

1560 DATA 9,28,15,69,15,86,15,69,15,82,15,8
9,13,71,13,79,13,79,13,68,11,66,11,79
,11,89,9,68,9,79

1570 DATA 9,69,9,83,7,79,7,73,7,78,7,69

1580 GOSUB 870

1590 GOSUB 540

1600 GOSUB 789

1610 RESTORE 1620

1620 DATA 790,698,69,659,68,587,67,523,66,49
4,65,449,71,392,79,349,69, 330

1630 FOR C=1 TO 9

1640 READ N(cC,1),N(cC,2)

165@ NEXT C

16683 PRINT TAB(8);"NAME THE NOTE":::::

167@ FOR T=1 TO 10

1680 RANDOMIZE

1690 X=INT(9*RND+1)

1799 J=5+X

1710 CALL HCHAR(J,20,144)

1720 CALL HCHAR(J,21,145)

1730 CALL HCHAR(J+1,19,146)

1740 CALL HCHAR(J+1,22,148)

1750 CALL HCHAR(J+2,20,149)

1763 CALL HCHAR(J+2,21,150)

1770 CALL HCHAR(J+1,21,147)

1784 CALL SOUND(150,1397,4)

1790 CALL KEY(@,K,S)

180@ IF S<1 THEN 1790

1810 IF K=N(X,1)THEN 1840

1820 CALL SOUND(20@,-5,4)

1830 GOTO 1790

1840 CALL HCHAR(J+1,21,N(X,1))

185¢ IF F=2 THEN 1900

18680 FOR I=N(X,2)TO N(X,2)+48 STEP 12

1878 CALL SOUND(158,I,2)

1880 NEXT I

1890 GOTO 1910

1900 CALL SOUND(50@0,N(X,2),2)

1910 CALL SOUND(1l,N(X,2),30)

1920 IF X/2=INT(X/2)THEN 1970

1930 CALL HCHAR(J,20,32,2)

81

TS Chapter B

1940 CALL HCHAR(J+1,19,96,4)

1950 CALL HCHAR(J+2,20,32,2)

1968 GOTO 2000

1978 CALL HCHAR(J,20,96,2)

1980 CALL HCHAR(J+1,19,32,4)

1999 CALL HCHAR(J+2,20,96,2)

2000 NEXT T

2010 GOSUB 640

2028 GOTO 1670

2030 PRINT TAB(1@);"BASS CLEF":::

2040 RESTORE 2050

2050 DATA 107,000000FFOF10608,000000FFFF,00
POOOFF80700CA3,010204181020204 ,804020
2010980804 ,40583CFF3C18

2060 DATA G40202FF01010101,0101020204040408
,080810FF2040808,0101020408,300ELF1F1
FOE

2079 GOSUB 720

2080 GOSUB 8580

20990 PRINT :"LEARN THIS PHRASE FOR THE"::"N
OTES ON SPACES, A C E G."::

21003 RESTORE 21140

2119 DATA 13,30,15,65,15,76,15,76,15,32,13,
67,13,79,13,87,13,83,13,32,11,69,11,6
5,11,84,11,32

2120 paTAa 9,71,9,82,9,65,9,83,9,83

213@ GOSUB 870

214@ GOSUB 540

2150 GOSUB 830

2160 PRINT :"THIS PHRASE HELPS YOU KNOW"::"
THE LINE NOTES, G B D F A."::

217@ RESTORE 2180

218¢ pATA 8,31,16,71,16,82,16,69,16,65,16,8
4,14,06,14,73,14,71,12,68,12,79,12,71
,12,83,10,70,10,73

2199 paTA 14,71,10,72,10,84,8,65,8,78,8,73,
8,77,8,65,8,76,8,83

220@ GOSUB 8740

2210 GOSUB 540

2220 GOSUB 830

223@ PRINT

82

el Chapter =

2240 RESTORE 2250

2250 DATA 65,220,71,196,70,175,69,165,68,14
7,67,131,66,123,65,117,71,110

2260 GOTO 1630

227@ END

Teaching Basic Musical Theory
A piano teacher can get bored, discouraged, impatient, or
frustrated trying to drill a student in the basic fundamentals of
the keyboard. A computer is an ideal teaching aid because it
can choose questions randomly, perform repetitious drills
without intimidating the student, and, with effective graphics
and sound, can encourage the student to have fun learning.
“"Music Steps and Chords’’ is designed as a tutorial to
supplement the teacher’s instructions for distinguishing
between half steps and whole steps in music, counting the
steps between two notes, and using this counting method to
identify basic triads.

Half Step. A half step is a rise or fall in pitch from one
piano key to the adjacent key. The program draws a keyboard.
Examples of half steps are illustrated with arrows. A quiz asks
if the arrow on the keys represents a half step. The tones are
sounded so the student will see and hear the difference
between the two notes. The student presses 1 for yes or 2
for no.

Whole Step. A whole step is equal to two half steps.
Again, the program shows this on a keyboard. The quiz for this
section asks the student to press 1 for a half step and 2 for a
whole step for ten examples. Arrows are drawn and tones are
sounded for each problem.

Count the Steps. The third section is a quiz with ten
questions. Two keys are randomly chosen and played. The
student must indicate the correct number of half steps between
the two keys. If the answer is correct, an arpeggio is played. If
the answer is incorrect, the correct answer is shown, and
arrows for each half step are drawn so the student may see how
to get the correct answer.

83

Chapter U e .

Identifying Triads. One method of teaching the identifi-
cation of triads (three-note chords) and the naming of chords is
to count the steps between each note of the root chord and find
the pattern. Each triad has its own specific pattern of intervals.
This counting method is used in this program to identify a
major triad, a minor triad, an augmented triad, and a
diminished triad.

First, make sure the triad is in the root position: the three
notes are all on adjacent spaces of the musical staff, or all on
adjacent lines.

Root Position Not Root Position

g7 CES=

The name of the chord is the name of the bottom note of the
root triad.

Next, the number of whole steps between the first and
middle note are counted, then the number of steps between the
middle and top note. An example is shown on the keyboard
with the C chords. The number of steps is always either 12
or2.

Co— C Major C(2steps) E (l%asteps) G
—
"?’:‘_‘b" C minor C (1% steps) Eb2 steps) G
1
CAugmented C(2steps) E (2steps) G#
>
|
L]
= r 4 Cdiminished C (1% steps) Eb(1Y; steps) Gb

Each type of chord is described, played, and illustrated on the
keyboard with the number of steps labeled.

A way to learn the chords is to remember that the major
chord has 2 steps, then 1% steps. The minor chord lowers the

84

e Chapter 3 ree——————

middle note, so its order is 1% steps, then 2 steps. The
augmented chord starts with the major chord (2,1%2), then
““augments’’ or enlarges the chord; so the order is 2 steps, then
2 steps. The diminished chord always starts with the minor
chord (1%, 2), then ‘“diminishes’’ or reduces the chord to 1
steps, then 1% steps.

The quiz randomly chooses a beginning note, a middle
note either 12 or 2 steps higher, and a top note either 1% or 2
steps higher than the middle note. The three notes are sounded
separately, then together. The student chooses whether the
chord is major, minor, augmented, or diminished.

If the answer chosen is correct, an arpeggio is played. If the
answer is incorrect, the number of steps between each note is
illustrated and the correct answer is given. After ten chords,
the student’s score is printed. The student may then choose to
return to any section of the program.

How "Music Steps and Chords”” Works

Lines

110 DIMension variables. H(CH) is the Y-coordinate
for the key chosen; NN(CH) is the frequency for
the key chosen, to be used in the CALL SOUND
statements.

120 Branch to the title screen subroutine.

130-210 Print menu screen and wait for student’s
response; branch appropriately. For a tutorial
program, the first-time student should choose
each option in order, repeating drills as
necessary.

220-290 Subroutine to PRINT message “‘(PRESS ENTER)"”
and wait for student’s response; clear message.

300-330 Subroutine to PRINT message A$ on the screen
without scrolling. Row K and column] must be
specified.

340-390 Subroutine to draw graphics characters from
DATA statements.

400-570 Subroutines to draw arrows for half steps.

580-930 Subroutines to draw arrows for whole steps.

940-1090 Subroutine to draw keyboard.

1100-1140 Subroutine to play music after a correct answer.

1150-1420 Subroutine for half steps.

85

1150-1210
1220-1250

1260-1290
1300-1400
1410-1420

1430-1690
1430-1440

1450-1460
1470-1490
1500-1520
1530-1570

1580-1590
1600-1660

1670-1690
1700-2020
1700-1830

1840-1890

1900-2000
2010-2020
2030-2240

2030-2070
2080-2100
2110-2150
2160-2220
2230-2240
2250-2580
2250-2290

2300-2340

86

Chapter 4 remsessme———

Print definition and keyboard.

Print example arrows and wait for student to
press ENTER.

Clear arrows and printing.

Print instructions for drill.

Perform drill for half steps, then return to menu
screen.

Subroutine for half step or whole step drill.
Randomize choice and perform drill for ten
problems.

Randomly choose half step or whole step.
Randomly choose starting key and draw arrow.
Call subroutine for quiz; erase arrow.
Randomly choose starting key for whole step,
draw arrow, present quiz, erase arrow.

After ten questions, return.

Subroutine to play tones of starting key and next
tone; wait for student’s response. If the answer
is correct, play an arpeggio; if the answer is
incorrect, play a noise.

Subroutine to play noise for incorrect response.
Subroutine to teach whole steps.

Print definition; draw keyboard and example
arrows.

Wait for student to press ENTER, then clear
arrows and printing.

Print instructions for drill.

Perform drill for whole steps, then return.
Subroutine to perform drill for counting steps
between keys.

Print instructions and draw keyboard.

Perform drill for counting steps.

Clear printing, then print score.

If score was 100 percent, play a tune.

Wait for student to press ENTER, then return.
Subroutine to randomly choose keys for drill.
Randomly choose a key from the first nine keys
of the keyboard, sound that note, and place an X
on the key.

Randomly choose a number of steps ST, sound
the correct note, and place an X on the second
key.

e rEe————— Chapter 3 emm———————-———

2350-2360
2370-2450

2460-2530
2540-2550
2560-2580
2590-2860
2590-2610
2620-2730
2740-2790
2800-2840
2850-2860
2870-4500
2870-2970
2980-3010
3020-3070
3080-3110
3120-3400
3410-3600
3610-3790
3800-3840

3850-3870
3880-3940

3950-3990

Wait for student to choose an answer.

If the answer is incorrect, draw arrows on the
keyboard, print “%2’" under each half step to
show how the correct answer is obtained, and
move another arrow down to the correct choice.
Wait for student to press ENTER, then clear all
arrows.

If the answer is correct, play an arpeggio and
increment the score.

Replace the X marks on the keys with the
original key names; return.

Subroutine to print title screen and define
characters.

Clear screen; print title.

Define graphics characters from DATA.

Read in from DATA the Y-coordinate and
frequency for each key on the keyboard.

Define color sets.

Change the screen color to yellow and return.
Subroutine to teach basic triads, identifying
them by the counting-steps method.

Print instructions about triads; wait for student
to press ENTER after each screen of instructions.
Clear screen; print description of C major triad;
draw keyboard.

Sound the tones of the chord as the keys are
marked.

Illustrate number of steps between keys at top of
keyboard.

Wait for student to press ENTER, then change
major triad description to minor triad
description.

Print description of augmented triad.

Print description of diminished triad.

Print summary table of triads.

Print instructions for drill and draw keyboard.
For ten problems, randomly choose the first key,
sound the appropriate note, and print X on the
key.

Randomly choose the next key three or four half
steps above the first note; sound the appropriate
note and print X.

87

T T ————————— Chapter Y re—rreesese———————

4000-4040 Randomly choose the top key three or four half

steps from middle key; sound the appropriate
note and print X.

4050-4140 Depending on the steps between notes,

determine correct answer.

4150-4180 Play the chord and wait for the student to press

an answer; place an asterisk in front of the
answer chosen.

4190-4350 If answer is incorrect, label the number of steps

between the keys, put an arrow before the
correct choice, and wait for the student to press
ENTER.

4360-4380 Clear the marked answer.
4390-4430 If the answer is correct, play an arpeggio and

increment the score.

4440-4480 Clear the marked keys and the chosen answer;

go to the next problem.

4490-4510 Print the final score; return; END.

Program 3-6. Music Steps and Chords

100
110
120
130
1409

150

160
170
180
190

200
210
220
230
249
250
260
270

88

REM MUSIC STEPS AND CHORDS

DIM H(17),NN(18)

GOSUB 2590

CALL CLEAR

PRINT "CHOOSE":::"1 HALF STEPS"
HOLE STEPS"::"3 COUNT THE STEPS"
PRINT :"4 IDENTIFYING TRIADS"::"5 TRI
ADS QUIZ":::"6 END PROGRAM":::

CALL KEY(@,K,S)

IF (K<49)+(K>54)THEN 160

CALL CLEAR

ON K-48 GOSUB 1159¢,17090,2030,2873,3854d,
210

GOTO 130

STOP

AS="(PRESS ENTER)"

FOR Y=1 TO 13

CALL HCHAR(24,Y+18,ASC(SEGS(AS$,Y,1)))
NEXT Y

CALL KEY(@,K,S)

IF K<>13 THEN 260

:"2 W

————wm——— (D ATTOT] re——

280
290
300
310
320
330
340
350
360
370
380
390
4090
410
420
430
449
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690

CALL HCHAR(24,19,32,13)
RETURN

FOR I=1 TO LEN(AS$)
CALL HCHAR(K,J+I,ASC(SEGS$(AS$,I,1)))
NEXT I

RETURN

READ N

FOR I=1 TO N

READ X,Y,G

CALL HCHAR(X,Y,G)

NEXT I

RETURN

CALL HCHAR(14,Y,112)
CALL HCHAR(14,Y+1,114)
RETURN

CALL HCHAR(14,Y,98)
CALL HCHAR(14,Y+1,99)
RETURN

CALL HCHAR(12,Y,106)
CALL HCHAR(13,Y+1,116)
RETURN

CALL HCHAR(12,Y,97)
CALL HCHAR(13,Y+1,96)
RETURN

CALL HCHAR(13,Y,115)
CALL HCHAR(12,Y+1,107)
RETURN

CALL HCHAR(13,Y,96)
CALL HCHAR(12,Y+1,97)
RETURN

CALL HCHAR(14,Y,112)
CALL HCHAR(14,Y+1,113,2)
CALL HCHAR(14,Y+3,114)
RETURN

CALL HCHAR(14,Y,96,4)
CALL HCHAR(14,Y+1,98)
CALL HCHAR(14,Y+2,99)
RETURN

CALL HCHAR(11,Y,104)
CALL HCHAR(11,Y+1,113)
CALL HCHAR(11,Y+2,105)
RETURN

89

R ———— Chapter 3 e————————ry

799 CALL HCHAR(11,Y,97)

710 CALL HCHAR(11,Y+1,96)
720 CALL HCHAR(11,Y+2,97)
73@ RETURN

740 CALL HCHAR(13,Y,117)

750 CALL HCHAR(13,Y+1,118)
760 CALL HCHAR(12,Y+2,119)
779 CALL HCHAR(12,Y+3,108)
7803 RETURN

799 CALL HCHAR(13,Y,98)

800 CALL HCHAR(13,Y+1,99)
819 CALL HCHAR(12,Y+2,96)
820 CALL HCHAR(12,Y+3,97)
830 RETURN

840 CALL HCHAR(12,Y,109)

850 CALL HCHAR(12,Y+1,120)
860 CALL HCHAR(13,Y+2,121)
870 CALL HCHAR(13,Y+3,122)
880 RETURN

890 CALL HCHAR(12,Y,97)

90@ CALL HCHAR(12,Y+1,96)
910 CALL HCHAR(13,Y+2,98)
920 CALL HCHAR(13,Y+3,99)
930 RETURN

94@ CALL HCHAR(1,1,96,4849)
950 RESTORE 960

968 DATA 3,6,12,15,18,24,27,9,21,30
970 FOR I=1 TO 7

980 READ Y

99¢ CALL VCHAR(1,Y,97,12)
1009 CALL VCHAR(1,Y+1,97,12)
10106 CALL VCHAR(13,Y,98,3)
102¢ CALL VCHAR(13,Y+1,99,3)
1830 NEXT I

1640 FOR I=1 TO 3

1850 READ Y

1060 CALL VCHAR(1,Y,98,15)
1970 CALL VCHAR(1,Y+1,99,15)
1380 NEXT I

1999 RETURN
1100 CALL SOUND(15@,262,2)
1116 CALL SOUND(15@,3340,2)

90

| mrEmaerEmNET TSR Chapter 3 wewsremsse———

1120 CALL SOUND(15@,392,2)

1130 CALL SOUND(30¢,523,2)

1140 RETURN

1150 PRINT "{4 SPACES}H A L F{3 SPACES}S T
EP S":t:s:22222:21:2:

1160 PRINT "A HALF STEP IS FROM ONE KEY ":
"TO THE VERY NEXT KEY.":::

1179 FOR I=1 TO 4

1189 CALL HCHAR(19,4+41I,127+1)

1190 NEXT I

120@ CALL HCHAR(22,10,113,9)

1210 GOSUB 940

1220 RESTORE 1230

1239 DATA 8;12,4,106,13,5,116,13,3%,115,%2,;
12,107,14,21,112,14,22,114,13,26,115,
12,227,187

1240 GOSUB 340

1250 GOSUB 220

1260 RESTORE 1270

127¢ DATA 8,12,4,97,13,5,96,13,11,96,12,12,
97,14,21,98,14,22,99,13,26,96,12,27,97

1280 GOSUB 340

12990 CALL HCHAR(19,1,32,114)

130@ A$="IS THIS A HALF STEP?"

1310 K=19

1320 J=5

1330 GOSUB 300

1340 A$S="PRESS 1 FOR YES"

1350 K=21

1360 J=9

1370 GOSUB 300

1380 AS$S="PRESS 2 FOR NO"

1390 K=23

1409 GOSUB 300

1410 GOSUB 1430

1420 RETURN

1430 RANDOMIZE

1440 FOR I=1 TO 1@

1450 ANS=INT(RND*2+1)

1460 IF ANS=2 THEN 153@

1470 CH=INT(RND*17+1)

1480 Y=H(CH)

91

e Chapter Y e

1490

1509
1510

1520
1530
1540
1558

1560
1570

1580
1590
1600
1610
1620
1630
1640
165@
1660
1l67@
1680
1690
1700

1710

1729
1730

1740
1750
1760
1770
1780
1790
1800
1810

92

ON CH GOSUB 520,460,520,460,4900,520,46
0,520,460,520,460,400,520,460,520,460
, 400

GOSUB 1600

ON CH GOSUB 55@,490,550,490,430,550,49
@,550,490,55@,490,430,550,490,550,490
,430

GOTO 1580

CH=INT(RND*16+1)

Y=H(CH)

ON CH GOSUB 580,660,580,840,740,580,66

@,580,660,580,840,740,580,660,580,840

GOSUB 1600

ON CH GOSUB 620,700,620,890,790,620,70
9,620,7900,620,890,790,620,7090,629,8990

NEXT I

RETURN

CALL SOUND(20@,NN(CH),d)

CALL SOUND(20@,NN(CH+ANS),d)

CALL KEY(9,K,S)

IF (K=49)+(K=5@0)<>-1 THEN 1620

IF K<>48+ANS THEN 1670

GOSUB 1100

RETURN

CALL SOUND(60@,-8,2)

CALL SOUND(1,-8,30)

RETURN

PRINT "{3 SPACES!W H O L E{3 SPACES}S

TEP S"sss33332:2:2:

PRINT "A WHOLE STEP IS EQUAL TO"::"TWO
HALF STEPS (1 = & + %)":::

RESTORE 1730

DATA 5,19,5,132,19,6,128,19,7,133,19,8
,130,19,9,134

GOSUB 340

GOSUB 940

Y=2

GOSUB 580

Y=13

GOSUB 660

Y=21

GOSUB 740

1820 Y=28

1830 GOSUB 840

1840 GOSUB 220

1850 RESTORE 1860

1860 DATA 15,14,2,96,14,3,98,14,4,99,14,5,9
6,11,13,97,11,14,96,11,15,97,13,21,98

187¢ DATA 13,22,99,12,23,96,12,24,97,12,28,
97,12,29,96,13,30,98,13,31,99

1880 GOSUB 340

1890 CALL HCHAR(19,1,32,92)

1900 A$="WHAT KIND OF MUSICAL STEP?"

1910 K=19

1920 J=3

1930 GOSUB 300

1940 A$="PRESS 1 FOR HALF STEP"

1950 K=21

1960 J=5

1970 GOSUB 30@

1980 A$="PRESS 2 FOR WHOLE STEP"

1990 K=23

2000 GOSUB 300

2010 GOSUB 14340
2020 RETURN
2030 R=0
2040 SC=0
2@05@ PRINT "NOW COUNT HOW MANY STEPS":"THER
E ARE BETWEEN TWO NOTES."::"
{4 SPACES}1 HALF STEP"
20608 PRINT "{4 SPACES}2 WHOLE STEP":"
{4 SPACES}3 1% STEPS":"{4 SPACES}4 2
STEPS":"{4 SPACES}5 2% STEPS";
2070 GOSUB 940
2080 FOR II=1 TO 1@
2090 GOSUB 2250
2108 NEXT II
2119 CALL HCHAR(17,1,32,256)
2120 AS$S="SCORE = "&STR$(SC)&"@ PERCENT"
2130 K=19
2140 J=8
2150 GOSUB 300

2160 IF SC<>1@ THEN 2230
2179 RESTORE 2184@

93

s Chapter 7 e —— T

2180 DATA 262,330,392,523,392,523,330,392,5
23,659,523,659,392,523,659,784,659,78
4,44000

219@ FOR I=1 TO 19

220@ READ F

2210 CALL SOUND(1540,F,2)

2220 NEXT I
2230 GOSUB 220

2240 RETURN

225@ CH=INT(RND*9+1)

2260 Y1=H(CH)

2270 CALL SOUND(20@,NN(CH),@d)

2280 CALL GCHAR(8,Y1,GCl)

2290 CALL HCHAR(8,Y1,135)

230@ ST=INT(RND*4+1)

2310 Y2=H(CH+ST)

2320 CALL SOUND(200,NN(CH+ST),9)

2330 CALL GCHAR(8,Y2,GC2)

2340 CALL HCHAR(8,Y2,135)

2350 CALL KEY(@,K,S)

2360 IF (K<49)+(K>53)THEN 2350

2370 IF K-48=ST THEN 2540

2380 FOR I=1 TO ST

2390 Y=H(CH+I-1)

2403 ON CH+I-1 GOSUB 520,460,520,460,400,52
@,460,520,460,520,460,400,520

2410 CALL HCHAR(16,Y,123)

2420 CALL HCHAR(19+1-1,5,32,2)

2430 CALL HCHAR(19+I,5,113)

2440 CALL HCHAR(19+1,6,114)

24503 NEXT I

2460 GOSUB 2280

2479 CALL HCHAR(16,Y1,32,8)

2480 CALL HCHAR(19+1-1,5,32,2)

2490 FOR I=1 TO ST

2500 Y=H(CH+I-1)

2510 ON CH+I-1 GOSUB 550,490,550,490,439,55
@,490,550,4990,550,490,430,550

2520 NEXT I

2530 GOTO 2569

2540 GOSUB 1100

94

e R e Chapter 3 emscwssrsmccsssee

2550
2560
2570
2580
2590
2600
2610

2620
2630

2649

2650

26640

2670

2680

2690

2709
2710
2720
2730
2740

2750

2760

2779
2780

SC=SC+1

CALL HCHAR(8,Y1,GCl1l)

CALL HCHAR(8,Y2,GC2)

RETURN

CALL CLEAR

CALL CHAR(92,"3C4299A1A199423C")
PRINT "{3 SPACES}M U S I c{3 SPACES}s
TEP S"::::TAB(12);"A N D"::::TAB(9):
"CHORD S" z:2::

RESTORE 2630

DATA 96,9,97, FFFFFFFFFFFFFFFF,98,01010
10101010101 ,99,8080808080808080,37,40
42444817214207,104,000083CAFFC

DATA 123,4042444817214207,105,00309C02
FF@20C3,106,C0C0201008049201,107,3F03
25091121408

DATA 108,7C@C34C404,109,COF00C@3,112,0
Q0PPICIFFC,113,00000000FF,114,00300C0
2FF@20C3

DATA 115,910204081020C@C,116,804021110
9050@33F,117,000000003030CFJC,118,0308C3
ac,119, 05090006@3@C3GC

DATA 12@ Po000003CA300Ca3,121,C0300Ca3
,122,00000004C4340C7C,128, 004444?c444
444,129,003844447C4444

DATA 130,0040404040407C,131,007C407840
404,132,00444444545428,133,007C444444
447C,134,0087C4078404@7C

DATA 135,00442810102844,60,000000033F2
202,62 ,00000000FC0403404,64,20202C342
428302

FOR I=1] TO 34

READ A,A$

CALL CHAR(A,AS)

NEXT I

DATA 2,131,4,139,5,147,7,156,9,165,11,
175,13,185,14,196,16,208,17,22@,19,233
DATA 21,247,23,262,25,277,26,294,28,31
1,360,339

FOR I=1 TO 17

READ H(I),NN(I)

NEXT I

95

] Chapter % e e

2790
2800
2810
2820
2830
2840
2850
2860

2879

2880

2890

2900
2910
2920

2930

2940
2959
2969

2970
2980
2990

3000

301@
3020

3030
3040
3050

96

NN(18)=349

FOR I=9 TO 13

READ A,SC

CALL COLOR(I,A,SC)

NEXT I

DATA 2,16,9,2,9,16,9,16,9,16

CALL SCREEN(12)

RETURN

PRINT "{5 SPACES}IDENTIFYING TRIADS"::
:"A TRIAD CONSISTS OF 3 NOTES."::"IT I
S IN ROOT POSITION"

PRINT :"IF ALL THREE NOTES ARE ON"::"L
INES OR IF ALL THREE"::"NOTES ARE ON
SPACES"::"ON THE STAFF."

PRINT ::"THE BASIC TRIADS ARE"::"MAJOR
;, MINOR, AUGMENTED,"::"AND DIMINISHED

L1}
[]
- - s

GOSUB 220

CALL CLEAR

PRINT "TO IDENTIFY A CHORD, "::"FIRST M

AKE SURE THE NOTES"::"ARE IN ROOT POS

ITION"

PRINT :"(INVERT IF NECESSARY).":::"THE

NAME OF THE CHORD IS"::"THE BOTTOM N

OTE OF THE"::"ROOT CHORD.":::

GOSUB 220

CALL CLEAR

PRINT "THE TYPE OF TRIAD MAY BE"::"DET
ERMINED BY COUNTING"::"STEPS BETWEEN

NOTES OF"::"THE ROOT CHORD."::::

GOSUB 220

CALL CLEAR ;
PRINT "{3 SPACES}M A J 0 R{3 SPACESI]T
R I A D"::"THE C MAJOR TRIAD CONSISTS
OF ¢, E, AND G."

PRINT :"2 STEPS FROM C TO E":"1% STEP

S FROM E TO G"

GOSUB 940

CALL SOUND(200,262,0)

CALL HCHAR(14,2,135)

CALL SOUND(209,262,2,330,9)

CALL HCHAR(14,8,135)

et e e TR Chapter 3 ey ey

3060 CALL SOUND(6@0,262,2,330,1,392,4)

3070 CALL HCHAR(14,14,135)

3080 AS="<==2==><=1%->"

3099 J=1

3100 K=2

3119 CALL HCHAR(1,1,32,96)

3120 GOSUB 300

3130 GOSUB 220

3140 CALL HCHAR(19,1,32,160)

3150 CALL HCHAR(17,8,73)

3160 CALL HCHAR(17,1@,78)

3170 AS$="TO CHANGE TO A MINOR TRIAD"

3180 K=19

3190 J=2

3200 GOSUB 309

3210 A$="LOWER THE MIDDLE NOTE % STEP."

3220 K=20

3230 GOSUB 300

3240 A$="<=1%=><==2==>"

3250 J=1

3260 K=2

3278 GOSUB 300

3280 CALL SOUND(200,262

3299 CALL HCHAR(14,8,96)

33¢0@ CALL SOUND(200,262,2,311,0)

3310 CALL HCHAR(11,7,135)

3320 CALL SOUND(609,262,2,311,1,392,0)

3330 A$="1% STEPS FROM C TO E-FLAT"

3340 J=2

3350 K=22

3360 GOSUB 308

3370 AS$S="2 STEPS FROM E-FLAT TO G"

3380 K=23

3390 GOSUB 309

3400 GOSUB 220

3410 CALL CLEAR

3420 PRINT "{6 SPACES}AUGMENTED TRIAD":::"S
TART WITH THE MAJOR TRIAD.":::"'AUGMEN
T' THE TRIAD"

3430 PRINT :"BY MOVING THE TOP NOTE"::"UP O
NE HALF STEP."::::

34403 GOSUBR 220

2)

97

3450 CALL CLEAR

3460 PRINT "{6 SPACES}AUGMENTED TRIAD"::"NO
TES ARE C, E, G#"

347@ PRINT :"2 STEPS FROM C TO E":"2 STEP
S FROM E TO G#"::

3480 GOSUB 940

3499 CALL SOUND(200,262,0)

3509 CALL HCHAR(14,2,135)

3510 CALL SOUND(200,262,2,330,0)

3520 CALL HCHAR(14,8,135)

3530 CALL SOUND(699,262,2,330,1,415,0)

3540 CALL HCHAR(11,16,135)

3550 AS="<==2==><-=2-=->"

3560 K=2

357¢ J=1

3580 CALIL HCHAR(1,1,32,96)

3590 GOSUB 3049

360@ GOSUB 220

3619 CALL CLEAR

3620 PRINT "{5 SPACES]DIMINISHED ,TRIAD "
START WITH THE MINOR TRIAD.

3630 PRINT ::"'DIMINISH' THE TRIAD BY"::"LO
WERING THE TOP NOTE"::"ONE HALF STEP.

T 222
8 8 0

3640 GOSUB 220

3650 CALL CLEAR

3660 PRINT "{5 SPACES}DIMINISHED TRIAD"::"N
OTES ARE C, E@, G@"::"1% STEPS FROM C
TO E @":"1% STEPS FROM E@ TO G@"

3670 GOSUB 940

3680 CALL SOUND(200,262,0)

3690 CALL HCHAR(14,2,135)

3709 CALL SOUND(200,262,2,311,0)

3719 CALL HCHAR(11,7,135)

3720 CALL SOUND(600,262,2,311,1,379,90)

3730 CALL HCHAR(11,13,135)

3740 AS$S="<-1%-><=-1%->"

3750 K=2

3768 J=1

3778 CALL HCHAR(1,1,32,96)

3788 GOSUB 300

3798 GOSUB 220

98

R R T e e S | Chapter 3 B e G g =lE S

3800
3810

3824

3830

3840
3850

3860

3870
3880
3899
3900
3910
3920
3939
3940
3959
3960
3970
39890
3990
4000
4010
4020
4030
4040
4050
4060
4070
4980
4090
4100
4110
4120

4130
4140

CALL CLEAR

PRINT TAB(9);"STEPS BETWEEN NOTES":TAB
(9);"1sT{5 SPACES}2ND{5 SPACES}3RD"
PRINT ::"TRIAD"::::"MAJOR";TAB(14);"2
{7 SPACES}1%":::"MINOR";TAB(14);"1%

{6 SPACES} 2"

PRINT ::"AUGMENTED{4 SPACES}2

{7 SPACES}2":::"DIMINISHED{3 SPACES}1%
{6 SPACES}1%":::

GOSUB 220

PRINT "NAME THE TYPE OF TRIAD."::"PRES
s{3 sPACES}1 MAJOR":TAB(9);"2 MINOR"
PRINT TAB(9);"3 AUGMENTED":TAB(9):"4
DIMINISHED"

GOSUB 940

SC=0

FOR II=1 TO 10

CH=INT(RND*9+1)

CALL SOUND(58@,NN(CH),d)
Y1=H(CH)

CALL GCHAR(8,Y1,GCl)

CALL HCHAR(8,Y1,135)
ST=INT(RND*2+1)+2

CALL SOUND(-50@,NN(CH+ST),0)
Y2=H(CH+ST)

CALL GCHAR(8,Y2,GC2)

CALL HCHAR(8,Y2,135)
ST2=INT(RND*2+1)+2

CALL SOUND(-580,NN(CH+ST+ST2),0)
Y3=H(CH+ST+ST2)

CALL GCHAR(8,Y3,GC3)

CALL HCHAR(8,Y3,135)

IF (ST=4)+(ST2=3)<>-2 THEN 4080
ANS=1

GOTO 4150

IF (ST=3)+(ST2=4)<>-2 THEN 4110
ANS=2

GOTO 4150

IF (ST=4)+(ST2=4)<>-2 THEN 4140
ANS=3

GOTO 41540

ANS=4

99

4150

4160
4170
4180
4190
4200
4210
4220
4230
4241
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510

100

CALL SOUND(1@9@,NN(CH),2,NN(CH+ST),1,N
N(CH+ST+ST2),0)

CALL KEY(9,K,S)

IF (K<49)+(K>52)THEN 4160
CALL HCHAR(19+K-48,10,42)
IF K-48=ANS THEN 4390

CALL SOUND(50¢,-5,2)

IF ST/2=2 THEN 4240
Sl$="l%“

GOTO 4250

Sl$=n_2_n

IF ST2/2=2 THEN 4280
52$="l% n

GOTO 4290

Sz$=ll__2_li

A$=n <_ll&51 $&||_> <-"&82$&"-> "
K=2

J=Yl-1

CALL HCHAR(1,1,32,96)

GOSUB 390

CALL HCHAR(19+ANS,9,114)
GOSUB 220

CALL HCHAR(19+ANS,9,32)
CALL HCHAR(2,1,32,32)

GOTO 4440

CALL SOUND(15@,NN(CH),2)
CALL SOUND(15@,NN(CH+ST),2)
CALL SOUND(150,NN(CH+ST+ST2),2)
CALL SOUND(20@,2*NN(CH),2)
SC=sC+1

CALL HCHAR(8,Y1,GCl)

CALL HCHAR(8,Y2,GC2)

CALL HCHAR(8,Y3,GC3)

CALL VCHAR(20,10,32,4)

NEXT II

GOSUB 2110

RETURN

END

Choreography

Coordinating computer graphics with music is an art, very
much like the art of stage choreography, which combines
dance movements with music. While a tone is being played
after a CALL SOUND statement, the computer goes on to
execute other statements — calculations, character or color
definitions, or graphics. Because of this feature, it is fun to
make your TI show pictures while a song is being played —
with certain drawings appearing at certain precise times.

Keeping Time

A new CALL SOUND statement will always wait for the
previous sound to finish before it starts playing. Depending on
the duration of each sound, you can insert a number of
graphics statements between the execution of the CALL
SOUND statements. Choreography takes a lot of
experimentation so that you avoid jerky sounds (irregular
silences between two tones) while the graphics keeps up with
the music.

Here is a situation where it is a definite advantage to
designate a duration variable at the beginning of the program
and then use that variable in the CALL SOUND statements.
This way, if you need to increase the duration slightly, you will
need to change only one statement, not each CALL SOUND
statement. (See “’Musical Tempo Demonstration,”’ Program
3-4.)

Be careful in your use of FOR-NEXT loops. Remember that
each statement in the loop is performed again, and you will be
able to hear CALL SOUND statements if they are repeated.
That may be fine for a chorus — but do you also want the
graphics repeated? If a FOR-NEXT loop for graphics is used
between CALL SOUND statements, the duration of the first
statement must be long enough for the whole loop to finish, or
you may have an unwanted break in the music.

Watch Your Memory

Running out of memory may be a problem with graphics
programs because defining characters consumes a lot of
memory. Try to plan your color sets wisely, and use as few
special characters as possible. Use CALL HCHAR and CALL
VCHAR efficiently to draw with as few statements as possible.

101

— Chapter 3

DATA statements may be used to preserve memory if the
same process or number sequence is repeated. A note of
warning: sometimes there is a pause before the last iteration of
(or single pass through) a FOR-NEXT loop that reads data
(especially in longer programs). You can often avoid the
problem by adding one more set of ’dummy data’” and
increasing the loop limit by one. For example, if you are
drawing graphics characters, draw a space where it won't be
noticed, or repeat the last character:

100 CALL CLEAR

110 FOR I=1 TO 10

120 READ X,Y,G

130 CALL HCHAR(X,Y,G)

140 NEXT I

150 DATA 12,13,42,12,18,42,20,14,43,18,10,
65,14,12,66

160 pATA 10,8,77,19,15,64,8,18,80,7,10,43,
1,1,32

170 END

With CALL SOUND statements, it is more difficult to avoid
the pause. You may add another set of data with a duration of
one millisecond, a high frequency that cannot be heard, and a
volume of 30 to avoid the pause before the last sound in the
loop, but there will be a pause between the loop and the next
CALL SOUND statement.

In general, it is easier simply to alternate CALL SOUND
and graphics statements than to use DATA statements and
FOR-NEXT loops.

Songs with Pictures

In “Oh! Susanna,’’ several graphics characters are defined first
(lines 110-160) and then the screen is cleared. The tempo is set
with T=400, then CALL SOUND statements are alternated
with graphics statements so that certain pictures appear as the
appropriate words are sung in the familiar song. Some objects
are drawn invisibly by assigning the color set a

transparent foreground and background. Then, at the
appropriate time, another CALL COLOR statement colors the
object the right color.

102

e te——— (JADE]) e ——————

Program 3-7. "Oh! Susanna”

160 REM OH! SUSANNA

1186 FOR C=104 TO 11@

120 READ C$

138 CALL CHAR(C,CS$)

140 NEXT C

150 DATA FFFFFFFFFFFFFFFF,00030F1F3F3F7F7F,
@3C7FEECD4ACSEAE, FDFAFS5EBD7BF5FBF, 7D7
A3D3F1F@FQ@3

160 DATA FEFEFCFCF8FJC,03070E1C3870EGC

170 CALL CLEAR

180 T=400

190 CALL CHAR(96, "FFFFFFFFFFFFFFFE")

200 CALL SOUND(T/2,392,2)

219 CALL CHAR(97,"FFFFFFFFFFFFE7CL")

220 CALL SOUND(T/2,440,2)

230 CALL CHAR(98, "808@8@8dcagcacac")

240 CALL SOUND(T,494,2,392,5,294,8)

25¢ CALL CHAR(99, "COUCOCOEJEJEDIEDE")

260 CALL SounD(T,587,1,392,5,247,7)

27@ CALL CHAR(100,"F@FJFOFOFAFOFOF")

280 CALL COLOR(9,3,1)

299 CALL SoOuND(T,587,2,392,6,196,7)

300 CALL VCHAR(7,5,96,5)

319 CALL VCHAR(12,5,97)

320 CALL VCHAR(12,6,98)

330 CALL SOUND(T,659,2,392,5,262,8)

349 CALL VCHAR(7,6,96,5)

350 CALL VCHAR(7,7,96,5)

360 CALL SouNnD(T,587,2,392,5,247,7)

370 CALL VCHAR(9,8,98)

380 CALL VCHAR(10,8,99)

390 CALL SOUND(T,494,2,392,5,294,7)

400 CALL VCHAR(11,8,100)

41¢ CALL COLOR(19,1,1)

420 CALL SOUND(T*1.5,392,2,247,5,196,6)

43¢ CALL VCHAR(9,12,104,3)

449 CALL HCHAR(194,11,104,3)

45@¢ CALL HCHAR(9,11,105)

46@ CALL HCHAR(9,13,106)

47@ CALL SOUND(T/2,440,2,262,5)

103

TS Chapte]“ C e ———

480
490
500
510
520

530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
839
840
850
860
870
880
890

104

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

HCHAR(19,12,107)
HCHAR(11,11,1@8)
SOUND(T,494,2,392,5,294,6)
HCHAR(11,13,109)
HCHAR(8,14,110)
HCHAR(7,15,119)
SOUND(T,494,1,392,6)
COLOR(10,15,1)
HCHAR(6,16,110)
SOUND(T,448,2,262,5,196,8)
cotor{11,1,1)

CHAR(112, "FFFFFFFFFFFFFFFF")
SOUND(T,392,2,247,5,196,8)
CHAR(113,"7F3F1F1F1F1F1F1F")
CHAR(114,"1F1F1FlF1F1F1FlF")
SOUND(3*T,440,2,349,5,147,8)
CHAR(115,"1F1F3F3F7F78E@AC")
CHAR(116, "FFFFFFFFFF1E")
CHAR(117, "FOFOF8F8FCFCFC1C")
CHAR(118, "EQEQEJEOFIFIFOF")
CHAR(119, "EGEGEOCOCOB8G8")
SOUND(T/2,392,2)
HCHAR(14,15,112,3)
SOUND(T/2,440,2)
HCHAR(15,15,112,3)
SOUND(T,494,2,392,6,294,8)
VCHAR(14,18,118,2)
HCHAR(16,15,113)
SOUND(T,587,2,392,6,247,8)
HCHAR(17,15,114)
HCHAR(18,15,115)
SOUND(1.5*T,587,1,392,5,247,9)
HCHAR(16,16,112,2)
HCHAR(17,16,112,4)
HCHAR(18,16,116,4)
SOUND(T/2,659,2,392,5,262,8)
COLOR(11,14,1)
sounDp(T,587,2,392,5,247,7)
VCHAR(14,18,118)
VCHAR(16,18,119)
SOUND(T,494,2,392,6,294,8)
VCHAR(17,20,118)

s Chapter Y e e

999 CALL VCHAR(18,20,117)

91@¢ CALL SOUND(1.5*T,392,2,247,5)

920 CALL CHAR(120,"1©1038387C7C7Cc38")
93¢ CALL COLOR(12,8,1)

94@ CALL SOUND(T/2,44@,2)

950 CALL SOUND(T,494,2,392,6,294,8)
960 CALL CHAR(128, "FFFFFFFFFFFFFFFF")
970 CALL SOUND(T,494,1,392,5,147,8)
98¢ CALL CHAR(129, "0@@30F1F3F3F7F7F")
990 CALL SOUND(T,440,2,370,5,262,8)
1000 CALL CHAR(13@,"@OCOF@F8FCFCFEFE")
1010 CALL SOUND(T,440,1,370,6,147,8)
1020 CALL CHAR(131,"7F7F3F3Fl1FQF@3")
1030 CALL SOUND(3*T,392,1,247,5,196,8)
1040 CALL CHAR(132,"FEFEFCFCF8F@C")
1450 CALL COLOR(13,1,1)

1068 CALL HCHAR(6,27,128,3)

1070 CALL VCHAR(5,28,128,3)

1080 CALL SOUND(T/2,392,2)

1090 CALL SOUND(T/2,449,2)

1100 CALL SOUND(T,494,2,392,6,294,8)
1116 CALL HCHAR(6,21,120
1120 CALL HCHAR(8,20,120

1130 CALL HCHAR(7,22,120)

1140 cALL SsounDp(T,587,2,392,5,247,8)
1150 CALL HCHAR(9,22,120)

1160 CALL HCHAR(19,21,120)

1178 CALL SounD(T,587,1,392,6,196,8)
1180 CALL HCHAR(5,27,129)

1199 CALL SOUND(T,659,2,392,5,262,8)
120@ CALL HCHAR(5,29,130)

1210 CALL SOuUND(T,587,2,392,5,247,8)
1220 CALL HCHAR(7,27,131)

1230 CALL SOUND(T,494,2,392,5,294,8)
124@ CALL HCHAR(7,29,132)

1258 CALL SOUND(1.5*T,392,2,247,5,196,8)
1260 CALL SOUND(T/2,440,2,262,4)

1270 CALL SOUND(T,494,2,392,5,294,8)
1280 CALL SOUND(T,494,1,392,4,196,8)
1299 CALL SOUND(T,440,2,277,5,165,8)
1309 CALL SOuUND(T,392,2,330,5,262,8)
1310 CALL SOUND(3*T,440,2,370,5,294,8)

105

e — (N ADIET) e———

1320 CALL SOUND(T/2,392,2)

1330 CALL SOUND(T/2,440,2)

1340 CALL SOUND(T,494,2,392,5,294,8)
1350 CALL COLOR(13,12,1)

1360 CALL SounD(T,587,2,392,5,247,8)
1378 CALL SoOuND(T,587,9,392,6,196,8)
1380 CALL SOUND(T,659,2,392,5,262,8)
1390 cALL sounD(T,587,2,392,5,196,8)
1400 CALL SOUND(T,494,2,392,5,294,8)
1410 CALL SOUND(2*T,392,1,247,4,196,8)
1420 CALL SOUND(T/2,440,2,131,8)

1430 CALL SOUND(T/2,494,2,392,5)

1440 CALL SOUND(1.5*T,494,1,392,4,147,8)
1450 CALL SOUND(T,440,2,370,5,262,8)
1460 CALL SOUND(T,449,1,370,4,147,8)
147@ CALL SOUND(4*T,392,0,247,5,196,8)
1480 CALL SOUND(2*T,523,08,330,5,262,8)
1490 PRINT "OH!";

1500 CALL SOUND(2*T,523,1,330,4,262,7)
1514 PRINT " SU";

1520 CALL SOUND(T,659,0,392,5,262,8)
1530 PRINT "SAN";

1540 CALL SOUND(2*T,659,1,392,4,131,7)
1558 PRINT "NA";

1560 CALL SOUND(T,587,1,392,5,247,7)
1579 CALL SOUND(T,587,9,392,4,196,7)
1580 CALL SOUND(T,494,9,392,5,294,8)
1590 caALL SounD(T,392,1,247,5,196,8)
1600 CALL SOUND(3*T,440,1,379,5,294,8)
1610 CALL SOUND(T/2,392,2)

1620 CALL SOUND(T/2,44@,2)

1630 CALL SOUND(T,494,2,392,7,294,9)
1640 CALL SOUND(T,587,2,392,5,294,9)
1656 CALL SounD(T,587,1,392,6,196,8)
1660 CALL SOUND(T,659,1,392,5,262,8)
1678 CALL COLOR(11,9,1)

1680 CALL SOUND(T,587,2,392,5,247,9)
1690 CALL SOUND(T,494,2,392,5,294,8)
1700 CALL SOUND(1.5%*T,392,2,247,5,196,8)
1710 CALL SOUND(T/2,440,2,131,85
1720 CALL SOUND(T,494,1,392,5,147,8)
1730 CALL COLOR(1@,16,1)

106

1748 CALL SOUND(T,494,0,392,4,294,8)
1750 CALL COLOR(14,15,1)

1769 CALL SOUND(T,440,0,3790,5,147,8)
1778 CALL SOUND(T,440,1,370,4,262,8)
1780 CALL SOUND(4*T,392,0,247,5,196,8)
1790 GOTO 1790

1800 END

“Hey, Diddle, Diddle’’ is such a short song that the graphics
need to come on quickly. So, all the characters are defined at
the start using DATA statements (lines 120-310). All the color
sets are set to invisible (lines 320-340).

PRINT statements are faster than CALL HCHAR or CALL
VCHAR, so some of the figures are PRINTed on the screen.
You'll notice the PRINT statements (lines 380-480) print
symbols or lowercase letters. Those characters have actually
been redefined graphically, so that when they are printed on
the screen they are really pictures rather than symbols and
numbers. Again, the pictures are drawn invisibly. Then when
the music comes to the appropriate word, the associated
picture is turned on with a CALL COLOR statement.

Program 3-8. "Hey, Diddle, Diddle”

104 REM HEY, DIDDLE, DIDDLE

114 CALL CLEAR

120 FOR I=1 TO 6

130 READ A,B

140 FOR C=A TO B

154 READ C$

160 CALL CHAR(C,cC$)

170 NEXT C

180 NEXT I

199 DATA 40,66,FFFFFFFFFFFFFFFF,0000010D1FQ
FO70F, 00008080 EOFOF838,0000000021331E
@C,B1OF3F7FC78707d7

20@ DATA FFFFFFFFFFFEFEFC,38FCFE6EQC,370707
@F1F3F7FFE, FFFFFFFFFFFEFCF8, FFFFFFFF7
F1F,FFFFFFFFFF8703

210 DATA F8FOFOFOF8FCFEFF,76C707070EHCA8,7F
0706 ,80E06, ,0000000103070C7C,0003030F0
FOFBFB8FC,0000806030383838

107

e Chapter G e ————

220 DATA 7FOFQ00@01073F3F,FCFFFFFFFFFFFFBF,
@OFFFFFFFFFFFFFFFF, FOEOFOFS8F8F8F8FS8, 3
F,0Fd1,FEFC,F878F8F8

230 DATA 96,107 ,0000000073797D7F, 0000000037 C
FEFFFF,0000000@1C7CFCF8, 7TF3F7FFFFFFBF
1Fl, FFFFFFFFFFFBF1F1

240 DATA FOEOFOFOJFOFOFOF,d@1C3E3E3E3F3FLlF,F
1FF7FOF1FFFFFFF,Bl1FFF1EFFFFFFFF, E7CF
9F3FFFFEFCF8

250 DATA OF@3080C@ClELlFlF,1FdF07,112,131,FF
FF1F1F3F7F7FFF, FFFFFFFFFFFFFFFF, E0800
0000ISIEDF

260 DATA FOFS8F8F8F8F8F8F8,FFFFFFFFFFFF1F,DF
9FOFOF070701 , FSF8FIFOFIFAC, ,LF3F7FFFF
FFFFFFF,00COEAFIF8FCF8FS

270 DATA FF7F7F3F3F1808, F8FCFFFFFFFFFFFF, 40
4Q0EQFOF8F8FCFE, FFFFFFFF7F3F1F@F, FFFFF
FFFFFFFFFFF,0F0703

280 DATA F7E3Cl,80COEQFQ783ClCOF,0703070707
@703 ,COEJEPEDCO8,136,140, FFFFFFFFFFFF
FFFF,0003@0F1F3F3F7F7F

290 DATA QOCOF@F8FCFCFEFE,7F7F3F3F1F0Fd3,FE
FEFCFCF8F@C, 144,148, FFFFFFFFFFFFFFFF,
POB30F1F3F3F7F7F

309 DATA Q@COFIF8FCFCFEFE,7F7F3F3F1F0F@3,FE
FEFCFCF8F@C,152,155,183C7EFFFFFFFFFF,
FF7E3C1818181818

310 DATA 1818181818181818,10282848448484C3

320 FOR I=2 TO 16

330 CALL COLOR(I,1,1)

340 NEXT I

350 T=350

360 CALL SCREEN(8)

378 CALL SOUND(T,440,2,175,8)

380 PRINT TAB(15);:;")*":TAB(1@);"+, (((-."

399 CALL SOUND(T,440,1,131,9)

49@ PRINT TAB(11);"/@123":TAB(11);"4
{3 SPACES}56"::

410 CALL SOUND(T,449,2)

420 PRINT :::ss3::

430 CALL SOUND(T,440,2,220,5,175,8)

108

449 PRINT " ‘ab":" cde xy{7 SPACES}89 :"

450 CALL SOUND(T,494,2,175,8)

460 PRINT "fghi z{i{{6 SPACES};<==>":"jpqr
}~{6 SPACES}?@AB

47@ CALL SOUND(T,523,2)

480 PRINT "kqgs":" tuv":::

499 CALL sounD(T,392,2,131,8)

508 CALL COLOR(9,15,1)

51¢ CALL COLOR(1@,15,1)

529 CALL COLOR(11,6,1)

53¢ CALL SOUND(T,392,1,196,8)

540 CALL HCHAR(20,9,127)

55@ CALL HCHAR(20,19,128)

560 CALL SOUND(T,392,2)

57¢ CALL HCHAR(20,11,129)

58¢ CALL HCHAR(21,11,139)

59¢ CALL SOUND(T,392,0,233,5,165,8)

608 CALL COLOR(12,1d,1)

619 CALL COLOR(13,14,1)

620 CALL.SOUND(T,349,2,233,5,165,8)

630 CALL HCHAR(21,12,131)

64@ CALL SOUND(T,392,2)

650 CALL SOUND(2*T,449,2,175,8)

660 CALL COLOR(2,14,1)

678 CALL COLOR(3,14,1)

680 CALL HCHAR(10,14,136,3)

690 CALL VCHAR(9,15,136,3)

708 CALL SOUND(T,440,1)

719 CALL HCHAR(9,14,137)

720 CALL HCHAR(9,16,138)

739 CALL SOUND(T,440,2,220,8,175,9)

740 CALL HCHAR(11,14,139)

75¢ CALL SOUND(T,466,2,220,8,175,9)

768 CALL SOUND(T,523,2)

77¢ CALL HCHAR(11,16,140)

784 CALL SOUND(5%*T,392,2,131,8)

799 CALL COLOR(14,16,1)

800 CALL SOUND(T,4490,2)

818 CALL SOUND(T,466,2,117,8)

820 CALL SOUND(T,466,1,233,8)

830 CALL SOUND(T,466,0)

84¢ CALL COLOR(4,3,1)

109

850 CALL COLOR(5,3,1)

860 CALL SOUND(T,466,1,175,8,294,6)
870 CALL HCHAR(20,25,144,3)

880 caALL SounD(T,523,1,175,8,294,6)
890 CALL VCHAR(19,26,144,3)

909 CALL SounD(T,587,1,175,8,294,6)
91@ CALL HCHAR(19,25,145)

920 CALL SOUND(T*2,523,2,114,8)

93¢ CALL HCHAR(19,27,146)

940 CALL HCHAR(21,25,147)

950 CALL HCHAR(21,27,148)

969 CALL SOUND(T,449,2)

970 CALL SOUND(T,349,2,220,6,147,8)
98¢ CALL HCHAR(22,26,155)

99¢ CALL SOUND(T,392,2,220,6,147,8)
1000 CALL SOUND(T,440,2)

1010 CALL SOUND(2*T,262,2,233,6,165,8)
1020 CALL COLOR(15,12,1)

1930 CALL COLOR(16,11,1)

1040 CALL SOUND(T,262,1)

1050 CALL SOUND(T,262,2,233,6,165,8)
1960 CALL SOUND(T,294,2,233,6,165,8)
1078 CALL SOUND(T,339,2)

1080 CALL SOUND(6*T,349,1,220,8,131,9)
1090 CALL HCHAR(18,29,152)

110@ CALL HCHAR(19,29,153)

1118 CALL VCHAR(20,29,154,2)

1120 CALL VCHAR(22,29,155)

1130 GOTO 1130

1140 END

"“We Wish You a Merry Christmas’’ is an electronic Christmas
card — a computerized Christmas message with graphics and
music. First, the picture was drawn on 24-by-32 graph paper.
(See Figure 3-4.) The star and the edges of the Christmas tree
are redefined graphics characters. The border is made up of a
repeated graphics character which is red and green. At the end
of the song, red foreground and green background will
alternate with green foreground and red background.

To use larger letters for the word ““COMPUTE!,"”’
characters needed to be defined. To create the pieces of these

110

TR memT————— Chapter e]

large letters, the more detailed graph paper with squares
divided up into 8 by 8 grids can be used. The word
““COMPUTE!"" was traced from a magazine cover, then the
tracing was approximated with filled-in squares. (See Figure
3-5.)

Since it would take quite a while to define the necessary
twenty characters and place them graphically on the screen,
the characters were assigned to the first twenty lowercase
letters. These characters are defined in DATA statements and a
READ routine in lines 120 to 190 at the beginning of the
program.

The graphic letters are put on the screen very quickly with
a PRINT statement (line 210), first PRINTing ‘“abcdefghij,”’
then, directly under those characters, PRINTing
“’klmnopqrst.”” As music is played, “COMPUTE!"’ scrolls up
the screen as the program PRINTS blank lines below it.

All other graphics characters and colors are defined and
drawn on the screen between CALL SOUND statements. At
the end of the piece, the star, the lights on the tree, and the
border all blink as CALL COLOR statements and a GOTO
statement repeat the color definitions.

Program 3-9. “We Wish You A Merry Christmas”

1800 REM XMAS

110 CALL CLEAR

120 FOR C=97 TO 116

130 READ C$

140 CALL CHAR(C,C$)

150 NEXT C

160 DATA O@Q0@1F3F7FFOEQE,000001C3ET7EFEEQE, D
PPJFOFS8FCLEQEQE, 0000 FOFOF8F8FDFD, 3000
7B7BFBFBFBFB

170 DATA @@@QF1FOFDODIDFD,BWGACTC7C7C7C7C7,
@000 7F1F7FOEQEQE, 9000 DFDFDF1CLF1F, 000
@DCDCDC1CDCDC

180 DATA E@GE@F@7F3FlF,0EEEEFE7C301,8EJELEFC
F8F,EFEFEFE7E7E7, BBBBBB3B3B3RB,FO9F1818
1898, C7C7EFFFFE7C

190 DATA OEQEQEQEOEQOE,1F1Cl1ClF1FlF,DC1C@@DC
DCDC

200 T=500

111

T Chapter T o es o e

210 PRINT "abcdefghij":"klmnopqrst":s:s::
22@ CALL SOUND(T,3340,2)

239 PRINT :::

2489 CALL SOUND(T,440,1,277,7,1190,9)
250 PRINT ::::

260 CALL SOUND(T/2,440,1,277,7,165,9)
279 PRINT ::

280 CALL SOUND(T/2,494,1,277,7,165,9)
29@ PRINT ::

300 CALL SOUND(T/2,440,1,277,7,228,9)
318 PRINT :TAB(7);"MER";

320 CALL SOuND(T/2,415,1,277,7,229,9)
330 PRINT "RY ":

340 CALL SOUND(T,379,1,294,7,147,9)
358 PRINT "CHRIST";

360 CALL SoOunD(T,379,1,294,7,185,9)
378 PRINT "MAS":::

38¢ CALL SOUND(T,37@,1,294,7,220,9)
399 CALL CHAR(128,"FFCDB7DD9D63ADFF")
400 CALL SOUND(T,494,1,294,7,123,9)
410 CALL COLOR(13,9,3)

429 CALL SOUND(T/2,494,1,294,7,185,9)
430 CALL HCHAR(1,1,128,32)

449 CALL SounD(T/2,554,1,294,7,185,9)
45@ CALL VCHAR(2,1,128,23)

46@ CALL SOUND(T/2,494,1,294,7,247,9)
47¢ CALL VCHAR(2,32,128,23)

480 CALL SOUND(T/2,449@,1,294,7,247,9)
499 CALL HCHAR(24,2,128,30)

5¢@ CALL SOUND(T,415,1,339,7,165,9)
519 CALL CHAR(136,"@81818FF7C3C6683")
528 CALL COLOR(14,12,1)

530 CcALL SounD(T,3390,1,208,9)

540 CALL CHAR(48,"191@3838387C7CFE")
550 CALL SounD(T,330,1,165,9)

564 CALL COLOR(3,3,1)

570 CALL CHAR(49,"0@0103070F1F3FFF")
580 CALL SOUND(T,554,90,3390,6,110,9)
590 CALL COLOR(2,16,3)

608 CALL CHAR(50, "FFFFFFFFFFFFFFFF")
610 CALL SOUND(T/2,554,0,330,6,165,9)
620 CALL CHAR(51, "008S8QCOEQOFOFS8FCFF")

112

s ATERTE Ee T Chapter % e

630
640
650
660
670
680
690
700
710
720
7390
740
750
769
770
789
790
800
810
820
839
840
850
860
870
880
899
900
910
920
930
949
950
960
970
980
9290
100@
1010
1020
1939
1040

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

SounND(T/2,587,9,339,6,165,9)
CHAR(52, "O0F@F1F1F3F3F7FFF")
souND(T/2,554,0,3390,6,220,9)
CHAR(53, "FOFOF8F8FCFCFEFF")
SOUND(T/2,494,93,339,6,229,9)
CHAR(54, "FFFFFFFFFFFEF8C")
SOUND(T,440,0,294,6,147,8)
CHAR(55, "FFFFFFFFFF7F1F@3")
HCHAR(2,16,136)
SounND(T,3790,0,294,6,220,8)
HCHAR(3,16,48)
HCHAR(4,15,49)
HCHAR(4,16,42)
HCHAR(4,17,51)
SouND(T/2,330,1,220,6,139,9)
HCHAR(5,15,52)
HCHAR(5,16,59)
HCHAR(5,17,53)
SouND(T/2,330,1,224,6)
HCHAR(6,14,49)
HCHAR(6,15,42,3)
HCHAR(6,16,5@)
HCHAR(6,18,51)
SOuND(T,3790,0,294,6,147,8)
HCHAR(7,14,52)
HCHAR(7,15,59,3)
HCHAR(7,18,53)
HCHAR(8,13,49)
SOUND(T,494,0,294,6,185,8)
HCHAR(8,14,50,5)
HCHAR(8,19,51)
HCHAR(8,16,42)
SOuUND(T,415,1,3390,7,247,9)
HCHAR(9,13,52)
HCHAR(9,14,42,5)
HCHAR(9,15,59,3)
HCHAR(9,19,53)
SOUND(T*2,440,9,277,5,114,8)

CALL HCHAR(10,12,49)

CALL
CALL

CALL

HCHAR(10,13,50,7)
HCHAR(19,20,51)

HCHAR(11,12,52)

113

o Chapter L e

1050 CALL HCHAR(11,13,50,7)

10609 CALL HCHAR(11,20,53)

18070 CALL HCHAR(11,17,42)

1980 CALL HCHAR(12,11,49)

1096 CALL HCHAR(12,12,50,9)

1199 CALL HCHAR(12,21,51)

1118 CALL SOUND(T,339,2)

1120 CALL HCHAR(12,14,42)

1139 CALL HCHAR(13,11,52)

1140 CALL HCHAR(13,12,50,9)

1150 CALL HCHAR(13,21,53)

1160 CALL SOUND(T,440,2,277,8,110,10)
1170 CALL HCHAR(14,10,49)

1180 CALL HCHAR(14,11,50,11)

1199 CALL HCHAR(14,22,51)

1200 CALL HCHAR(13,12,42)

1210 CALL SOUND(T/2,4406,2,277,8,165,10)
122@¢ CALL HCHAR(15,10,52)

1230 CALL HCHAR(15,11,50,11)

124@ CALL HCHAR(15,22,53)

1250 CALL SOuUND(T/2,494,2,277,8,165,10)
1260 CALL HCHAR(16,9,49)

1270 CALL HCHAR(16,10,59,13)

1280 CALL HCHAR(16,23,51)

1290 CALL SOUND(T/2,449,2,277,8,220,10)
1300 CALL HCHAR(17,9,52)

1319 CALL HCHAR(17,190,50,13)

1320 CALL HCHAR(17,23,53)

1330 CALL SOUND(T/2,415,2,277,8,2208,19)
1340 CALL HCHAR(18,8,49)

1350 CALL HCHAR(18,9,54)

1360 CALL HCHAR(18,10,59,14)

1378 CALL SOUND(T,3790,2,294,8,147,10)
1380 CALL HCHAR(18,24,51)

1390 CALL HCHAR(18,11,54)

1400 CALL HCHAR(18,13,54)

1410 CALL HCHAR(18,15,54)

1420 CALL HCHAR(18,17,55)

1430 CALL SOuUND(T,374,2,294,8,185,10)
1440 CALL HCHAR(18,19,55)

145@ CALL HCHAR(18,21,55)

1460 CALL HCHAR(18,23,55)

114

S Y N e | Chapter 3 i e

1470 CALL COLOR(15,13,13)

1480 CALL SOUND(T,3790,2,294,8,220,10)
1490 CALL HCHAR(19,15,144,3)

1500 CALL HCHAR(20,15,144,3)

1516 CALL SOUND(T,494,1,294,7,123,9)
1520 CALL HCHAR(13,16,42)

1530 CALL HCHAR(13,19,42)

1540 CALL HCHAR(15,11,42)

1558 CALL HCHAR(15,13,42)

1560 CALL HCHAR(15,18,42)

1570 CALL SOUND(T/2,494,1,294,7,185,9)
1580 CALL HCHAR(15,20,42)

1594 CALL HCHAR(17,10,42)

1608 CALL SOunND(T/2,554,1,294,7,185,9)
1610 CALL HCHAR(17,13,42)

1620 CALL HCHAR(17,17,42)

1630 CALL HCHAR(17,20,42)

1640 CALL SOUND(T/2,494,1,294,7,247,9)
1650 CALL HCHAR(17,22,42)

1660 CALL HCHAR(16,15,42)

1678 CALL SOUND(T/2,440,1,294,7,247,9)
1680 CALL COLOR(14,11,1)

1690 CALL SOUND(T,415,1,339,7,165,9)
1700 CALL VCHAR(18,3@,82)

1710 CALL VCHAR(19,30,69,3)

172@ CALL VCHAR(20,30,71)

1730 CALL SOuND(T,330,2,208,6)

1740 CALL VCHAR(22,30,78)

1750 CALL VCHAR(23,39,65)

1768 CALL SOUND(T,3390,1,165,6)

1778 CALL SOUND(T,554,9,330,6,116,9)
17886 CALL COLOR(2,14,3)

1790 CALL COLOR(14,12,1)

1800 CALL SOUND(T/2,554,0,330,6,165,9)
181¢ CALL COLOR(2,11,3)

1820 CALL SOuND(T/2,587,9,330,6,165,9)
1830 CALL COLOR(14,16,1)

1840 CALL SOuUND(T/2,554,98,330,6,220,9)
185@ CALL COLOR(2,1@,3)

1860 CALL SOUND(T/2,494,0,330,6,220,3)
1878 CALL COLOR(14,12,1)

1880 CALL SOUND(T,440,9,294,6,147,9)

115

T e ee——— Chapter 7 e ——

1899 CALL COLOR(2,16,3)

1900 CALL COLOR(14,11,1)

19189 CALL SOUND(T,379,8,294,6,2293,9)
1920 CALL COLOR(2,12,3)

1930 CALL COLOR(14,16,1)

19409 CALL SOUND(T/2,3390,08,220,6,139,9)
1950 CALL COLOR(2,16,3)

1960 CALL SOUND(T/2,3390,90,220,6)
1970 CALL COLOR(14,12,1)

1980 CALL SOUND(T,379,9,294,6,147,9)
1990 CALL HCHAR(23,9,72)

20@0@ CALL HCHAR(23,10,65)

2010 CALL HCHAR(23,11,84,2)

2020 CALL SOUND(T,494,0,3790,6,123,9)
230 CALL HCHAR(23,13,89)

2040 CALL SOUND(T,415,0,294,6,165,9)
2050 CALL HCHAR(23,15,78)

206@ CALL HCHAR(23,16,69)

207@ CALL HCHAR(23,17,87)

2080 CALL SOUND(4*T,440,0,330,6,139,9)
2090 CALL HCHAR(23,19,89)

210¢ CALL HCHAR(23,20,69)

211@¢ CALL HCHAR(23,21,65)

2120 CALL HCHAR(23,22,82)

2130 CALL HCHAR(23,23,33)

2140 CALL COLOR(14,12,1)

2150 CALL COLOR(2,16,3)

2168 CALL COLOR(13,3,9)

2170 CALL COLOR(14,16,1)

2180 CALL COLOR(2,12,3)

2190 CALL COLOR(13,9,3)

2208 GOTO 2140

2210 END

116

Chapter 3

pJe) sewjspyD dJUoIIdIF “p-¢ 331

TE . VE OE BT . BT LT 9T . GZ : PZ ET TT: VT -OZ:6) 81 :L):91 Gi . ki
IR A TR 1T [

o Y T T
(=

ET (..
SYWLs 1dHD

nr”n—“——.O—
i i

(14
(X4
0T

61

CWOWZL

g OO OO O D

g

* 0 UNdWOD |

- o ™ - " o ~ - o

Zi v 0t 67 8 LI 87 8T ¥ BT T ¥

TE IC OC 6C BZ LL 9Z ST ¥C EZ ZL VT OC 6b B LI 9) Gk PI E

117

Chapter 3

pJe) seunsuy) Jo [re3nq ‘s-¢ 234

118

T = Chapter 3 e

Noises

You can quickly enliven your game or adventure programs
with some ‘“noises.”” The CALL SOUND statement isn’t
limited to music — it can produce any type of electronic sound
from your computer. Here are a few ideas. But you'll soon find
that it is more fun to experiment and create your own sounds.

Beeps

You can use the random function to create “‘beeps.’” You might
want to use random sounds while you are placing characters
randomly on the screen or as you are drawing lines for a maze.
The following program illustrates random sounds and was
originally written to simulate an old-fashioned computer with
blinking lights and sounds. Each tone has a duration of 100
milliseconds, and the tone may be of a frequency from 880 to
1379.

100 REM RANDOM TONES

110 CALL SOUND(100,500*RND+880,2)
120 GOTO 110

130 END

Sirens

Since you have all the frequencies from 110 to 44733 to

work with, you can try to duplicate any tone you have heard.
Here is an emergency siren:

100 REM EMERGENCY SIREN
110 CALL SOUND(500,563,0)
120 CALL SOUND(500,282,0)
130 GOTO 110

140 END

Busy Signal

You may use one, two, or three frequencies and volume in each
CALL SOUND statement: CALL SOUND (duration,f1,v1,£2,
v2,£3,v3). A very high frequency with a volume of 30 cannot be
heard and will create a gap in your noise or sound program:

100 REM BUSY SIGNAL
110 CALL SOUND(400,233,2,262,2)

119

120 CALL SOUND(10,9999,30)
130 GOTO 110
140 END

Interrupting a Sound

The first number in the list of parameters in the CALL SOUND
statement is the duration, the number of milliseconds you
would like your computer to make the sound. When the
computer comes to a CALL SOUND statement, it starts the
sound and goes on to execute more statements. The sound
continues until the duration time runs out; the next CALL
SOUND statement usually waits for the previous one to finish.
In the “’Emergency Siren”’ program above, the computer plays
a frequency of 563 for 500 milliseconds, then a frequency of 282
for 500 milliseconds, and then repeats until you CLEAR the
program.

Sometimes, though, you'll want to start a sound as soon as
the computer comes to a CALL SOUND statement, rather than
wait for the previous sound to finish. You can do this by using
a negative number for the duration. CALL SOUND(-500,282,0)
will start a sound, with a frequency of 282, as soon as the
computer comes to the statement, whether the previous sound
is finished or not. The duration will be 500 milliseconds unless
it is interrupted by another statement with a negative duration.

Using the negative duration and a FOR-NEXT loop can
create a variety of sounds. Here is an example of a FOR-NEXT
loop that varies the frequency from 600 to 800, then another
loop that varies the frequency from 800 back to 600 to produce a
different kind of siren:

106 REM SIREN

110 FOR N=608 TO 800 STEP 10
12¢ CALL SOUND(-200,N,0)

130 NEXT N

140 FOR N=808 TO 6068 STEP -10
150 CALL SOUND(-200,N,0)

160 NEXT N

1760 GOTO 110

180 END

120

B e o Chapter e e S ST

In loops like these, the size of the negative duration
number is not really critical because the statement will be
executed immediately and the previous sound has not had time
to finish. You do need to specify a number large enough to give
the computer time to execute the in-between statements
(otherwise there will be gaps). Here is another kind of siren:

100 REM ALERT SIREN

110 FOR M=440 TO 784 STEP 20
120 CALL SOUND(-99,M,0)

130 NEXT M

140 GOTO 110

150 END

Varying the Volume

You can get a different effect by using a variable for the volume
and changing it in a FOR-NEXT loop. Here is a doorbell sound:

100 REM DING-DONG

110 FOR V=0 TO 16 STEP 2

120 CALL SOUND(-100,659,V,784,V+5)
130 NEXT V

140 FOR V=0 TO 16 STEP 2

150 CALL SOUND(-100,523,V,659,V+5)
160 NEXT V

170 END

Making Noises with Negative Frequencies

Besides musical tones, the TI computer has a noise generator.
In the CALL SOUND statement, specify a negative number
from one through eight for the frequency:

CALL SOUND(1000,-8,0)
If you'd like to hear how these noises sound, run this program:

100 REM NOISES

110 FOR I=-1 TO -8 STEP -1
120 CALL CLEAR

139 CALL SOUND(1000,I,0)
140 CALL SCREEN(-I+2)

150 PRINT "NOISE NUMBER ";I

121

EErme s ——— Chapter e

160 CALL SOUND(1,I,30)
170 NEXT I

180 GOTO 1190

190 END

Notice that in line 110 I used the STEP command to make the
FOR-NEXT loop count downward by ones instead of the normal
upward count, decrementing instead of incrementing.

Crashes and Crunches

For one object hitting another, you may want a rather short
duration:

CALL SOUND(200,-6,0)
For a bomb sound, you may want a longer duration.

100 REM BOMB

110 FOR S=659 to 220 STEP -15
120 CALL SOUND(-200,S,3)

130 NEXT S

140 CALL SOUND(-1000,-6,0)
150 END

Try varying the volume in a FOR-NEXT loop to get different
effects.

100 REM MOTOR 1

110 FOR I=10 TO 1 STEP -1
120 CALL SOUND(-99,-6,I)
130 NEXT I

140 GOoTO 110

150 END

The frequency can be varied in a loop.

100 REM MOTOR 2

110 FOR F=-5 TO -7 STEP -1
120 CALL SOUND(-99,F,0)
130 NEXT F

140 GOTO 110

150 END

122

--------|Chapuﬂ'3|--------

You can also combine a noise with a regular ““musical’’
frequency.

100 REM MOTOR 3

110 FOR I=10 TO 1 STEP -1

120 CALL SOUND(-99,-6,I,110,I)
130 NEXT I

140 FOR I=1 TO 10

160 NEXT I

170 GOTO 110

180 END

It does not matter what order the noises and frequencies are
listed in, but the volume always goes with the frequency that it
follows:

100 REM OUTER SPACE

110 FOR I=1 TO 30

120 CALL SOUND(-99,1800,2,-5,8)
130 CALL SOUND(-99,1500,2,-6,8)
140 NEXT I

150 END

Combine a noise with more than one frequency:

100 REM EXPLOSION

110 FOR L=0 TO 16

120 CALL SOUND(-99,-7,L,120,L,131,L)
130 NEXT L

140 END

In one CALL SOUND statement you may specify as many
as three frequencies, and one noise and a volume for each
frequency or noise. With eight noises, 31 volume levels, and
over 44,000 frequencies — and you can choose up to three at a
time — you could spend quite a bit of time experimenting and
trying all the combinations!

A Game to Get You Home

Here is a simple game that illustrates noises and may give you
an idea of how to use them in your own games. First, 60 trees

123

are placed randomly on the screen with a random tone for each
tree (lines 400-430). Next, 30 white traps are placed randomly
on the screen with Noise -1 (lines 440-470). You are placed in
the upper left corner of the screen, and you need to use the
arrow keys to go to the opposite corner of the screen to your
home base. Lines 550 and 950 have Noises -6 and -5 to create
noises for each movement of your ship. There is a different
noise when you hit a tree (-7) than when you hit a trap (-8).

How "Find Home"’ Works

Lines

100-180 Clear screen and print title and instructions.

190-280 Define graphics characters and colors.

290-300 Define random number functions for
coordinates.

310-330 Wait for the player to read the instructions and
press a key.

340-380 Clear the screen; draw the border.

390-430 Randomly place 60 trees.

440-470 Randomly place 30 traps.

480-490 Draw home base.

500-540 Initialize variables for the position of the ship.

550-960 Move the ship, depending on which arrow key

was pressed. GCHAR determines what
character is in the next square — 120 is the red
home base, 128 is a trap, 32 is a blank space, 104
is atree, and 112 is a border.

970-1010 Procedure if a white trap is hit.

1020-1090 Procedure if the ship reaches home base.

1100-1110 Clear screen and end.

Program 3-10. Find Home

10@ CALL CLEAR

110 CALL CHAR(64,"3C4299A1A1994237")
120 PRINT "{3 SPACES}** FIND HOME **"
130 PRINT :::"YOU ARE IN A FOREST."
14¢ PRINT :"USE THE ARROW KEYS TO"

150 PRINT :"GO AS FAST AS YOU CAN"
160 PRINT :"TO YOUR RED HOME BASE."

170 PRINT ::"BEWARE OF WHITE TRAPS!"

124

e ————— [ADTET [rece————om—

18 PRINT ::

199 CALL CHAR(96,"815A3C66663C5A81")
20@ CALL COLOR(9,7,1)

21@ CALL CHAR(104,"1901038107Cl@FE1")
220 CALL COLOR(14,3,1)

23@ CALL COLOR(11,5,5)

24@ CALL COLOR(12,9,9)

25¢ CALL CHAR(128,"1@38387C7CFEFEFF")
260 CALL COLOR(13,16,1)

279 CALL CHAR(136,"FFS81BDASASBD81FF")
280 CALL COLOR(14,7,16)

29@ DEF R22=INT(RND*22)+2

300 DEF R3@=INT(RND*30)+2

319 PRINT :::"PRESS ANY KEY TO START."
320 CALL KEY(9,K,S)

330 IF S<1 THEN 320

340 CALL CLEAR

350 CALL HCHAR(1,1,112,32)

360 CALL VCHAR(2,32,112,23)

370 CALL HCHAR(24,1,112,31)

380 CALL VCHAR(2,1,112,22)

390 RANDOMIZE

40@ FOR I=1 TO 60

419 CALL SOUND(-5@,INT(RND*500)+800,4)
42@ CALL HCHAR(R22,R30,104)

430 NEXT I

440 FOR I=1 TO 30

45@ CALL SOUND(-50,-1,2)

460 CALL HCHAR(R22,R30,128)

47@ NEXT I

480 CALL VCHAR(21,31,120,3)

490 CALL VCHAR(21,32,120,3)

500 X=2

510 Y=2

520 T=0

530 DX=0

540 DY=0

55¢ CALL SOUND(-200,-6,1)

560 CALL HCHAR(X,Y,96)

578 CALL KEY(l.K.SS

580 T=T+1

590 IF S=@ THEN 950

125

e e] Chapter 7 coesssemsm—meem———o

60@ IF K>5 THEN 950

610 ON K+1 GOTO 830,950,860,890,950,920

620 IF X+DX<24 THEN 65@

630 DX=0

640 GOTO 670 -
6580 IF X+DX>1 THEN 670

660 DX=0 -
670 IF Y+DY<32 THEN 70@

680 DY=0

699 GOTO 720

7¢@ IF Y+DY>1 THEN 720 ~
714 DY=0

728 CALL GCHAR(X+DX,Y+DY,CC)
730 IF CC=12@0 THEN 1020

749 IF CC=128 THEN 974

75@ IF CC=32 THEN 790

76@ CALL SOUND(100,-7,9)

778 CALL HCHAR(X,Y,32)

788 GOTO 550

79@¢ CALL HCHAR(X,Y,32)

800 X=X+DX

819 Y=Y+DY

820 GOTO 550

830 DX=1

84@ DY=0

850 GOTO 620

86% DY=-1

870 DX=0

880 GOTO 620

89@ DY=1

903 DX=0

919 GOTO 620

920 DX=-1

930 DY=0

940 GOTO 620

95@ CALL SOUND(=-200,-5,1)
96@3 GOTO 620 ~
97@ CALL SOUND(50¢,-8,0,131,0)

980 CALL HCHAR(X,Y,32)

99¢ CALL HCHAR(X+DX,Y+DY,136)

100@ PRINT "SORRY, GOT CAUGHT!" ~
1010 GOTO 1060

126

ErsrEnEEs e —— Chapter D O <SR R

1920 CALL HCHAR(X,Y,32)

1030 CALL HCHAR(X+DX,Y+DY,96)

1040 CALL SOUND(1090@,-1,0)

1058 PRINT "CONGRATULATIONS! TIME=";T
1060 PRINT :"TRY AGAIN? (Y/N)":

18070 CALL KEY(@,K,S)

1080 IF K=89 THEN 340

1090 IF K<>78 THEN 1070

1108 CALL CLEAR

1118 END

Speech

To hear speech on the TI-99/4A, you will need a module
that has speech built in and the TI Speech Synthesizer, a small
box that attaches to the right side of the computer.

You also need a module to program your own speech. At
this writing, there are three modules available. Speech Editor
was the first module designed to be used with the Speech
Synthesizer. Speech Editor has about 400 letters, numbers,
words, and phrases that can be used with the CALL SAY and
CALL SPGET commands.

TI Extended BASIC is another module that allows the use of
speech in your own programming. It has the same vocabulary
as Speech Editor and is designed so you can use speech at the
same time you use the features of Extended BASIC.

The most versatile command module for speech
capabilities is Terminal Emulator II. This module is also used,
with an RS-232 Interface and a telephone modem, to make
your computer act as a terminal to another computer or a large
data base. The advantage of Terminal Emulator Il is that there is
unlimited speech — you are not restricted to certain words. You
can use allophone numbers to create speech, or you may print
words for the computer to speak phonetically. The module
comes with an instruction manual.

Programs in this part of the book require Terminal Emulator
IT and the TI Speech Synthesizer. To program with speech,
turn the monitor or television on, turn the computer on, and
then plug in the Terminal Emulator Il command module. Press 1
for TIBASIC.

127

jaesnat S Chapter 3 T S T e (==

OPEN and PRINT

To use speech in a program, you will need to OPEN the speech
device. You may use any number. The statement is:

110 OPEN #1:"“SPEECH’’,OUTPUT

Once speech has been OPENed, whenever you want the
computer to speak simply use the command PRINT #1.
Remember to CLOSE speech when you're through with it.

Here is a little program for you to try. You may type in any
word or phrase; then the computer will speak it. Notice that
the computer pronounces phonetically, according to a few
standard rules, and our spoken language does not always
follow those rules.

100 CALL CLEAR

110 OPEN #1:"SPEECH",OUTPUT

120 PRINT :::"TYPE A WORD OR PHRASE."::
130 INPUT AS

140 PRINT #1:A$

150 GOTO 120

160 END

To illustrate that the computer can say anything, try this
language demonstration (Program 3-11). Notice that in lines
360-420 the words are spelled phonetically. Your programs
involving speech will take some experimentation for the words
to sound right.

Program 3-11. Language Demonstration

109 REM{3 SPACES}LANGUAGES DEMO
110 OPEN #1:"SPEECH",OUTPUT

120 CALL CLEAR

139 CALL CHAR(128, "@80818FF7E346681")
140 CALL COLOR(13,16,6)

150 PRINT TAB(5);"LANGUAGES DEMO"
160 PRINT :::TAB(5);"CHOOSE"

17@ PRINT :TAB(7);"1 ENGLISH"

180 PRINT :TAB(7);"2 FRENCH"

199 PRINT :TAB(7);"3 SPANISH"

20@ PRINT :TAB(7);"4 GERMAN"

21¢ PRINT :TAB(7);"5 JAPANESE"

128

e —— I A0TOT e ————

22@ PRINT :TAB(7):"6 END PROGRAM"::::
230 CALL HCHAR(2,2,128,30)

249 CALL VCHAR(3,2,128,22)

250 CALL VCHAR(3,31,128,22)

268 CALL HCHAR(24,2,128,39)

270 CALL SOUND(150,1397,4)

280 CALL KEY(@,K,S)

290 IF (K<49)+(K>54)THEN 280

300 CALL HCHAR(2*(K-48)+8,7,62)

314 ON K-48 GOSUB 340,360@,380,400,420,440
320 CALL VCHAR(19,7,32,10)

330 GoTO 270

340 PRINT #1:""1 2 3 4 5 6 7 8 9 TEN"
35@ RETURN

360 PRINT #1:""UN DU TWA KATR SAYNK CEES SE

T WEET NUF DEES"
378 RETURN

380 PRINT #1:""OONO DOSE TRACE QUATRO SEENQ

O SASE SEE ETA O CHO NUEVA DEE S"

390 RETURN

40@ PRINT #1:""EYENS TSWIE DRY FEAR FOONF
ECHS ZEEBEN AUKT NOYN TSAYN"

410 RETURN

na

S

420 PRINT #1:""EECHEE NEE SAWN SHE GO HEECH

EE HAWCHEE HRO KU KOO JOO"
430 RETURN
449 CALL CLEAR
45@ END

Speech Separators
Speech separator symbols may be used to create pauses and
some inflections in the voice. You may use a space between
words or letters for a slight pause. Other separating symbols
are the comma, the semicolon, the colon, the period, the
exclamation point, and the question mark.

Listen to the differences in the following program.

100 REM SEPARATORS

110 CALL CLEAR

120 OPEN #1:"SPEECH",QUTPUT

130 PRINT "SPEECH WITH SEPARATORS"::

129

140 FOR I=1 TO 7
150 READ AS

160 PRINT ::AS
170 PRINT #1:AS
180 NEXT I

190 DATA HELLO LEWIS THIS IS A TEST
200 DATA “HELLO LEWIS, THIS IS
210 DATA "HELLO LEWIS; THIS IS

A

A
220 DATA "HELLO LEWIS: THIS IS A TEST:"
230 DATA "HELLO LEWIS., THIS IS A TEST,"
240 DATA "HELLO LEWIS! THIS IS A TEST!"
250 DATA "HELLO LEWIS? THIS IS A TEST?"
260 END
Inflections

You may also change inflection with a stress mark. The caret
(~) is used to indicate a primary stress point, and you may use
only one such mark per line. The underline symbol (__) is used
to indicate a secondary stress point. The greater-than sign (>)
is used to shift stress points within a word.

This demonstration program shows what happens when
you put the primary stress point in different places in a
sentence.

1080 REM STRESS POINT

119 CALL CLEAR

120 OPEN #1:"SPEECH",OUTPUT

130 PRINT "SPEECH WITH PRIMARY STRESS"
140 FOR I=1 TO 5

150 READ AS$

160 PRINT ::AS$

170 PRINT #1:AS

180 NEXT I

190 DATA "HEAR THIS STRESS POINT"
209 DATA ""HEAR THIS STRESS POINT"
219 DATA "HEAR "THIS STRESS POINT"
220 DATA "HEAR THIS "“STRESS POINT"
230 DATA "HEAR THIS STRESS “POINT"
240 END

130

e e T ———— Chapter % v s,

Two more parameters which you may specify to vary the
voice are the pitch period and the slope level. The form is the
string “’//xx yyy’’ where xx is the pitch period and yyy is the
slope level indication. The space between xx and yyy is
required.

The pitch should be a number from 0 through 63, and the
slope level should be a number from 0 through 255. The
manual recommends that the best results occur when the slope
is 32 times 10% of the pitch. If you do not specify pitch and
slope, the default values are 43 and 128. With a little
experimentation, you can make the computer voice do just
what you want it to do.

To give you an idea of how the pitch and slope level
numbers change the sound of the voice, here are some
demonstration programs. The first program varies the pitch
from 0 to 63 and sets the slope level at the recommended ratio.

100 REM PITCH & SLOPE 1

110 CALL CLEAR

120 OPEN #1:"SPEECH",OUTPUT
130 FOR P=0 TO 63

140 S=INT(3.2*P+.5)

150 B$="//"&STRS$(P)&" "&STR$(S)
160 PRINT BS$

170 PRINT #1:BS

180 PRINT #1:"NOW HEAR THIS."
190 NEXT P

200 END

The second demonstration program varies the pitch and
the slope. You will notice that in some combinations of pitch
and slope the speech is garbled.

100 REM PITCH & SLOPE 2

110 CALL CLEAR

120 OPEN #1:"SPEECH",OUTPUT
130 FOR S=0 TO 255

140 FOR P=0 TO 63

150 B$="//"&STRS(P)&" "&STRS(S)
160 PRINT BS$

170 PRINT #1:BS$

131

180 PRINT #1:"NOW HEAR THIS."
190 NEXT P

200 NEXT S

210 END

The third demonstration program varies the slope for
different pitches. Since there are 255 variations for the slope
level, I increment the slope level by 20 instead of 1. If you want
to get to the next pitch level without going through all the slope
levels, press any key.

100 REM PITCH & SLOPE 3

110 CALL CLEAR

120 OPEN #1:"SPEECH",OUTPUT
130 FOR P=0 TO 63

140 FOR S=0 TO 255 STEP 20
150 B$="//"&STRS$(P)&"™ "&STRS$(S)
160 PRINT BS

170 PRINT #1:BS

180 PRINT #1:"NOW HEAR THIS."
190 CALL KEY(0,K,ST)

200 IF ST<>0 THEN 220

210 NEXT S

220 NEXT P

230 END

The fourth demonstration program on pitch and slope
allows you to enter values for the pitch and the slope. The
computer will then say the phrase ‘“Hear this test’” using the
values you have entered. To stop the program, press CLEAR.

100 REM PITCH & SLOPE 4

110 CALL CLEAR

120 OPEN #1:"SPEECH",OUTPUT

130 PRINT "SPEECH WITH PITCH AND SLOPE"

140 PRINT :"PITCH MAY BE FROM 0 TO 63."

150 PRINT :"SLOPE MAY BE FROM 0 TO 255."
160 PRINT :"BEST RATIO: SLOPE=3.2*PITCH":::

170 INPUT "PITCH = ":P
180 IF (P>=0)+(P<=63)=-2 THEN 210
190 PRINT :"SORRY. O0<P<63"::

132

T Chapter e e

200 GOTO 170

210 INPUT "SLOPE = ":S

220 IF (S>=0)+(S<=255)=-2 THEN 250
230 PRINT :"SORRY. 0<S<255"::
240 GOTO 210

250 B$="//"&STRS$(P)&" "&STRS$(S)
260 PRINT ::BS$::::

270 PRINT #1:BS$

280 PRINT #1:"HEAR THIS TEST."
290 GOTO 170

300 END

You can probably think of all sorts of uses for speech in
your programs — everything from comments in games to
teaching foreign languages.

Spelling Practice

It seems that one of the standards in education is weekly
spelling tests. This program lets you set up the week’s words
and save the program on cassette. Any time during the week,
students can load the tape and practice at their own pace.

The words are chosen in a random order from the original
list. A word is spoken. If you want to hear the word again,
press ENTER.

When you're ready, type in the word. If it is correct, a star
appears and the word won’t appear again. If the spelling is
wrong, you get one more chance to try. If it is spelled
incorrectly the second time, the correct word appears and you
are given time to review it. That word will then be used again,
later in the list.

A sample list of words is given in this program. To use your
own word list, start at line 810 DATA. First type the word
correctly spelled, then a comma, then type the word spelled
phonetically. Continue through the spelling list, separating
each pair of items with a comma. Be sure the last two entries
are @, @ to signify the end of the data. If you have more than 20
words, change the DIM statement in line 110.

Be sure to experiment to make sure the words sound right
as spoken by the computer. You may want to add your own
graphics to make this program more interesting for your
student.

133

TS T E———— Chapter B e

Program 3-12. Spelling Practice

100
110
120
130
140
1508
160

170

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

360

370
380
390
400
410
420

134

REM SPELLING

DIM WS (208),s$(20)

OPEN #1:"SPEECH",OUTPUT

CALL CLEAR

CALL CHAR(64,"3C4299A1A199423C")

CALL COLOR(2,14,16)

PRINT “{3 SPACES}*********************"
:"{3 SPACES}*";TAB(24);"*":"{3 SPACES}*
SPELLING PRACTICE %"

PRINT "{3 SPACES}*";TAB(24);"*":"
{3 SPACES} ***********ﬂ*********'lg
1

CALL CHAR(128,"010101010@3@03FF3F")

CALL CHAR(129, "000080COCIEFIFFFC")

CALL CHAR(130,"@FQ@70FQIF1lE1C302")

CALL CHAR(131,"FOFQF878381COC04")

CALL COLOR(13,12,1)

I=1

RESTORE

READ W$(1),s8$(1)

IF W$(1I)="@" THEN 310

CALL COLOR(2,16,14)

I=I+1

CALL COLOR(2,14,16)

GOTO 250

N=I-1

CALL CLEAR

CALL COLOR(2,2,1)

CALL SCREEN(12)

PRINT "PRACTICE YOUR SPELLINGI!":::"YOU

WILL HEAR A WORD."::"TYPE THE WORD"::
"THEN PRESS <ENTER>."

PRINT :::"IF YOU WANT TO HEAR THE"::"WO
RD AGAIN, JUST"::"PRESS <ENTER>."

PRINT ::::"PRESS ANY KEY TO START."::

CALL KEY(9,K,S)

IF S=0 THEN 380

CALL CLEAR

CALL SCREEN(8)

FOR I=1 TO N

s Chapter 3 TR e T IR |

430
440
450
460
479
480
490

500

51@

520
530

540
550
560
570
580
590
600
610
620
630
640
650
660
670
680

690
700
710
720
730
749
750
760
779
780
790
800
810

T=0

RANDOMI ZE
R=INT(N*RND)+1

IF WS(R)="" THEN 450
CALL CLEAR

PRINT #1:S$(R)

CALL SOUND(156,1397,2)
INPUT X$

IF X$="" THEN 470

IF X$=WS$ (R)THEN 640
CALL SOUND(120,339,2)

CALL SOUND(109,262,2)

T=T+1

IF T=2 THEN 600

PRINT #1:""TRY AGAIN."

PRINT #1:""SPELL",S$(R)

GOTO 490

PRINT ::" ";W$S(R)

PRINT ::"PRESS ANY KEY TO CONTINUE."
CALL KEY(%,K,S)

IF S=1 THEN 430 ELSE 620

CALL SOUND(10@,262,2)

CALL SOUND(109,339,2)

CALL SOUND(10@,392,2)

CALL SOUND(30@,523,2)

PRINT TAB(15);CHR$(128);CHR$(129):TAB(1
5);CHRS$ (130);CHR$ (131)22

w$ (R)=Il "

NEXT I

CALL CLEAR

PRINT "WANT TO TRY AGAIN? (Y/N)"::
CALL KEY(@,K,S)

IF K=78 THEN 780

IF K<>89 THEN 730

CALL CLEAR

GOTO 234

CALL CLEAR

CLOSE #1

STOP

DATA ALWAYS, "ALWAYS.,DADDY, “DADDY.,OFF,
“OFF.,SISTER, "SISTER.,LETTER, "LETTER.
, START, “START.,HAPPY, "HAPPY.

135

T re————) Chapter G eer——c——————

820 DATA RING, "RING.,WASH, "WASH.,FALL, “FALL
. ,SLEEP, "SLEEP.,ONCE, "ONCE., SADLY, "SA
DLY.,DRESS, "DRESS.

830 DATA SET, "SET.,ROUND, "ROUND.,@,@

84@ END

Using the Speech Synthesizer with Non-readers

“Colors”’ is a program designed to teach a two-year-old the
names of the colors. It could also be used to teach beginning
readers how to read the color names in lowercase letters.

In a random order, a color name appears on the screen.
After a short delay, the color itself appears and the computer
says the color name. If you would like a longer delay (for
example, for someone practicing reading), put a larger number
in place of 300 in line 540.

After the color appears, the user may press ENTER for
another color or E to end the program.

How "Colors” Works

Lines

110-120 Clear screen, select cyan as screen color.

130-170 DATA to define characters for lowercase letters.

180-200 Print title screen.

210-280 Define blocks of solid colors for the first two
character numbers in each of sets 13 through 16.

290-380 Draw color bars on title screen.

390 Print instructions.

400 OPEN the speech device.

410 Randomize choices.

420-470 Define characters for letters; branch.

480-510 Choose a color.

520 Read character number; three lines to PRINT in
order to spell the color name in big lowercase
letters; and the phonetic pronunciation.

530 Print the color name.

540-550 Delay before drawing color.

560-580 Draw block of color.

590 Say color name.

600-620 Wait for user to press a key. If E is pressed, the

program ends; if ENTER is pressed, the program
branches back to choose another color; any other
key is ignored.

136

630-860 RESTORE the appropriate DATA for the color
chosen.

870-890 Clear screen, CLOSE speech device, and end
program.

Program 3-13. Colors

100
110
120
130

140

150

160

170

18@
190
200
21@
220
230
240
250
260
270
280
290
300
310
320
339
340

REM{4 SPACES}COLORS

CALL CLEAR

CALL SCREEN(8)

DATA ©,3D4381818181433D,BCC281818181C2B
C,3C4280808080423C,2000010101010101,3
C4281FF8080423C,18242220202020F8

DATA @101010131221C,000080808080808,000
20008 ,0808080808887,8890A0CIAI8I8884,
?808080808080808

DATA 3C84020202020202,BCC2818181818181,
3C4281818181423C,80808080808,01010101
@101 ,BCC281808080808

DATA 3C42403C0202423C,00000808080387F3d8,
818181818181433D,4141222214140808,049
488885050202 ,8244281028448282

DATA 10102020404 ,7F0204081020407F,20202
0202020202

PRINT TAB(10);"C O L O R S":::
CALL CHAR(64,"3C4299A1A199423C
PRINT

FOR C=128 TO 152 STEP 8

CALL CHAR(C,"@")

CALL CHAR(C+1, "FFFFFFFFFFFFFFFF")
NEXT C

CALL COLOR{13,7,12)

CALL COLOR(14,6,4)

CALL COLOR(15,14,16)

CALL COLOR(16,2,15)

C=128

FOR D=5 TO 23 STEP 6

CALL VCHAR(8,D,C,6)

CALL VCHAR(8,D+1,C,6)

CALL VCHAR(8,D+2,C,6)

CALL VCHAR(8,D+3,C+1,6)

*)

137

e e] Chapter 3 eemw—er————re

350
360
370
380
390

400
410
420
430
440
450
460
479
480

490
500

51@

520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730

138

CALL VCHAR(8,D+4,C+1,6)

CALL VCHAR(8,D+5,C+1,6)

C=C+8

NEXT D

PRINT :::"AFTER EACH SCREEN, "::"PRESS <
ENTER> TO CONTINUE"::"PRESS <E> TO EN
D PROGRAM.";

OPEN #1:"SPEECH",OUTPUT

RANDOMIZE

FOR C=96 TO 123

READ C$

CALL CHAR(C,C$)

CALL SOUND(-15@,INT(RND*1000)+209,4)
NEXT C

GOTO 600

RANDOMI ZE

C=INT(RND*8)+1

CALL CLEAR

ON C GOSUB 6390,660,690,729,759,780,810,
840

READ D,AS$,B$,C$,D$

PRINT TAB(9);AS$:TAB(9);BS$:TAB(9);C$
FOR T=1 TO 300

NEXT T

FOR I=8 TO 13

CALL HCHAR(I,19,D,13)

NEXT I

PRINT #1:D$

CALL KEY(@,K,S)

IF K=69 THEN 870

IF K=13 THEN 490 ELSE 600

RESTORE 640

DATA 129,%''**d,'r‘e%a,, "RED

RETURN

RESTORE 678

DATA 128, '**1%1,v'e‘'1'1'0"vw,y, "YELLO
RETURN

RESTORE 700

DATA 136,,a‘'r‘e‘e'n, g, "GREEN

RETURN

RESTORE 73@

DATA 137,h%1,b"1%u‘e,, “BLUE

74@ RETURN

75@ RESTORE 76@

760 DATA 144, *‘h'i‘t,vw'n'1l'1l'e,, "WHITE

778 RETURN

780 RESTORE 790

?90 DATA 145'\\\\\\\\l'bﬁu\r\b\l\e'p\\\\\p'
“PURPL

800 RETURN

810 RESTORE 820

820 DATA 153,h1'****h,b'1%a‘c’k,, "BLACK

830 RETURN

840 RESTORE 850

850 DATA 152,,a'r‘a'v,g

868 RETURN

87@ CALL CLEAR

880 CLOSE #1

89@ END

LT I I Y

vy, "GRAY

Teaching a Foreign Language

Here is a program to teach ten basic German words. The same
logic may be used to teach different words or even a different
language.

As pictures are drawn, the German word is spoken. After
the ten words are presented, there is a quiz in which a German
word is spoken and a question mark appears on one of the
pictures.

If the question mark is on the correct picture, press ENTER.

If you want to move the question mark, press the space bar
and the question mark will move to a different picture.

The words are chosen in a random order. You must get the
picture correct to continue the quiz. If you get the picture
correct with the first response, that word will not reappear;
however, if the word has been missed at least once, the word
will reappear before the end of the quiz.

Program 3-14. German

1180 REM GERMAN

120 OPEN #1:"SPEECH",OUTPUT
130 CALL CLEAR

14@ PRINT TAB(8);"G E R M A N"

139

e e—— (30T e r———

150

160
170
180
190
200

210
220
230
240
259
260
270
280
290
300
310
320
330
340
350
360
370
380

390
400
410

420

430

440

140

PRINT :::"FIRST YOU WILL BE TOLD"::"TEN
GERMAN WORDS."

PRINT ::"NEXT THERE WILL BE A QUIZ."
PRINT :"LISTEN TO THE GERMAN WORD."
PRINT :"PRESS <ENTER> IF '?2' IS"

PRINT :"ON THE RIGHT PICTURE."

PRINT :"PRESS THE SPACE BAR TO MOVE"::"
THE QUESTION MARK."

PRINT ::"PRESS ANY KEY TO START.";

CALL KEY(9,K,S)

IF S<1 THEN 220

CALL CLEAR

FOR I=2 TO 10

READ S$(1),x(1),¥(1)

T$(1)=s$(1)

J=8%(I+3)

CALL CHAR(J, "FFFFFFFFFFFFFFFF")

READ N

FOR C=J+1 TO J+N

READ C$

CALL CHAR(C,C$)

NEXT C

READ F

CALL COLOR(I,F,8)

NEXT I

DATA _DOS "HOUSE,21,10,2,0193070F1F3F7F
FF,80COEQFOF8FCFEFF,9, D "TEUR,20,14,
@,4, DOS "FENSTER,18,18,0,14

DATA _DOS “DOGHC,11,13,2,0103070F1F3F7F
FF,80COEQGFIF8FCFEFF,11

DATA D “SHORNSTINE,12,17,1,FF7F3F1F0FJ
70301, 2

DATA DARE "ROZN,23,26,1,8088A8ECEEFEFE
FF,3

DATA D “VO KA,4,6,4,03070F@F1F7FFFFF,7
F3F@701, FFFFFFFFFF7F3F1F, FFFCFS8F8FOJEQD
cac,16

DATA D “Z0 NA,3,30,4,7F7F7F7F3F3F3FLlF,
1FOFOFQ7070301,7F3F1F@3701 , FFFFFFFFFF7
F@F,12

DATA _D “ROUHC,7,17,2,1018183838383C3C,
3C3C3E7E7E7E7E7E, 15

T S AR S, Chapter QEEESERSIE NS i

450
460
470
480
490
500
510
520
530
540
550
560
57@
580
590
600
610
620
630
640
650
660
670
680
690
700
710
729
730
7490
750
760
779
780
790
800
810
820
830
849
850

CALL CHAR(112,"FFFEFCFSFOE@CO8")
CALL CHAR(113,"FF7F3F1F@F@74301")
CALL COLOR(11,11,9)
CALL COLOR(6,2,11)
S$(1)="_DARE "HIMMEL
T$(1)=s$(1)

X(1)=9

Y(1)=22

CALL COLOR(1,1,8)
PRINT #1:S$(1)

GOSUB 1590

R=16

FOR C=8 TO 13

CALL HCHAR(R,C,41)
CALL VCHAR(R+1,C,40,C)
R=R-1

NEXT C

R=11

FOR C=14 TO 19

CALL HCHAR(R,C,42)
CALL VCHAR(R+1,C,40,24-R)
R=R+1

NEXT C

PRINT #1:5$(2)

GOSUB 1590

CALL VCHAR(18,13,48,7)
CALL VCHAR(18,14,48,7)
CALL VCHAR(18,15,48,7)
PRINT #1:S$(3)

GOSUB 1590

CALL VCHAR(18,10,56,2)
CALL VCHAR(18,11,56,2)
CALL VCHAR(18,17,56,2)
CALL VCHAR(18,18,56,2)
PRINT #1:S$(4)

GOSUB 1590

FOR C=7 TO 12

CALL HCHAR(R,C,65)
CALL HCHAR(R,C+1,112)
R=R-1

NEXT C

141

FSEnTE T T Chapter % eemseam—————

860
870
880
890
209
910
920
930
949
950
960
970
280
990
1000
1010
1020

1830
1040

1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
11709
1180
119@
1200
1210
1220
1230
12409
1250
1260
1270

142

CALL HCHAR(11,13,65)
CALL HCHAR(11,14,66)
R=12
FOR C=14 TO 19
CALL HCHAR(R,C,113)
CALL HCHAR(R,C+1,66)
R=R+1
NEXT C
PRINT #1:S$(5)
GOSUB 1590
CALL VCHAR(11,17,72,3)
CALL VCHAR(14,17,73)
PRINT #1:S8$(6)
GOSUB 1590
CALL HCHAR(23,1,81,32)
CALL HCHAR(24,1,80,32)
PRINT #1:S$(7)

GOSUB 1590
CALL HCHAR(4,3,89)

CALL HCHAR(4,4,88,6)
CALL HCHAR(4,1@,92)
CALL HCHAR(5,3,90)
CALL HCHAR(5,4,91)
CALL HCHAR(5,5,88,4)
CALL HCHAR(5,9,92)
PRINT #1:5$(8)

GOSUB 1599

CALL HCHAR(1,29,96,4)
CALL HCHAR(2,29,97)
CALL HCHAR(2,39,96,3)
CALL HCHAR(3,29,98)
CALL HCHAR(3,30,96,3)
CALL HCHAR(4,30,99)
CALL HCHAR(4,31,100)
CALL HCHAR(4,32,96)
PRINT #1:5$(9)

GOSUB 1590

CALL VCHAR(7,17,106,4)
CALL VCHAR(6,17,105)
PRINT #1:5S$(19)

GOSUB 1590
FOR I=1 TO 10

e Chapter e e e ——

1280 T=0

1290 RANDOMIZE

1300 R=INT(RND*10+1)

1319 IF S$(R)="" THEN 1300
1320 FOR J=1 TO 1@

1330 PRINT #1:S$(R)

1340 CALL GCHAR(X(J),¥Y(J),C)
1350 CALL KEY(9,K,S)

1360 CALL HCHAR(X(J),Y(J),63)
1378 CALL HCHAR(X(J),Y(J),C)
1380 IF K=13 THEN 1420
1390 IF K<>32 THEN 1350
1400 NEXT J

1410 GOTO 1320

1420 IF J=R THEN 1480

1430 CALL SOUND(15@,330,2)
1440 CALL SOUND(150,262,2)
1450 T=1

1460 CALL SOUND(1,9999,39)
1470 GOTO 1330

1480 CALL SOUND(150,262,2)
1490 CALL SOUND(15@,330,2)
15¢0@ CALL SOUND(15@,392,2)
1519 CALL SOUND(39@,523,2)
1520 IF T=@ THEN 1550

1530 I=I-1

1540 GOTO 1560

1550 s$(r)=""

1560 CALL SOUND(1,9999,39)
1570 NEXT I

1580 GOTO 1620

15980 FOR D=1 TO 500

1600 NEXT D

1613 RETURN

1620 CALL CLEAR

1630 FOR I=1 TO 10

1640 CALL COLOR(I,2,1)
1650 NEXT I

1660 CALL CHAREGS. "093844447(1444444"}
1679 CALL CHAR(72,"004444447C444444"

1680 CALL CHAR(73,"0038101010101938")
169¢ PRINT "DER HIMMEL"

143

o —— [ADTET T ee———

170@ PRINT #1:7$(1)

1719 PRINT :"DAS HAUS"
1720 PRINT #1:T$(2)

1730 CALL CHAR(144,"00000000000044")
174@ PRINT :"DIE TUR"
1750 CALL HCHAR(22,8,144)
176@ PRINT #1:T$(3)

1770 PRINT :"DAS FENSTER"
1784 PRINT #1:T$(4)

179@ PRINT :"DAS DACH"
180@ PRINT #1:TS$(5)

1810 PRINT :"DIE SCHORNSTEIN"
1820 PRINT #1:T$(6)

183@ PRINT :"DER RASEN"
1840 PRINT #1:T$(7)

1850 PRINT :"DIE WOLKE"
1860 PRINT #1:T$(8)

187@ PRINT :"DIE SONNE"
1880 PRINT #1:T$(9)

1890 PRINT :"DIE RAUCH"
1900 PRINT #1:T$(10)

1910 CLOSE #1

1928 END

144

Chapter [« PSS ——

;

D000V 000000O00O0VDO0O0O0OO0

Ble = RS ST S Chapter 4

Going
Somewhere

Changing the Sequence

As you enter a program, each line is numbered. As the
program is run, the computer executes each statement in
numerical order, unless there is a command telling the
computer to branch — to go to some other line number. I
explained some of these commands earlier, as they were
needed.

Unconditional Branching

GOTO is a command that tells the computer to go immediately
to a different line rather than to the next one in numerical
order. You may GOTO a previous line number, a later line
number, or the same line number. If you have a statement that
commands the computer to GOTO its own line number, the
computer stays at that line until you press CLEAR to interrupt
the program.

Figure 4-1. Unconditional Branches

100 REM GOTO
—— 110 GOTO 1000
—> 120 PRINT "HELLO"

[> 500 GOTO 500

>1000 PRINT "PROGRAM BRANCHED TO 1000"
—— 1010 GOTO 120
1020 END

147

T EE——————— Chapter 4 e

Conditional Branches

You may have a conditional branch by using an IF-THEN
statement. The command IF is followed by an expression, like
A =B, or N> =A/55. If the expression is true, the computer
branches to the line number that follows the command THEN.
If the condition is false, the computer goes on to execute the
very next line in order.

100 REM IF-THEN

110 CALL CLEAR

120 I=1

130 PRINT I

140 I=I+1

150 IF I<11 THEN 130
160 END

In this simple program, the numbers are printed. The
variable I is incremented by one each time. If I is less than 11,
the program branches to line 130, where the value is printed.
As soon as [is equal to or greater than 11, the program goes to
line 160 and ends.

TI BASIC also allows the use of ELSE. Change line 150
above to

150 IF 1< 11 THEN 130 ELSE 120

This statement says IF the variable I has a value less than the
number 11, THEN branch to line 130, otherwise (or ELSE)
branch to line 120. Your program should now be:

100 REM IF-THEN-ELSE

110 CALL CLEAR

120 I=1

130 PRINT I

140 I-I+1

150 IF I<11 THEN 130 ELSE 120
160 END

RUN the program and see how it has changed from the first

example. Notice that there is now no way for the computer to
reach line 160.

148

Chapter 4 m———

Remember, there are almost always several ways a
program can be written to produce the same result. Line 150
could be written:

150 IF I>10 THEN 120 ELSE 130

Make this change, then RUN the program. The result should
be the same as in the previous example.

Finite Loops

Another way to change the order in which the computer
executes statements is to use a FOR-NEXT loop. When the
computer reaches NEXT, there is a conditional branch, either
back to FOR or on to the next line. Here is a program to print
the numbers from 1 to 10.

100 REM FOR-NEXT
110 CALL CLEAR
120 FORI=1 TO 10
130 PRINT I

140 NEXT I

150 END

RUN the program. The results are the same as those in the
IF-THEN example.

In this program, first the screen is cleared. Next the
computer lets the variable I start at the value of 1. Line 130
prints I. Line 140 tells the computer to increment I and go to the
statement just after the FOR statement. This is looping. I is
assigned the value of 2; the computer prints 2, increments I,
and so forth — until the limit of 10 is reached. Unlike a GOTO
loop, a FOR-NEXT loop has an ending built in.

The last time through the loop, the value for I'is 10. Then,
when the computer hits the NEXT statement, it increments I,
which makes I equal to 11. The computer then tests to see if [is
within the limit of 10. Since I has exceeded the limit, the
computer goes to the next statement.

If you would like this program to be like the [F-THEN-ELSE
example, add line 145:

145 GOTO 120

The computer will go through the FOR-NEXT loop printing the
numbers. After the loop is finished, the computer hits the
statement GOTO 120, branches to line 120, and starts the

149

FOR-NEXT loop again. This GOTO loop will go on endlessly,
unless you intervene to stop it.

Controlling the Counter

In a regular FOR-NEXT loop, the counter variable is
incremented by 1 each time the loop is performed. However,
you can specify the step size if you do not want the increment
to be 1. Let’s go back to the original FOR-NEXT example
program and change line 120:

120 FORI=1TO 10 STEP 2
Your program should now look like this:

100 REM FOR-NEXT

110 CALL CLEAR

120 FOR I=1 TO 10 STEP 2
130 PRINT I

140 NEXT I

150 END

RUN the program. You will see from the PRINTed values of |
that I starts with the value of 1, then increments by twos until it
is past the limit of 10.

Your step size can be a negative number:

100 REM FOR-NEXT-STEP

110 CALL CLEAR

120 FOR I=10 TO 1 STEP -1
130 PRINT I

140 NEXT I

150 END

Multiple Branches

A variation of the IF-THEN statement is ON-GOTO, which
allows more possible branches from the same statement.
However, the value of the evaluated expression must be more
tightly controlled.

108 REM ON-GOTO

110 CALL CLEAR

120 PRINT :"PRESS 1, 2, 3, OR 4"
130 CALL KEY(9,K,S)

150

T ETT——— Chapter4 e

140 IF K<49 THEN 130
150 IF K>52 THEN 130
160 A=K-48

176 ON A GOTO 1000 ,2000,3000,4000
1060 PRINT "1"

1019 GOTO 120

2000 PRINT "2"

2010 GOTO 120

3008 PRINT "3"

3010 GOTO 120

4000 PRINT "4"

4010 GOTO 120

4020 END

The screen is cleared, and the message 'PRESS 1, 2, 3, OR 4"’
is printed. CALL KEY scans which key you press.

If K, the value in ASCII code of the key pressed, is less than
49 or greater than 52, this means 1, 2, 3, or 4 has not been
pressed, and the program branches back to the CALL KEY
statement.

When one of the correct keys has been pressed, the value
of A is set equal to K-48, so A will be a number from 1 to 4. In
line 170, the computer branches depending on the value of A. If
A is equal to 1, the program goes to the first number, line 1000.
If A is equal to 2, the program goes to the second number, line
2000, etc.

You do have to be careful when using ON-GOTO. The
value of A must not be less than 1, or greater than the number
of line numbers you have listed, or your program will crash. In
the above program, the values for K are checked so the value of
A will alwaysbe 1, 2, 3, or 4.

You may use an expression rather than a variable in the
ON-GOTO statement. This program could be changed by
deleting line 160 and changing line 170 to

170 ON K-48 GOTO 1000,2000,3000,4000

Again, just make sure, before using the ON-GOTO statement,
that the expression cannot turn out to be less than 1 or greater
than the number of line numbers listed.

Logical OR and AND

In this sample program, lines 140 and 150 may be combined
into one IF statement. Delete line 150 and change line 140 to

151

Chapter 4

140 IF (K <49) + (K>52) THEN 130

The plus sign (+) is a ““logical OR,"" which indicates that if
either K< 49 or K>52 is true, then the program must branch to
line 130.

The IF-THEN statement may be written other ways to get
the same result. Line 140 could also be written:

140 IF (K >48)*(K < 53) THEN 170 ELSE 130

The asterisk (*) is the ““logical AND"’ sign. If both K> 48 and
K <53 are true, then the program must branch to line 170;
otherwise it goes back to line 130.

True Plus True Is Minus Two
Another way line 140 could be written is:

140 IF (K>48)+ (K <53)< >-2 THEN 130

This statement depends on the fact that true and false have a
numerical value in BASIC. If a true expression is evaluated,
you will get a value of -1. If the expression is false, the value is
zero.

In this case, if K>48 is true and K <53 is true, the sum of
the two expressions added together will be -2. If at least one of
the statements is false, then the value is not -2, and you branch
back to line 130.

This should give you an idea of how logical OR and AND
work.

Here is an example of logical OR: IF (K=50) + (X =55)
THEN 500. The IF command tests to see whether the
expression is false — whether it returns a value of zero. In this
case, if either K=50 or X =55 is true, then IF will evaluate a
result of either (-1)+0 or 0+ (-1). The value is not zero, the
expression is not false, and so the program will branch. If both
are true, then IF evaluates a result of (-1) + (-1), which is -2;
this is still not zero, and so is not false; again the program will
branch.

With logical AND, however, the computer multiplies the
values, so that if only one of the expressions is true, IF will end
up evaluating either 0*(-1) or (-1)*0. Either way, the result is 0,
or false, and the program will not branch. Only if both
expressions are true will the result be non-zero: (-1)*(-1)=1. So
only if both expressions are true will the program branch.

152

s e evenE e Chapter] e ee———ra

Branching in Action

This program is called ‘“"Homework Helper: Factors’’ because it
is designed to help a student quickly check the answers to an
assignment with problems involving factoring. The student
will learn most by doing the class assignment in the usual way,
writing the problem down on paper and working it out step by
step. ““Homework Helper’’ is then used only to check the
answers.

The program has four sections.

All factors. The student enters a number, and all possible
factors or divisors of that number are listed from largest to
smallest. The list of factors includes the number itself and the
number 1. To return to the menu screen, the student enters
zero.

Prime factors. Finding the prime factors is also called
complete factorization or the prime factor tree. The student enters a
number, and the prime factors of that number are listed from
smallest to largest. The student’s answer does not have to list
the factors in exact order to be correct. If only the prime factors
are desired, the student would still choose this option of the
program, and the answer would consist of the list of factors not
including duplicated numbers.

For example, all factors of 12 would be 12, 6, 4, 3, 2, and 1;
prime factors of 12 would be 2, 2, and 3. The prime factors,
without duplication, would be 2 and 3.

Greatest common factor. The student enters two numbers.
The program lists the greatest common factor, which is the
largest number that can be divided evenly into both the input
numbers. If both numbers are prime or if they have no
common factors, then the greatest common factor is 1.

Least common multiple. The student first presses 0, 2, or
3. A zero will return the program to the menu screen. A two or
three indicates that the student will input either two or three
numbers. (This is adequate for fifth- or sixth-grade
mathematics.) The program will list the least common multiple,
or the lowest number that all the given numbers may be
divided into without remainders. For example, the least
common multiple of 4 and 12 is 12. The least common multiple
of 5,7, and 2 is 70.

153

e T——————) Chapter /] e rm—

How "Homework Helper: Factors” Works

Lines
130-210
220-250
260-300
310-420
430-470
480-550
560-660
670-760
770-790
800-860
870-970
980-1080
1090-1110
1120-1220
1230-1400
1410-1560
1570-1590
1600-1700
1710-1750
1760-1850
1860-2000
2010
2020-2040
2050-2140
2150-2270

2280-2310

154

Clear screen and print title.

FOR-NEXT loop blinks colors 20 times.

Define graphics characters and colors.

Print menu screen of options.

Receive student’s option, clear screen, and
branch appropriately.

PRINT option ““Finding all the Factors”” and
draw graphics.

Receive student’s given number and test that it
is larger than 1 and less than 1000.

Print all factors of the number.

Wait for student to press a key to continue.
Print option “‘Finding the Prime Factors’’ and
draw a sample factor tree.

Receive student’s given number and test that it
is larger than 1 and less than 10000.

Print prime factors of given number.

Wait for student to press a key to continue.
PRINT option “*Greatest Common Factor”” and
draw graphics.

Receive student’s given numbers and test that
they are larger than 1 and less than 10000.
Calculate and print greatest common factor.
Wait for student to press a key to continue.
PRINT option “Least Common Multiple”” and
draw graphics.

Receive student’s option for number of given
numbers.

Receive student’s given numbers and test that
they are larger than 1 and less than 1000.
Calculate least common multiple for two
numbers.

Print least common multiple.

Wait for student to press a key to continue.
For three numbers, arrange numbers from
smallest to largest.

Calculate least common multiple for three
numbers.

Subroutine for warning message for large
numbers.

Chapter A — g v

Program 4-1. Homework Helper: Factors

156 REM hhkhkhkhhhkikihkih

119 REM * FACTORS *

120 REM khkkhkkhkkkkkk

130 CALL CLEAR

140 CALL CHAR(64, "3C4299A1A1994237")
158 PRINT TAB(7);"H O M E WO R K"
160 PRINT ::TAB(2);"H EL P E R"

17¢ CALL COLOR(2,9,16)

180 PRINT :3:::sTAB(Q); " *hkdkiikikiikn
190 PRINT TAB(9);"* FACTORS *"

20@ PRINT TAB(Q);"*%kkkkkidkikk!

210 PRINT :ssssz:z2:

22@ FOR I=1 TO 20

230 CALL COLOR(2,16,9)

240 CALL COLOR(2,9,16)

250 NEXT I

260 CALL CHAR(60,"0102040810@20408")
270 CALL CHAR(62,"8040201008043201")
280 CALL CHAR(96, "FFFFFFFFFFFFFFFF")
290 CALL CHAR(97,"@")

308 CALL COLOR(9,5,9)

310 CALL CLEAR

320 CALL COLOR(2,16,9)

330 PRINT "CHOOSE:"

340 PRINT ::"1 ALL FACTORS"

35@ PRINT ::"2 PRIME FACTORS"

360 PRINT ::"3 GREATEST COMMON FACTOR"
370 PRINT ::"4 LEAST COMMON MULTIPLE"

380 PRINT ::"5 END PROGRAM"::::

390 CALL HCHAR(1,1,42,32)

409 CALL VCHAR(2,32,42,22)

410 CALL VCHAR(2,1,42,22)

420 CALL HCHAR(24,1,42,32)

439 CALL KEY(9,K,S)

440 IF (K<49)+(K>53)THEN 430

450 CALL CLEAR

460 CALL COLOR(2,2,1)

473 ON K-48 GOTO 480,800,1120,1600,2310
480 PRINT :::" FINDING ALL THE FACTORS":::

$122zz2

e T v Chapter 11 v s AT R <2

490
500
510
520
530
540
550
560
570
580
590
600

610
620
630
640
650
660
670

680
690
700
710
720
730
740
750
760
770
780
790
800

810
820

830
840

850

156

CALL VCHAR(17,9,96,5)

CALL VCHAR(17,10,96,5)

CALL VCHAR(17,11,96,5)

CALL HCHAR(19,14,61)

CALL VCHAR(17,17,96,5)

CALL HCHAR(19,20,42)

CALL HCHAR(19,23,96,3)

PRINT ::"ENTER '@' TO STOP"::
INPUT "WHAT IS THE NUMBER? ":N
IF N=0 THEN 310

IF N>1 THEN 620

PRINT :"PLEASE ENTER A NUMBER":"LARGER
THAN 1."::

GOTO 570

IF N<10@0@ THEN 670

GOSUB 2280

CALL KEY(@,K,S)

IF K=78 THEN 480

IF K<>89 THEN 640

PRINT ::"ALL THE FACTORS OF";N;"ARE:"::
N;

L2=INT(N/2+1)

FOR TRY=2 TO L2

IF N/TRY<>INT(N/TRY)THEN 750
L2=N/TRY

PRINT L2;

IF L2=1 THEN 770

IF L2=2 THEN 760

NEXT TRY

PRINT " 1"

PRINT ::"PRESS ANY KEY TO CONTINUE."
CALL KEY(9d,K,S)

IF S<1 THEN 780 ELSE 480

PRINT :::"FINDING THE PRIME FACTORS":::

:

CALL HCHAR£22,14,96.4

CALL HCHAR(23,14,96,4

PRINT TAB(13);"<>":TAB(12);"< >":TAB(1

1);"<{4 SPACES}>"

PRINT TARBR(10);:"<>{5 SPACES}>":TAB(9);"<
>{5 SPACES}>"

PRINT TAB(8);:"<{3 SPACES}<>{4 SPACES}<>

T — Chapter [errer——e o e

“:TAB(7);"<{3 SPACES}< > < >"

860 PRINT TAB(7);CHR$(96)&"{3 SPACES}"&CHRS
(96)&" "&CHRS$(96)&" "&CHRS$(96)&" "&C
HRS(96):3::

870 PRINT ::"ENTER '@' TO STOP."::

880 INPUT "WHAT IS THE NUMBER? ":N

890 IF N=@ THEN 310

9¢9¢ IF N>1 THEN 930

914 PRINT :"PLEASE ENTER A NUMBER":"LARGER
THAN 1."::

920 GOTO 889

930 IF N<10@@0 THEN 980

940 GOSUB 2289

95@ CALL KEY(9,K,S)

968 IF K=78 THEN 800

978 IF K<>89 THEN 950

98¢ PRINT ::"THE PRIME FACTORS OF";N;"ARE:"

99¢ L2=INT(N/2)

1998 FOR TRY=2 TO L2

1010 IF N/TRY<>INT(N/TRY)THEN 1060
1020 N=N/TRY

1830 L2=N

1048 PRINT TRY;

1350 GOTO 1000

1068 NEXT TRY

187¢ IF N=1 THEN 1090

1884 PRINT N

109¢ PRINT ::"PRESS ANY KEY TO CONTINUE."
1100 CALL KEY(9,K,S)

1110 IF S<1 THEN 110@ ELSE 800

1120 PRINT ::::" GREATEST COMMON FACTOR"
1130 PRINT :" OF TWO NUMBERS"::::::::
1140 CALL VCHAR(18,7,96,3)

1150 CALL VCHAR(18,8,96,3)

1164 CALL VCHAR(18,9,97,3)

117¢ CALL HCHAR(18,13,96,3)

1180 CALL HCHAR(19,13,97,3)

1199 CALL HCHAR(20,13,96,3)

1209 CALL HCHAR(21,13,96,3)

1214 CALL HCHAR(19,18,46,3)

1220 CALL VCHAR(18,23,97,3)

157

e ST TR TE—— Chapter b rrm———— r—————————e

123@ PRINT :"ENTER '@' TO STOP.":::

1240 INPUT "FIRST NUMBER = ":A

1250 IF A=@ THEN 310

1260 IF A>1 THEN 1290

127@ PRINT :"SORRY, PLEASE KNTER NUMBERS":"
LARGER THAN 1."::

1280 GOTO 1240

1290 IF A<10000 THEN 1330

130@ PRINT :"SORRY,":"MUST BE LESS THAN 100
@3.": "TRY AGAIN."::

1310 GOTO 1240

1320 PRINT

1330 INPUT "SECOND NUMBER = ":B

1349 IF B=0 THEN 310

1350 IF B>1 THEN 1380

1360 PRINT :"SORRY, PLEASE ENTER A NUMBERLA
RGER THAN 1."::

1370 GOTO 1330

1380 IF B<1@@@0 THEN 1410

1390 PRINT :"SORRY,":"MUST BE LESS THAN 100
@@ .": "TRY AGAIN."::

1400 GOTO 1330

1410 PRINT ::"GREATEST COMMON FACTOR IS"::

1420 IF A=B THEN 1550

1430 IF A<B THEN 1470

144@ D=A

1450 A=B

1460 B=D

1470 FOR TRY=1] TO A

1480 1IF (A/TRY)<>INT(A/TRY)THEN 1530

1490 L2=A/TRY

1500 IF B/L2<>INT(B/L2)THEN 1530

1510 GCF=L2

1520 GOTO 1560

1530 NEXT TRY

1540 GCF=1

1550 GCF=A

1560 PRINT GCF

1570 PRINT ::"PRESS ANY KEY TO CONTINUE."

1580 CALL KEY(@,K,S)

1590 IF S<1 THEN 1580 ELSE 1120

158

e TTRe—T—— Chapter 4 creoreTr——————————

1600 PRINT :::"{3 SPACES}LEAST COMMON MULTI

SPACES}OF 2 OR 3 NUMBERS":::

o
e
=1
B ee

1610 CALL VCHAR(18,7,96,3)

1620 CALL VCHAR(18,8,96,3)

1630 CALL VCHAR(18,11,96,4)

1640 CALL VCHAR(18,12,96,4)

1650 CALL VCHAR(18,13,96,4)

1660 CALL HCHAR(19,16,46,3)

1670 CALL HCHAR(18,21,96,6)

1680 CALL HCHAR(19,21,96,6)

1690 CALL HCHAR(20,21,96,6)

1700 CALL HCHAR(21,21,96,6)

1719 PRINT "HOW MANY NUMBERS ARE GIVEN--":"
PRESS @, 2, OR 3.":1::

1728 CALL KEY(9,K,S)

1730 IF K=48 THEN 310

1740 IF (K<50)+(K>51)THEN 1729

1750 CALL HCHAR(21,22,K)

1768 FOR I=1 TO K-48

1778 PRINT "NUMBER";I;": ";

17804 INPUT M(I)

1799 IF M(I)>1 THEN 1820

180@ PRINT :"SORRY, NUMBER MUST BE":"GREATE
R THAN 1.":"TRY AGAIN."::

1818 GOTO 1784@

1820 IF M(I)<1000 THEN 1858

1830 PRINT :"SORRY, NUMBER MUST BE":"LESS T
HAN 190¢. TRY AGAIN."::

1840 GOTO 1780

1850 NEXT I

1860 I=K-48

1870 IF I=3 THEN 2050

1880 IF M(1)<>M(2)THEN 1910

1890 LcM=M(1)

1909 GOTO 2010

1910 IF M(1)<M(2)THEN 1950

1920 D=M(1)

1930 M(1)=M(2)

1940 M(2)=D

1950 FOR J=1 TO M(1)

159

1960

1970
1980
1990
2000
2010
2020

2030
2040
2050

2060
2078
2080
209@
2100
2110
2120
2130
2140
2150
2160
2179

2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280

2290
2300
2310

160

IF J*M(2)/M(1)=INT(J*M(2)/M(1))THEN 20
29

NEXT J

LCM=M(1)*M(2)

GOTO 2010

LCM=J*M(2)

PRINT :"LEAST COMMON MULTIPLE IS"::LCM
PRINT ::"PRESS ANY KEY TO CONTINUE."
CALL KEY(9,K,S)

IF S<1 THEN 2030 ELSE 1600

IF (M(1)=M(2))+(M(2)=M(3))=-2 THEN 189
@

SW=0

FOR J=1 TO 2

IF M(J)<=M(J+1)THEN 2130

D=M(J)

M(J)=M(J+1)

M(J+1)=D

SW=1

NEXT J

IF SW=1 THEN 2069

FOR J=1 TO M(2)

TRY=J*M(3)

IF (TRY/M(1)=INT(TRY/M(1)))+(TRY/M(2)=
INT(TRY/M(2)))==-2 THEN 2260

NEXT J

LCM1=M(2)*M(3)

FOR J=1 TO M(1)

TRY=J*LCM1

IF TRY/M(1)=INT(TRY/M(1))THEN 22680
NEXT J

LCM=LCM1*M(1)

GOTO 2010

LCM=TRY

GOTO 2010

PRINT :"ARE YOU SURE?":"IT TAKES LONGE
R TO DO":"LARGE NUMBERS."

PRINT :"IF YOU STILL WANT THIS":"NUMBE
R PRESS 'Y'":"OR PRESS 'N' FOR NO."
RETURN

END

Subroutines

A subroutine and the GOSUB command are used when a
process is performed several times. Rather than enter identical
lines of code several places in the program, you may put the
process in a subroutine, and then use GOSUB to perform the
routine each time you want it.

GOSUB is similar to GOTO. It is followed by a line
number, and when the program comes to the GOSUB
statement it will branch to the line number, just as it does with
GOTO. However, with GOSUB the computer will now
remember where it branched from. When it comes to the
command RETURN, it will branch back to the first line after the
GOSUB statement. GOSUB works like a boomerang — it goes
where you want it to, but it always comes back.

Be careful to make sure that every GOSUB is matched with
a RETURN — and that your program never runs into a
RETURN without having first executed the corresponding
GOSUB. Whenever the computer encounters a RETURN
statement, it branches back to the last GOSUB it executed,
whether that was the GOSUB you had in mind or not. The
advantage of this is that you can have many different GOSUBs
branching to the same subroutine. As long as the subroutine
ends with RETURN, the computer will always go back where it
came from.

A GOSUB Demonstration

The following sample program illustrates the use of
subroutines. Lines 410 to 460 are a subroutine to play a little
music. Everywhere in the program that you see the statement
GOSUB 410, the music will be played. Lines 340-400 are a
subroutine to draw a yellow circle starting in row X and
columnY.

Lines 130 to 170 define graphics characters for the circle,
and line 180 makes the characters yellow. Lines 190-220 draw a
red box. Lines 230-250 draw a yellow wheel at row 21 and
column 8. The subroutine is called by line 250.

Line 260 changes the column coordinate to 21, and GOSUB
340 in line 270 draws the yellow wheel on the same row, but in
a different column. Lines 290-300 set different coordinates, and
GOSUB 340 in line 310 draws the yellow circle for the sun
higher in the picture. Notice that even though the same

161

T re— Chapter 4 i rm————————

subroutine draws the yellow wheel every time, by changing
the variables I control where the subroutine puts the wheel each
time.

Line 330 branches to line 330 to hold the picture on the
screen. Press CLEAR to stop the program.

Program 4-2. GOSUB Demonstration

108 REM GOSUB

116 CALL CLEAR

120 GOSUB 410

1380 CALL CHAR(96, "FFFFFFFFFFFFFFFF")
140 CALL CHAR(97,"@@@30F1F3F3F7F7F")
150 CALL CHAR(98, "@@COFIFS8FCFCFEFE")
160 CALL CHAR(99,"7F7F3F3F1lFJF@3")
178 CALL CHAR(10@, "FEFEFCFCF8S8F@C")
180 CALL COLOR(9,12,1)

199 CALL COLOR(14,9,9)

20@ CALL HCHAR(18,8,104,16)

210 CALL HCHAR(19,8,104,16)

22@ CALL HCHAR(20,8,104,16)

230 X=21

240 Y=8

250 GOSUB 340

260 Y=21

27@ GOSUB 340

283 GOSUB 410

290 X=4

300 Y=27

310 GOSUB 349

320 GOSUB 410

330 GOTO 330

340 CALL HCHAR(X,Y,97)

350 CALL VCHAR(X,Y+1,96,3)

360 CALL HCHAR(X,Y+2,98)

370 CALL HCHAR(X+1,Y,96,3)

380 CALL HCHAR(X+2,Y,99)

390 CALL HCHAR(X+2,Y+2,100)

408 RETURN

410 CALL SOUND(150,262,2)

420 CALL SOUND(150,3390,2)

43¢ CALL SOUND(159,392,2)

162

T T e Chapter 4 emmemm———— o

449 CALL SOUND(15@,339,2)
45@ CALL SOUND(15@,262,2)
460 RETURN

47@ END

The subroutines may be placed anywhere in the program —
just make sure the computer can get to the subroutine only
from GOSUB statements. Running into an unexpected
RETURN can lead to unpredictable branching or a program
crash.

You can avoid this problem by putting a GOTO statement
just before the subroutine that will force the program to branch
around the subroutine. Or put all your subroutines at the end
of the program, right after a STOP statement. Some BASICs
will execute programs faster if the subroutines are at the
beginning of the program; however, in numerous stopwatch
tests of the TI, I haven’t noticed a difference dependent on
placement of subroutines.

Conditional GOSUBs

The ON-GOSUB statement works just like the ON-GOTO
statement, except that the computer will come back when it
reaches RETURN.

100 REM ON-GOSUB

110 CALL CLEAR

120 PRINT "CHOOSE:"

130 PRINT :"1 GAME 1"

140 PRINT :"2 GAME 2"

150 PRINT :"3 GAME 3"

160 PRINT :"4 END PROGRAM"

170 CALL KEY (0,K,S)

180 IF (R<49)+(K>52)THEN 170

190 CALL CLEAR

200 ON K-48 GOsuB 1000,2000,3000,4000
210 PRINT ::"PRESS ANY KEY"

220 CALL KEY(0,K,S)

230 IF S=1 THEN 110 ELSE 220

240 STOP

1000 PRINT :::"YOU CHOSE GAME 1"
1010 RETURN

2000 PRINT :::"YOU CHOSE GAME 2"

163

2010 RETURN

3000 PRINT :::"YOU CHOSE GAME 3"
3010 RETURN

4000 END

A Game with GOSUB

This program illustrates the ON-GOSUB statement. Five dice
are drawn. For each die, the number of dots (D) is chosen
randomly, from one to six. Depending on D, the computer
draws the correct number of dots on the screen by going to the
correct subroutine to draw the dots.

Program 4-3. Dice Throw

1080 REM DICE

110 REM BY REGENA

120 CALL CLEAR

138 PRINT "SAMPLE DICE THROW"::::::::2::3::3:
140 CALL CHAR(96, "@900@183C3C18")

150 CALL COLOR(9,7,6)

168 CALL CHAR(104,"0000000000070404")
170 CALL CHAR(105, "00000003000FF")

180 CALL CHAR(106, "0000000000ED202")
199 CALL CHAR(107,"202020202020202")
200 CALL CHAR(1@8, "2020E")

210 CALL CHAR(109, "0@@OFF")

220 CALL CHAR(11@,"9404087")

230 CALL CHAR(111,"0404040404040404")
249 CALL COLOR(19,2,6)

25@ CALL COLOR(16,6,6)

260 R=12

273 FOR C=2 TO 3@ STEP 6

280 RANDOMIZE

290 FRE=INT(11@@*RND)+440

300 CALL SOUND(300,FRE,2)

310 CALL HCHAR(R,C,104)

320 CALL HCHAR(R,C+1,105,3)

330 CALL HCHAR(R,C+4,106)

340 CALL VCHAR(R+1,C+4,107,3)

350 CALL VCHAR(R+4,C+4,108)

360 CALL HCHAR(R+4,C+1,109,3)

370 CALL HCHAR(R+4,C,110)

164

e e | [ATTET e ——

380 CALL VCHAR(R+1,C,111,3)
390 FOR I=R+l1 TO R+3

409 CALL HCHAR(I,C+1,157,3)
410 NEXT I

42@ NEXT C

430 REM PRINT DOTS

4409 FOR N=1 TO 5

450 RANDOMIZE

460 D=INT(6*RND+1)

470 J=2+6%*(N-1)

480 ON D GOSUB 579¢,600,640,690,750,790
4903 NEXT N

5¢0@ PRINT "TRY AGAIN? (Y/N)"
5189 CALL KEY(@,K,S)

520 IF K=78 THEN 858

530 IF K<>89 THEN 510

540 CALL CLEAR

550 GOTO 270

560 REM ONE

57@ CALL HCHAR(R+2,J+2,96)
580 RETURN

599 REM TWO

608 CALL HCHAR(R+1,J+1,96
61@ CALL HCHAR(R+3,J+3,96
620 RETURN

630 REM THREE

648 FOR I=1 TO 3

650 CALL HCHAR(R+I,J+I,96)
668 NEXT I

678 RETURN

680 REM FOUR

69¢ CALL HCHAR(R+1,J+1,96)
70@ CALL HCHAR(R+1,J+3,96)
71¢ CALL HCHAR(R+3,J+1,96)
720 CALL HCHAR(R+3,J+3,96)
739 RETURN

740 REM FIVE

750 GOSUB 690

76@ CALL HCHAR(R+2,J+2,96)
778 RETURN

780 REM SIX

790 FOR I=1 TO 3

165

T e N S L T Y Chapter 4 T R PSS |]

800 FOR JJ=1 TO 3 STEP 2
810 CALL HCHAR(R+I,J+JJ,96)
820 NEXT JJ

830 NEXT I

840 RETURN

850 CALL CLEAR

860 END

Nested Subroutines

Subroutines can be nested. That is, a second GOSUB can be
executed before RETURNing from the first. Remember that the
computer always RETURNS to the most recent GOSUB.

Program 4-4 consists of four main sections:

Plotting points. A rectangular coordinate system is
printed with a random point. The point is defined by its x-
coordinate and y-coordinate. If you press Y for another
example, a different point may be chosen with the coordinates
labeled. If you press N, the screen is cleared. This time a point
is shown, and you must press the numbers for the coordinates.
If your answer is incorrect, you will be shown the correct
answer and given another problem. If your answer is correct,
you have the option to choose another problem of the same
type or to continue the program.

The next part gives the coordinates, and you must locate
the point. You move the point by pressing the arrow keys.
When your point is at the desired position, press ENTER. If
your point is incorrect, the correct answer is shown, and you
will be given another problem. If your point is correct, you
have the option of choosing another problem of the same type
or continuing the program.

Positive and negative coordinates. This section is just like
the first section, except that you may have positive and
negative coordinates.

Slope of a line. Given two points on a line, you can find
the slope of the line by calculating the ratio of the difference
between the two y-coordinates and the difference between the
two x-coordinates. After some instruction, you are given a
quiz.

Distance between points. This section teaches you how to
find the distance between two given points on a graph, using
the Pythagorean theorem. A problem is also presented.

166

= e Chapter e e e mm——

If you are using this program for the first time, it would be
best to choose the options in numerical order.

Since this program is a tutorial program, I have tried to
make it as user-friendly as possible. Whenever one key-press is
required, a CALL KEY statement is used rather than an INPUT
procedure. Any time INPUT is used, there is a greater
possibility of the program ““crashing.”” In this program, all
INPUT prompts require that numbers be entered. Whenever
an answer is incorrect, the correct answer is given and another
problem of the same type is presented.

After each correct answer, the student has the choice of
doing another problem of the same type or continuing the

program.

How "Coordinate Geometry” Works

Lines

100 DEFine a function R(N) to be a random number
from 1to N.

110-130 Clear the screen and print the title.

140-350 Define the graphics characters and colors.

360-380 Define strings to be printed for graphics.

390-410 Print the menu screen of options.

420-460 Receive the student’s option and branch
appropriately with an ON-GOSUB statement.

470-480 After a section is complete, clear the screen and
return to line 390 to print the main options.

490-510 Subroutine to play music for incorrect answer.

520-560 Subroutine to play music for correct answer.

570-610 Subroutine to print coordinate system.

620-660 Subroutine to PRINT ““PRESS ENTER *’ and
wait for the student to press ENTER key.

670-710 Subroutine to draw graphics. For N number of
characters, draw character number C at row A
and column B.

720-1840 Subroutine for main option 1, Plotting Points.

720-830 Draw a coordinate system, plot a random
example point, and illustrate the coordinates.

840-870 Print option for another example, branch
appropriately.

880-910 Print the instructions.

920-1110 Plot a random point and wait for the student to

press coordinate numbers.
167

e e S Chapter 4 oo pm———

1120-1130
1140-1180

1190-1240
1250-1280
1290-1410
1420-1690
1700-1720

1730-1780

1790-1840

1850-1900
1910-1940
1950-1980
1990-2040

2050-2970
2050-2140
2150-2220
2230-2240
2250-2260
2270-2310
2320-2380
2390-2420
2430-2550
2560-2830

2840-2860

168

Test for the correct answer.

For a correct answer, play music and print the
next option; branch appropriately.

For an incorrect answer, play music, show the
correct answer, and branch to line 920 for
another problem.

Print instructions.

Choose random coordinates for problem and
initialize coordinates for the point.

Move the point depending on the arrow key
pressed.

Sound a beep, then test to see if the point has
been placed correctly.

If the point is incorrect, play music, show the
correct answer, and branch to line 1290 for
another problem.

If the point is correct, play music, print the next
option, branch appropriately, and return to the
main menu screen.

Subroutine to plot a random point on graph.
Subroutine to show coordinate for x-value.
Subroutine to show coordinate for y-value.
Subroutine to draw the coordinate system for
positive and negative coordinates.

Subroutine for main option 2, Positive and
Negative Coordinates.

Draw four example points on the coordinate
system.

Draw a random point and ask for coordinates.
Receive the student’s INPUT coordinates.
Test to see if the answer is correct.

For a correct answer, play music, print the next
option, and branch appropriately.

For an incorrect answer, play music, give the
correct answer, and branch to line 2150 for
another point.

Print instructions.

Choose a random point for the student to plot.
Move the point depending on the arrow key
pressed.

Sound a beep, then test if point has been placed
correctly.

e S R e —

2870-2900

2910-2970

2980-3860
2980-3080
3090-3210
3220-3480
3490-3510

3520-3690

3700-3750

3760-3770

3780-3800

3810-3860

3870-4640

3870-4090
4100-4220

4230-4270
4280-4350

4360-4370
4380-4390
4400-4420

For an incorrect answer, play music, plot the
correct point, and branch to line 2430 for another
point.

For a correct answer, play music, print the next
option, and branch appropriately. Return to the
main menu screen.

Subroutine for main option 4, Distance between
Points.

Print review information and illustration.
Subroutine to draw the illustration for distance.
Presents the instruction for distance.

Clear the screen; randomly choose one of six
problems.

RESTORE proper DATA and READ numbers A,
B, and C, which are numbers in a Pythagorean
triple.

Print the problem, with random coordinates for
the first point, and coordinates depending on
the DATA for the second point.

Student INPUTs an answer; test for the correct
distance.

For an incorrect answer, play music, show the
correct answer, and branch to line 3480 for
another problem.

For a correct answer, play music, print the next
option, and branch appropriately. Return to the
main menu screen.

Subroutine for main option 3, Slope of a Line
between Two Points.

Present the instruction for slope.

Randomly choose two points and ask for the
difference in y-coordinates.

Print the key that the student presses for delta-y.
Ask the student for delta-x and print the
response.

Ask the student for slope and receive the
student’s INPUT.

Calculate the correct answer and compare it with
the student’s answer.

For a correct answer, play music, pause, and
branch to line 4460.

169

--------lChapmer4.--------

4430-4450 For an incorrect answer, play music, give the
correct slope, and branch to line 4090 for another
problem.

4460-4580 Present another problem for slope without the
intermediate steps.

4590-4640 For a correct answer, play music, print the next

option, and branch appropriately. Return to
main menu screen.
4650 End.

Program 4-4. Coordinate Geometry

198 DEF R(N)=INT(N*RND+1)

119 CALL CLEAR

12@ PRINT " dedk gk ok ok kok ok ok ok ok ok dkkkkdkkdkkkk
"¢" *".7AB(25);"*":" * COORDIN
ATE GEOMETRY *"

139 PRINT " *";TAB(25);"*":" ‘kkkik
******************"= . :TAB(].].): n
POINTS":::

149 A$="1818181818181818"

150 B$S="181818FFFF181818"

160 CS$="QOQQOIFFFF"

17@ FOR C=96 TO 112 STEP 8

180 CALL CHAR(C,AS)

190 CALL CHAR(C+1,BS$)

20@ CALL CHAR(C+2,CS$)

210 NEXT C

220 ?ALL CHAR(120@,"183C7EFFFF7E3C18"

230 ?ALL CHAR(128, "183C7EFFFF7E3C18"

240 CALL CHARElZ9,“BGGBGQBB?BGCSGC")

25@ CALL CHAR(13@,"@3@0cC30C"

260 CALL CHAR(64,"3C4299A1A199423C")

270 CALL CHAR(94,"00102828444482FE")

280 CALL COLOR(14,5,1)

290 CALL COLOR(11,1@,1)

300 CALL COLOR(12,11,1)

3190 CALL COLOR(13,7,1)

320 CALL CHAR(1490,"101010101010101")

170

[] Chapter L o s

330
340
350
360
370
380
390

400

410
420
430
440
450
460

470
480
490
509
510
520
530
549
550
560
579
580

590

600

CALL CHAR(141,"0O0Q0QQ0FF")

CALL CHAR(142,"101010F")

CALL COLOR(14,13,1)

A$S="" h h h h h h h"
B$="ajjijjijjijjiijjijjijii”
C$="abbabbabbabbabbabbabbabb"
PRINT "CHOOSE:"::"1 PLOTTING POI
NTS":"2 + AND - COORDINATES":"3
SLOPE OF A LINE"

PRINT "4 DISTANCE BETWEEN POINTS
":"5 END PROGRAM"

PRINT :::::

CALL KEY(@,K,S)

IF (K<49)+(K>53)THEN 420

CALL CLEAR

CALL COLOR(2,2,1)

ON K-48 GOSUB 720,2059,3879,2980
,4650

CALL CLEAR

GOTO 390

CALL SOUND(10@,339,2)

CALL SOUND(10@,262,2)

RETURN

CALL SOUND(100,262,2)

CALL SOUND(108,330,2)

CALL SOUND(10@,392,2)

CALL SOUND(208,523,2)

RETURN

CALL CLEAR

PRINT "{4 spPACES}Y":"{4 SPACEs}"
:A$:"{4 SPACES}";A$:"{3 SPACES}4
".B$:"{4 SPACES}";A$:"

{4 sSPACES}";AS$:"{3 SPACES}3";BS$:
"{3 SPACES}";A$:"{4 SPACES}";AS$:"
{3 SPACES}2";BS$

PRINT "{4 SPACES}";A$:"

{4 SPACES}";A$:"{3 SPACES}1";B$:
"{4 sPACES}";A$:"{4 SPACES}";AS$:
“{3 SPACES}@";C$:"{4 SPACES}®g 1
2 3 4 5 6 T":::

CALL HCHAR(20,31,88)

171

R e S I T Chapter4 —_——

610
620
630
640
650
660
670
680
690
700
710
720
730

740
750
760
770
780
790
800
810
820
830
840

850
860
870
880
890

9200

910
920
930
940
950
960

172

RETURN

PRINT TAB(16);"PRESS <ENTER>";
CALL KEY(9,K,S)

IF K<>13 THEN 630

CALL HCHAR(24,18,32,13)

RETURN

FOR I=1 TO N

READ A,B,C

CALL HCHAR(A,B,C)

NEXT I

RETURN

GOSUB 570

PRINT "THE LOCATION OF A POINT I
S":"GIVEN BY ITS X-COORDINATE":"
AND Y-COORDINATE (X,Y)"
RANDOMI ZE

X=R(5)

GOSUB 1860

GOSUB 19190

CALL HCHAR(Y1,X1+2,40)

CALL HCHAR(Y1l,X1+3,48+X)

CALL HCHAR(Y1,X1+4,44)

GOSUB 1950

CALL HCHAR(Y1l,X1+5,48+Y)

CALL HCHAR(Y1,X1+6,41)

$R§NT : "WANT ANOTHER EXAMPLE? (Y
N)";

CALL KEY(@,K,S)

IF K=89 THEN 720

IF K<>78 THEN 850

CALL CLEAR

PRINT "YOU WILL BE SHOWN A POINT
."::"PRESS THE NUMBER OF THE"::"
X-COORDINATE THEN THE"

PRINT :"NUMBER OF THE Y-COORDINA
TE."z:::2::::

GOSUB 620

CALL CLEAR

GOSUB 570@

PRINT :::

RANDOMI ZE

GOSUB 1850

B Chapter 4 coesoess s

970 CALL HCHAR(21,7,40)
980 CALL HCHAR(21,9,44)
99@ CALL HCHAR(21,11,41)

1000
1010
1020
1030
1040
1059
106@
107@
1080
1090
1100
1110
1120
1130
1140
1150

1160
1170
1180
1190
1200
1210
1220

1230

1240
1250
1260

1270

12840
1290
1308
1310

CALL KEY(9,K,S)

CALL HCHAR(21,8,63)

CALL HCHAR(21,8,32)

IF S<1 THEN 1000

CALL HCHAR(21,8,K)

X2=K

CALL KEY(9,K,S)

CALL HCHAR(21,190,63)

CALL HCHAR(21,10,32)

IF S<1 THEN 106@

CALL HCHAR(21,10,K)

Y2=K

IF X2<>X+48 THEN 1190

IF Y2<>Y+48 THEN 1190

GOSUB 520

PRINT "PRESS":"1 FOR SAME TYPE
PROBLEM": "2 TO CONTINUE PROGRAM
CALL KEY(9,K,S)

IF K=49 THEN 920

IF K=50 THEN 1250 ELSE 1160
GOSUB 490

GOSUB 1910

GOSUB 1950

PRINT "THE CORRECT ANSWER IS ("
;STR$(X);",";STR$(Y):")"

GOSUB 620

GOTO 920

CALL CLEAR

PRINT "NOW YOU WILL BE GIVEN TH
E"::"COORDINATES."::"USE THE AR
ROW KEYS TO MOVE"::"THE POINT TO
THE CORRECT"

PR1§T :"PLACE, THEN PRESS <ENTE
R>», “giepss

GOSUB 620

CALL CLEAR

GOSUB 570

RANDOMIZE

173

T T——— Chapter 4 ot

1328 X=R(7)

1339 Y=R(4)

1340 X1=7+3*X

1350 Y1=17=-3*Y

1360 PRINT :"PLOT (";STRS$(X);",":;STR
s$(y);")"::

1370 C1=97

1380 A=17

1399 Al=A

1400 B=7

1419 Bl=B

1420 CALL HCHAR(A,B,120)

1430 CALL KEY(@,K,S)

1440 IF S<1 THEN 1430

1450 IF K=13 THEN 1700

1460 IF K<>69 THEN 1510

147@ IF A=5 THEN 1430

1480 CALL GCHAR(A-3,B,C)

1490 A=A-3

1500 GOTO 1650

15109 IF K<>88 THEN 1560

1520 IF A=17 THEN 1430

1530 CALL GCHAR(A+3,B,C)

1540 A=A+3

1550 GOTO 1650

1560 IF K<>83 THEN 1610

1570 IF B=7 THEN 1430

1580 CALL GCHAR(A,B-3,C)

15909 B=B-3

1608 GOTO 1650

1610 IF K<>68 THEN 1430

1620 IF B=28 THEN 1430

1630 CALL GCHAR(A,B+3,C)

1640 B=B+3

1650 CALL HCHAR(A1l,B1,Cl)

1660 Al=A

1679 Bl=B

1680 Cl=C

1699 GOTO 1420

1708 CALL SOUND(156,1397,2)

1710 CALL GCHAR(Y1l,X1,C)

1720 IF C=12@ THEN 1790

174

T ———————— Chapter S e ——

1730
1740
1750
1760
1778
1780
1790
1800

1810
1820

1830
1840
1859
1860
187@
1880
1894
1900
1918
1920
1930
1940
1950
1960
1970
1980
1990
2000

2010

2020

2030
2040

GOSUB 490
CALL HCHAR(Y1l,X1,128)
GOSUB 1910

GOSUB 19540

GOSUB 620

GOTO 1290

GOSUB 5280

PRINT "PRESS":"1 FOR SAME TYPE
EROBLEM":"2 TO CONTINUE PROGRAM

CALL KEY(®,K,S)

IF K=49 THEN 1290

IF K<>5@0 THEN 1810

RETURN

X=R(7)

Y=R(4)

X1=7+3*X

Y1=17=-3*Y

CALL HCHAR(Y1l,X1,128)

RETURN

FOR I=Y1l+l1 TO 17

CALL HCHAR(I,X1,112)

NEXT I

RETURN

FOR I=X1-1 TO 7 STEP -1

CALL HCHAR(Y1,I,114)

NEXT I

RETURN

CALL CLEAR

PRINT TAB(14);"y":"jijjijjijjij
3a33i33133133133":D§:D§; " 313343
jijjij2ajjijjijjijjiji":ps$:p$
PRINT "jijjijjijjijlajjijjijjij
jijji":DS$:DS: "babbabbabbabdabbab
babbabbabx"

PRINT "-4 -3 -2 -1 @ 1 2 3
4":D$:"jijjijjijii-lajjijjijii
3J3133":D$:D$:"jijjijiijii-2a3ii]
jijjijjiii”

PRINT D$:D$:"Jjijjijjijji-3ajjij
jijjijjiji“:p$

RETURN

175

S TR I T Chapter 4 RS T NS Ve | (|

205¢ DS=""h h h h ° h h h h"

2060 GOSUB 2000

207@ PRINT "HERE ARE EXAMPLES PLOTTI
NG{3 SPACES}+ AND - COORDINATES

2080 RESTORE 2090

20909 DATA 5,25,128,6,26,498,6,27,51,6
,28,44,6,29,50,6,30,41,5,7,128,
6,5,40,6,6,45,6,7,51,6,8,44

2109 DATA 6,9,50,6,10,41,14,22,128,1
5,23,40,15,24,56,15,25,44,15,26
,45,15,27,49,15,28,41

2110 paTA 17,4,128,18,5,40,18,6,45,1
8,7,52,18,8,44,18,9,45,18,19,58
,18,11,41,18,12,32

2120 N=29

2130 GOSUB 670

2140 GOSUB 620

2158 GOSUB 1990

2160 RANDOMIZE

2178 X=R(9)-5

2180 Y=R(7)-4

2190 X1=3*X+16

2200 Y1=13=3*y

2210 CALL HCHAR(Y1,X1,128)

2220 PRINT "COORDINATES:"

2230 INPUT "{4 SPACES}X ".X2$

2240 INPUT "{4 SPACESl}Y ":Y2$

2250 IF STRS(X)<>X2$ THEN 2320

2260 IF STRS(Y)<>Y2$ THEN 2320

2270 GOSUB 520

2280 PRINT :"PRESS":"1 FOR ANOTHER P
OINT":"2 TO CONTINUE PROGRAM";

229@ CALL KEY(9,K,S)

2300 IF K=49 THEN 2150

2310 IF K=5@0 THEN 2399 ELSE 2290

2320 GOSUB 490

2330 pP$="("&STRS$ (X)&","&STR$(Y)&")"

2340 FOR I=1 TO LEN(PS$)

2350 CALL HCHAR(Y1-2,I+X1-2,ASC(SEGS$
(p$,1,1)))

2360 NEXT 1

176

e e Chapter i e e———

2370 GOSUB 629

2380 GOTO 2158

2390 CALL CLEAR

2400 PRINT "PLOT THE GIVEN POINT.":
"USE THE ARROW KEYS TO MOVE"::"
THE YELLOW SPOT TO THE"

241@ PRINT :"CORRECT POSITION,
::"PRESS <ENTER>.":::::::

2420 GOSUB 620

2430 CALL CLEAR

2440 RANDOMIZE

2450 X=R(9)-5

2460 Y=R(7)-4

2470 X1=16+3*X

2480 Y1=11-3*Y

2490 GOSUB 1990

2500 Al=11

2510 A=Al

2520 Bl=16

2530 B=Bl

2540 C1=97

255@ PRINT :"PLOT POINT ("&STR$(X)&"
, "&STRS$ (Y)&")"

256@ CALL HCHAR(A,B,120)

2578 CALL KEY(®,K,S)

2580 IF S<1 THEN 2570

2590 IF K=13 THEN 2840

2600 IF K<>69 THEN 2650

2610 IF A=2 THEN 2570

2620 CALL GCHAR(A-3,B,C)

2630 A=A-3

2648 GOTO 2790

2650 IF K<>88 THEN 2700

2660 IF A=20 THEN 2570

2670 CALL GCHAR(A+3,B,C)

2680 A=A+3

2690 GOTO 2799

2700 IF K<>68 THEN 2758

2710 IF B=28 THEN 257@

2720 CALL GCHAR(A,B+3,C)

2730 B=B+3

2740 GOTO 2799

THEN"

177

275@ IF K<>83 THEN 2579

2768 IF B=4 THEN 2570

27786 CALL GCHAR(A,B-3,C)

2780 B=B-3

2790 CALL HCHAR(Al1l,Bl1l,Cl)

2800 Al=A

2810 B1=B

2820 Cl=C

2830 GOTO 2560

284@ CALL SOUND(150,1397,2)

2850 CALL GCHAR(Y1l,X1,C)

2860 IF C=120 THEN 2910

2870 GOSUB 49@

2880 CALL HCHAR(Y1l,X1,128)

2890 GOSUB 620

2900 GOTO 2430

2910 GOSUB 520

292@ PRINT :"PRESS":"1 TO PLOT ANOTH
ER POINT":"2 TO CONTINUE PROGRA
M":

2930 CALL KEY(®@,K,S)

2940 IF K=49 THEN 2430

2950 IF K<>5@ THEN 2930

2968 CALL CLEAR

2970 RETURN

298¢ CALL SCREEN(8)

2990 C?LL CHAR(136,"3D4381818181433D
L]

3000 CALL CHAR(137,"000080808080808"

3019 CALL CHAR(138, "BCC281818181C2BC
3020 CALL CHAR(139, "3C4280808080423C

3030 PRINT "REVIEW: FIND THE DISTANC
E":TAB(9):"BETWEEN A AND B.":::
388838288

3040 PRINT "IN A RIGHT TRIANGLE,"::T
AB(8);"2{3 SPACES}"&CHRS$ (137)&"
2{5 SPACES}2"

3058 PRINT TAB(7);CHRS$(136);" + ";cC
HR$(138);" = ";CHR$(139)::"OR

178

T e T T—) Chapter 4 TS ST T

LENGTH ";CHR$(139);" = SQUARE ROOT"

3068 PRINT TAB(l?) ;CHRS$ (137):"0OF ";
CHR$ (136);" SQUARED + ";CHR$ (13
8):;" SQUARED. "::

3070 GOSUB 3090

3980 GOTO 3220

3990 CALL HCHAR(11,8,128)

310¢ CALL HCHAR(11,7,65)

3118 CALL HCHAR(5,20,128)

3120 CALL HCHAR(S,ZI,GG)

3130 CALL VCHAR(6,20,104,5)

3140 CALL HCHAR(11,9,106,11)

3150 CALL HCHAR(11,20,105)

3160 RESTORE 3170

317¢ DATA 1¢,9,129,19¢,16,130,9,11,12
9,9,12,130,8,13,129,8,14,1390,7,
15,129,7,16,130,6,17,129

3180 DATA 6,18,130,5,19,129,7,13,139
,8,22,136,12,14,137,13,14,138,1
1,32 -

3190 N=16

3200 GOSUB 678

3210 RETURN

3220 GOSUB 620

3230 CALL CLEAR

324@ PRINT "FIND THE DISTANCE ";CHRS
(139); "BETWEEN POINT 1 AND POIN
T 2."ss2s3z22:22:

3250 PRINT CHR$(136);"'
HR$(137):CHRS$ (1

3260 ?ALL CHAR(92,"0102022414180808"

..
..

= Y2 - Y1"::C

58) "o x2 - X1"

3270 ?ALL CHAR(95, "0000000000J00OFF"

3280 CALL CHAR(91,"3804182@3C")

3290 PRINT CHRS$(139);" = \(x2-x1)[+
(y2-v1)["::

3300 CALL HCHAR(21,8,95,19)

3310 GOSUB 3090

3320 M1$="(x1,Yl)"

179

oz i] Chapter i e

3330 M$="(x2,Y2)"

3340 FOR I=1 TO 7

3350 CA??)HCHAR(S.20+I,ASC(SEG$(M$,I
1
r

3360 CALL HCHAR(12,2+I,ASC(SEGS$(M1§,
1,1)))

3370 NEXT I

3380 CALL HCHAR(11,7,32)

3390 GOSUB 620

3400 RESTORE 3410

3419 DATA 5,22,53,5,23,44,5,24,52,5,
25,41,12,5,49,12,6,49,12,7,44,1
2,8,49,16,16,61,16,18,51,19,16,61

342¢ DATA 19,18,52,22,27,61,22,29,53

3430 CALL HCHAR(5,22,32,6)

3440 CALL HCHAR(12,3,32,6)

3450 N=14

3460 GOSUB 678

3479 CALL HCHAR(2,3,32,28)

3480 GOSUB 620

3490 CALL CLEAR

3500 I=R(6)

3510 ON I GOTO 352@,3550,3580,3610,3
640 ,3670

3520 RESTORE 3530

3530 DATA 3,4,5

3540 GOTO 3690

3550 RESTORE 3560

3560 DATA 4,3,5

3578 GOTO 3690

3580 RESTORE 3590

3594 DATA 5,12,13

3600 GOTO 3690

3610 RESTORE 3620

3620 DATA 12,5,13

3630 GOTO 3690

3640 RESTORE 3650

3650 DATA 8,15,17

3660 GOTO 3690

3673 RESTORE 3680

3680 DATA 15,8,17

3694 READ A,B,C

180

AT SR T S e Chapter 4 O R 4 S RS |

3700 X1=R(5)-1

3710 Y1=R(5)-1

3720 PRINT "POINT 1 = (";STR$(X1);",
" . STR$ (Yl) : ") "

3730 X2=X1+A

3740 Y2=Y1+B

3750 PRINT :"POINT 2 = (";STRS$(X2);"
,"3STRS(Y2);")":::"WHAT IS THE
DISTANCE": : "BETWEEN THE POINTS?"::

3768 INPUT C1l

3770 IF C=Cl THEN 3810

3780 GOSUB 490

3790 PRINT :CHR$(136);" = ";B:CHRS$(1
37):CHRS$(138);" = ";A::"DISTANC
E "&CHR$(139);" = ";C::

380@ GOTO 3489

3810 GOSUB 520

382@ PRINT :"PRESS":"1 TRY ANOTHER P
ROBLEM": "2 CONTINUE PROGRAM"

3830 CALL KEY(@,K,S)

3840 IF K=49 THEN 3490

3850 IF K<>50 THEN 3830

3868 RETURN

3870 PRINT "THE SLOPE OF A LINE BETW
EEN":"TWO POINTS IS DEFINED AS
THE": "RATIO OF THE CHANGE IN Y TO"

3880 PRINT "THE CHANGE IN X."

3890 GOSUB 580

3909 RESTORE 3914

3919 pATA 17,10,128,11,22,128,16,11,
129,16,12,136,15,13,129,15,14,1
3¢,14,15,129,14,16,130,13,17,129

392¢ DATA 13,18,130,12,19,129,12,20,
T30, 3121 ,129,1,1,32

3930 N=14

3940 GOSUB 674

395¢ CALL VCHAR(12,21,140,5)

3960 CALL HCHAR(16,13,141,8)

3970 CALL HCHAR(16,21,142)

3980 GOSUB 620

3990 CALL HCHAR(14,22,94)

181

TR Chapter [om——————

4000
4010

4020
4030

4040
4050
4060

4970
4080

4090
4100
4110

4120

4130
4140

4150
4160
4170
4180
4190

4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350

182

CALL HCHAR(14,23,89)

CALL HCHAR(17,17,94)

CALL HCHAR(17,18,88)

PRINT "y = 2":""X = 4" ;:"SLOPE
M=2/4 =1/2 = ,5"

GOSUB 620

CALL CLEAR

PRINT "“Y IS THE DIFFERENCE BET
WEEN": : "THE Y-COORDINATES."
PRINT ::""X IS THE DIFFERENCE B
ETWEEN" : : "THE X-COORDINATES."
PRINT :::TAB(11);""Y":"SLOPE M
= ==";TAB(11);:" " "X"z::3:

GOSUB 620

CALL CLEAR

PRINT "GIVEN TWO POINTS:"
RANDOMIZE

x1=n{3;-1

X2=R(8)-1

IF X2<=X1 THEN 4140

Y1=R(3)-1

Y2=R(5)-1

IF Y2<=Y1 THEN 4170

PRINT :"("&STR$(X1)&","&STRS (Y1
)&") {3 SPACES}AND{3 SPACES}("&S
TRS (X2)&", "&STRS (Y2)&") "3 s
PRINT ""Y =";

DY=Y2-Y1

CALL SOUND(15@8,1397,2)

CALL KEY(9,K,S)

CALL HCHAR(24,8,63)

CALL HCHAR(24,8,32)

IF K<>DY+48 THEN 4230

PRINT DY

PRINT :"°X =";

DX=X2-X1

CALL SOUND(150,1397,2)

CALL KEY(®,K1,S)

CALL HCHAR(24,8,63)

CALL HCHAR(24,8,32)

IF K1<>DX+48 THEN 4310

PRINT DX

TR TR e ST Chap‘ter 4 T I T W T

4360

4370
4380
4390
4400
4410
4420
4430
4449

4450
4460
4470
4480
4490
4500
4510
4520
4530
4540

4550
4560
4570
4580
4590
4600

4610
4620
4630
4640
4650

PRINT :::"SLOPE M = “Y/"X"::"EX
PRESS M AS A DECIMAL.":::

INPUT "M = ":M

M1=DY/DX

IF ABS(M-M1)>.005 THEN 4430
GOSUB 520

GOSUB 620

GOTO 4460

GOSUB 490

PRINT :"THE CORRECT SLOPE IS";I
NT(100* (M1+.0085))/100::

GOTO 4990

CALL CLEAR

PRINT :"GIVEN TWO POINTS:"
X1=R(3)-1

X2=R(8)~-1

IF X2<=X1 THEN 4490

Y1l=R(2)-1

Y2=R(5)~-1

IF Y2<=Y1 THEN 4520

PRINT :"("&STRS (X1)&","&STRS (Y1
)&"){3 SPACES}AND{3 SPACES}("&S
TR$ (X2)&", "&STRS$(Y2)&") s
PRINT “WHAT IS THE SLOPE M?":::
Ml=(Y2-Y1)/(X2-X1)

INPUT "M = ":M

IF ABS(M-M1)>.0@5 THEN 4430
GOSUB 520

PRINT :"PRESS":"1 FOR SAME TYPE
PROBLEM": "2 TO CONTINUE PROGRA
M";

CALL KEY(9,K,S)

IF K=49 THEN 4460

IF K<>5@ THEN 4610

RETURN

END

183

YYD DD I IIDI TR IIFDOODO

s Chapter 5 m—
Built-in
Functions

00 000000 C OO PNONOIESOIEOGOEOIOSIOSENOSIOSNOSIOSEOOIPS

QU OOCOO00O0QO000C0 0000000000 0I0L

Chapter I e e

Built-in
Functions

Commands, like RUN, GOSUB, ON, and LET, stand at the
beginning of a statement and control everything else that
happens in the line. Functions, on the other hand, are like
small subroutines within a statement. They can never stand
alone, and always return a value or a string.

You have been using some numeric functions all along. The
symbols +, -, /, *, and A all require the computer to leave the
current command, perform an operation, and return with a
value. In the command line LET A =3, the computer simply
follows the command LET. But in the command line LET
A =3*C, the computer has to perform the function of
multiplying 3 by the value of C before carrying out the
command LET.

Functions cannot stand alone. Your computer does not
know what to do with a statement like 4+ 4. Not until the
statement includes a command can the computer tell what you
want it to do: PRINT 4+ 4. Now the computer knows that it is
required to PRINT, and performs the function + on the way to
carrying out the command.

Mathematical Functions

TI BASIC can do difficult calculations just like big computers,
and it has many of the functions that are on the more expensive
calculators.

The mathematical functions, aside from the one-symbol
arithmetic operations already mentioned, consist of three-letter
abbreviations and an argument or numeric expression in
parentheses. The name of the function is a reserved word,
which means you cannot use it alone as a variable name in your
programs. However, the word can be embedded within a
variable name.

ABS
ABS(x) gives the absolute value of a numeric expression or

187

B S Chapter 5

number x. The absolute value of a number is the number itself
without a negative sign.

Command Result
PRINT ABS(-3) 3
PRINT ABS(3) 3
PRINT ABS(0) 0

ATN

ATN(x) gives the arctangent of the expression x. The
arctangent of x is the angle whose tangent is x. The value is in
radians; if you want the equivalent angle in degrees, multiply
your answer by 180/pi or 180/(4*ATN(1)) or 57.295779513079.

Here is a short program that illustrates ATN (x). Values for
x are read in as numbers from DATA. The angle whose tangent
is x is printed first in radians, then in degrees.

100 REM ATN

110 CALL CLEAR

120 PRINT " X","ATN(X)"

130 FOR C=1 TO 10

140 READ X

150 PRINT :X,"R ";ATN(X)

160 PRINT TAB(15);"D ";ATN(X)*(180/(4*ATN (
1)))

170 NEXT C

180 pATA .10,.22,.44,.50,1,0

190 paTA -.33,-10,-50,1E35

200 END

The value for pi can be obtained by the command:
PRINT 4*ATN(1)
Itis given as 3.141592654.

Ccos

COS(x) gives the cosine of an angle x, where the angle is
expressed in radians. If your angle is in degrees, you may
convert by multiplying by pi/180 or (4* ATN(1))/180 or
0.01745329251994.

188

I e A Chapter 5

EXP

EXP(x) gives the exponential function, or the value of ¥, where
e is approximately 2.718281828.

INT

INT(x) gives the integer function of a number x, which is the
whole number part of the number x if x is positive, and the next
smaller whole number if the number x is negative. Another
way to think of the integer function is that the result is the
closest integer (whole number) which is to the left of the
number x on a number line. The value returned by INT(3.5) is
3, and INT(-7.4) returns -8.

LOG

LOG(x) gives the natural logarithm of x, or log,(x). Remember
that the argument or expression x must be greater than zero.
The logarithm function is the inverse of exponential function,
SO

X=LOG(EXP(X)) and X=EXP(LOG(X))

Here are formulas to keep in mind for logarithms:
If you want to find the logarithm of a number in base N:

1ogN(X) =10ge(X)/10ge(N)
Probably the most common base you would need is base 10:

log10(X) =loge(X)/10g(10)

SGN

SGN(x) gives the sign of a number x. If x is negative, SGN(x) is
equal to -1. If x is positive, SGN(x) is equal to 1. If x is zero,
SGN(x) is equal to 0.

SIN

SIN(x) gives the sine of an angle x, where x is expressed in
radians. Multiply degrees by pi/180 or (4*ATN(1))/180 to get
radians.

SQR
SQR(x) gives the positive square root of the expression x. You
cannot evaluate the square root of a negative number.

TAN

TAN(x) gives the tangent of the angle x, where x is expressed in
radians.

189

TS T T ———] Chapter 5 Ty S T T 1

The functions SIN(x), COS(x), and TAN(x) all have the
limit that the angle x must be between positive and negative
1.5707963266375 * 1010 or you will get a “BAD ARGUMENT"’
message and the program will stop.

DEFining Your Own Functions

If you wish to use a function that is not listed here, a
combination of these functions, or any sort of formula or
equation, you may define your own functions with a DEF
statement. The main stipulation is that the DEF statement line
must be numbered lower than any line number that uses the
function. It’s usually simplest to put DEF statements at the
beginning of a program.

You may use the DEF statement any time you have an
expression that you would rather not type several times. For
example, in Coordinate Geometry’’ (Program 4-4), line 100
defines a function R(N) to be a random integer number from 1
to N. The statement is:

100 DEF R(N) =INT(N*RND + 1)

This function is executed in several places later in the program.
Line 750 is X=R(5), which chooses a random x-coordinate from
1to5. Lines 1320 and 1330 have X=R(7) and Y =R(4), and lines
1850 and 1870 have X=R(7) and Y =R(4). These lines choose a
point within the limits of the graph. Nearly all the problems
and examples in the program use the defined random function.

The following program defines some functions, then prints
the results for the answers to some algebra homework.

1060 REM FUNCTIONS

110 DEF F(X)=X"3+42*X"2-5%*X
120 DEF G(X)=X"3+X"2+4X

130 DEF H(X)=F (X)+G(X)

140 CALL CLEAR
150 INPUT "X = "
160 PRINT :"F(X)
170 PRINT :"G(X)
188 PRINT :"H(X)
190 PRINT :::
200 GOTO 150

216 END

190

iR e et Chapter 5 reessmmescssaersusssasn

The user INPUTs a value for X. The computer then
evaluates each function and prints the answers. Of course, you
can add printer statements and have the computer print out the
homework.

The computer allows rapid iterations of numerical
combinations that would otherwise be time consuming because
of the mathematics involved. Following are two programs on
electrical engineering circuit design that illustrate how much
easier it is to make complex calculations with the computer
than by hand.

Electrical Engineering Circuit Design

These two programs are designed to help the electrical
engineering professional or student analyze and design basic
electrical circuits. Elementary circuits are illustrated on the
screen and can be evaluated or converted quickly without the
user having to work with tedious mathematical equations.

The professional engineer may use these programs to
design several circuits with varying data to quickly optimize a
solution. An electrical engineering student can learn about
circuits more easily by using this computer program. By trial
and error you can enter many combinations of data to study the
corresponding results.

The user INPUTs numerical data for the given circuit, and
an equivalent or resultant circuit design is printed on the
screen. All elements of complex numbers are rounded to the
third decimal place.

If you have an RS-232 Interface and a printer, you can alter
the programs to get a printed copy of each problem you enter.
The necessary statements for using the printer are listed in the
programs as REMarks. Simply delete the REM at the beginning
of each statement that has “’#1’" in it, and delete line 530
FLAG=1in Part Two. You may also need to adjust the OPEN
#1 statements in each program for your particular printer
configuration (stop bits and baud rate).

The first program includes the following circuits:

1. Series resistance is the sum of the values of all the
resistors in series. Enter the numerical values of the resistors,
R1, R2, R3, etc., one at a time, and the total will be calculated.

2. Parallel resistance is the reciprocal of the sum of the
reciprocal values of all the parallel resistors.

191

[eon—stsic s St —==] Chapter 5 eem—— e

NS, T T 9

RT Rl R2 R3
For both the series and the parallel resistance circuits, any
number of resistors may be used. However, in this program, to
avoid an INPUT error of a very large number, a maximum of 50
resistors is allowed. You may solve problems with more
resistors by solving 50 at a time and combining the solutions.

Linear electrical networks can be represented by equivalent
networks which are more readily analyzed. The next four
sections convert one circuit to an equivalent one for a more
desirable circuit analysis.

3. Converting a resistive T-section to an equivalent
Pi-section, also known as Y-Delta conversions. Given elements
R1, Ry, and R3 of a resistive T-section, the corresponding
elements of the Pi-section are R, R, and R¢. They are
calculated using the following formulas.

1 Rop

Ra RiRp+RiR3+RyR3
1 R3

R—B - R1R2+R1R3+RoR3
1 R1

Rc RqRp+RiR3+RoR3

4. Converting a resistive Pi-section to an equivalent
T-section, also known as a Delta-Y conversion. This is just the
converse of the previous calculation (involving more fractions
because of reciprocals).

5. Converting a complex admittance Pi-section to an
equivalent complex impedance T-section. This extends the
previous T-Pi or Pi-T conversions to the sinusoidal steady state
frequency domain. The T network is driven by the two
sinusoidal current generators I and I5. All voltages, currents,
and admittances are complex numbers.

6. Converting a complex impedance T-section to an
equivalent complex admittance Pi-section. The calculations are
similar to those for the previous conversion.

In each section, the circuit is drawn on the screen with all
parts labeled.

192

T e e e S Chapter 5 rresEs—oE———

Part Two of Electrical Engineering Circuit Design consists
of the following circuits for analysis:

1. Symmetrical T-Section:

Z4 Z4

2

SIDE 1 Z, SIDE 2

(e, O

It is possible to represent a reciprocal two-port network by
an equivalent T network. This part of the program is the
calculation of an equivalent symmetrical T network and the
corresponding characteristic impedance from short-circuit and
open-circuit laboratory measurements. The impedance at
either side with the opposite side open circuited is:

. Zq
Zoc=Rgc+j Xoc= 5 +2y

The impedance seen at either side with the opposite side
short circuited is:
i

. Z1 Z
Zsc=Rgc+j Xge= 2 + 22——'2
“1+ 275
2

In general, these equations involve complex quantities.

The user enters Roc, Xoc. Rsc, and Xsc, the real and
imaginary parts of the open-circuit and short-circuit
impedances. The characteristic impedance Z, for the
symmetrical network is calculated and printed in polar form.
Then the computed values of Z,/2 and Z, for the equivalent
T-section are calculated and printed.

193

T —— e T Chapter 5 e r———————

2. Symmetrical Pi-Section:

R3

o AVAVAY ©

SIDE 1 Ry Ry SIDE 2

O

This section of the program is the design of a symmetrical
resistive pi attenuator. It is used to reduce the power (voltage)
that will be supplied to a given laboratory load or measuring
instrument, and at the same time preserve a matched load
condition. The pi attenuator can be inserted to introduce a fixed
amount of decibel (DB) loss.

The user INPUTSs the numerical value for the characteristic
resistance, R,. This resistance, if connected at either port, will
also be seen at the other port as the same resistance. This
permits the insertion of one or more sections without affecting
the matched load condition.

The user next specifies the required attenuation of DB. The
numerical values of R1 and R3 are then calculated and printed.
The formulas are:

R1= RO 5
tanh —

2

R3=RO sinh B

where 0 is the loss in nepers (1 neper =8.686 decibels).

The user continues to enter different values of DB, and the
corresponding values of R1 and R3 are returned. To end this
process, you must enter 0 for the value of DB. You may then
enter a different value for R; then continue or return to the
menu screen.

194

(

TR T e e Chapter 7 remmm————————

3. Bridged T attenuator:

o O

The loss using the symmetrical bridged T attenuator may
be adjusted by varying the values of R3 and R4. Two special
cases are: when R3=0 and Rq=infinity, the input resistance
equals R and the attenuation is infinite; and when
R3=infinity and R4 =0, the input resistance will equal R, but
the loss will be equal to zero. Between these two cases, the
input resistance can be kept at the value of R and the loss
adjusted to any desirable value by adjusting R3 and R4 using
these equations:

1
RisR, (==~1
4=Ro (g =1

where VR is the desired ratio of V2/V1 and the characteristic
resistance R, is specified.

Enter a numerical value for the characteristic resistance,
Ry. Then enter varying values for VR, the voltage ratio. The
corresponding values for R3 and R4 will be calculated and
printed. To end this process, enter -1. You will then have the
choice of doing another problem of the same type (entering a
different value for Ry) or returning to the menu screen.

195

4. Digital-to-analog conversion:

R R R R R

In an electrical system it may be necessary to feed
information that has been stored digitally into analog
computers or analog readout equipment. This program
involves a six-bit digital-to-analog converter. The input
voltages are restricted to the binary ‘“1" state or the binary “0"’
state, which may in practice correspond to ten volts and zero
volts. By combining resistors that are in series or parallel, the
output voltage is given by:

1 1 1 1 1 1
==Vi+=-Vp+= =Vy4+=—Vg+—
Vom g VIt Vot gV3+agVa* 375" 64V
This program determines the actual analog output voltage for a
given binary number stored in the counter. Enter the six input
voltages corresponding to the binary stored in the counter. The
actual output voltage is calculated and printed. You may then
enter another set of input voltages, and the corresponding
output voltage will be determined. This process continues until

you enter a value of -1. The program then returns to the menu
screen.

Program 5-1. Electrical Engineering Circuit Design 1

100 CALL CLEAR

119 CALL CHAR(96, "00@Q@Q@JdFFFF")

120 CALL CHAR(97,"2070D@8809053632")

130 PRINT "{3 SPACES}ELECTRICAL ENGINEERING
":::TAB(7):"CIRCUIT DESIGN"::::3:3:333:

196

e T, Chapter 5 eeeesee—

140
150
160
17@
180
190
200

210

220

230

240
250
260

270

280
299
300
318
320

330
3409
350
360
370
380
390

400

CALL HCHAR(16,11,96,9)

CALL HCHAR(16,14,97,3)

FOR C=98 TO 121

READ C$

CALL CHAR(C,CS$)

NEXT C

DATA O0UO0QJFSFS080808,000000dFJF380808,
?808080808080808, 3808Y8FSF8,d808080FD
F,000000FFFFO80808,080838FFFF

DATA @CO603061860300C,06030618603003CA6,
2306186030180808,300E11F1F1110E,00384
4C7C74438,0073888F8F887

DATA @@@CL8FFFF180C,006030FFFF306,087182
P404081838,E018048282C1E181,818181828
20418E,80808040403201837

DATA 271820404380808,E0188482E2818101,0
10101E2020418E,8080804340201807 ,00000
21818

REM OPEN #1:"RS232.BA=600"

CALL SCREEN(2)

PRINT :::::::"1 SERIES RESISTANCE"::"2
PARALLEL RESISTANCE"::"3 T-PI OR Y-DE
LTA CONVERSION"

PRINT :"4 PI-T OR DELTA-Y CONVERSION"::
"5 COMPLEX PI TO T"::"6 COMPLEX T TO
PI"::"7 END PROGRAM":::::

CALL SCREEN(8)

CALL KEY(@,K,S)

IF (K<49)+(K>55)THEN 290

CALL CLEAR

ON K-48 GOTO 390,830,1230,1850,2450,306
3,3670

READ N

FOR I=1 TO N

READ X,Y,GR

CALL HCHAR(X,Y,GR)

NEXT I

RETURN

PRINT " ** SERIES RESISTANCE **":::::::
:

REM PRINT #l::::"** SERIES RESISTANCE

]
o A

197

rsrEETEEEE———— Chapter 5 e ree———————

410 GOSUB 610

42@ PRINT ::"TOTAL R = R1+R2+R3 ...":::"YOU
R PROBLEM:"::

430 INPUT "HOW MANY RESISTORS? ":N

44@ IF N<1 THEN 570

450 IF N>50 THEN 590

46@ PRINT

470 RT=0

48¢ FOR I=1 TO N

49@ INPUT " R"&STR$(I)&" = ":R

50@ REM PRINT #1:" R"&STRS$(I)&" =";R

519 RT=RT+R

520 NEXT I

530 PRINT :" RT =";RTs::

540 REM PRINT #l::" RT =";RT:::

550 GOSUB 3610

560 GOTO 430

570 PRINT :"YOU HAVE TO HAVE ONE OR MORE FO
R A DECENT PROBLEM."::

580 GOTO 430

59¢ PRINT :"ARE YOU SURE?":"FOR >58 SOLVE I
N STEPS."::

600 GOTO 439

618 FOR X=19 TO 23 STEP 4

620 CALL HCHAR(X,9,119)

630 CALL HCHAR(X,10,96,12)

640 CALL HCHAR(X,12,121,3)

650 CALL HCHAR(X,18,97,3)

660 NEXT X

670 X=20

680 Y=22

690 GOSUB 790

70@ CALL HCHAR(19,22,98)

719 CALL HCHAR(23,Y,101)

720 CALL HCHAR(18,19,82)

730 CALL HCHAR(18,20,49)

740 CALL HCHAR(X+1,Y+1,82)

750 CALL HCHAR(X+l,Y+2,50)

768 CALL HCHAR(24,19,82)

778 CALL HCHAR(24,208,51)

780 RETURN

79¢ CALL VCHAR(X,Y,105)

198

T T Chapter e ree———

800
810
820
830

840

850
860

870

880

890

900
919

920
930

949
950
960
970
980
990
1008
1910
1020
1030
1040
1058

1960
1078

1980
1090
1109
1110
1120
1130
11490
1150
1160

CALL VCHAR(X+1,Y,106)

CALL VCHAR(X+2,Y,107)

RETURN

PRINT "** PARALLEL RESISTANCE **"3::3:::
t

REM PRINT #l:::::"** PARALLEL RESISTAN
CE **"3::

GOSUB 1099

PRINT ::" 1{4 SPACES}1{4 SPACES}1

{4 SPACES}1"1" == = == # == + ==+ ,,."
PRINT " RT{3 SPACES}R1{3 SPACES}R2

{3 SPACES}R3":::"YOUR PROBLEM:"::

INPUT "HOW MANY RESISTORS? ":N

IF N<1 THEN 10850

IF N>50 THEN 1070
PRINT

RTD=0
FOR I=1 TO N
INPUT " R"&STRS$(I)&" = ":R
IF R<>@ THEN 980
PRINT :"SORRY - ZERO IS NOT ALLOWED"::
GOTO 940
RTD=RTD+1/R
REM PRINT #1:" R"&STRS$(I)&" =";R
NEXT I
PRINT :" RT =";1/RTD:::
REM PRINT #1::" RT =";1/RTD:::
GOSUB 3610

GOTO 880

PRINT :"ONE OR MORE PLEASE."::

GOTO 880

PRINT :"REALLY? FOR >5@ RESISTORS SO

LVE IN SEVERAL STEPS."::
GOTO 880

FOR X=19 TO 23 STEP 4
CALL HCHAR(X,10,11@)
CALL HCHAR(X,11,96,12)

CALL HCHAR(X,12,121,3)
NEXT X

X=20

FOR Y=17 TO 23 STEP 3

GOSUB 790

199

1178 NEXT Y

1180 DATA 13,19,17,103,19,20,103,23,17,104,
23,20,104,19,23,98,23,23,101

1199 DATA 24,16,82,24,17,49,24,19,82,24,249,
5¢,24,22,82,24,23,51,1,1,32

1200 RESTORE 1180

1219 GOSUB 339

1220 RETURN

1230 PRINT "CONVERTING A RESISTIVE
{6 SPACES}T-SECTION TO AN EQUIALENT"

1240 PRINT "PI-SECTION (ALSO KNOWN AS
{3 SPACES}Y-DELTA CONVERSION)"::::::::

1250 REM PRINT #1l::::"CONVERTING A RESISTI
VE T-SECTION TO AN EQUIVALENT"

1260 REM PRINT #1:"PI-SECTION (ALSO KNOWN
AS Y-DELTA CONVERSION)"::::

1270 X0=19

1280 GOSUB 1470

1290 PRINT "YOUR PROBLEM:":::

1300 INPUT " R1 = ":R1
1310 INPUT " R2 = ":R2
1320 INPUT " R3 = ":R3

1330 SUM=R1+R2+R3

134Q IF SUM<>@ THEN 1370

135@ PRINT ::"SORRY - THE SUM OF THE THREE
VALUES CANNOT BE ZERO."::

1368 GOTO 1300

1370 RA=R2*R3/SUM

1380 PRINT ::" RA =";RA

1399 RB=R1*R3/SUM

1400 PRINT " RB =";RB

1418 RC=R1*R2/SUM

1420 PRINT " RC =";RC::

1430 REM PRINT #1:" R1 =";Rl1:" R2 = ";R2:"
R3 =";R3::" RA =";RA:" RB =";RB:" RC
=":RC:::

1440 GOSUB 3610

1450 GOSUB 1470

1468 GOTO 1300

1470 FOR X=XO TO XO+4 STEP 4
1480 CALL HCHAR(X,3,110)
1490 CALL HCHAR(X,4,96,11)

200

1500 CALL HCHAR(X,15,108)

1510 CALL HCHAR(X,20,110)

1520 CALL HCHAR(X,21,96,9)

1530 CALL HCHAR(X,30,108)

1540 NEXT X

1550 CALL HCHAR(X0,5,97,3)

1560 CALL HCHAR(X0,11,97,3)

1570 CALL HCHAR(X0,9,103)

1580 X=X0+1

1590 Y=9

1609 GOSUB 790

1610 CALL HCHAR{XO+4,9,104

1620 CALL HCHAR(XO,24,97,3

1630 CALL HCHAR(X0,22,103)

1640 Y=22

1650 GOSUB 798¢

1660 CALL HCHAR(XO0+4,22,104)

1670 CALL HCHAR(XO0,28,103)

1680 y=28

1690 GOSUB 790

1708 CALL HCHAR(X0+4,28,104)

1710 CALL HCHAR(X0-1,6,82)

1720 CALL HCHAR(X0-1,7,49)

1730 CALL HCHAR(X0-1,12,82)

1740 CALL HCHAR(X0-1,13,50)

1750 CALL HCHAR(XO0+2,19,82)

1760 CALL HCHAR(X0+2,11,51)

1778 CALL HCHAR(X0+2,23,82)

1788 CALL HCHAR(XO0+2,24,65)

1790 CALL HCHAR(XO0-1,25,82)

180@ CALL HCHAR(XO-1,26,66)

1810 CALL HCHAR(X0+2,29,82)

182¢ CALL HCHAR(X0+2,3@,67)

1830 PRINT :::

1840 RETURN

1850 PRINT "“CONVERTING A RESISTIVE
{6 SPACES}PI-SECTION TO AN EQUIVALENT"

1860 PRINT "T-SECTION (ALSO KNOWN AS
{4 SPACES}DELTA-Y CONVERSION)"::::::3:

187@ REM PRINT #1::::"CONVERTING A RESISTI
VE PI-SECTION TO AN EQUIVALENT

1880 REM PRINT #1:"T-SECTION (ALSO KNOWN A
S DELTA-Y CONVERSION)"::::

201

e e oSS D = L Chapter 5 s —e————

1890 X0=19

1909 GOSUB 2150

191@ PRINT "YOUR PROBLEM:":::
192¢ INPUT " RA = ":RA

1930 IF RA<>@ THEN 1960

1940 PRINT :"SORRY, RA CANNOT BE ZERO"::
1950 GOTO 1920

1968 INPUT " RB = ":RB

1973 IF RB<>0 THEN 2000

1980 PRINT :"SORRY, RB CANNOT BE ZERO"::
1999 GOTO 1960

2000 INPUT " RC = ":RC

2010 IF RC<>@ THEN 2040

2020 PRINT :"SORRY, RC CANNOT BE ZERO"::
2030 GOTO 2009

2040 SUM=RA*RB+RA*RC+RB*RC

2050 R1=SUM/RA

2068 PRINT ::" R1 =":R1

2070 R2=SUM/RB

2080 PRINT " R2 =";R2

2090 R3=SUM/RC

2108 PRINT " R3 =";R3::

2119 REM PRINT #l:::" =";RA:" RB =";RB:
" RC =";RC:::" Rl =";Rl:" R2 =";R2:"
R3 =";R3:::

2120 GOSUB 3610

2130 GOSUB 2150

2140 GOTO 1920

2158 FOR X=XO TO XO+4 STEP 4
2168 CALL HCHAR(X,3,110)
2170 CALL HCHAR(X,4,96,9)
2180 CALL HCHAR(X,13,108)
2190 CALL HCHAR(X,17,110)
220@ CALL HCHAR(X,18,96,11)
2210 CALL HCHAR(X,29,1@8)
2220 NEXT X

2230 CALL HCHAR(X0,7,97,3)
224@ CALL HCHAR(X0,5,103)
2250 X=X0+1

2268 Y=5

2270 GOSUB 799

2280@ CALL HCHAR(X0+4,5,104)

202

T T e Chapter i s ST

2290
2309
2310
2320
2330
2340
2350
2360
2370
2380

2390
2400

2410
2420
2430
2440
2450

2460
2470
2480

2490
2500
2510
2520
2530
2540
2550
2560
2578

2580

2590
2600
2610
2620

CALL HCHAR(X0,11,103)

Y=11

GOSUB 790

CALL HCHAR(XO+4,11,104)

CALL HCHAR(X0,19,97,3)

CALL HCHAR(X0,25,97,3)

CALL HCHAR(X0,23,1063)

Yy=23

GOSUB 790

CALL HCHAR(XO+4,Y,104)

DATA 13,21,6,82,21,7,65,18,8,82,18,9,6
6,21,12,82,21,13,67

DATA 18,20,82,18,21,49,18,26,82,18,27,
50,21.24,82,21:25,51,;1:1,32

RESTORE 2390

GOSUB 330

PRINT :::

RETURN

PRINT "CONVERTING A COMPLEX{8 SPACES}A
DMITTANCE PI-SECTION TO"

PRINT "AN EQUIVALENT COMPLEX

{7 SPACES}IMPEDANCE T-SECTION":::sss3:::
REM PRINT #1l::::"CONVERTING A COMPLEX
ADMITTANCE PI-SECTION TO"

REM PRINT #1:"AN EQUIVALENT COMPLEX I
MPEDANCE T-SECTION"::::

X0=19
GOSUB 28490
INPUT " AA
INPUT "J BA
INPUT " AB
INPUT "J BB
INPUT " AC ":AC

INPUT "J BC ":BC
API=AA*AB-BA*BB+AA*AC-BA*BC+AB*AC-BB*B
C
BPI=BA*AB+AA*BB+BA*AC+AA*BC+BB*AC+AB*B
c

D=API*API+BPI*BPI

IF D<>@ THEN 2640

PRINT :"DENOMINATOR CANNOT = @"::
GOSUB 3610

"=AA
":BA
":AB
":BB

Il

203

2630
2640
2650
2660
2670
2680

2690

2709
2710
2720

2730

2749
2750

2760

27790
2780

2790

2800

2810

2820
2830
2840
2850
2860
2870
2880
2890
2900

2910
2920

204

GOTO 2509

PRINT ::"GIVEN PI-SECTION:":
PRINT " YA =“fA.A:“ + J (“:BA u)lt
PRINT " YB =“?AB?“ g ("?BB?“)“
PRINT " YC ="=ACI“ + J (“?BC?“)"
R1=(INT(1000* ((AC*API+BC*BPI) /D+.0005)
)) /1000

X1=(INT(1000*((BC*API-AC*BPI)/D+.0005)
)) /1000

PRINT ::"EQUIVALENT T-SECTION:"::
PRINT " Z1 =";R1;" + J (";Xx1;")"
R2=(INT(100@* ((AA*API+BA*BPI)/D+.0005)
)) /1009
X2=(INT(1000* ((BA*API-AA*BPI)/D+.0005)
)) /10009

PRINT " 22 =";R2;" + J (";x2;:")"
R3=(INT(1000* ((AB*API+BB*BPI) /D+.00805)
)) /1000

x§=(INT(1909*((BB*API-AB*BPI)XD+.09Q5)
Y) /1000

PRINT " 23 =";R3;" + J (";X3;")":s::
REM PRINT #l:::"GIVEN COMPLEX ADMITTA
NCE PI-SECTION:"::" YA =";AA;" + J ("
?BA:")“

REM PRINT #1:" YB =";AB;" + J (";BB;"
)llgll YC ="?AC?” + J (“?BC?")"

REM PRINT #1:::"EQUIVALENT COMPLEX IM

PEDANCE T-SECTION:"::" Zl1 =";Rl;" + J
("'Xl'")"
REM PRINT #l:" 22 =";R2;" + J (";xX2;"

)u=u Z3 =":R3?" + J (!l;Xa:ll)ll====
GOSUB 3610

GOTO 2500

CALL HCHAR(19,5,96,9)

CALL HCHAR(19,8,97,3)

CALL HCHAR(24,5,96,9)

CALL VCHAR(20,3,100,4)

CALL VCHAR(20,15,100,4)

CALL VCHAR(20,19,100,4)

CALL VCHAR(20,31,100,4)

CALL HCHAR(24,20,96,11)
CALL HCHAR(19,22,97,3)

ez NEDTET) eemecem cem—

2930 CALL HCHAR(19,26,97,3)

2940 DATA 65,21,6,105,22,6,106,23,6,107,21,
12,105,22,12,106;,23,12,107,2),25,105,
22,25,106,23,25,107

2959 DATA 19,3,99,19,4,109,19,6,103,20,6,10
9,19,12,103,20,12,100,19,14,109,19,15
,98,24,3,102

2960 DATA 24,4,109,24,14,109,24,15,101,24,6
:104,24,12;104,21;2,;113,21:3,114,;22;3
2 115,22,2,116

2978 DATA 21,14,113,21,15,114,22,15,115,22,
14,116,19,19,99,19,20,112,19,21,109,1
9,25,103,20,25,100

2980 DATA 19,29,109,19,30,111,19,31,98,24,1
9,102,24,21,109,24,25,104,24,29,109,2
4,31,101,21,18,117

29909 DATA 21,19,118,22,19,119,22,18,120,21,
30,117,21,31,118,22,31,119,22,30,120;
22,7,89,22,8,65,18,8

30090 DATA 89,18,9,66,22,14,89,22,11,67,18,2
2,90,18,23,49,18,27,99,18,28,5@,22,26
,906,22,27,51,1,1,32

3010 RESTORE 2940

3028 GOSUB 330

3030 PRINT :::"YA=AA + J BA{4 SPACES}Zl=Rl
+ J X1YB=AB + J BB{4 SPACES}Z2=R2 + J
xz L1}

3040 PRINT "YC=AC + J BC{4 SPACES}Z3=R3 + J

X3":s:

3050 RETURN

3960 PRINT "CONVERTING A COMPLEX{8 SPACES}I
MPEDANCE T-SECTION TO"

307@ PRINT "AN EQUIVALENT COMPLEX
{7 SPACES}ADMITTANCE PI-SECTION"::::::

3080 REM PRINT #1:"CONVERTING A COMPLEX IM
PEDANCE T-SECTION TO"

3099 REM PRINT #1:"AN EQUIVALENT COMPLEX A
DMITTANCE PI-SECTION"::::

3100 GOSUR 3400

31190 INPUT " R1 ":R1

3120 INPUT " X1 = ":X1

205

T A e e e S ST S Chapter 5 L R S T |

3130
3140

3159
3168
3170
3184
3199
3200
3210

3220
3230
3249

3250
3260
3270

3280
3290

3300

3310
3320

3330

3340
3350

3360

3370

3380
3390

206

INPUT " R2 = ":R2
INPUT " X2 = ":X2
INPUT " R3 = ":R3
INPUT " X3 = ":X3

RT=R1 *R2-X2*X2+R1*R3-X1*X3+R2*R3-X2*X3
XT=R1*X2+R2*X1+R1*X3+R3*X1+R2*X3+R3*X2
D=RT*RT+XT*XT

IF D<>@ THEN 3240

PRINT :"SORRY, DENOMINATOR CANNOT

{4 SPACES}EQUAL ZERO."::

GOSUB 3619

GOTO 3100

PRINT ::"ELEMENTS OF T-SECTION:"::" Zl
="=R1:" + J (":xl?“)l!:ll Z2 =“:R2:“ +

J (":X2;")"
PRINT " 23 =";R3;" + J (";X3;")"::::"E
QUIVALENT PI-SECTION:"
AA=(INT(1900* ((R2*RT+X2*XT) /D+.8005)))
/1000
BA=(INT(1000* ((X2*RT-R2*XT) /D+.0005)))
/1009
PRINT =n YA =“=AA?" + J (IO?BA;II)II
AB=(INT(1000* ((R3*RT+X3*XT) /D+.0005)))
/1000
BB=(INT(1000* ((X3*RT-R3*XT) /D+.0005)))
/1009
PRINT " YB =II:AB:" + J (“:BB?")“
AC=(INT(1000* ((R1*RT+X1*XT) /D+.0005)))
/1009
BC=(INT(1000* ((X1*RT-R1*XT) /D+.0005)))
/1000
PRINT " YC =";AC;" + J (";BC;")"s:::
REM PRINT #1:"ELEMENTS OF T-SECTION:"
===ll Zl =“;R2,'." + J (u:x]-:n)u:u Z2 ="
sR2:"™ ++ J (";x2:")"
REM PRINT #1:" 23 =";R3;" + J (";X3;"
)"---"EQUIVALENT PI-SECTION:"::" YA =
,AA:" + J (II.BA‘")II
REM PRINT #1:" YB =";AB;" + J (";BB;"
)“:“ YC =|I:AC=" + J (“:’BC:“)“:::
GOSUB 3610
GOTO 3100

TR T T—— s w Chapter 5 esremssre—meeme——

3400 CALL HCHAR(24,4,96,11)

3410 CALL HCHAR(19,6,97,3)

3420 CALL HCHAR(19,10,97,3)

3430 CALL HCHAR(19,21,96,9)

3440 CALL HCHAR(24,21,96,9)

3450 CALL VCHAR(20,19,100,4)

3460 CALL VCHAR(20,31,100,4)

3470 CALL HCHAR(19,24,97,3)

3480 DATA 69,19,3,99,19,4,112,19,5,109,19,9
,1063,19,13,109,19,14,111,19,15,98, 24,
3,100,29,9,100

3499 DATA 20,15,100,23,3,100,23,15,100,24,3
,102,24,15,101,21,2,117,21,3,118,22,3
,119,22,2,120

3500 DATA 21,14,117,21,15,118,22,15,119,22,
14,120,24,5,109,24,13,109,21,9,105,22
,9,106,23,9,107

3510 DATA 24,9,104,19,19,99,19,20,109,19,22
,103,19,28,193,19,30,109,19,31,98, 24,
19,102,24,29,199

3520 DATA 24,30,109,24,31,101,24,22,104,24,
28,104,21,18,113,21,19,114,22,19,115,
22,18,116,21 ;39,113

3538 DATA 21;31,114,22,31,115,22,30,116,21;
22,105,22,22,106,23,22,167,21,28,165,
22,28,106,23,28,107

3540 DATA 20,22,100,20,28,100,18,7,990,18,8,
49,18,11,99,18,12,59,22,10,99,22,11,51,
22,23,89

355@0 DATA 22,24,65,18,24,89,18,25,66,22,26,
89,22,27,;67,:1,1:32

3568 RESTORE 3480

3578 GOSUB 330

3580 PRINT :::"21=Rl + J X1{4 SPACES}YA=AA
+ J BAZ2=R2 + J X2{4 SPACES}YB=AB + J
BB n

3590 PRINT "Z3=R3 + J X3{4 SPACES}YC=AC + J

BC":3:

3600 RETURN

36189 PRINT :"DO YOU HAVE MORE PROBLEMS
{3 SPACES}OF THIS TYPE? (Y/N)"

207

T Chapter i s e]

3620 CALL KEY(9,K,S)
3630 IF K=78 THEN 250
3640 IF K<>B89 THEN 3620
3650 CALL CLEAR

3660 RETURN

367@ REM CLOSE #1
3680 END

Program 5-2. Electrical Engineering Circuit Design 2

110 REM EE CIRCUIT DESIGN PART 2

120 CALL CLEAR

130 CALL CHAR(96, "0O0Q@@IFFFF")

149 CALL CHAR(97,"2070D@8809050602")

150 PRINT "{3 SPACES}ELECTRICAL ENGINEERING

160 CALL CHAR(98, "000000F8F8080808")

179 CALL CHAR(99, "0000000FJF080808")

180 CALL CHAR(1900, "0808080848080808")

190 PRINT ::TAB(7);"CIRCUIT DESIGN":s::s::2:

200 CALL CHAR(101,"080808F8F8")

210 CALL CHAR(102, "0808080FJF")

220 CALL CHAR(103, "0OQQQ@FFFFO80808")
239 CALL HCHAR(16,11,96,9)

240 CALL HCHAR(16,14,97,3)

25@ CALL CHAR(104, "080808FFFF")

260 CALL CHAR(105,"0C0603061860300C")
270 CALL CHAR(106,"0603061860303C36")
280 CALL CHAR(107,"09306186030180808")
290 CALL CHAR(108,"0@@PE11F1F1110E")
39@ CALL CHAR(110,"0070888F8F887")
310 PRINT TAB(9);"PART TWO"::

320 CALL CHAR(111,"@61E7CFFFF7ClE@6")
330 CALL CHAR(117,"971820404380808")
340 CALL CHAR(118,"E0188482E2818101")
350 CALL CHAR(119,"910101E2020418E")
360 CALL CHAR(120,"8080804343201887")
370 CALL CHAR(122,"080808FFFFJ808FF")
380 CALL CHAR(123,"0@7E@G@3C0018")

390 CALL CHAR(147,"9010301010101")
400 CALL CHAR(148,"0038440818287C")

208

T TR e Chapter 5 e e rm————

410
420
430
449
450
460
479
480
490
500
510
520
530
549
550
560

578

580
590
600
610
620
630
640
650

660
670
680
690
700

710
720

CALL COLOR(15,7,1)

CALL CHAR(124,"0102040810204@8")
CALL CHAR(125,"2172D48819254682")
CALL CHAR(126,"0703050810244484")
CALL CHAR(127,"2064D494098D0606")
CALL CHAR(128, "00040404000340404")
CALL CHAR(129,"@70306187@304C86")
CALL CHAR(1390,"070305081020408")
CALL CHAR(131, "0Q0400FFFFO00404")
CALL CHAR(132,"000036494936")

REM OPEN #1:"RS232.TW.BA=110"
FLAG=0

REM FLAG=1

CALL CLEAR

CALL SCREEN(2)

PRINT ::::"1 SYMMETRICAL T-SECTION"::"2

SYMMETRICAL PI-SECTION"
PRINT :"3 BRIDGED T ATTENUATOR"::"4 DIG

ITAL TO ANALOG"

PRINT ::"5 END PROGRAM":::::::::

CALL SCREEN(8)

CALL KEY(@,K,S)

IF K<49 THEN 600

IF K>53 THEN 600

CALL CLEAR

ON K-48 GOTO 65@,1590,1990,2560,3060
PRINT "CALCULATION OF AN EQUIVALENTSYMM
ETRICAL NETWORK AND THE"

PRINT "CORRESPONDING CHARACTERISTIC IMPE
DANCE FROM SHORT-CIRCUIT"

PRINT "AND OPEN-CIRCUIT TESTS"::"SYMMET
RICAL T-SECTION":s:ss:sss:

REM PRINT #1l::::"CALCULATION OF AN EQU
IVALENT"

REM ~PRINT #1:"SYMMETRICAL NETWORK AND
THE

REM PRINT #1:"CORRESPONDING CHARACTERI
sTIC"

REM PRINT #1:"IMPEDANCE FROM SHORT-CIR
curr"

REM PRINT #1l:"AND OPEN-CIRCUIT TESTS"

209

P T T e e] Chapte]‘ 5 e r—————

730 REM PRINT #1::"SYMMETRICAL T=SECTION":
::

740 IF FLAG=1 THEN 779

758 FOR DELAY=1 TO 400

760 NEXT DELAY

779 GOSUB 1269

780 PRINT "IMPEDANCE WITH OPPOSITE SIDE OPE
N CIRCUITED:"

790 PRINT :"{3 SPACES}zZ0OC = ROC + J X0oC":"
{7 spACEs}= z1/2 + z2"

80@ PRINT :"IMPEDANCE WITH OPPOSITE SIDE SH
ORT CIRCUITED:"

81@ PRINT :"{3 SPACES}zZSC = RSC + J Xsc"

820 PRINT "{7 SPACES}= zT +(zT*z2)/(zT+22)"

830 PRINT TAB(1@);"WHERE ZT=Z1/2"::

84¢ INPUT " ROC = ":ROC

850 INPUT " XOC = ":XOC
86@ INPUT " RSC = ":RSC
87@ INPUT " XsC = ":XSC

880 A=ROC* (ROC-RSC)-XOC* (X0C-XSC)

899 PRINT :"SYMMETRICAL T EQUIVALENT"

9¢9@ B=XOC* (ROC-RSC)+ROC* (XO0C-XSC)

919 PRINT "FROM SHORT CIRCUIT AND":"OPEN CI
RCUIT TESTS":::

92@ C=ROC*RSC-XOC*XSC

93¢ PRINT "ZzOC =";ROC;"+ J (";xocC:;")"

940 D=ROC*XSC+RSC*XOC

95¢ PRINT "ZSC =";RsC;"+ J (";Xsc;")"

968 ZOM=SQR(SQR(C*C+D*D))

97¢ IZOM=(INT(1000*(ZOM+.0005)))/1000

98¢ ZOA=8.5*ATN(D/C)

99¢ 1ZOA=(INT(1000* (ZOA+.0005)))/1000
13@@ PRINT :" Zo =";IZOM;" EXP J (";1IzZOoA:")

1018 RO=(INT(100@8*(zZOM*COS(ZOA)+.0005)))/10@
00

1020 XOo=(INT(10090* (ZOM*SIN(ZOA)+.0005)))/10
20

1030 PRINT "{4 SPACES}=";RO;"+ J (":X0;:")"

1040 7Z2M=SQR(SQR(A*A+B*B))

1050 Z2A=.5*ATN(B/A)

1060 PRINT ::"EQUIVALENT T-SECTION"::

210

--------lChapters e]

1070
1280
1090
1100
1110
1120
1130
1149
1159

1160
1170
1180

1190
1200

1210
1220

1230

1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340

1350
1360

1370

R2=Z2M*COS(Z2A)
IR2=(INT(1000* (R2+.0005))) /1000
X2=72M*SIN(Zz2a)
IX2=(INT(1000* (X2+.0005))) /1000

PRINT "

z2 =";IR2;"+ J (";Ix2;")"

R12=(INT(1000* (ROC-R2+.0005))) /1000
X12=(INT(1000* (XOC-X2+.0005))) /1000
PRINT "2z1/2 =";R12;"+ J (";x12;")"

REM PRINT
ENT FROM"

#1:::"SYMMETRICAL T EQUIVAL

REM PRINT #1:"SHORT CIRCUIT AND OPEN
CIRCUIT TESTS"::

§§§ PRINT #1:"ZOoC =";ROC;"+ J (";XOC;
R?M PRINT #1:"2zsCc =";RsC;"+ J (";XscC;
n n

REM PRINT #1::" zo =";IZOM;" EXP J ("
?IZOA}' ") 1]

REM PRINT #1:"{4 SPACES}=";R0;"+ J ("
:xo= n) n

REM PRINT #1::"EQUIVALENT T SECTION:"
RE@) PRINT #1::"21/2 =";R12;"+ J.(";X1
2?l n

REM PRINT #1:" 22 =";IR2;"+ J (";IX2
") "sssse

GOSUB 3080

GOTO 779

CALL HCHAR(18,6,96,19)

CALL HCHAR(24,6,96,19)

CALL HCHAR(18,9,97,3)

CALL HCHAR(18,18,97,3)

CALL VCHAR(19,15,1@9,5)

X=18

Y=15

GOSUB 1440

DATA 18,5,110,24,5,110,18,25,108,24,25
,108,17,9,90

DATA 17,10,49,17,11,47,17,12,50,17,18,
90,17,19,49

DATA 17,20,47,17,21,590,21,16,90,21,17,
50,1,1,32

RESTORE 1340

211

T Chapter 5 comsrmsywsseesemmE

1380 FOR I=1 TO 15

1399 READ X,Y,G

1409 CALL HCHAR(X,Y,G)

1410 NEXT I

1420 GOSUB 1510

1430 RETURN

1440 CALL VCHAR(X+6,Y,104)
1450 CALL VCHAR(X,Y,103)
1460 CALL VCHAR(X+1,Y,100,5)

1470 CALL VCHAR(X+2,Y,185
1480 CALL VCHAR(X+3,Y,106

1490 CALL VCHAR(X+4,Y,107)

1508 RETURN

1519 RESTORE 1520

1520 DATA 2,83,3,73,4,68,5,69,7,147,24,83,2
5,73,26,68,27,69,29,148,1,32

1538 FOR I=1 TO 11

15409 READ Y,G
1550 CALL HCHAR(21,Y,G)

1560 NEXT I

1578 PRINT :::

1580 RETURN

1599 PRINT "DESIGN OF A SYMMETRICAL":"RESIS
TIVE PI ATTENUATOR":::::s:::s:::

1600 REM PRINT #l::::"DESIGN OF A SYMMETRI
CAL"

1613 REM PRINT #1:"RESISTIVE PI ATTENUATOR

1620 GOSUB 1800
1630 PRINT :"GIVEN CHARACTERISTIC"

1640 INPUT "RESISTANCE RO = ":RO
1650 REM PRINT #1:::"CHARACTERISTIC RESIST
ANCE =";RO

1660 PRINT :"INPUT ATTENUATION VALUES
{4 SPACES}TO STOP, ENTER @":::

1670 INPUT "DB = ":DB

168¢ IF DB=@ THEN 1780

1690 TA=DB/8.686

1708 R3=RO* (EXP(TA)-EXP(-TA))/2

1710 IR3=(INT(1000* (R3+.0005)))/1000

1720 TA2=TA/2

1730 TANHT=(EXP(TA2)-EXP(-TA2))/(EXP(TA2)+E
XP(-TA2))

212

== Chapter L e ——————ere ey

1740 R1=(INT(1000* (RO/TANHT+.0005)))/1000

175@ PRINT :"R1l =";R1l,"R3 =";IR3:::

1760 REw PRINT #1::"DB =";DB,"R1 =";R1l,"R3
="+R3

1770 GOTO 1678

1788 GOSUB 3110

1790 GOTO 1620

1800 CALL HCHAR(18,6,96,19)

1810 CALL HCHAR(24,6,96,19)

1820 CALL HCHAR(18,14,97,3)

1830 X=18

1840 Y=10

1850 GOSUB 1440

1860 Y=20

1870 GOSUB 1440

1880 DATA 18,5,11¢,18,25,108,24,5,110,24,25
,108,21,11,82,21,12,49

189¢ DATA 21,18,82,21,19,49,17,15,82,17,16,
51,1,1,32

1900 RESTORE 1880

1914 FOR I=1 TO 11

1924 READ X,Y.,G

1930 CALL HCHAR(X,Y,G)

1940 NEXT I

1950 GOSUB 1510

1960 PRINT "R1 RO/TANH(N/2)"

1976 PRINT "R3 = RO*SINH(N)":"{5 SPACES}WHE
RE N=LOSS IN NEPERS":::

1980 RETURN

1990 PRINT "DESIGN OF SYMMETRICAL":"BRIDGED
T ATTENUATOR"::::ss3::s:2:2:

2000 ggu PRINT #l::::"DESIGN OF SYMMETRICA

2010 REM PRINT #1:"BRIDGED T ATTENUATOR"::

2020 GOSUB 2260

2030 INPUT "INPUT RESISTANCE RO = ":RO

2040 REM PRINT #l:::"INPUT RESISTANCE RO =
"+RO::

2050 PRINT ::"ENTER VARIOUS RATIOS OF":"VR=
V2/V1l; ENTER -1 TO STOP."::

206@ INPUT "VR = ":VR

207@ IF VR<@ THEN 2240

213

B e Chapter L T v me—— ——

2380 1F VR<>@ THEN 2120
2090 PRINT :"R3 = @","R4 = "“;CHRS$(132):::
210@ REM PRINT #1:"VR =";VR,"R3 = 0
{8 SPACES}R4 = INFINITY"
2118 GOTO 2060
2120 IF VR<>1 THEN 2160

213@ PRINT :"R3 = ";CHRS$(132),"R4 = 0@":::
2140 REM PRINT #1:"VR =";VR,"R3 = INFINITY
R4 = @"

2150 GOTO 2060

2166 IF VR<1 THEN 2190

2170 PRINT "@<VR<1 PLEASE"::

2180 GOTO 2060

2199 R3=(INT(1000*((RO/(1/VR-1))+.8005)))/1
200

2200 R4=(INT(1000*((RO*(1/VR-1))+.0005)))/1
200

2210 PRINT :"R3 =";R3,"R4 =";R4:::

2220 REM PRINT #1:"VR =";VR,"R3 =";R3,"R4
=":R4

2230 GOTO 2060

2240 GOSUB 3110

225@ GOTO 2020

2260 CALL HCHAR(15,16,96,11)

2270 CALL HCHAR(18,6,96,18)

2280 CALL HCHAR(24,6,96,18)

229¢ CALL VCHAR(16,9,100,2)

2309 CALL VCHAR(16,21,100,2)

2310 CALL HCHAR(15,14,97,3)

2320 CALL HCHAR(18,11,97,3)

2330 CALL HCHAR(18,17,97,3)

2340 X=18

2350 Y=15

2360 GOSUB 1440

2370 DATA 18,5,110,24,5,110,18,24,108,24,24
,108,18,9,104,18,21,104

2380 DATA 15,9,99,15,21,98,16,14,124,15,15,
125,14,16,126,15,16,127

2399 DATA 16,16,128,17,16,128,18,16,131,19,
16,128,22,14,124,21,15,129

2400 DATA 20,16,1390,20,5,147,20,24,148,14,1
4,82,14,15,52;19,11,82

214

AT A I T T Chapter 5 T T s P bt 1}

2410 DATA 19,12,49,19,18,82,19,19,50,21,16,
82,21,17,51,14,24,82

2420 DATA 14,25,49,14,26,61,14,27,82,14,28,
5¢,14,29,61,14,30,82

2430 DATA 14,31,79,21,29,82,21,30,79,18,26,
111 ,24,26,111,18,27,96

2440 DATA 24,27,96,18,28,98,24,28,101,1,1,3
2

2450 RESTORE 2370

2460 FOR I=1 TO 46

247@ READ X,Y,G

2480 CALL HCHAR(X,Y,G)

2490 NEXT I
2500 X=18

2510 Y=28

2520 GOSUB 1464

2530 PRINT :::"R3 = RO/((1/VR)=-1)"

2540 PRINT "R4=RO*((1/VR)=-1)":::

255@ RETURN

2560 PRINT "SIX-BIT DIGITAL TO":"ANALOG CON
VERTER":::::::3283:33:33

2578 REM PRINT #1l::::"SIX-BIT DIGITAL TO A
NALOG CONVERTER":::

2580 GOSUB 27240

259@ PRINT :::"ENTER SIX INPUT VOLTAGES.":"
TO STOP, ENTER =-1"::::

2600 F=1

2610 VO=0

262@ FOR J=1 TO 6

2630 INPUT " V"&STRS$(J)&" = ":v

2640 IF V<@ THEN 540

2650 REM PRINT #1:" V"&STRS$(J)&" =";V

2660 F=.5*F

2670 VO=VO+F*V

2680 NEXT J

2690 PRINT :"V OUT =";VO:::

27@0@ REM PRINT #l::" V OUT =";VO:::
2710 GOTO 2600

2720 CALL HCHAR(14,4,96,3)

2730 CALL HCHAR(23,4,96,27)

2749 CALL VCHAR(29,3,100,3)

2750 X=14

215

T ErE—————— Chapter 5 smrreseen mr—————

2760 Y=3

2779 GOSUB 1460

2780 CALL HCHAR(14,3,99)

279@¢ CALL HCHAR(23,3,102)

280@ CALL HCHAR(14,8,97,19)

2810 I1I=0

2820 FOR Y=7 TO 27 STEP 4

2830 GOSUB 1450

284@ CALL VCHAR(22,Y,100)

2850 CALL VCHAR(23,Y,104)

286@ CALL HCHAR(20,Y-1,117)

2870 CALL HCHAR(20,Y,118)

2880 CALL HCHAR(21,Y,119)

2890 CALL HCHAR(21,Y-1,120)

2909 CALL HCHAR(13,Y+2,82)

2910 CALL HCHAR(17,Y+1,50)

2920 CALL HCHAR(17,Y+2,82)

293¢ CALL HCHAR(19,Y-2,86)

2940 CALL HCHAR(19,Y-1,54-I)

2950 I=I+1

2960 NEXT Y

2970 CALL HCHAR(14,28,96,3)

298¢0 DATA 14,31,1¢8,15,31,43,23,31,108,22,3
1,45,23,27,122,24,27,123

2999 DATA 18,30,86,18,31,79,17,4,506,17,5,82
il 1432

30083 RESTORE 2980

3918 FOR I=1 TO 11

3020 READ X,Y,G

3930 CALL HCHAR(X,Y,G)

3040 NEXT I

3058 RETURN

3060 REM CLOSE #1

3079 STOP

3080 PRINT :"PRESS <ENTER> TO CONTINUE"

3090 CALL KEY(9,K,S)
3100 IF K<>13 THEN 3090

311@ PRINT ::"DO YOU HAVE MORE PROBLEMS
{3 SPACES}OF THIS TYPE? (Y/N)"

3120 CALL KEY(@,K,S)

3130 IF K=78 THEN 540

3149 IF K<>89 THEN 3124

216

3158 CALL CLEAR
3168 RETURN
3170 END

String Functions

Usually, the computer expects all information to be numeric.
Certain information, however, is treated as strings, or groups
of characters. You signal the computer that certain information
is a string by enclosing it in quotation marks: PRINT 4 +4
causes the computer to print 8; PRINT "4+4’’ causes the
computer to print 4+4. You signal the computer to treat the
value of a variable as a string by ending the variable name
with $.

String expressions may contain letters, numbers, and
characters, and may be up to 255 characters long. Longer
strings are truncated on the right.

Strings are combined or concatenated with the ampersand.
To combine string A$, which is “‘TI-"’, with string B$, which is
“99/4A", use the statement PRINT A$&B$.

The string functions that are built into TI BASIC are very
powerful and useful. Any function that ends in a dollar sign
gives a string as a result. You cannot combine string and
numeric expressions.

ASC
ASC(X$) returns the ASCII character code of the first character
in the string X$. If the string expression is a constant, it must be
contained in quotation marks:

PRINT ASC(*“*"")

PRINT ASC("'B"")

This program returns the ASCII code of any character you
enter.

100 REM ASC

110 CALL CLEAR

120 PRINT "WANT TO KNOW THE ASCII CODE?"::
13¢ INPUT "WHAT CHARACTER? ":C$

140 PRINT "ASCII CODE = ";ASC(CS$)::

150 GOTO 130

169 END

217

e ——— Chapter B e s

CHRS

CHR$(x) returns the character for the ASCII code x. If x is not an
integer, it is rounded to obtain an integer. Try these
commands:

PRINT CHR$(42)
PRINT CHR$(66)

PRINT CHR$(65+4)

The CALL KEY command returns an ASCII code number
for the key pressed. If you wish to print the key pressed, the
ASCII code first needs to be translated to the character which
corresponds to the number. Here is a program using CHRS.

106 REM CHRS

110 CALL CLEAR

120 PRINT ::"PRESS ANY KEY."
139 CALL KEY(9,K,S)

140 IF S<>1 THEN 130

150 PRINT CHRS(K)

160 GOTO 120

178 END

In this next program, you can enter a value and get the
character which corresponds to the number.

100 REM CHRS 2

110 CALL CLEAR

120 INPUT "ENTER A NUMBER: ":N

130 IF N>=@ THEN 170

140 PRINT :"SORRY, NUMBER MUST BE"
150 PRINT "GREATER THAN ZERO."::
160 GOTO 120

170 IF N<=32767 THEN 210

180 PRINT :"SORRY, NUMBER MUST BE"
190 PRINT "LESS THAN 32767."::

200 GOTO 120

210 PRINT :"CHARACTER = ";CHRS$(N)::
220 GOTO 120

230 END

218

STRS

There are times when you need to manipulate numbers as
numeric expressions and as string expressions. For example, if
you want to combine a name and an age, the name is a string
and the age is a number. To concatenate the name and age, you
will first need to convert the age number to a string, then
combine the two strings. STR$(x) will convert the number xto a
string. If x is an expression, the expression is evaluated first,
then the result is converted to a string. The string will be the
number only, with no leading or trailing spaces.

VAL

VAL(X$) will give the numeric value of the string X$. In this
case X$ must be the ASCII characters for a number or a numeric
expression. If strings contain numbers that you wish to use in
calculations, the strings must first be converted to numbers
with the VAL statement.

Some valid commands are:

PRINT STR$(529)
A$=N$&STRS(N)
M$=STR$(COST)&"’/""&STR$H(X)
A=VAL(A%)

PRINT VAL(""27""&"".45"")

PRINT STR$(VAL(MS))

LEN

LEN(X$) is a string function which gives the length of, or
number of characters in, the string X$. In TI BASIC you may
have a null string ""*’; the length of a null string is zero.

Leading and trailing blank spaces are counted in the number of
characters for the length.

POS

POS(string1,string2,n) is the position function. String1l and
string2 are string expressions. The numeric expression n is

219

ey ey vy Chapter 5 oo e —— =

evaluated and rounded to an integer. POS finds the first
occurrence of string2 within stringl, starting at character
number n. The value returned is the character position of the
first character of string2 in string1. If string2 is not found, a
value of zero is returned.

Perhaps the best way to explain this function is with some
examples. Run the following program. P=POS(B$,A$,1) finds
the first occurrence of A% in B$ starting with the first character
of B$. The number P is the position, or the number of
characters in from the first character. P=POS(B$,A$,4) finds
the first occurrence of A$ in B$, starting at the fourth character
of BS.

100 REM POS

110 CALL CLEAR

120 PRINT "AS","BS";TAB(26);"P"
130 AS$=")x"

140 BS$="BOXES"

156 P=POS(BS$,AS,1)

160 PRINT ::"P=POS(BS$,AS$,1)"
170 PRINT :A$,BS$;TAB(26);P
180 AS$S="BOB"

199 B$="BOBBY"

2006 P=POS(BS$,AS$,1)

210 PRINT :A$,BS$;TAB(26) ;P
229 AS="B"

230 P=POS(B$,AS$,1)

240 PRINT :A$,B$;TAB(26);P
250 PRINT ::"P=POS(BS$,AS$,4)"
260 P=POS(BS$,AS$,4)

270 PRINT :A$,BS$;TAB(26);P
280 AS="x"

290 P=POS(BS$,AS$,4)

300 PRINT :AS$,BS$;TAB(26);P
318 END

SEGS

SEGS$ (string expression, numeric expression1, numeric expression2)
is the TI BASIC string segment function, and is comparable to
the LEFT$, MID$, and RIGHT$ functions in BASIC on some
other microcomputers. The command PRINT SEG$(A$,N1,N2)

220

B i Chapter 5 emmereerme——er———

will print a segment of string A$ starting with the character in
the N1 position, continuing until the segment is N2 characters
long.

Here are some examples.

100 REM SEG

118 CALL CLEAR

120 AS="HERE IS A MESSAGE."

130 PRINT AS::

140 PRINT :"SEGS (Asglp'” ”;TAB(ZZ):SEGS(AS,
1,4)

150 PI'{INT :"SEGS(AS,3,5) "; TAB(22) :SEGS(As,
3,5)

168 PRINT :"SEGS(AS,12,3)";TAB(22);SEGS (AS
112,3)

178 PRINT :"SEGS(AS,12,12)";TAB(22);SEGS (A
$,12,12)

180 PRINT :"SEGS(AS,20,3)";TAB(22);SEGS (A$
20,3)

199 PRINT :"SEGS(AS,LEN(AS)-4,5)";TAB(22);
SEG$ (AS,LEN(AS)-4,5)

200 END

String Functions in Practice

Following are several programs or partial programs that
illustrate the use of these string functions.

You may want to combine graphics and text on a screen. A
PRINT statement will print a message, but will scroll. HCHAR
or VCHAR statements are slightly slower, but will not scroll the
screen. Here is a subroutine (in lines 280-310) that allows you to
print a message (M$) on a certain row (ROW), starting in
column number COL +1.

100 REM HCHAR MESSAGE
110 CALL CLEAR

120 M$="MESSAGE"

130 ROW=10

149 COL=15

150 GOSUB 280

160 M$S="EXAMPLE"

170 ROW=15

180 COL=3

221

R TS e s — Chapter 5 e

190 GOSUB 280

209 M$="HELLO"

210 COL=18

220 GOSUB 280

239 M$="TRY YOUR OWN!"
240 ROW=6

250 COL=4

260 GOSUB 288

270 STOP

280 FOR I=1 TO LEN(MS$)
290 CALL HCHAR(ROW,COL+I,ASC(SEGS$(MS,I,1)))
300 NEXT I

310 RETURN

320 END

Many word puzzle games award points for using particular
letters in a word. Each letter of the alphabet is given a value,
such as A=15, B=25, C=30, D=21, etc. The point value of the
word is calculated by adding up the individual values of the
letters in the word. For example, the word CAB would be
worth 30+ 15+ 25, for a total of 70.

Here is a program to calculate the value of a word after
you've entered the values for each letter.

Program 5-3. Letter Puzzles

109 REM LETTER PUZZLES

110 DIM V(26)

12¢ CALL CLEAR

13@¢ PRINT "ENTER THE VALUE FOR EACH
{4 SPACES}LETTER."::

14¢ FOR A=65 TO 90

150 PRINT CHRS$(A)&" ";

164 INPUT V(A-64)

1780 NEXT A

189 PRINT :::"NOW ENTER A WORD"

1909 INPUT W$

200 T=0

218 FOR I=1 TO LEN(WS$)

220 L$=SEGS(WS,I,1)

230 A=Asc(L$)

240 IF A>64 THEN 279

222

25@ PRINT :"PLEASE USE LETTERS ONLY."::
260 GOTO 190

278 IF A>9@ THEN 250

28@ T=T+V(A-65)

290 NEXT I

300 PRINT :"TOTAL VALUE OF WORD IS";T
310 GOoTO 180

328 END

Bingo

There is a variation on Bingo in which each letter of the
alphabet has a value. You are given a 5x5 square and may
write the word bingo diagonally or in any column. You must
then fill in the rest of the squares to make five five-letter words
that include the letters of bingo where you placed them. The
object is to find words that use high-value letters; your score is
the total of the five word values.

The computer can be used to find high-scoring words. The
following program gives high-scoring words for the game. Line
160 is a DATA statement. Change this statement to READ the
point values of each letter of the alphabet, in order, for your
particular contest. '

Lines 360-870 are DATA statements that contain five-letter
words. Most contests require you to use a certain dictionary. In
preparing the program for play, you should go through the
dictionary to find all the five-letter words that qualify, and that
contain the letters B, I, N, G, or O; then type these words in the
DATA statements. The last word in the list should be ZZZZ.

Warning: The list in this program may not be inclusive.
Also, this list only includes words starting with A through H.

When you run the program, you will be asked for a letter.
Type in B and press ENTER. The computer will find all words
which start with B and total the values of the letters. It will
print the first word it comes to, and its score; from that point
on, it will print only words with higher totals than those
already found.

Next, the computer will find all words with the letter B in
the second position, then in the third position, and so forth.

Run the program again and enter I. For each run, the
computer will search for a different letter that you INPUT.

The values for each letter of the alphabet are read in as data
in an array L(I). Lines 190-340 perform a loop for each of the

223

e T ———r e Chapter 5 remsnesssmmresmsmme

five positions in the word. A word is READ in from DATA. If
the letter in the particular position is not equal to the letter you
had requested, then the next word is read. If the letter is the
one being searched for, the total value of the word is calculated
by adding the values for each letter in the word (lines 260-290).
T is the total. SEGS$ finds out the individual letter, then ASC
gets the ASCII value of the letter. Since the ASCII value of A is
65, and each letter has a corresponding ASCII code in order,
the program subtracts 64 from the ASCII value of the letter in
the word. L gives the value of the particular letter. TT is the
high total so far.

Program 5-4. Bingo

108 REM BINGO A-H

110 DIM L(26)

1280 FOR I=1 TO 26

13@ READ N

140 L(I)=N

150 NEXT I

164 DATA 32,17,31,13,14,15,18,33,29,30,11,1
6,19,28,20,12,34,23,26,10,21,22,35,24
i 25.27

17¢ CALL CLEAR

184 INPUT "LETTER ":A$

199 FOR I=1 TO 5

209 PRINT

210 TT=0

220 RESTORE 360

23@ READ W$

240 IF W$="2ZZZZZ" THEN 340

250 IF SEGS$(W$,I,1)<>AS THEN 230

260 T=0

278 FOR J=1 TO 5

280 T=T+L(ASC(SEGS(WS$,J,1))-64)

299 NEXT J

308 IF T<TT THEN 230

310 PRINT T;"{3 SPACES}";W$

3280 TT=T

330 GOTO 230

340 NEXT I

35¢ STOP

224

(o T e Py el Chapter 5 R T S T I R L]

360

370

380

390

400

419

420

430

449

459

460

4790

480

490

DATA ABACK,ABAFT,ABASE,ABASH,ABATE,ABBE
Y,ABBOT,ABEAM, ABHOR,ABIDE, ABODE, ABORT
+ABOUT, ABOVE,ABSTR,ABUSE, ABYSM

DATA ABYSS,ACORN,ACRID,ACTOR,ADAGE,ADDN
L,ADIEU,ADIOS,ADMAN,ADMIN,ADMIT, ADMIX
+ADOBE, ADOPT ,ADORE, ADORN,AEGIS

DATA AERIE,AFFIX,AFIRE,AFOOT,AGAIN,AGEN
T,AGILE, AGLOW,AGONY, AGORA,AGREE,AISLE
ALBUM,ALIAS,ALIBI,ALIEN,ALIGN

DATA ALIKE,ALIVE,ALLOT,ALLOW,ALLOY,ALOF
T,ALOHA, ALONE, ALONG, ALOOF ,ALOUD, AMAIN
,AMBER, AMBLE , AMEBA, AMEND , AMISS

DATA AMITY,AMONG, AMOUR, ANENT, ANGEL, ANGE
R,ANGLE, ANGLO, ANGRY , ANGST , ANGUS, ANION
+ANISE, ANKLE, ANNEX, ANNOY , ANNUL

DATA ANODE,ANTIC,ANVIL,AORTA,APHID,APHI
S,APORT,APRIL,APRON,ARBOR, ARDOR, ARENA
+ARGON, ARGOT , ARGUE, ARISE, ARITH

DATA ARMOR,AROMA,ARROW,ARSON,ASCOT,ASHE

N,ASIAN,ASIDE,ASPEN,ASPIC,ASSOC,ASTIR
+ATILT,ATOLL,ATONE,ATTIC,AUDIO

DATA AUDIT,AUGER,AUGUR,AUXIN,AVAIL,AVGA
S,AVIAN,AVOID,AXIAL,AXIOM, BABEL, BACON

, BADGE, BAGEL, BAGGY, BAIRN, BAIZA

DATA BAIZE,BALKY,BALMY, BALSA,BANAL,BAND
Y, BANJO, BANNS, BANTU, BARGE , BARON, BASAL
+BASIC,BASIL,BASIN,BASIS,BASSO

DATA BASTE, BATCH, BATHE, BATIK, BATON, BATT
Y, BAWDY, BAYOU, BEACH, BEANO , BEARD, BEAST
 BEECH, BEEFY, BEFIT, BEFOG, BEGET

DATA BEGUM, BEIGE, BEING, BELAY, BELCH, BELI
E,BELLE,BELLS, BELLY, BELOW, BENCH, BENNY

. BERET, BERRY, BERTH, BERYL, BESET

DATA BESOM,BESOT,BETEL, BEVEL, BEZEL, BIBL
E,BIDDY,BIDET,BIGHT,BIGOT,BILGE, BILLY
,BINGE, BIPED,BIRCH, BIRTH, BISON

DATA BITCH,BLACK, BLADE,BLAIN, BLAME, BLAN
D, BLANK, BLARE, BLASE, BLAST, BLAZE, BLEAK

, BLEAR, BLEAT, BLEED, BLEND, BLESS

DATA BLIMP,BLIND,BLINK,BLISS,BLITZ,BLOA
T, BLOCK, BLOND, BLOOD, BLOOM, BLOWY , BLUES
BLUET, BLUFF, BLUNT, BLURB, BLURT

225

500 DATA BLUSH, BOARD, BOAST, BOBBY, BOGEY, BOGU
S, BOLUS, BONER, BONGO, BONNY , BONUS , BONZE
; BOOBY, BOOST, BOOTH, BOOTY , BOOZE

510 DATA BORAX,BORNE, BORON,BOSKY, BOSOM, BOSU
N,BOTCH, BOUGH, BOULE , BOUND , BOURN, BOWEL
 BOWER, BOXER, BRACE, BRACT, BRAID

520 DATA BRAIN,BRAKE, BRAND,BRASH,BRASS, BRAV
E, BRAVO, BRAWL, BRAWN, BRAZE , BREAD, BREAK
 BREAM, BREED, BRIAR, BRIBE, BRICK

530 DATA BRIDE,BRIEF,BRIER,BRINE, BRING,BRIN
K,BRISK, BROAD, BROIL, BROKE, BROOD, BROOK
 BROOM, BROTH, BROWN, BRUIN, BRUIT

540 DATA BRUNT, BRUSH, BRUTE, BUDDY, BUDGE, BUGG
Y, BUGLE, BUILD, BULGE, BULKY , BULLY , BUNCH
. BUNCO, BUNNY , BURGH, BURLY , BURRO

550 DATA BURST, BUSBY,BUTTE, BUTUT, BUXOM, BYLA
W, BYWAY, CABAL, CABBY, CABIN, CABLE, CACAO
, CADGE, CAGEY, CAIRN, CAMEO, CANAL

560 DATA CANDY,CANNA,CANNY,CANOE, CANON, CANT
0,CARGO, CAROL, CAROM, CAVIL,CELLO, CHAIN
,CHAIR,CHANT, CHAOS,CHIAO,CHICK

576 DATA CHIDE,CHIEF,CHILD,CHILI,CHILL,CHIM
E,CHIMP,CHINA,CHINE,CHINK, CHINO, CHIRP
;CHIVE, CHOCK,CHOIR, CHOKE, CHOMP

580 DATA CHOPS,CHORD,CHORE,CHOSE, CHRON, CHUN
K,CHURN, CIDER,CIGAR,CINCH,CIRCA,CIVET
,CIVIC,CIVIL,CLAIM,CLANG, CLANK

590 DATA CLEAN,CLICK,CLIFF,CLIMB,CLIME,CLIN
G,CLINK, CLOAK, CLOCK, CLOSE, CLOTH, CLOUD
,CLOUT, CLOVE, CLOWN, CLUNG, COACH

600 DATA COAST,COBRA,COCOA,CODEX,COLIC,COLO
N, COLOR, COMBO, COMDG, COMDR, COMDT , COMER
, COMET , COMFY, COMIC, COMMA, COMMO

610 DATA CONCH,CONEY,CONGA,CONIC,CONST,CONT
D, CONTG, CONTR, COPRA, CORAL, CORNY, CORPS
, COUCH, COUGH, COULD, COUNT, COUPE

620 DATA COURT,COVEN, COVER,COVET,COVEY, COWE
R, COYPU,COZEN, CRANE, CRANK, CRICK,CRIER
+CRIME, CRIMP, CROAK, CROCK, CRONE

630 DATA CRONY,CROOK,CROON,CROSS, CROUP, CROW
D, CROWN, CRUMB, CUBAN, CUBIC,CUBIT,CUPID
,CURIA,CURIO,CYNIC,DAILY,DAIRY

226

I S T T Chapter =

640 DATA DAISY,DANCE,DANDY,DAUNT,DAVIT,DEBI
T,DEBUT, DECOR, DECOY , DEFOG; DEGAS, DEICE
DEIGN,DEISM,DEITY, DEMON, DENIM

650 DATA DENSE,DEPOT,DERBY,DERIV,DEVIL,DIAR
Y,DIGIT,DINAR,DINGO,DINGY,DINKY,DIODE
+DIRGE,DIRTY,DISCO,DISTN,DISTR

660 DATA DITCH,DITTO,DITTY,DIVAN,DIVOT,DIZZ
Y,DLITT,DODGE, DODOS, DOGGY, DOGIE, DOGMA
DOILY, DOLLY , DOLOR, DONOR, DONUT

678 DATA DOPEY,DOUBT, DOUGH,DOUSE, DOWDY, DOWE
L,DOWER, DOWNY , DOWRY, DOWSE , DOYEN, DOZEN
+DRAIN, DRANK,DRIER,DRIFT, DRILL

680 DATA DRILY,DRINK,DRIVE,DROLL, DRONE, DROO
L,DROOP,DROSS, DROVE, DROWN, DRUID, DRUNK
+ DUNCE, DYING, EAGER, EAGLE, EBONY

690 DATA EDICT,EERIE,EGRET,EIDER,EIGHT, ELAN
D, ELBOW,ELEGY,ELIDE,ELITE, ELOPE, EMBED
. EMBER, EMEND, EMOTE, ENACT , ENDOW

709 DATA ENDUE, ENEMA, ENEMY, ENJOY, ENNUI,ENTE
R, ENTOM, ENTRY, ENVOI, ENVOY, EPOCH, EPOXY
+EQUIP,EQUIV, ERGOT, ERODE, ERROR

719 DATA ETHOS,EVICT,EXIST,EXILE, EXTOL, EXUR
B,EYRIE,EYRIR, FABLE, FAGOT, FAINT, FAIRY
 FAITH, FAKIR, FANCY, FAUNA, FAVOR

720 DATA FEIGN,FEINT,FENCE,FETID,FIBER,FICH
E,FIELD,FIEND,FIERY,FIFTH, FIGHT,FILAR
,FILCH,FILLY,FILTH, FINAL, FINCH

73@ DATA FINIS,FINNY,FIORD,FIRST,FIRTH,FISH
Y,FIXED,FJORD, FLAIL, FLAIR, FLANK, FLICK
,FLIED,FLIER, FLING, FLINT, FLIRT

749 DATA FLOAT,FLOCK, FLOOD, FLOOR,FLORA, FLOS
S, FLOUR, FLOUT, FLOWN, FLUID, FLUNG, FLUNK
 FLYBY , FOCUS, FOEHN, FOIST, FOLIO

758 DATA FOLLY,FORAY,FORCE,FORGE, FORGO, FORT
E,FORTH, FORTY, FORUM, FOUND, FOUNT , FOXED
: FOYER, FRAIL, FRANC, FRANK, FRIAR

768 DATA FRILL,FRISK,FRIZZ,FROCK, FROND, FRON
T,FROST, FROTH, FROWN, FROZE, FRUIT, FSLIC
. FUDGE, FUGUE, FUNKY, FUNNY, FUROR

779 DATA GABBY,GABLE,GAFFE,GAILY,GAMIN,GAMU
T,GAUDY, GAUGE, GAUNT, GAUSS ,,GAUZE, GAVEL
+GAWKY , GEESE ,GENIE, GENRE,GENUS

227

e =] Chapter 5 resresvessre e

780 DATA GEODE,GETUP,GHOST,GHOUL,GIANT,GIDD
Y,GIMPY,GIPSY,GIRTH,GIVEN,GIZMO,GLADE
+GLAND,GLANS, GLARE ,GLASS , GLAZE

790 DATA GLEAM,GLEAN,GLEBE,GLIDE,GLINT,GLOA
T,GLOBE, GLOOM, GLORY,GLOSS ,GLOVE, GLOZE
,GNARL ,GNASH, GNOME ,GODLY , GONAD

80@ DATA GOODY,GOOFY,GOOSE,GORGE,GORSE,GOUD
A, GOUGE, GOURD,GRACE, GRADE, GRAFT, GRAIL
+GRAIN, GRAND,GRANT,GRAPE, GRAPH

8104 DATA GRASP,GRASS,GRATE,GRAVE,GRAVY,GRAZ
E,GREAT,GREBE, GREED, GREEK , GREEN , GREET
+GRIEF,GRILL,GRIME,GRIND,GRIPE

820 DATA GRIST,GRITS,GROAN,GROAT,GROIN,GROO

M,GROPE,GROSS,GROSZ,GROUP,GROUT,GROVE

+« GROWL , GRUEL, GRUFF ,GRUNT , GUANO
830 DATA GUARD,GUAVA,GUESS,GUEST,GUIDE,GUIL

D,GUILE,GUILT,GUISE,GULCH,GULLY, GUMBO
. GUNNY , GUPPY,GUSHY,GUSTO, GUTTY

848 DATA GUYOT,GYPSY,HABIT,HAIKU,HAIRY,HAJJ
I,HALLO, HANDY, HAOLE, HAUNT , HAVEN, HAVOC
+HEDGE,HEIST,HELIX, HELLO, HELOT

850 DATA HENCE,HENNA,HERON,HINGE,HITCH,HIVE
S, HOARD, HOARY , HOBBY , HOGAN , HOIST, HOKUM
,HOLLO, HOLLY , HOMER, HOMEY , HONEY

860 DATA HONOR,HOOEY,HORDE,HORSE, HOTEL, HOUN
D,HOURI,HOUSE, HOVEL, HOVER, HUMAN,, HUMID
, HUMOR ,HUNCH, HURON , HYENA , HYMEN

870 DATA AWAIT,BEGIN,CARNY,COCKY,COPSE,CRIS
P,DINER, ENSUE, EVENT, EVOKE, FICHU, FIFTY
+HINDI,HYDRO, ZZZZZ

888 END

Birthday List

Here is a program that keeps track of birthdays. The list can be
printed either by name, in alphabetical order, or by birthday, in
calendar order.

The DATA statements at the end of the main program
contain the names in alphabetical order by last name (you may
prefer to arrange the data in order by family). The number
following the name is the birthdate as a four-digit number. The
first two digits stand for the number of the month, and the last

228

TR A ST Chapter 5 coromessTeee—

two digits are the day. If either is unknown, the number should
be entered as 00. For example, a birthday of November 14
would be listed as 1114 — 11th month, 14th day. A

birthday sometime in May would be 0500 — fifth month,
unknown day.

After the names are listed in alphabetical order, there is a
delay while the names are sorted by birthday; then the list is
printed by date with a double space between months.

If you have more than 30 names, increase the parameters in
the DIM statement in line 110. You may also want to change to
a faster sort routine. N$ is the name and B$ is the birthday. M$
is an array that holds the month names. SEG$ looks at either
the first two digits or the last two digits of the birthday code.
VAL gives the numerical value of the string number.

How "Birthday List” Works

Lines

110 DIMension the name array, the birthday array,
and the month array.

120-130 Print title.

140-180 READ month names into M$ array.

190 L is a counter for the number of lines on the
screen.

200 READ last name LNS$, first name FN$, and
birthday B$.

210 Branch if LN$ is the last item on the data list.

220 Print the last name and first name on the screen.

230-260 Print the day and month of the birthday.

270 Combine first name and last name as N$ in
array.

280-290 Increment the counter in name array and the
counter in number of lines printed on screen.

300-350 If the screen is filled, press any key to continue.

360-380 Print the message; wait for key to be pressed.

390-410 Clear the screen and print the title.

420-550 Birthday sort routine.

560-570 Clear the message and initialize the line count.

580-750 Print the day, month, and name. Double-space

if the months are different; keep track of the
number of lines printed so the names don't
scroll off the screen.

229

B e ——— Chapter D e e—————————

760 End of main program logic.
770-1090 Sample DATA. These names and dates are
fictional.

Program 5-5. Birthday List

100 REM BIRTHDAY LIST

118 DIM N$(30),B$(30),M$(12)

120 CALL CLEAR

13@ PRINT TAB(6);"BIRTHDAY LIST":::

140 DATA ?27?,JAN,FEB,MAR,APR,MAY,JUN,JUL
150 DATA AUG,SEP,OCT,NOV,DEC

160 FOR I=0 TO 12

178 READ M$(I)

180 NEXT I

199 L=1

200 READ LN$,FN$,B$(J)

210 IF LN$="ZZZ" THEN 360

22@ PRINT LNS$S:", ";FN$;TAB(20);

230 DAY$=SEGS$(BS(J),3,2)

240 IF DAYS$<>"@@" THEN 260

25@ DAYS$="?27?2"

260 PRINT DAYS$:;" ";M$(VAL(SEGS(BS$(J),1,2)))
270 N$(J)=FN$&" "&LNS

280 J=J+1

290 L=L+1

300 IF L<18 THEN 200

310 PRINT :"PRESS ANY KEY TO CONTINUE.";
320 CALL KEY(9,K,S)

330 IF S<1 THEN 320

340 CALL CLEAR

35@0 GOTO 190

360 PRINT ::"PRESS ANY KEY FOR NEXT LIST.";
370 CALL KEY(@,K,S)

380 IF S<1 THEN 370

390 CALL CLEAR

409 PRINT TAB(6);"BIRTHDAY LIST":::

41@ PRINT "=-=-SORTING--";

420 LIM=J-2

430 Sw=0

44@ FOR K=@0 TO LIM

230

TS SRS AT T Chapter 5 easseseamesaemre—

450
460
470
480
490
500
510
520
530
540
550
560
570
580

590
600

610
620
630
640
650
660
670
680
690
709

710
720

730
740
750
769
779
780
790
809
810
820
830
840
850
860

IF VAL(BS(K))<=VAL(BS$ (K+1))THEN 540
BB$=B$ (K)

NN$=N$ (K)

B$ (K)=B$ (K+1)

N$ (K)=N$ (K+1)

BS$ (K+1)=BB$

N$ (K+1)=NN$

Sw=1

LIM=K

NEXT K

IF SW=1 THEN 430

CALL HCHAR(24,3,32,28)
L=0

FOR KK=@ To %—1

DAY$=SE

MONS$=M$ 3AE sgg;tgéi&x),l.z)))
IF MONS=MON1$ THEN 640
PRINT

L=L+1

IF DAYS$<>"@g@" THEN 660
DAY$="22"

PRINT DAYS$:" ";MONS:"{3 SPACES}";N$(KK)
MON1$=MONS$

L=L+1

IF L<18 THEN 750

PRINT :"PRESS A KEY TO CONTINUE.";
CALL KEY(@,K,S)

IF S<1 THEN 710

CALL CLEAR

L=0

NEXT KK

STOP

REM SAMPLE DATA

DATA ADAMS,LEWIS, 2000
DATA BAKER,MELISSA,1112
DATA CHILD,ED,9839
DATA DAINES,BILL,?520
DATA EVANS,JOHN, @415
DATA EVANS,JIM, 1000
DATA JONES,DOUG,1115
DATA NELSON,ANDY, 2500
DATA NELSON,LENA,37090

231

e — s T Chapter ST e — —

870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
10950
1060
1070
1080
1090

232

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

NELSON,SHEILA,1115
PETERSON, GRANT, 9400
PETERSON, ROGER, 1805
PETERSON, SHERYL, 0618
S,GRANDMA, @815
S,GRANDPA, 1017
SMITH,BOBBY, @510
SMITH, CHARLES, @611
SMITH,CHRISTY,1115
SMITH, CHERY, 2802
SMITH,CINDY,@415
SMITH, RANDY, @302
SMITH, RICHARD, 35089

DATA W,GRANDMA,1120
DATA W,GRANDPA,@221
DATA WHITE,ANGELA, 9900

DATA

WHITE, BRYAN, 0700

DATA WHITE,DEAN,0104
DATA WHITE,JENNIE, 0200
DATA WHITE,KELLY, 1014

DATA
DATA

END

WHITE, RELLE, 2928
2272,72,0000

ammi
Techniques

I ———— Chapter 6 emm———ns

)OO OO0 0000000000000OOCOOO0O0

Chapter 6

Programming
Techniques

If you ask ten different programmers to write a basic home
inventory program, you'll get ten different programs. In
computer programming, many different methods accomplish
the same thing. The ““correct’”” method is the one that works —
the program that will run without a bug.

The programmer often has to make a choice — one way of
solving a problem may be easier for the user to understand but
will take more memory than another method, while a third
method may execute more efficiently than either of the first
two.

Arrays

Memory locations are like a wall full of post office boxes, each
with its own name. Each address holds a value for a variable
name. For example, suppose we have the beginning of a
program:

100 A=3

110B=4

120 X=10

The boxes would look like this:

A B X

3 4 10

Later in the program you may change the values:

200 A=7
210B=A+2
220X=A+B

235

The values in the boxes change; they become:

A B X

7 9 16

Each of these boxes has a name, and each name has only one
box.

Now, just like in the post office, some boxes are bigger than
others.

The C box can be divided up into smaller parts, but they are
still parts of C. In this case, the C box holds an array, and
different values can go into each particular part of C. We
specify each part of C with a subscript, a number in
parentheses. So the names of the elements of the array C are C(1),
C(2), and C(3).

C() C@ C@3)

236

Boxes can be even larger — representing one, two, or three
dimensions in TIBASIC. Here is a chart of D, which has two
dimensions, one with two elements (first subscript), the other
with four (second subscript).

T T T
I | l
A B X D@1,1) : D(1,2) | D@1,3) 1 D(1,4)

|
SO NS R S——

| | | | !
Cw | C@ | CB® |De | De2 | De3) | DeY
| i | | |

Arrays can make a repetitive computer program more
efficient. If you do a process several times, it may be worth
using a variable with a subscript. Suppose you are describing
three boys. Their names are Richard, Robert, and Randy. We
can say:

NAMES$(1)=""RICHARD"’
NAME$(2)=""ROBERT"”
NAME$(3)=""RANDY"’

Now we wish to list some things about these people:
AGE(1)=11
AGE(2)=6
AGE(3)=9
COLOR$(1)=""BLACK""
COLORS$(2)=""BLUE"”
COLOR$(3)="RED"”

SPORT$(1)=""FOOTBALL"
SPORT$(2)=""BASEBALL"’
SPORT$(3)='"BASKETBALL"’

You can print a list of the boys by using a single loop and a
variable subscript:

200 FOR J=1 TO 3
210 PRINT NAMES (J) ;AGE(J) ; SPORTS (J)
220 NEXT J

237

P ————e—n ([NADTET (e———

If you wish to know about a particular person, print only
his information by searching the arrays for a particular
subscript.

300 N=2
310 PRINT NAMES(N) ,COLORS (N)

If you have a longer list, you could sort. To find all the boys
with an age of 6, and there are a total number (T) of boys:

400 FOR J=1 TO T

410 IF AGE(J)<>6 THEN 430
420 PRINT NAMESS (J)

430 NEXT J

The computer will only execute line 420, PRINT NAME$(]),
when the value of AGE(]) is 6.

This information about the boys could be in a two-
dimensional array rather than in the four one-dimensional
arrays above. Call the main array PERSONS$. The data may be
arranged like this:

PERSON$(1,1)=““RICHARD"’
PERSON$(1,2)=""11""
PERSON$(1,3)="BLACK"’
PERSONS(1,4) =“FOOTBALL"’

PERSON$(2,1)="“ROBERT"’
PERSON$(2,2)="6""
PERSONS(2,3)="‘BLUE"’
PERSONS$(2,4)=‘“BASEBALL"’

PERSONS$(3,1)="RANDY"’
PERSON$(3,2)=""2""
PERSON$(3,3)="'RED"’
PERSONS(3,4)=""BASKETBALL"”

The first subscript tells us which boy’s data is held in that
variable, and the second subscript identifies the category of
information. The word or number in quotation marks is the
string placed in each address of our post office boxes.

In TI BASIC, both numeric variables and string variables
may be arrays. You may not use the same variable name for

238

—— Chapter 6

subscripted and non-subscripted variables. For example, you
may not use A and A(3) in the same program.

If you use a variable name with a subscript without first
DIMensioning that variable, the computer automatically
reserves eleven elements for the array. If you need more than
eleven, use a DIM statement to clear enough space:

100 DIM D(30)

If your program is running nearly full memory and you do
not need all eleven elements, you can save memory by
DIMensioning the array for fewer elements:

100 DIM A(6)

If you have a two- or three-dimensional array, you must
specify how many locations you want to reserve in each
dimension.

100 DIM F(4,5,10)

The DIMension statement must appear before any
reference to the array; it is wise to put all DIMension
statements near the beginning of the program.

The computer automatically starts numbering all subscripts
with zero. In other words, there can be elements such as D(0)
and E(1,0). Since the zero variable counts as one element, a
statement like DIM A(10) reserves eleven subscripted variables,
A(0) through A(10). If you prefer to use only elements
numbered 1 and above, you may use the OPTION BASE
statement:

100 OPTION BASE 1
110 DIM A(10)

Now there will only be ten variables reserved, A(1) through
A(10).

Edible Arrays

““Cookie File’” illustrates the use of arrays. This program uses a
data structure to keep a file of cookie recipes. You may select a
cookie recipe from the menu screen, then that recipe will be
printed on the screen along with a picture of the cookie type. If
you choose to convert the recipe (double, triple, or halve it, for
example), enter a multiplication factor, and the converted
recipe is printed. Another option of this program is to indicate
on an inventory list which ingredients you have and which you

239

Chapter 6 meooresE———G

do not have. The computer will then report which cookies can
be made with the ingredients you have.

Line 380 DIMensions ING$(19) for a list of ingredients and
INV$(19,1) for an inventory list. Subscripts start at zero. Lines
390-420 READ, from DATA statements (lines 2260-2300), first
A$, which is a measurement, and then INV$(I,0), which is an
ingredient. ING$(I) is equal to the measurement combined
with the ingredient as one string. This process is repeated for
20 items.

Later, in lines 1390-1470, as each ingredient is listed using
INV$(K,0), the user presses Y or N. The character pressed will
be stored in INV$(K, 1) to make up an inventory list.

In one section of the program, the recipe is listed. Lines
1010-1020 set the amount AMT(I) and the ingredient INGR$(I)
for each item of the recipe. Lines 1220-1240 convert the recipe
by multiplying a factor F by the amount AMT(K) and printing
the corresponding ingredient INGR$(K).

The DATA statement for each cookie is entered in the
following order: title, graphics code, cups of shortening, cups
of sugar, cups of brown sugar, cups of powdered sugar, table-
spoons of honey, eggs, teaspoons of vanilla, cups of flour,
teaspoons of baking powder, teaspoons of baking soda,
teaspoons of salt, teaspoons of cinnamon, tablespoons of
cocoa, teaspoons of almond extract, cups of milk, cups of
oatmeal, ounces of chocolate chips, dozens of almonds,
teaspoons of cake decors, cups of cinnamon sugar, and the
cookies’ baking temperature. If a recipe doesn’t use a particular
ingredient, I enter no data at all before the comma:

DATA ALMOND COOK—[ES;1;2;2;;,r;23;4}211;332;31141;1375

This indicates that almond cookies use graphics style 1, and the
recipe is 2 cups of shortening, 2 cups of sugar, 2 eggs, 4 cups of
flour, 2 tsp. baking powder, 2 tsp. almond extract, and 4 dozen
almonds, and the cookies bake at 375 degrees.

You can put your own recipes in this program by changing
the DATA statements. Other ingredients may be added or
deleted by adjusting the first DATA statements, which create
the ingredient list, and the DIMension statement which creates
the number of ingredients as a parameter in the arrays. You
will also need to change the titles on the menu screen and the
corresponding RESTORE numbers.

240

ST R ST Chapter #) comreee ————Tn

This program does not include mixing directions because
with cookies you usually know the procedure and need only
the proportions of ingredients. You could add mixing
instructions by adding some codes in the DATA statements to
correspond to certain print statements. An example in this
program is graphics code 2, which includes the instruction
“Roll in powdered sugar.”’

In case you wish to try some of these recipes, just mix the
ingredients in order, then bake. Some of the specifics are:

Almond cookies: Roll into balls, flatten slightly, place
blanched almond on top; brush with egg if desired.

Ball cookies: Drop cookies onto sheet; then flatten with ice
cube or moist rag; sprinkle colored cake decors on top; bake
just until golden brown around the edges.

Brownies: Melt the cocoa with the shortening first; bake in
square pan.

Butterscotch bars: Melt shortening (or butter) with brown
sugar; cool; then add other ingredients; bake in rectangular
glass baking dish.

Chocolate chip bars: Bake in 9x 13 pan.

Chocolate chip cookies: Make as drop cookies.

Chocolate drop cookies: Make as drop cookies, good with
chocolate frosting.

Honey balls: Roll into balls; bake about 25 minutes; roll in
powdered sugar while still warm, then again when cool.

Honey spice cookies: Make as drop cookies.

Mexican wedding cookies: Like honey balls.

Oatmeal chocolate chips: Make as drop cookies.

Oatmeal crisps: Refrigerator cookies; form into long roll;
slice, then bake.

Snickerdoodles: Roll dough into balls, then roll in
cinnamon and sugar mixture before baking.

Toffee bars: Press into 9 x 13 pan or on cookie sheet (about
Y2-inch thick).

Program 6-1. Cookie File

108 REM COOKIE FILE

110 REM BY REGENA

120 GOSUB 1760

139 GOTO 380

149 CALL HCHAR(22,27,137)

241

eI Chapterb e

159
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

470

480
499
500
510
520
530
540

242

CALL HCHAR(22,28,136,2)
CALL HCHAR(22,30,138)
CALL HCHAR(21,28,128,2)
RETURN

CALL HCHAR(21,27,124)
CALL HCHAR(21,28,126)
CALL HCHAR(22,27,125)
CALL HCHAR(22,28,127)
RETURN

CALL HCHAR(22,26,137)
CALL HCHAR(22,27,136,2)
CALL HCHAR(22,29,138)
CALL HCHAR(21,27,139)
CALL HCHAR(21,28,149)
RETURN

CALL HCHAR(22,26,96,4)
CALL HCHAR(21,26,103,4)
RETURN

CALL HCHAR(22,26,129)
CALL HCHAR(22,27,130,2)
CALL HCHAR(22,29,131)
CALL HCHAR(21,27,1@3,2)
RETURN

DIM INGS$(19),INVS$(19,1)
FOR I=@ TO 19

READ AS$,INVS$(I,9)
INGS(I)=AS$&INVS(I,0)
NEXT I

CALL CLEAR

CALL COLOR(2,2,1)
CALL COLOR(9,7,1)
PRINT "CHOOSE:":::"1 NEED TO KNOW
":"{3 SPACES}CAN BE MADE"
PRINT :::"2 WANT TO SEE A":"
{3 SPACES}CERTAIN RECIPE":::
PRINT "3 END PROGRAM":::
CALL KEY(®,KEY,S)

IF KEY=49 THEN 1300

IF KEY=51 THEN 2470

IF KEY<>50 THEN 490

CALL CLEAR

PRINT "CHOOSE:"::

WHAT

e Chapter 6 cemE——e—emm———

55@ PRINT "A ALMOND COOKIES":"B BALL COOK
IES":"C BROWNIES"

560 PRINT "D BUTTERSCOTCH BARS":"E CHOCOL
ATE CHIP BARS":"F CHOCOLATE CHIP COO
KIES"

57@ PRINT "G CHOCOLATE DROP COOKIES":"H H
ONEY BALLS":"I HONEY SPICE COOKIES"

580 PRINT "J MEXICAN WEDDING COOKIES":"K
OATMEAL CHOCOLATE CHIPS":"L OATMEAL
CRISPS"

599 PRINT "M SNICKERDOODLES":"N SUGAR COO
KIES":"O TOFFEE BARS"

600 CALL KEY(@,KEY,S)

619 IF (KEY<65)+(KEY>79)THEN 690@

620 CALL CLEAR

630 ON KEY-64 GOTO 640,669,680,709,720,740,
769,780 ,800,820,840,860,880,909,920

649 RESTORE 2310

650 GOTO 939

660 RESTORE 2320

678 GOTO 930

680 RESTORE 2330

699 GOTO 930

730 RESTORE 2340

718 GOTO 930

72@ RESTORE 2350

730 GOTO 930

748 RESTORE 2360

758 GOTO 930

768 RESTORE 2370

778 GOTO 9349

780 RESTORE 2380

799 GOTO 930

809 RESTORE 2390

814 GOTO 930

820 RESTORE 2400

839 GOTO 930

840 RESTORE 2410

850 GOTO 930

860 RESTORE 2420

870 GOTO 930

880 RESTORE 2430

243

e ———— TR Chapter H et

898 GOTO 930

900 RESTORE 2440

918 GOTO 930

920 RESTORE 2450

930 READ AS,G

94@ PRINT AS$:::

950 ON G GOSUB 140,190,240,300,330
960 I=0

9708 FOR J=0 TO 19

980 READ BS

999 IF BS$="" THEN 1050
1099 IF BS$="@" THEN 1050
1910 AMT(I)=VAL(BS)

10280 INGRS$(I)=INGS$(J)

1030 PRINT AMT(I);INGRS(I)
1040 I=I+1

1050 NEXT J
1060 READ T

1079 PRINT :"BAKE AT";T;"DEGREES."
1080 IF G<>2 THEN 1100
1090 PRINT "ROLL IN POWDERED SUGAR."

1100 PRINT :"WANT TO CONVERT RECIPE?(Y/N)"
1118 CALL KEY(@,KEY,S)

1120 IF KEY=78 THEN 1270
1130 IF KEY<>89 THEN 1110

1140 PRINT :"MULTIPLY BY WHAT NUMBER"
1150 INPUT "OR DECIMAL FRACTION? ":F
1160 IF F>@ THEN 1190

1178 PRINT :"SORRY, F>@Q"

1180 GOTO 1140

1190 CALL CLEAR

1200 PRINT F;"TIMES ORIGINAL RECIPE":::
1213 PRINT AS::

1220 FOR K=0 TO I-1

1230 PRINT F*AMT(K); INGRS (K)

1240 NEXT K

1250 PRINT :"CONVERT AGAIN? (Y/N)"

1260 GOTO 1110

127@ PRINT :"PRESS ANY KEY TO CONTINUE."
1280 CALL KEY(@,KEY,S)

12909 IF S=0 THEN 1280 ELSE 430

1300 CALL CLEAR

244

Eoissha oS e s RS NS e Chapterb AR rEeE e

1319
1320
1330
1340
1358

1360
1370
1380
1390
1400
1410
1420
1430
1440
1459
1460
1470
148@
1490
1500
1510
1520
1530

1540
1558

1560
1570

1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1709

PRINT "IN THE FOLLOWING LIST,"
PRINT "PRESS ""y"" IF YOU HAVE"
PRINT "THE INGREDIENT."

PRINT “PRESS n IINII n IF YOU DO NOTO n
PRINT :"PRESS ""S"" TO START OVER.":::
CALL SOUND(150,1397,2)

YS=0

FOR K=@ TO 19

PRINT " _"“;INV$(K,Q)

CALL KEY(@,KEY,S)

IF KEY=83 THEN 1300

IF KEY=78 THEN 1450

IF KEY<>89 THEN 1400

YS=YS+1

CALL HCHAR(23,3,KEY)

INVS (K, 1)=CHRS (KEY)

NEXT K

c=0

PRINT ::"YOU CAN MAKE:"::

IF INVS$(@,1)="N" THEN 1530

IF INVS(7,1)="N" THEN 1530

IF YS>4 THEN 1550

PRINT "NOTHING TODAY.":"YOU NEED MORE
SUPPLIES."

GOTO 1270

RESTORE 2310

READ AS$,G

FOR J=@ TO 19

READ BS$

IF B$="" THEN 1620

IF B$="@" THEN 1620

IF INVS(J,1)="N" THEN 1660
NEXT J

CALL SOUND(159,1397,2)

PRINT A$

C=C+1

READ D$

IF D$S="ZZZ" THEN 1720

IF LEN(D$)<6 THEN 1660

AS$=D$

READ G

245

T e TR = R T Chapter 6 B i L

1710 GOTO 1579
1720 IF C=0 THEN 1530

173@ PRINT :"GO AHEAD AND BAKE!l"
1740 GOTO 1279

1758 STOP
1768 CALL CLEAR
1778 CALL CHAR(96, "EFFDB7FEDBFFB7FD")
1780 CALL COLOR(2,13,13)
1790 CALL CHAR(97, "F6BCES8FZAGCAS8")
180@ CALL COLOR(9,16,1)
1810 PRINT "{4 SPACES}++++++++++":"
{4 SPACES}++++++++++"
1820 PRINT "{4 SPACES}++COOKIE++":"
{4 SPACES}++++++++++"
1830 PRINT "{4 SPACES}+++FILE+++":"
{4 SPACES}++++++++++":"{4 SPACES}+++++
+++++" 22
1840 CALL CHAR(98, "FEFDFBFS@FDBAE7F")
1850 CALL CHAR(99, "FFFFFFFFOQFFFFFF")
1860 CALL CHAR(190,"0103070FQ@3FT7FFF")
1870 CALL VCHAR(12,17,98)
1880 CALL VCHAR(13,17,96,6)
1899 CALL VCHAR(19,17,97)
19908 CALL VCHAR(11,18,98)
1919 CALL VCHAR(12,18,96,6)
1920 CALL VCHAR(18,18,97)
1930 CALL VCHAR(10,19,98)
1949 CALL VCHAR(11,19,96,6)
1950 CALL VCHAR(17,19,97)
1968 CALL CHAR(101l,"@@7E7E7E7EFFFFFF")
1970 CALL HCHAR(12,7,100)
1980 CALL HCHAR(12,8,99,9)
1999 CALL HCHAR(11,8,100)
2009 CALL HCHAR(11,9,99,9)
201@ CALL HCHAR(19,9,1090)
2020 CALL HCHAR(10,10,99,9)
2030 CALL HCHAR(12,9,101)
2040 CALL HCHAR(11,11,101)
2050 CALL HCHAR(10,13,101)
2060 CALL CHAR(124,"@71F3F7F7FFFFFFF")
2070 CALL CHAR(125,"FFFFFF7F7F3FlF@7")
2080 CALL CHAR(126, "EOFS8FCFEFEFFFFFF")

246

S Chapter f mer——E——r——

2090 CALL CHAR(127,"FFFFFFFEFEFCFS8E")

210@ CALL CHAR(136, "FFFFFFFFFFFFFFFF")
2110 CALL CHAR(137,"01071F3F7F7FFFFF")
2120 CALL CHAR(138, "S80E@GF8FCFEFEFFFF")
213@ CALL CHAR(139, "000@0000@30FLF7F")
2140 CALL CHAR(140, "00000J0JCOFIFSFE")
2150 CALL CHAR(103,"0000000000030355")
216@ CALL CHAR(128, "0000000000003033C")
217@ CALL CHAR(129, "@F3F7FFFFF")

2180 CALL CHAR(13@, "FFFFFFFFFF")

2199 CALL CHAR(131, "FOFCFEFFFF")

2209 CALL COLOR(12,16,1)

2210 CALL COLOR(13,11,1)

2220 CALL COLOR(14,12,1)

2230 CALL CHAR(64,"3C4299A1A199423C")

2240 PRINT :

2250 RETURN

2260 DATA "C. ",SHORTENING,"C. ",SUGAR,"C.
", BROWN SUGAR,"C. ",POWDERED SUGAR,"T

BSP. ",HONEY,"",EGGS

227@ DATA "TspP. ",VANILLA,"C. ",FLOUR,"TSP.

",BAKING POWDER,"TSP. ",BAKING SODA,

"TSP. ",SALT

2280 DATA "TSP. ",CINNAMON,"TBSP. ",COCOA,"
TSP. ",ALMOND EXTRACT,"C. ",MILK,"C.
", OATMEAL

2299 DATA "0Z. ",CHOCOLATE CHIPS,"DOZ. ",AL
MONDS

2309 DATA "Tsp. ","CAKE DECORS","C. ","CINN
AMON & SUGAR"

2310 DATA ALMOND COOKIES,1,2,2,:,+2:++4,2,..
flzlfrl4lll3?5

2320 DATA BALL COOKIES,5,:5,.33,,.,,1,.5,.75
l!ll!!!!!llztra?s

2330 DATA BROWNIES,4,:5,1,,,+2,1,:75,45,,.5
llGIf!lllllssg

2340 DATA BUTTERSCOTCH BARS,4,.5,,2,,.2,1,1
-75;2,,-25:!::!:!:!!375

2350 DATA CHOCOLATE CHIP BARS,4,.5,,1,,,1,1
iLe?55 3 685D i s 5 X na 350

2360 DATA CHOCOLATE CHIP COOKIES,3,.5,.25,.
5!001!°5rlr:'50°Sl:!ll:errr:3?5

247

--------lChapmerb1--------|

2378 DATA CHOCOLATE DROP COOKIES,3,.5,.,1,.,,
1,131667, ;45,5456 5450543540350

2380 DATA HONEY BALLS,2,:5,,:.2,,1,1,,,.25,
111111111396

2390 DATA HONEY SPICE COOKIES,1l,.5,.75,,.4,
v295: 100050000000 04375

2400 DATA MEXICAN WEDDING COOKIES,2,.75,,,.
67::f101°5:cr-25:l:rl:-75:::::325

2410 DATA OATMEAL CHOCOLATE CHIPS,3,1,1,.5,
102,1,2,,1,1,,,442,6,,,,350

2420 DATA OATMEAL CRISPS,1,1,1,1,,.,2,1,1.5,
elelososs300004350

2430 DATA SNICKERDOODLES,1,1,1.5,,,:2,,2.75
!3::‘5:::l::frr°5:493

2440 DATA SUGAR COOKIES,5,.67,.75,,,,1,.5,2
11e5,,425,,4425,4 4444375

2450 DATA TOFFEE BARS,4,1,,1,:,,:1 0200000000
,6,,,,359

2460 DATA 72772

2473 CALL CLEAR

2480 END

DATA Statements

DATA statements contain numbers or strings or both, and may
be placed anywhere in your program. They are ignored until
the computer comes to a READ statement; then the computer
finds the first DATA statement and READs the appropriate
number of items.

If the computer encounters another READ statement, it
goes to the very next data item, whether it’s in the same DATA
statement or in the next DATA statement, and continues to
READ in order. All items are separated by commas.

100 REM DATA 1

119 FOR I=1 TO 5

120 READ A,B

130 PRINT ::A;"+";B;"=";A+B

140 NEXT I

150 DATA 1,2,3,4,10,13,11,5,23,45
160 END

248

T ——eT Chapterb RS ———— e m———

When you RUN this program, the results are:

1+2=3

3+4=7

10+13=23

11+5=16

23+45=68
* % DONE * %

The first time through the loop, A will be 1 and B will be 2;
the second time, A will be 3 and B will be 4, and so forth. You
can see that a DATA statement is more efficient (as far as
amount of memory used) to get a lot of numbers into the
computer than a number of LET statements. With DATA
statements, you do need to be careful that commas are in the
right places, that the DATA items match the READ statements,
and that there is sufficient data for the number of items in the
READ statements. If READ can’t find any more DATA, the
program crashes.

In TIBASIC, strings in DATA statements do not need to be
in quotation marks unless there are leading or trailing spaces or
commas within the string. An example of a DATA statement
using strings is

300 DATA GEORGE,HENRY,932 EVERGREEN, “PROVO,

UTAH"”'

Working with RESTORE

One of the most useful commands in working with data is the
RESTORE statement — it makes it much easier to keep track of
where your data lists start. Ordinarily, the computer goes
straight through the DATA statements in order, as needed by
the READ statements. RESTORE, used without any
parameters, will start the data list all over again with the first
DATA statement.

Suppose I want to use the same list of numbers in two
operations. Instead of having identical DATA statements, I
finish the first operation, use RESTORE, and start over on the
data list for the second operation.

100 REM DATA 2

118 FOR I=1 TO 5
120 READ A,B

249

e Chapter e

138 PRINT :A;"+";B;"=";A+B

140 NEXT I

15¢ paTA 1,2,3,4,10,13,11,5,23,45
160 RESTORE

178 FOR I=1 TO 5

186 READ A,B

190 PRINT :A;"*";B;"=";A*B

200 NEXT I

210 END

RESTORE with Parameters

The nicest thing about the RESTORE statement is that you do
not have to RESTORE back to the beginning of the very first
DATA statement in the program; you may RESTORE a certain
line number. If you use a statement such as RESTORE 380, the
very next READ statement will start with the data in line 380.

Take another look at the ““Cookie File’” program a few
pages back. Lines 2260 to the end contain DATA statements.
Lines 390-420 read A% and INV$(I,0) 20 times and use the data
in lines 2260-2300. If you want to see a certain cookie recipe,
you make a choice from a menu screen; in lines 630-920 the
program RESTOREs the appropriate DATA statement for the
particular recipe you chose. At the next READ statement, in
line 930, the computer will READ whatever DATA statement
RESTORE specified.

In the ingredient inventory section, line 1550 is RESTORE
2310, so the next READ statement will start at the data in line
2310 and read through all the cookie recipes.

The following program illustrates the use of DATA
statements and READ statements in a high-resolution graphics
display. Lines 170-340 are DATA statements that contain
character definitions. Lines 130-160 READ in the information.
C holds the character number, which is used as a counter in the
FOR-NEXT loop.

The first iteration of the loop reads C$ as
FFFFFFFFFFFFFFFF and defines character number 33 as a
filled-in square. The second iteration defines character 34 to be
a null character. The third iteration defines character 35 to be
0001070F1F3F7F, and so forth to character 140.

These 22 lines replace 107 CALL CHAR statements. This
method uses less memory, but it makes it harder to debug and
keep track of which string goes with which character number.

250

rrTEr—— T Chapter ¢ ememmer s

Since many of the defined graphics characters are actually
redefined printable characters, PRINT statements can be used
to draw the graphics (lines 350-460). Since these symbols and
letters have been redefined, you will see, not symbols and
letters, but the graphics characters which form a bull’s head.

Lines 470-500 draw graphics on the screen in the non-
PRINTing method. The DATA in lines 510-530 are sets of row,
column, and character numbers for use in the CALL HCHAR
statement.

Program 6-2. Angry Bull

120 CALL CLEAR

1389 FOR C=33 TO 140

140 READ C$

150 CALL CHAR(C,CS)

168 NEXT C

179 DATA FFFFFFFFFFFFFFFF, ,0001070F1F3F7F7F
, ABCO8I000300808, 3000000303 3C4582,000
00304081@20E, 7FC

180 DATA C@303F080402,00008768101008,0030080
6C12473804,0004060703030307,000000008
JCOEQDF ,E0FFFFFFFFFFFFFF

199 DATA @102FFFEFFFFFAFC,35489020C08, 00000
30301110E,0080800909CF3,370F3F2F271D26
@2,FOFCFFFFFFFF1F@D

200 DATA OQQOFFFFFFFFFFFFF,dF1FFFFFFFFFFFFF
, FCFCFCFCFCFCFCFC, 7F7F7F3F1F1F2F2,FFF
FFFFFFCF@C, FCFOFAGD

210 DATA 7980384488102021,0300010204040482,
438C304040818282,0E166EBF7E, FFFFFFFFQ
FO301,FSFIFOEDCAS8

220 DATA 0000000106040 EDF,20204183071F7FFF,
0980PP8I8CFFFFFF, 0000806A7FFFFFFF, 222
4455EFFFEFFFE

23¢9 DATA @1FD@3798503010D,84B42424241C0101,
@Ce83042809020C, 098073 7C3E3ELF1F, 0000
101C3E3FFFFF

240 DATA 38300ES1406,00000083C320100C,1F1F3
F3F7F7F797, FFFFFFFFFFFCFAFD, FEFFFCFCF
8588108, 749C2008A8F8FCFC

251

T TSRS T s e Chapter 6 (S e IR R

250

260

270

280

290

300

310

320

330

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

252

DATA 804040402020401008,1FO0FOFIFG70707E
7,870301,FFFFFF7F,F4E9CB830F@78707,17
FFFFFOFDFCFEFE

DATA @FO0@@818FCFCFCFC,F8C8070060906,38D
890187C94E407, FFFFFFFEF@90929, FFFFFF7
F3F1F272,FFFFFFFFFFFCF8

DATA 23030303010181081,7F7F7DFSEOFFFFFF,
@707030101018303 , FFFFFFCFCFCEFCF1,909
JAOAD6040C0A9,202020202020232

DATA FEFCFS8FJEJCOCO81,10102020403439418,
204040808, 7F7F3F3F3F1F1FOF, FCFSFJEJED
E6FFFF,00001F205F84C7E

DATA Q404848480COF3FF,00000000C020101,1
202020204049808 ,0F3F23787878737C7, FFFF
FFB38080FJFF, EJEGCO8OQI0A3FFF

DATA 7F7F7F3E1CO080F,808000181C1E3F7E,1
?10202040808038, FFFF3F3F3F3F1F1F, FEFE
FEFCF@F2F1F,QF0F,FF7F, FFF8

DATA FOE,2780402018050381 ,00E040808,422
2120706020101 ,86463A01 ,80000000030585
@5 ,0000@3FC, 408

DATA 080808101010202,0808040404040404,0
00000804020101 ,000007080A0A04,0333428
00810204 ,0E708001020C106

DATA 800040201010102,80010200808083C,Ad
100F,00010638C,8080407807 ,40408080808
2808 ,808080808E513E2

DATA 000007182020404,00C22010000000201
PRINT TAB(6);"#$ 8&'()* +,"

PRINT TAB(6);:"l-./ ©@123456"

PRINT TAB(6);"789: ;< =>12"

PRINT TAB(5);"@ABCDE FGHIJK"

PRINT TAB(5);"L!I!MNOP{3 SPACES}Ql!5,"
PRINT TAB(6);"RSTUIVWX#YZ[S"

PRINT TAB(8);"\l]J6 "_‘a"

PRINT TAB(9);"116 \bcd"

PRINT TAB(9);"elfghij"

PRINT TAB(9);"kllmnop"

PRINT TAB(14);"qlllir"

PRINT TAB(19);"s tuv":s:s:

FOR I=1 TO 25

READ X,Y,C

[S BT Chapter { s e e——————

499 CALL HCHAR(X,Y,C)

5008 NEXT I

510 DATA 18,17,119,18,18,120,19,17,121,24,1
8,122,19,18,123,20,19,124,20,20,125,1
9,206,126

520 DATA 18,20,127,17,28,128,17,19,129,18,1
1,130,18,10,132,19,11,132,20,11,125,2
2,190,134

53¢ DATA 19,19¢,133,20,9,135,20,8,136,19,8,1
37,18,8,138,17,8,139,17,9,39,17,10,14
@,1,1,32

540 GOTO 540

550 END

Western States

This drill to review the 11 western states and their capital cities
also shows the use of DATA and RESTORE. A map of the
United States is drawn. One of the western states is outlined,
and you must type in the name of the state. If you type the
state correctly, you are then asked to type in the capital. Names
must be spelled correctly to be accepted. If you get a state and
the capital correct, it will not appear again; but if you miss
either the state or the capital, the state will appear again later in
the drill. The states appear in a random order.

Lines 240-320 define graphics characters using DATA. A
RESTORE statement is not necessary because I want to begin
with the first DATA statements in the program.

Lines 340-410 READ the 11 states and their capitals. As
each state is identified, the S$(R) variable is set to """ so it
won’t be chosen again. If the user wants to try the quiz again,
the DATA must be RESTOREd and read in again to fill up the
S$(R) array.

Lines 560-590 randomly choose one of the states. If the
state has already been identified, S$(R) will be *”’” and another
state will be chosen. Line 590 branches according to which state
is chosen.

Lines 1520-2090 RESTORE the proper data for the state
which was chosen randomly. The program then branches back
to the main procedure at line 600.

Line 610 READs N, how many characters must be defined;
lines 620-650 READ the strings to define the graphics
characters. Line 660 READs N for the number of characters to

253

e e TS ——— Chapter £y s

be drawn, and lines 670-700 outline the state on the map. Line
1270 READs N for the number of lines; then lines 1280-1310
READ the data to erase the state.

Each state’s DATA statements contain the data separated
by commas in the following order: N, strings for defining
graphics characters, N, row, column, and graphics character
number to outline state, N, row, column, graphics character
number, and repetitions to erase the state.

You'll notice that I don’t have a DIM statement for S$(R).
That’s because TI BASIC automatically DIMensions arrays up
to subscript 10. Since that includes subscript 0, that gives me
enough for the eleven states.

Program 6-3. Western States

100 REM WESTERN STATES
110 CALL CLEAR

120 FOR G=9 TO 12

138 CALL COLOR(G,12,1)
140 NEXT G

150 CALL COLOR(13,1,12)
160 CALL COLOR(14,1,12)
1760 CALL COLOR(15,2,11)

180 CALL CHAR(64,"3C4299A1A199423C")
190 DRINT " *¥**krkkdkkhhkhkhkhhhhki u &u

s TAB(25);"*"

200 PRINT " * IDENTIFY THE STATES *":" *"
s TAB(25);"*"

210 PRINT " khhkhkhkhkhhkhkhkhkhkhkhkhkhkhthkhkkhkkin

22@ PRINT :::TAB(7);"WESTERN STATES"

230 PRINT :::::

24@ FOR G=96 TO 123

250 READ GS$

260 CALL CHAR(G,GS$)

278 NEXT G

280 DATA FFFFFFFFFFFFFFFF,3FlFOF0707030301,
7F3F1FOF,FFFF7F7F3F3F3F3F,FFFFF3C, FOF
JFPEQEACACOS, dFOFOFOFOFIFOFOF

290 DATA OFOPF@70703030101,010108303087870F0F,
OFOFOFJFFFFFFFFF, FFFFFFFF7F1F@7081,FF3
FOF@3,FFFFFFFFFFFOFOF

254

—— [AD{E] () ————————

300 DATA F8FCFEFE7F3Fl1FOE,FFFFFFFFFEFCF8F,F
@F8F8FCFCFEFEFF, 098080COCIEFEDF , FOEDC
98, FCFCFSF8FOFJFOF

310 DATA 808JCOCOEQEQFIF,dF1F3F7FFFFFFFFF, O
0000000330 F3FFF,3000000000018307 , EGED
EOFOF8FCFEFF, 0000000003080 CIE

320 DATA OOEJFIFEFFFFFFFF, 0000000000 EJFSFE,
EJEPELE3FFFFFEFC

33@ L$=.|\\\‘\\\\\\\\\\\\\\“

340 RESTORE 380

35¢ FOR G=0 TO 10

368 READ s$(G),cs$(a)

378 NEXT G

380 DATA WASHINGTON,OLYMPIA,OREGON,SALEM,CA
LIFORNIA,SACRAMENTO

390 DATA NEVADA,CARSON CITY,IDAHO,BOISE,MON
TANA , HELENA

40@ DATA WYOMING,CHEYENNE,UTAH,SALT LAKE CI
TY,ARIZONA, PHOENIX

410 DATA NEW MEXICO,SANTA FE,COLORADO,DENVE
R

42@ CALL CLEAR

4309 PRINT "ONE OF THE UNITED STATES"::"WILL
BE OUTLINED.":::"“TYPE THE NAME OF TH
E STATE"

449 PRINT :"THEN PRESS <ENTER>.":::"IF THE
STATE IS CORRECT,"

45@ PRINT :"TYPE THE CAPITAL CITY"::"THEN P
RESS <ENTER>."

460 PRINT :::"NAMES MUST BE SPELLED"::"CORR
ECTLY TO BE ACCEPTED.":::TAB(15);"PRE
SS <ENTER>":

470 CALL KEY(@,K,S)

480 IF K<>13 THEN 470

499 CALL CLEAR

50% PRINT TAB(27);"ts":" i " %% % %yz
{7 sPACES}u‘e":" ";L$;"yx{3 SPACES}t r"
:“h":L$:“ \w Vt\\{u

Slg PRINT "f“:L$:"“ t‘\nqu:ufans:u*\t*‘\u
:ufll:L$:||“““x||=ufll;L$:l!\“"“elt=alg

" “\\\\\\“
1 LS

T PR T T T P Chapter & s

520

530

540
550
560
570
580
590

600
610
620
630
640
650
660
670
680
690
700
7108
720

730
740
750
760
7790
780
790

800
810

820
830
840
850
860
870

256

PRINT " c":L$:"”“n":" gu:Ls:n\\\nqnzn
j't:L$:||Q\e“="{4 SPACES}ka‘l\‘\\\‘\\\
“‘QQHSTAB(IG):“a\\\\\qa\ndj\\p“

PRINT TAB(11);"bdc‘ndddm{3 SPACES}co":T
AB(13);"a‘{8 sPACES}a"":TAB(14);"b";TAB
(24);"b"s:322¢

FOR C=@ TO 19

T=0

RANDOMI ZE
R=INT(11*RND)

IF S$(R)="" THEN 570

ON R+l GOTO 1520,1560,1610,1678,1730,17
99,1840,1890,1940,1990, 2050
CALL HCHAR(20,1,96,160)
READ N

FOR I=128 TO 127+N

READ GS$

CALL CHAR(I,GS$)

NEXT I

READ N

FOR I=1 TO N

READ X,Y,G

CALL HCHAR(X,Y,G)

NEXT I

FOR I=1 TO 7

CALL HCHAR(21,2+I,ASC(SEGS$("STATE ?2",I,
1)))

NEXT I

CALL HCHAR(21,11,96,15)
Sls__..l n

CALL SOUND(150,1397,2)

FOR L=1 TO 15

CALL KEY(%,K,S)

IF S<1 THEN 780

IF K=13 THEN 840
CALL HCHAR(21,10+L,K)

S1$=S1S&CHRS (K)

NEXT L

CALL SOUND(10@,889,2)
IF S$(R)=S1$ THEN 970
CALL SOUND(10@,330,2)
CALL SOUND(10@,262,2)

T e T —— TR Chapter £ TR T

880 T=T+1

89¢ IF T<2 THEN 740

90@ CALL HCHAR(21,11,96,15)

910 FOR L=1 TO LEN(S$(R))

920 ?ALL HCHAR(21,10+L,ASC(SEGS(S$(R),L,1))

930 NEXT L

949 GOSUB 1400

950 C=C-1

968 GOTO 1270

97@ GOSUB 1470

98@ FOR I=1 TO 9

990 CALL HCHAR(23,2+I,ASC(SEGS("CAPITAL 2",
1,1)))

1000 NEXT I

18010 T=0

1020 CALL HCHAR(23,13,96,15)

1630 sis=""

1840 CALL SOUND(158,1397,2)

1850 FOR L=1 TO 15

1060 CALL KEY(9,K,S)

1873 IF S<1 THEN 1060

1080 IF K=13 THEN 1120

1990 CALL HCHAR(23,12+L,K)

1108 S1$=S1$&CHRS (K)

1110 NEXT L

1120 CALL SOUND(10@,88@,2)

1138 IF C$(R)=S1$ THEN 1250

1140 CALL SOUND(10@,339,2)

1150 CALL SOUND(10@,262,2)

1160 T=T+1

1178 IF T<2 THEN 1020

1180 CALL HCHAR(23,12,96,15)

1190 FOR L=1 TO LEN(C$(R))

1200 CALL HCHAR(23,12+L,ASC(SEGS$(C$(R),L,1)

))

1210 NEXT L

1220 GOSUB 1400

1230 C=C-1

1248 GOTO 1270

1250 GOSUB 1478

1268 SS(R)=""

257

— [O] St m————

1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410

1420
1430
1440
1450
1460
1470
1480
14909
1500
1510
1520
1530

1540
1550
1560
1570

1580

1590

1600

258

READ N

FOR I=1 TO N

READ X,Y,G,J

CALL HCHAR(X,Y,G,J)
NEXT I

NEXT C

CALL HCHAR(21,1,96,96)
PRINT “TRY AGAIN? (Y/N)";
CALL KEY(@,K,S)

IF K=89 THEN 340

IF K<>78 THEN 1350

CALL CLEAR
STOP
FOR I=1 TO 11

CALL HCHAR(24,20+I,ASC(SEGS$("PRESS ENT
ER",I,1)))

NEXT I

CALL KEY(@,K,S)

IF K<>13 THEN 1430

CALL HCHAR(24,21,96,11)

RETURN

CALL SOUND(10@,262,2)

CALL SOUND(10@,330,2)

CALL SOUND(10@,392,2)

CALL SOUND(20#,523,2)

RETURN

RESTORE 1530

DATA 3,0101010101010101,FF,000000303EQ1
¢0807,5,3,6,128,4,6,128,5,6,129,5,5,1
29,4,4,130,3,4,4,96,4

DATA 5,5,96,2,3,6,96,1

GOTO 600

RESTORE 1579

DATA 6,00000000E0100807 ,00000000000030
FF,0101010101010101,01010101FF, 300000
QOFF,FOFOFOFOFFFOFOF,9

DATA 4,4,128,4,5,129,4,6,129,5,6,130,6
,6,1306,7,6,131,7,5,132,7,4,132,7,3,13
3,5,4,4,96,3

DATA 5,6,96,1,6,6,96,1,7,3,102,1,7,4,9
6,3

GOTO 600

e = Chapter f s mEE—E———

1610
1620

1630

1640

1650

1660

1670
1680

1699

1709

1710

1720
1730
1740

1750

1760

1779
1780
1790
1800

RESTORE 1620

DATA 9,00000000FF ,00000000Fd10101,1010
10101010101, 1008040201 ,00000000008040

2,1008040201010202

DATA 0201010202010101, FOFOFOFIFFFOFIF,
@1ClF1FDFEFFFFFF,12,7,3,135,7,4,128,7

,5,129,8,5,130,9,5,130

DATA 19,5,131,1¢,6,132,11,6,131,11,7,1
32,12,7,133,13,7,134,14,7,136,9,7,3,1

@2,1,7,4,96,2,8,5

DATA 96,1,9,5,96,1,19,5,96,2,11,6,96,2
712,7+96,1,13,7,96:1:14, 7,187,

GOTO 600

RESTORE 1680

DATA 9,000000001F10101 ,00000000FF , 2009
0OPOFP10101,1010610101010101,101010101

@1010F,1109050301

DATA 0@0000000080402,1008040201 800000
@g1F10101,15,7,5,128,7,6,129,7,7,129,

7,8,130

DATA 8,8,131,9,8,131,10,8,131,11,8,132
,12,7,133,11,7,134,11,6,135,10,6,134,

14,5,135

DATA 9,5,131,8,5,131,6,7,5,96,4,8,5,96
,4,9,5,96,4,10,5,96,4,11,6,96,3,12,7,

96,1

GOTO 600

RESTORE 1740

DATA 8,8181818181818181,80804040202010
1,1010080602020101,8345390101010101,0

1010101010101 FF

DATA 00000000000 000FF ,80808080808080FF
,8080808080808¢08,10,3,7,128,4,8,129,5

,8,130,6,9,131

pATA 7,9,132,7,8,133,7,7,134,6,7,135,5
,7,135,4,7,135,5,3,7,96,1,4,7,96,2,5,

7,96,2,6,7,96,3

DATA 7,7,96,3

GOTO 600

RESTORE 1800

DATA 7,1010101010101061,10101010101010F
,00000000003009FF,134538,101008060202

@101 ,808040402020101

259

e ————me [AT T) e m————

1810

1820
1830

1840
1850

1860

187@

1880
1899
1900

1910

1920
1930

1940
1950

1960

1979

1980

1999
2000

260

DATA 0101010101010101,10,3,13,128,4,13
,128,5,13,129,5,12,130,5,11,130,5,10,
1390,6,9,131

DATA 5,8,132,4,8,133,3,7,134,4,3,7,96,
7,4,8,96,6,5,8,96,6,6,9,96,1

GOTO 600

RESTORE 1850

DATA 8,FF8080808080808,FF,Fd1010101010
101,101010101010101,10101010101010F, O
000000000000 FF

DATA 808080@S0SJSPSIFF,8080808080808080
,10,6,10,128,6,11,129,6,12,129,6,13,1
30,7,13,131

DATA 8,13,132,8,12,133,8,11,133,8,10,1
34,7,10,135,3,6,10,96,4,7,10,96,4,8,10,
96,4

GOTO 600

RESTORE 1900

DATA 8,3F2020202020202,FF,808080808080
8OFE,0202020202020202,02020202FE, 3090
@OBOFF,202020203F

DATA 202020202020202,10,8,8,128,8,9,12
9,8,10,130,9,10,131,16¢,16,131,11,1@,1
32,11,9,133

DATA 11,8,134,10¢,8,135,9,8,135,4,8,8,9
6,3,9,8,96,3,10,8,96,3,11,8,96,3

GOTO 600

RESTORE 1950

DATA 6,000000001F1010F,00000000FF , 0000
GOPOFCOA404 ,0404040404040404 ,8080808
OCOEDFSFE

DATA 0101010102020201,9,11,8,128,11,9,
129,11,1¢,130,12,10,131,13,10,131,14,
16,131,14,8,132

DATA 13,7,133,12,7,133,5,11,8,96,3,12,
7,96,4,13,7,96,4,14,8,106,1,14,10,96, 1
GOTO 600

RESTORE 2000

DATA 7,0000000001010101,00000000FF, 300
J0OPIFFO10101,0101010101010101,010101
FF, 000000 3F20EJEQE

s s TR Chapterb e

201@ DATA 00Q@0000PPOPVOFIFIF,12,11,10,128,11,
11,129,11,12,129,11,13,139,12,13,131,
13,13,131,14,13,132

2020 DATA 14,12,133,14,11,134,14,16,131,13,
16,131,12,10,131,5,11,10,96,4,12,18,96,
4,13,10,96,4

2030 DATA 14,10,96,4,14,11,108,1

2040 GOTO 609

20580 RESTORE 2060

2060 DATA 8,FF,F01010101010101,101010101010
101,10101010F, 00000000 FF , 0202020203 ,0

202020202020202

2070 DATA 9302020202020202,12,9,11,128,9,12
,128,9,13,128,9,14,129,10,14,130,11, 14,
131 ,;11:13,132

2080 DATA 11,12,132,11,11,132,11,19,133,19,
10,134,9,10,135,3,9,10,96,5,10,10,96,
5,11,16,96,5

2090 GOTO 609

2100 END

Planning Color Sets

The character numbers are divided into groups of eight
characters each, and each group has a color set number. The
CALL COLOR statement assigns to a certain color set, by
number, its foreground and background colors. Every
character in the same color set will have the same color. Here is
a brief list of characters and sets. (See the Appendix for an
extended list.)

Set ASCII Codes Set ASCII Codes
1 32-39 9 96-103
2 40-47 10 104-111
3 48-55 11 112-119
4 56-63 12 120-127
5 64-71 13 128-135
6 72-79 14 136-143
7 80-87 15 144-151
8 88-95 16 152-159

261

e s | [GD{EF () m————

Suppose you want to print the letter R in red. The ASCII
code for R is 82. Looking at the chart above, you can see that
character 82 is in set 7. Use the statement CALL COLOR(7,9,1)
to assign a medium red foreground and a transparent
background to set 7. Not only R, but also the other letters in set
7 will be red. Any character in set 7 that is currently on the
screen will change to red when the CALL COLOR statement is
carried out.

Color Sets in New England

In “Western States,”” you had to spell the states and capitals
correctly. In this easier program, you are shown a map and a
menu, and only have to recognize the state’s name.

The New England states are drawn on the screen, each ina
different color, and labeled. When you know the state names,
press ENTER and the labels will be cleared. In a random order
the states will be numbered and listed in a menu. Alsoin a
random order, one state at a time will flash. Press the number
of the correct state name.

After all six states have been named correctly, a multiple-
choice quiz of the capital cities is presented (lines 1360-1790).
This program logic could be adapted for other multiple-choice
or matching drills. The six states and six capitals are each in
arrays. In a random order the states are numbered and listed,
and the capitals are listed with the letters a through f. For the
quiz, the student must press the correct letter for each
numbered state.

The map of the New England states was first drawn on
24-by-32 graph paper with each state in a different color. (See
Figure 6-1.) Notice that I adapted all the more-or-less straight
boundaries so they could be drawn with solid squares.

Next, the states were drawn in more detail on paper
designed for character definitions. Ideally, each state could be
defined with the characters in a single color set. However,
Maine had so many characters that needed to be defined that
two color sets were necessary. Maine uses characters 97
through 111 and color sets 9 and 10 were assigned a yellow
foreground and transparent background.

Connecticut uses characters 144-148, and the color set is
light red on transparent.

Vermont and New Hampshire have a common border with
defined characters, so they share a color set, set 11, with a

262

{

———— (AP}) ——

—anmmhumg;ﬂng
- e e E = e e e = oo

e

- N MM w WM W @ o

..S9)e)S pue[duzg MaN,, 0} U3 3y} Sujuueld "|-9 2n314

ZC VE OE BZ B8Z LZ ST ST pZ ET ZZ T O 61 81 L} Q) GI_PL _EV TL L O 6: 8: L, 9. 5. v E. E]

aNy1s1 3A4AoHd

L0511 103NNOD

S113SAHIVSSYW

. linowasn

v

ET

(14

- o] - (3]] ~]]

S ART BT 31T AN TANT AL TAE AN A AL I AN AL A RE TRE TR TR TR TR SE TR VRl TRA SA EE S M LA AN LA Aa

263

s s | MADTEY (———

green foreground and red background. New Hampshire has
two more characters that require different colors, so character
152 was defined in set 16 with red on transparent; and
character 40 was defined in set 2 with red on yellow.

Massachusetts has special characters 120-125 defined in set
12 with a magenta foreground and transparent background.
Rhode Island uses two characters in set 14 defined as blue on
transparent. Rhode Island and Massachusetts share one
graphics character, 128, that needed to be magenta and blue.

Arrays are set up so the subscripts each pertain to a
particular state. S$ is the state name, SS is the color set for the
state, SF is the state’s foreground color, and SB is the state’s
background color. As a state is chosen in the quiz, the state’s
particular color set SS can be changed back and forth from
white to the foreground color SF, causing it to blink. The
exception is New Hampshire, which requires blinking the
background color. Only one of the color sets is blinked for
Maine.

How "New England States”” Works

Lines

110-170 Print the title screen.

180-380 Define graphics characters and colors.

390-450 Clear the screen; print instructions.

460-700 Clear the screen; draw New England states with
labels.

710-800 After the student presses ENTER, clear labels.

810-860 READ arrays for state names, color set numbers,
foreground colors, and background colors.

870-1000 Print a list of the states in random order.

1010-1060 Randomly choose a state that has not been
previously chosen; if New Hampshire, branch.

1070-1100 Blink the colors while waiting for the student’s
answer.

1110-1140 If the answer is incorrect, play ““uh-oh’” and
wait for another answer.

1150-1230 If answer is correct, return the state to its
original color; play an arpeggio. Set SS$ element
to null so the state will not be chosen again, then
go to another state.

264

TN R A S SRS Chapter 6 s TS———

1240-1270 Print the option to try again and branch

appropriately.

1280-1350 Procedure for New Hampshire.
1360-1380 Begin the drill for capitals.
1390-1440 READ the array of states with capitals.

1450-1530 Print a list of the states in random order.

1540-1620 Print a list of the capitals in random order.

1630-1790 For each state, receive the student’s choice of
capital city.

1800-1880 Present the options for the states quiz, the

capitals quiz, or the end of the program; branch
appropriately.

Program 6-4. New England States

108
110
120
130

140

150
le@
178
180
190
200
210
220

230

240

250

REM NEW ENGLAND STATES
CALL CHAR(64,"3C4299A1A1994237")
CALL CLEAR

PRINT n ***********************"= " * N
s TAB(25);"*"

PRINT " * IDENTIFY THE STATES *":" *"
; TAB(25);"*"

PRINT " I Z 22 X222 X2 22X 22X 2 2 R

PRINT :::TAB(5);"NEW ENGLAND STATES"
PRINT 3:::3::

FOR G=97 TO 125

READ GS$

CALL CHAR(G,GS$)

NEXT G

DATA 0000000000307878,00000090FELE3FFF,
0001030307070 FJF ,80CAEAFIFS8FCFEFF,dF1
F1F3F3F7F7FFF

DATA 000103070FO3F1F3F,3F3F3F7F7F7FFFFF,
#101030303030303 ,COFOFBF8FB8F8F8FC, FFF
CF@8, FFFFFFFFFFFCF88

DATA FEFCFS8FOEQC@8, FFFFFEFCFCFCF8F8, F8F
8FOEQEQCOCO8, FFFFFFFFFFFFFFFFF, FFFFFF
FFFFFFFFFF

DATA FFFEFCFCFCFEFEFE, FCF8F8FOEOC, FEF8F
8FOPFPEJEQGC,COCACOCO8080808,0,, ,FFFFFF
FFFFFFFFFF,000009COCACA808

265

e T Chapmerf)I--------

260
279

280

290

300
310
320
330
340
350
360
370
380

390
400

410

420
430

440
450
460
470
480
490
500
510

520
530

540
550

266

DATA 2000000000 FSFEFE, 06030303070 7FFFE,
FEFCFS8FJEQCIS, FFFFFFFFFOF@C

DATA 128,80COEQOFOFOF8F8FC,136,FFFFFFFFF
FFFFFFF,137,FFF8,144,FFFFFFFFFFFFFFFF
DATA 145,FFFF7F3F3F7FF08,146,FFFFFFFFFF
C,147,FFFFFFFF, 148, FFFFFE, 152 ,0000000
7DFDFFFFF, 40 ,000008000COFOFCFE

DATA 153,000000FF,11,1,11,1,4,7,14,1,5,
14,5,1,14,1,7,1

FOR I=1 TO 11

READ G,G$

CALL CHAR(G,G$)

NEXT I

FOR I=9 TO 16

READ F,B

CALL COLOR(I,F,B)

NEXT I

= 44 44 144)& 1
i e

CALL CLEAR

PRINT "LEARN THE NAMES OF THE"::"NEW EN
GLAND STATES."

PRINT ::"THE STATES WILL BE SHOWN."::"W
HEN YOU KNOW THE NAMES, "::"PRESS <ENT
ER>."

PRINT ::"THE NAMES WILL CLEAR."::"AS TH
E STATE BLINKS, PRESS"

PRINT :"THE NUMBER OF THE CORRECT"::"NA
ME."::::TAB(15); "PRESS <ENTER>.";

CALL KEY(9,K,S)

IF K<>13 THEN 440

CALL CLEAR

CALL SCREEN(8)

CALL COLOR(2,7,11)

PRINT TAB(22);"ab":TAB(21);"cood"

PRINT TAB(16); "MAINEeooo"

PRINT TAB(20);"£fo000":TAB(20); "goooo":T
AB(19); "hooooo"

PRINT TAB(18);CHRS$(152)&"ooococooi"

PRINT TAB(14);"pppgquoococooo”

PRINT TAB(7);"VERMONTpppquoooookj"
PRINT TAB(14);"pppruooool"

T e Ry Chapter L s —

560
570
580
590

600
610
620
630
640
650

660

670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820

830

840
850
860
870
880
890
900
910

920

PRINT TAB(14);"ppsuuoool"

PRINT TAB(14);"pptuuom"

PRINT TAB(14);"ppuuu(nNEW"

PRINT TAB(14);"ppuuuu"&CHRS$ (153)&"HAMPS
HI n

CALL HCHAR(23,30,82)

CALL HCHAR(23,31,69)

PRINT "MASSACHUSETTSXXXXXXxy"

PRINT TAB(14);"xxxxxxz"

PRINT TAB(14);AS$&"xx{"

PRINT " CONNECTICUT";AS$S&CHRS(128)&"
I3

PRINT TAB(14);CHRS$(145)&CHRS (146)&CHRS (
147)&CHRS (148) &CHRS$ (137)

PRINT TAB(18);"RHODE ISLA"::

CALL HCHAR(22,30,78)

CALL HCHAR(22,31,68)

PRINT TAB(15); "PRESS <ENTER>";

CALL KEY(@,K,S)

IF K<>13 THEN 710

CALL HCHAR(5,18,32,5)

CALL HCHAR(11,9,32,7)

CALL HCHAR(15,23,32,3)

CALL HCHAR(16,22,32,10)

CALL HCHAR(17,3,32,13)

CALL HCHAR(20,5,32,11)

CALL HCHAR(22,20,32,12)

CALL HCHAR(24,17,32,13)

RESTORE 820

DATA MAINE,14,11,1,VERMONT,11,4,7,NEW H
AMPSHIRE,11,4,7 ,MASSACHUSETTS,12,14,1
DATA CONNECTICUT,15,10,1,RHODE ISLAND,1l
4,5,1

FOR I=1 TO 6

READ Ss$(1),ss(1),sSF(1),s8B(I)

NEXT I

FOR C=1 TO 6

RANDOMI ZE

X=INT(RND*6)+1

IF s$(X)="" THEN 890

Ss$ (X)=s$(X)

FF(X)=SF(X)

267

930
949
958
960
970

980

999

1000
1910
1020
1030
1040
1850
1060
10870
1080
1090
1100
1110
1120
1130
1140
1150
1160
1179
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

268

BB(X)=SB(X)
ANS(X)=C
CALL HCHAR(2+C,2,48+C)
FOR J=1 TO LEN(S$(X))
?ALL HCHAR(2+C,J+3,ASC(SEGS(s$(X),J7,1))
NEXT J
S$ (x)=ll|l
NEXT C
FOR C=1 TO 6
RANDOMI ZE
X=INT(RND*6)+1
IF Ss$(X)="" THEN 1030
CALL SOUND(150,1397,4)
IF SS$(X)="NEW HAMPSHIRE" THEN 1280
CALL KEY(9,K,S)
CALL COLOR(Ss(X),16,SB(X))
CALL COLOR(sSs(X),SF(X),sB(X))
IF S<1 THEN 1070
IF K-48=ANS(X)THEN 1150
CALL SOUND(10@,330,2)
CALL SOUND(108,262,2)
GOTO 1070
CALL COLOR(sSs(X),SF(X),sB(X))
CALL HCHAR(2+ANS(X),1,62)
CALL SOUND(150,262,1)
CALL SOUND(150,3390,1)
CALL SOUND(150,392,1)
CALL SOUND(39¢,523,1)
Sss(x)=ll (1]
CALL HCHAR(2+ANS(X),1,32)
NEXT C
PRINT "TRY AGAIN? Y OR N";
CALL KEY(9,K,S)
IF K=89 THEN 460
IF K=78 THEN 1360 ELSE 1250
CALL KEY(@,K,S)
CALL COLOR(11,4,16)
CALL COLOR(11,4,7)
IF S<1 THEN 1284
IF K-48=ANS(X)THEN 1160
CALL SOUND(108,339,2)

R Chapter i r— e e——

1340 CALL SOUND(10@,262,2)

1350 GOTO 1280

1368 CALL CLEAR

1370 CALL COLOR(2,2,1)

1380 PRINT "NOW MATCH THE CAPITALS.":::

1399 RESTORE 1400

1400 DATA MAINE,AUGUSTA,NEW HAMPSHIRE, CONCO
RD,VERMONT , MONTPELIER

1412 DATA MASSACHUSETTS, BOSTON,CONNECTICUT,
HARTFORD, RHODE ISLAND,PROVIDENCE

1420 FOR I=1 TO 6

1430 READ SS$(1),c$(1)
1440 NEXT I

14508 FOR I=1 TO 6

1460 RANDOMIZE

1470 X=INT(6*RND)+1

1480 IF S$(X)="" THEN 1470

1490 ANS(I)=X

1580 PRINT I;S$(X)

1518 s$(x)=""

1520 NEXT I

1530 PRINT

1540 FOR I=1 TO 6

1550 RANDOMIZE

1568 X=INT(6*RND)+1

1570 IF ANS(X)=0 THEN 1560

1580 cc(1)=x

1590 PRINT TAB(15);CHR$(64+1I);" ";C$(ANS(X)
)

1600 ANS(X)=0

1610 NEXT I

1620 PRINT

1630 FOR I=1] TO 6

1640 PRINT TAB(6);I

1650 CALL KEY(@,K,S)

1660 CALL HCHAR(23,11,63)

1670 CALL HCHAR(23,11,32)

1680 IF S<1 THEN 1650

1690 IF (K<65)+(K>7@)THEN 1650

176@ CALL HCHAR(23,11,K)

1710 IF CC(K=64)=I THEN 1750

1720 CALL SOUND(1990,339,2)

269

e ——— {1 ADTOT) e ——

1730 CALL SOUND(10@,262,2)

1748 GOTO 1650

1758 CALL SOUND(15@,262,2)

1760 CALL SOUND(15@,330,2)

1778 CALL SOUND(15@,392,2)

1780 CALL SOUND(15@0,523,2)

1790 NEXT I

180@ PRINT :"PRESS 1 FOR STATES QUIZ"
1810 PRINT "{6 SPACES}2 FOR CAPITALS QUIZ"
1820 PRINT "{6 SPACES}3 TO END PROGRAM";
183@ CALL KEY(9,K,S)

1840 IF K=49 THEN 460

1850 IF K=50 THEN 1360

186@ IF K<>51 THEN 1830

1870 CALL CLEAR

188@ END

Touch-typing with Color Sets

““Type-ette’’ is a series of programs to learn touch-typing using
the computer. Unit 2, presented here, shows how color sets
can be used to make a certain finger appear in red. The whole
hand is drawn in yellow; then, when a particular letter is being
taught, the finger that should be used to type the letter is
blinked and then shown in red.

The characters used in the little fingers, the thumbs, and
the backs of the hands are contained in two color sets. The little
fingers are not used in this program, so they do not need to be
in a separate color set. The forefingers are defined with
characters 104 and 105 in set 10; the middle fingers are defined
with characters 96 and 97 in set 9; and the ring fingers are
defined with characters 120 and 121 in set 12 (lines 990-1520).

At first, all color sets involving the hands are defined as
yellow on transparent, so the hand is drawn all yellow (lines
1810-1850). When a new letter is introduced, only the color set
of the particular finger involved is changed, so one finger will
blink a few times and then stay red (subroutine, lines 460-500).
After the screen is completed, the color set is returned to
yellow; the next time the hand appears, it will be all yellow
again.

As letters are introduced, they appear as black on yellow.
Since the regular black-on-transparent letters are necessary for

270

T Chapter i e e —

drills and instructions, the black-on-yellow letters are defined
in another color set.

The computer can be an excellent instructional aid for
learning how to touch-type. Color graphics and sound help to
maintain the student’s interest and give immediate positive
response in an individualized learning situation. A student
who needs extra practice can run the program over and over.

Type-ette, Unit 1 (not in this book), draws the hands on the
screen and teaches the home position. Starting with Unit 2, the
letters are taught gradually and in a sequence, so you can type
more words with each letter learned. E and H are the first new
letters taught, then T and I so many common words may be
typed. After a group of new letters is introduced, there is a drill
of phrases. A phrase is chosen randomly from nine possible
phrases. The student must type five phrases correctly before
the program continues.

Program 6-5. Type-ette, Unit 2

100 REM TYPE-ETTE UNIT 2
118 GOTO 708

128 PRINT "PRESS <ENTER> TO CONTINUE."
130 CALL KEY(@,KEY,S)

149 IF KEY<>13 THEN 130

15@ RETURN

160 CALL HCHAR(X+1,3,120)
178 CALL HCHAR(X+2,3,121)
180 CALL VCHAR(X+3,3,122,2)
190 CALL HCHAR(X,4,120)

20@ CALL VCHAR(X+1,4,121,2)
218 CALL VCHAR(X+3,4,152,2)
220 CALL HCHAR(X,5,96)

230 CALL VCHAR(X+1,5,97,2)
24@ CALL VCHAR(X+3,5,152,2)
25@ CALL HCHAR(X,6,104)

260 CALL VCHAR(X+1,6,105,2)
270 CALL HCHAR(X+3,6,123)
280 CALL HCHAR(X+4,6,124)
2909 CALL HCHAR(X+4,7,125)
300 RETURN

310 CALL HCHAR(X+1,30,120)
320 CALL HCHAR(X+2,30,121)

271

(= e Chapter § T —=

330 CALL VCHAR(X+3,30,123,2)

340 CALL HCHAR(X,29,112)

35¢ CALL VCHAR(X+1,29,113,2)

360 CALL VCHAR(X+3,29,152,2)

370 CALL HCHAR(X,28,96)

380 CALL VCHAR(X+1,28,97,2)

399 CALL VCHAR(X+3,28,152,2)

409 CALL HCHAR(X,27,104)

419 CALL VCHAR(X+1,27,105,2)

420 CALL HCHAR(X+3,27,122)

430 CALL HCHAR(X+4,27,126)

440 CALL HCHAR(X+4,26,127)

450 RETURN

46@ FOR I=1 TO 15

478 CALL COLOR(C,12,1)

480 CALL COLOR(C,7,1)

490 NEXT I

500 RETURN

518 PRINT "{3 SPACES}"&R1S$

520 PRINT :"{4 SPACES}A S D F "&CHR$(152)&"
"&CHRS (152)&" J K L ; "&CHRS$(159):::

538 RETURN

549 BS$=""

55@0 FOR Y=5 TO 20

5608 CALL KEY(9,K,S)

570 IF S<1 THEN 560

580 CALL HCHAR(24,Y,K)

590 B$=BS$&CHRS (K)
600 NEXT Y

6109 IF Pos(B$,B1$,1)>@ THEN 650

620 CALL HCHAR(24,5,152,21)

630 CALL SOUND(158,1397,4)

640 GOTO 550

658 RETURN

660 PRINT " "&R1$::"{3 SPACES}"&R1S$

678 PRINT :"{4 SPACES}A S D F "&CHR$(152)&"

"&CHRS (152)&" J K L ; "&CHR$(159)

680 PRINT :"{3 SPACES}"&R$&" "&CHR$(152)&CH
R$(152)

690 RETURN

70@ CALL CLEAR

710 CALL CHAR(92,"3C4299A1A199423C")

272

- m——— " ZTET () comes————

720
730
740
750

760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030
1040

CALL CHAR(152,"@")
CALL CHAR(153, "FFFFFFFFFFFFFFFF")
CALL CHAR(154, "@OFFFFOQOJFFFF")

PRINT " ** T YPE -ETTE **";;::TAB(

8);"T YP ING"::TAB(10);"ON THE"::

TAB(10);"TI 99/4A"::ssz22sss22::
CALL CHAR(155, "OOQQ@Q@FFFF")

CALL CHAR(156, "FFS8F8F8FFFFS8F8F8")
CALL CHAR(157, "FFFFFFFF")

PRINT ;

CALL CHAR(158, "FOFJFOFOFJFOFOF")
CALL CHAR(159,"FFE7C38181C3E7FF")
CALL COLOR(16,2,12)

FOR X=13 TO 23

CALL HCHAR(X,7,152,18)

NEXT X

CALL HCHAR(15,7,155,18)

CALL HCHAR(13,20,154,4)

CALL HCHAR(14,20,154,4)

FOR Y=20 TO 23

CALL VCHAR(16,Y,153,7)

CALL HCHAR(Y-2,8,153,11)

NEXT Y

CALL HCHAR(22,8,153,11)

CALL HCHAR(19,9,156,9)

CALL HCHAR(20,9,156,9)

CALL HCHAR(21,10,157,7)

T=250

CALL SOUND(T,392,1,3390,6,131,9)
CALL CHAR(96,"3C7E7E7E7E7E7E7E")
CALL SOUND(T,339,1,262,6,131,9)
CALL CHAR(97,"7E7E7E7E7E7E7E7E")
CALL SOUND(T/2,3390,0,262,6,131,9)
CALL SOUND(T/2,349,1,294,6,131,9)
CALL SOUND(T,392,98,330,6,131,9)

1950 CALL CHAR(104,"000000333CTETETE")

1060

CALL SOUND(T,349,2,294,7,123,10)

16790 CALL CHAR(105,"7E7E7E7E7E7E7E7E")
1080 CALL SOUND(T,294,2,247,7,123,10)

1090 CALL CHAR(112, "000Q000@@3C7E7ETE")
1106 CALL SOUND(T/2,294,2,247,7,123,10)
111¢ CALL SOUND(T/2,330,2,262,7,123,10)

273

1120
1130
1149
1150
1160
1179
1180
1194

1200
1210
1220
1230
1249
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1479
1480
1490
1500
1510
1520
1530

274

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

SOUND(T,349,2,294,7,123,10)
CHAR(113,"7E7E7E7E7E7E7E7E")
sounDp(T,339,3,196,8,131,11)
CHAR(120, "000000BQ3C7ETETE")
SOUND(T,262,3,196,8,131,11)
CHAR(121,"7E7E7E7E7E7E7E7E")
SOuND(T/2,262,3,196,8,131,11)
SOUND(T/2,294,3,196,8,131,11)
sounp(T/2,330,3,196,8,131,11)
sounp(T/2,262,3,196,8,131,11)
SOUND(2*T,294,3,247,8,196,10)
CHAR(122,"7F7F7F7F7F7F7F7F")
CHAR(123, "FEFEFEFEFEFEFEFE")
CHAR(124, "FEFEFEFEFFFFFFFF")
SOUND(T,392,5,330,10,131,15)
CHAR(125, "1F1F3F3F7EFEFCFC")
SOUND(T,3390,5,262,10,131,15)
CHAR(126,"7F7F7F7FFFFFFFFF")
sounDp(T/2,3390,5,262,10,131,15)
SOuND(T/2,349,5,294,10,131,15)
souND(T,392,5,339,10,13131,15)
CHAR(127, "FBFS8FCFC7E7F3F3F")
SOUND(T, 349,3,294,8,123,12)
CHAR(144,"0")
SOUND(T,294,3,247,8,123,12)
CHAR(128, "00784444444478008")
SOUND(T/2,294,3,247,8,123,12)
sounp(T/2,339,3,262,8,123,12)
SOUND(T, 349,3,294,8,123,12)
CHAR(129, "@@7C40784@487C")
sounp(T,330,1,196,7,131,9)
CHAR(130, "00040404044438")
SounD(T,262,1,196,7,131,9)
CHAR(131,"0044447C444444")
souNnD(T/2,262,1,196,7,131,9)
SsounD(T/2,294,1,196,7,131,9)
sounp(T/2,330,1,196,7,131,9)
sounDn(T/2,262,1,196,7,131,9)
SOUND(2*T,294,1,196,7,123,9)
CHAR(132,"007C407840404")
CHAR(133,"0@7C101010101")

R$=CHRS$ (152)

e i e Chap‘ter £ ersETe————

1549
1550
1560
1570
1580
1590
1600
lel@
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710

1720

1739
1740

1750
1760
1770
1780
1790
1800
1810
1820
1830
18490
1850
1860
1870

1880
1890
1900
1912
1920
1930

FOR I=1 TO 9

R$=RS$&" "&CHRS$(152)

NEXT I

CALL SOUND(1.5*T,294,3)

CALL CLEAR

CALL SCREEN(8)

CALL SOUND(T/2,330,3)

CALL SOUND(1.5*T,294,2)

R1$=R$&" "&CHRS$(152)

CALL SOUND(T/2,339,2)

CALL SOUND(1.5*T, 349 1,196,7,123,10)
PRINT " "&R1S

CALL SOUND(T/2,392,1)

CALL SOUND(1.5*T,349,0,196,7,123,9)
PRINT :"{3 SPACES}"&R1S$

CALL SOUND(T/2,392,90)

CALL SOUND(1.5%*T,330,1,196,7,131,9)
PRINT :"{4 SPACES}"&R$&" "&CHRS$(159)
CALL SOUND(T/2,349, 1)

CALL SOUND(1. 5*T 3@ 7,13% lﬁg
PRINT :"13 SPACES "&R$&" "&caRr3 (152)&c
HR$ (152)

CALL SOUND(T/2,349,2)

CALL SOUND(T,392,2,262,7,165,9)

CALL COLOR(15,16,7)

CALL SOuND(T,392,2,262,7,131,9)
PRINT :::

CALL SOUND(T,392,2,262,7,165,9)

CALL COLOR(9,12,1)

CALL COLOR(194,12,1)

CALL SOUND(T,440,2,175,7)

CALL COLOR(11,12,1)

CALL COLOR(12,12,1)

CALL SOUND(T,392,1,262,6,165,8)
PRINT "{3 SPACES}LEARNING THE KEYBOARD
(1]

CALL SOUND(T,392,1,262,6,131,8)
PRINT ::TAB(11);"UNIT 2"

CALL SOuUND(T,392,1,262,6,165,8)
PRINT :s::::

CALL COLOR(13,2,12)

CALL SOUND(T,339,1,196,7)

275

e —————m— [AT () e—m—————

1940 CALL CHAR(134,"9938101010193800")

1950 CALL SOUND(T,392,1,165,7)

1960 CALL CHAR(135,"00485060504844")

1976 CALL SOUND(T,392,1,131,7)

1980 CALL CHAR(158, "0000000033303")

1990 CALL SOUND(T,392,1,165,7)

2098 CALL SOUND(T/2,349,1,175,7)

2010 CALL SOUND(T/2,330,1)

2020 CALL SOUND(T,294,1,196,7)

2030 CALL SOuND(T/2,330,1,131,7)

2040 CALL SOUND(T/2,349,1)

2058 CALL SOUND(1.5%*T,294,1,196,7)

2068 CALL SOUND(T/2,262,1)

2078 CALL SOUND(2*T,262,1,196,6,165,8)

2080 CALL CLEAR

2090 CALL SCREEN(4)

210@ PRINT "IN UNIT 1 YOU LEARNED":"THE ""H
OME KEYS""."::::

2110 GOSUB 520

2120 PRINT ::"AFTER EACH LETTER YOU TYPE, Y
OUR FINGERS RETURN ""HOME""."

2130 PRINT :"THIS UNIT WILL ADD MORE":"LETT
ERS FOR YOU TO LEARN.™:z:::

2149 GOSUB 120

2150 FOR GS=1 TO 7

2160 CALL CLEAR

2170 ON GS GOSUB 220@,2430,2640,27390,2978,3
280 ,3290

2180 NEXT GS

2190 GOTO 3388@

220@ PRINT "THE MOST USED LETTER OF":"THE A
LPHABET IS ""E""."::::TAB(12);"USE YO
UR LEFT"

22104 PRINT TAB(12);"MIDDLE FINGER."::TAB(12
); "GO UP FROM "&CHR$(128):TAB(12);"TO
STRIKE THE "&CHR$(129):sszz::

2220 X=13

2230 GOSUB 160

2249 GOSUB 519

225@ CALL HCHAR(21,11,128)

2260 CALL HCHAR(19,10,129)
2278 C=9

276

2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430

2440
2450
2460
2470
2480
2490
2500
2510

2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660

Chapter e TEE——————

GOSUB 460

GOSUB 120

CALL HCHAR(23,1,32,32)

PRINT "PRACTICE TYPING THIS LINE:":::
CALL HCHAR(22,1,152,96)
FOR Y=5 TO 17 STEP 4

CALL HCHAR(23,Y,68)

CALL HCHAR(23,Y+1,69)
CALL HCHAR(23,Y+2,68)
CALL HCHAR(23,Y+3,32)
NEXT Y

B1$="DED"

GOSUB 540

CALL COLOR(9,12,1)

RETURN

PRINT "LET'S LEARN ""H""."
R RIGHT":"POINTER FINGER."
X=17

GOSUB 310

GOSUB 520

CALL HCHAR(21,19,1309)
CALL HCHAR(21,17,131)
Cc=10

GOSUB 460

PRINT :::"REMEMBER TO RETURN TO THE":"
HOME POSITION AFTER":"STRIKING ANOTHE
R KEY!"

PRINT ::"TRY TYPING THIS LINE:":::
CALL HCHAR(22,1,152,96)

FOR Y=5 TO 17 STEP 4

CALL HCHAR(23,Y,74)

CALL HCHAR(23,Y+1,72)

CALL HCHAR(23,Y+2,74)

CALL HCHAR(23,Y+3,32)

NEXT Y

Bl$="JHJ"

GOSUB 548

CALL COLORIC,12:1)

RETURN

GOSUB 66@

GOSUB 4070

PRINT ::::"NOW YOU CAN TRY PHRASES."

277

Bms = Bats R S S Chapter e ne s T——

2679 PRINT :"TYPE THE GIVEN PHRASE":"THEN P
RESS ENTER."::::8:::

2680 DATA "A LAD ASKED DAD;","HE HAD A FALS
E LEAD", "SHE HAS A LEAD","HE HAD ALFA
LFA;","HAL HAD A SALE;"

2690 DATA "SHE HAS LED SALES;","HE HAS A DE
SK;","SHE HAS A LEASE","ED HAS ADS;",
"SEAL A DEAL"

270@ RESTORE 2680

2710 GOSUB 3540

2720 RETURN

273@ PRINT "TIME TO LEARN MORE!":::

2749 PRINT CHR$(133);" IS THE SECOND MOST U
SED":" LETTER IN TYPING."

2750 PRINT :TAB(14);"USE YOUR LEFT":TAB(14)
: "POINTER FINGER."

2768 PRINT :TAB(14);"REMEMBER TO":TAB(14);"
REACH UP THEN":TAB(14);"RETURN TO "&C
HRS(132)&" . "3

2770 X=17

2780 GOSUB 160

2790 GOSUB 510

2800 C=10

2810 GOSUB 4079

2820 CALL HCHAR(21,13, 132;
283@ CALL HCHAR 9 14,133

2840 GOSUB 460

285@ PRINT "TYPE THIS EXERCISE:":::

2860 CALL HCHAR(22,1,152,96)

287@ FOR Y=5 TO 17 STEP 4

2880 CALL HCHAR(23,Y,70)

289@ CALL HCHAR(23,Y+1,84)

2900 CALL HCHAR(23,Y+2,70)

2910 CALL HCHAR(23,Y+3,32)

2920 NEXT Y

2930 Bl1$="FTF"

2940 GOSUB 540

2950 CALL COLOR(C,12,1)

2968 RETURN

2978 PRINT "THE PERIOD USED AT THE"::"END O
F A SENTENCE 18"

278

T Chapter ¢ s rE————

29840

2990
30090
3010
3020
30309
3040
3050
3060
3079
3080

3090

3109
3110
3120
3130
3140
3150
3160
3179
3180
3190
3200
3219
3220
3230
32490
3259
3260
3270
3280
3290
3309
3310

3320

PRINT :“PRESSED WITH THE"::"RIGHT RING
FINGER."

PRINT ::::"PRACTICE THIS LINE:":::::
CALL HCHAR(22,1,152,96)

FOR Y=5 TO 19 STEP 2

CALL HCHAR(23,Y,76)

CALL HCHAR(23,Y+1,46)

NEXT Y

Bl 8=%],. 1"

GOSUB 540

RETURN

PRINT CHR$(134);" IS ANOTHER VOWEL TO
LEARN.": :"USE YOUR RIGHT":"MIDDLE FIN
GER."

PRINT :"STRIKE "&CHRS$(134)&" THEN":"RE
TURN TO "&CHR$(135):::::::

X=13

GOSUB 310

c=9

GOSUB 460

GOSUB 510

GOSUB 4060

CALL HCHAR(19,20,134)

PRINT ::"TYPE THIS EXERCISE:":::

CALL HCHAR(22,1,152,96)

FOR Y=5 TO 17 STEP 4

CALL HCHAR(23,Y,75)

CALL HCHAR(23,Y+1,73)

CALL HCHAR(23,Y+2,75)

CALL HCHAR(23,Y+3,32)

NEXT Y

B1$="KIK"

GOSUB 540

CALI: COLOR(C,12,1)

RETURN

GOSUB 660

GOSUB 4040

PRINT ::::"PRACTICE THESE NEW LETTERS"
:"BY TYPING THESE SENTENCES."::::::::

DATA "JED IS AT THE FIELD.","HE IS AT

THE LAKE.","SAL DID TAKE THE TEST."

279

3330

3340

3350
3360
3379

3380
3390

3400

3410
3420
3430
34490

3450
3460

3470
3480
3490
3500

3510
3520
3530
3540
3550
3560

3579
3580

3590
3600
3610
3620

280

DATA "HIS AIDES HAD THE LIST.","SHE FI
LED THE LIST.","HE FLIES A JET."

DATA "IT IS THE LAST TEST.","I HIT IT

FAST.","HIS IS THE LAST SET."

RESTORE 3320

GOSUB 3540

RETURN

CALL CLEAR

PRINT "REMEMBER, "::"TO LEARN TOUCH TYP
ING -":::"DO NOT LOOK AT YOUR FINGERS

PRINT :"MEMORIZE THE KEY POSITIONS."::

"RETURN TO THE HOME POSITION AFTER ST

RIKING EACH KEY."

PRINT :"PRACTICElIl"sz::::

GOSUB 120

CALL CLEAR

PRINT "THIS COMPLETES UNIT 2."::::"CHO

OSE:"::"1 REVIEW ""E"""::"2 REVIEW

n "H mnun

PRINT :"3 REVIEW PHRASES FOR E,H"::"4
REVIEW n "T mn II= : “5 REVIEW nn . wun

PRINT :"6 REVIEW ""I"""::"7 REVIEW S

ENTENCES"::"8 END PROGRAM"

CALL KEY(9,KEY,S)

IF (KEY<49)+(KEY>56)=-1 THEN 3474

CALL CLEAR

ON KEY-48 GOSUB 220@,2430,2640,2740@,29

79,3080 ,3290,3520

GOTO 3430

GOSUB 3899

STOP

FOR I=1 TO 9

READ A$(I)

NEXT I

RANDOMIZE

FOR I=1 TO 5

J=INT(9*RND)+1

IF AS$(J)="" THEN 3590

B$=ll 11

CALL HCHAR(20,1,152,128)

R ST S ST IV YY) Chapmerf|---------

3630 FOR K=1 TO LEN(AS$(J))

3640 ?ALL HCHAR(21,K+2,Asc(sEGc$(As$(J),K,1))
3650 NEXT K

3660 CALL SOUND(158,1397,4)

3670 FOR L=1 TO 28

3680 CALL KEY(®,KEY,S)

3690 IF S<1 THEN 3680

3700 IF KEY=13 THEN 3740

3719 CALL HCHAR(22,L+2,KEY)

3720 B$=BS$&CHRS (KEY)

3730 NEXT L

3749 IF B$=A$(J)THEN 3800

3750 I=I-1

3760 CALL SOUND(80%8,-8,0,110,4)

3770 FOR DELAY=1 TO 500

3780 NEXT DELAY

3790 GOTO 3860

3800 CALL SOUND(10@,392,2)

3810 CALL SOUND(10@,494,2)

3820 CALL SOUND(10@,587,2)

3830 CALL SOUND(10@,494,2)

3840 CALL SOUND(100,392,2)

3855 As(J)=nu

3860 NEXT I

3870 GOSUB 3894

3880 RETURN

3890 CALL SOUND(T/2,330,3,262,8,165,10)
3900 CALL SOUND(T/2,349,3,294,8,147,10)
3910 CALL SOUND(T,392,2,3390,7,131,10)
3920 CALL SOUND(T/2,349,2,294,7,175,10)
3930 CALL SOUND(T/2,3390,1,262,6)

3940 CALL SOUND(1.5*T,294,0,247,6,196,8)
3950 CALL SOUND(T/2,262,1)

3960 CALL SOUND(2*T,262,0,131,10)

3970 CALL SOUND(2*T,294,0,196,8)

3980 CALL SOUND(2*r,330,0,131,8)

3999 CALL SOUND(T,349,0,196,8)

400@ CALL SOUND(T,247,1)

4010 CALL SOUND(4*T,262,1,165,6,131,8)
A@2@ CALL SOUND(1,9999,30)

4030 RETURN

281

USSR T TR T Chapter § erre————e

4040 CALL HCHAR(23,24,46)
4950 CALL HCHAR(19,20,73)
4060 CALL HCHAR(19,14,84)
4970 CALL HCHAR(21,17,72)
4080 CALL HCHAR(19,19,69)
4090 RETURN

4108 END

Timing

Although the TI-99/4A does not have a realtime clock built in
and accessible by BASIC, there are ways you can simulate time
delays and timing devices. One method of delaying is to use an
empty FOR-NEXT loop — one with no statements between
FOR and NEXT:

109 FOR DELAY=1 TO 100
110 NEXT DELAY

The above delay takes about one second. FOR DELAY =1TO
1000 takes about 3.8 seconds. The time will vary, depending on
how full memory is when your program runs. You can use a

stopwatch to determine what the limit on your delay loop
should be.

The CALL SOUND Clock

A more accurate way to denote a certain length of time is to use
multiple CALL SOUND statements, in which you can specify
an exact number of milliseconds for a sound. As you know, a
CALL SOUND statement does not usually delay a program.
The computer goes on and executes more statements, and the
sound has no effect on program speed — with one exception.
Until one CALL SOUND has finished, the next one cannot
begin. So if your program has one CALL SOUND, a second
CALL SOUND, or a repetition of the first one in a loop, will
cause the program to wait for exactly as long as you specify.

If you prefer not to hear anything during the delay, use a
frequency out of hearing range and a loudness factor of 30.

100 CALL SOUND(1000,44000,30)
110 PRINT I

282

e s (ATTOL) e ——

120 I=I+1
130 GOTO 100

Since 1000 milliseconds equals one second, this program
segment increments every second.

The CALL KEY Clock

Another way to simulate a time clock while someone is
interacting with the computer is to put a counter in the CALL
KEY loop. In the game “‘Find Home’’ in Chapter 3, the score is
incremented in the CALL KEY loop and PRINTed at the end of
the game. The faster you play and get to the home base, the
fewer times the CALL KEY loop will occur, and the lower the
score will be.

Here is a routine you can use if you want the time printed
as the game is going. In this program segment, the time prints
until you press a key:

100 CALL CLEAR

110 T=0

120 CALL KEY(@,K,S)

130 FOR I=1 TO LEN(STRS$(T))

140 g??? HCHAR(24,27+1,ASC(SEGS(STRS(T),I,
150 NEXT I

160 T=T+1

170 IF S<1 THEN 120

180 END

The disadvantage of this method is that the more statements
you have within the CALL KEY loop, the less responsive user
interaction will be, as the user presses a key and nothing
happens for a while.

Timing the Touch Typist
This program was designed as a practice unit for beginning
ing students who have learned all the positions of the
letters. Each drill consists of ten sentences, and each sentence
requires 25 keystrokes. After each sentence the student types,
his or her approximate rate in words per minute is calculated
and displayed. The rate is calculated from the number of
strokes the student typed divided by five strokes per word.

283

After ten sentences, the overall words-per-minute rate for all
ten sentences is calculated and displayed.

The sentences for the drill are chosen randomly from a list
of over 40 sentences, and a student can perform the drill four
times before repeating a sentence.

The sentences are read in as the A$ array. For each
sentence chosen in the drill, a random number H is selected
and A$(H) is printed. After the sentence has been used, A$(H)
is set equal to the null string, """/, so it cannot be used again. If
the student wishes to continue after the fourth drill, the
sentences are RESTOREd and READ into the A$ array before
the next drill.

After a sentence is displayed, the student types in the
sentence. Each letter the student types is accepted using a
CALL KEY loop. INPUT would be faster for the student and
easier for the programmer, but I did not use it because the
screen would scroll, the student could enter too many strokes
and cause a program-ending error or change the graphics
sequence, and there would be no way to time the process.

Lines 1640-1710 receive the student’s typing. The student is
allowed to type 27 strokes maximum. II is the timer that
increments within the loop. If the student presses ENTER, the
program branches out of the loop; otherwise, the character
pressed is printed and placed in the B array.

The timer value, 11, is a function of both the amount of
actual time a student uses and the number of strokes. It varies
directly with the length of time, but does not increment as
quickly if a key is pressed.

Testing for the Realtime Value

To discover the relation between the II value and the actual
word-per-minute rate, a plot of time and number of strokes
was made; then an equation could be derived. First, a constant
time of four seconds was selected; then a specific number of
strokes was entered and the timer value printed. For graphing
purposes, 0, 5, 10, 15, 20, and 25 strokes were entered during
the constant four seconds. These numbers of strokes
correspond to 0, 15, 30, 45, 60, and 75 words per minute. The
timer values were consistent for numerous trials, and the
points plotted on the graph were in a straight line. Constant
times of three seconds and five seconds were also tried, and
resulted in parallel lines on the graph.

284

Since the general equation for a line is y=mx +b,

II=—§X+7R= _§x+78* 1 * 60 seconds *
5 25 4 seconds 1 minute
where m is minutes. Solving for m,

ma o (4 223
1170 © 25

The typing definition of words per minute is

WPM = umber of strokes/5 strokes per word
number of minutes

So, substituting m and simplifying,

M= _234x words per minute

II+1.12x

The equation will change if the size of the program is
altered because, in general, the program runs more slowly with
fuller memory.

In this program, the process of using a timer in the CALL
KEY loop, printing the character of the key pressed, and
keeping track of the key pressed increases the response time.
With faster typists, the spaces and double letters are not as
easily detected. However, if you type evenly the response of
the keys is better, and this program can handle speeds of about
88 WPM accurate typing. Since this program was designed as a
drill for students, it should be adequate for beginning typists’
speeds.

How "'Type-ette Timer”’ Works

Lines

110 DIMension the A$ array for 46 sentences and the
B array to receive the 27 character numbers the
student types.

120 Branch past the subroutine.

130-200 Subroutine to print message and wait for
student to press ENTER.

210-250 Clear the screen; print the title.

285

e Chapter £ e

260-310
320-1000

1010-1150

1160-1240
1250

1260-1320
1330

1340-1470
1480-1520

1530
1540
1550-1560

1570-1580
1590

1600-1630
1640-1710

1720
1730-1750

1760-1860

1870-1890
1900-1920
1930-1990
2000-2110
2120

2130-2150
2160

286

Define the graphics characters.

While music plays, define the graphics
characters and colors and draw the title screen.
While music plays, READ the sentences into the
A$ array.

READ more sentences into the array.

If the student has previously done the drill, skip
the instructions.

Print the instruction screen.

Initialize the number of times the drill has been
performed.

Draw the graphics for the drill.

Initialize the variables. R is the number of
correctly typed sentences; W is the number of
incorrectly typed sentences; CO is a coordinate
marker for the birds that appear as a sentence is
typed correctly; TOT is the total timer value; TLL
is the total number of strokes typed.

Randomize the selection of sentences.

Perform the drill for ten sentences.

Initialize B$ as the student’s typing and II as the
timer.

Randomly choose one of the sentences.

Clear the background for sentences.

Print the sentence and beep the beginning tone.
Print what the student types while incrementing
the timer. (1650-1670 comprise the ““waiting
loop”” while the student has not pressed a key.)
Beep the ending tone.

Combine the characters the student typed to
form sentence B$.

If the sentence was incorrect, sound ““uh-oh”’
and print the number of wrong sentences so far.
If the sentence was correct, play a tune.

Draw a bird.

Print the number of correct sentences.

Calculate and print words per minute.

Set A$ to null so the sentence won't be used
again.

Delay slightly before the next problem.

Clear the last sentence typed.

2170-2230 Print the overall average words per minute and

play a tune.

2240-2320 Print the option to try again; branch

appropriately depending on the answer and the
number of times the drill has been performed;
end.

Program 6-6. Type-ette Timer

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

260
278
280
290
300

310

320
330
3409
350
360

REM TYPE-ETTE TIMER

DIM A$(46),B(27)

GOTO 210

M$="PRESS <ENTER> TO CONTINUE."

FOR J=1 TO 26

CALL HCHAR(24,2+J,ASC(SEGS$(MS$,J,1)))
NEXT J

CALL KEY(@,K,S)

IF K<>13 THEN 170

CALL HCHAR(24,3,32,27)

RETURN

CALL CLEAR

CALL SCREEN(8)

CALL COLOR(10,15,1)

CALL COLOR(11,15,6)

PRINT "{3 SPACES}** TYPE-ETTE TIMER **"
HEH

FOR J=1 TO 9

READ C,C$

CALL CHAR(C,C$)

NEXT J

DATA 92,3C4299A1A199423C,105,0103070F1F
3F7FFF, 106 ,0080CJEJFOF8FCFE, 129, FFFFF
FFFFFFFFFFF, 121

DATA 7F7F7F7F3F3F3F1F,122,1F0FOF0707030
1,123,7F3F1F@701,124,FFFFFFFFFF7F9OF,1
36, FFFFFFFFFFFFFFFF

CALL COLOR(12,12,1)

T=400

CALL SOuUND(T,523,2,131,8)

CALL CHAR(96, "FFFFFFFFFFFFFFFF")

CALL CHAR(97,"FF7F3FlFOFQd70301")

287

370
380
390
400
410
420

430
449
450
460
470
480
490
500
510
520
530

540
550

560
570
580
590
600
610
620
630
640
650
660
679
680
690
700
710
720
730
740
750

288

CALL SOUND(T/2,659,2)

CALL COLOR(9,6,1)

CALL SOUND(T/2,523,2)

CALL CHAR(98, "FFFEFCFS8F@E@C@O8")

CALL SOUND(T,392,1)

PRINT TAB(8);"*‘*** "% ru,paB(8);"""
L T T T O O T T O N)

CALL SOUND(T,392,9)

CALL CHAR(104, "FFFFFFFFFFFFFFFF")
CALL CHAR(112, "00000000@0OC3EFF")
CALL SOUND(T,523,2,131,8)
PRINT TAB(8);"'ppppppppppPpP"
CALL SOUND(T/2,659,2)
CALL CHAR(115, "FF7F3F1F@FQ070301")
CALL SOUND(T/2,523,2)

CALL CHAR(116, "FFFEFCFS8FOE@CO8")

CALL SOUND(T,392,2)

PRINT TAB(8):"ashhhhhhhhhtb":TAB(9);"as
hhhhhhhtb"

CALL SOUND(T,784,1)

PRINT TAB(1@);:;"ashhhhhtb":TAB(11);"ashh
htb"

CALL CHAR(99,"0103070F1F3F7FFF")

CALL SOUND(T/2,698,1,131,7)

CALL CHAR(100, "80COEJFIFS8FCFEFF")
CALL SOUND(T/2,659,1,131,7)

PRINT TAB(12);"ashtb"

CALL SOUND(T/2,587,1)

PRINT TAB(13):;"*h*"

CALL SOUND(T/2,523,1)

PRINT TAB(13);"*h""

CALL SOUND(T/2,494,2,131,7)

PRINT TAB(12):;"c*h*d"

CALL SOUND(T/2,523,2,131,7)

PRINT TAB(1l1l);"c'*h**a"

CALL SOUND(T/2,494,2)

PRINT TAB(18);"c***h***a"

CALL SOUND(T/2,523,2)

PRINT TAB(9);"c****n***'a"

CALL SOUND(T/2,587,2)

CALL CHAR(113,"01@03070F1F3F7FFF")
CALL SOUND(T/2,523,2)

760
770
780
790
800
810
820
830
840
850
860
870
880
899
9200
910
920
930
940
950
960
979
980
990
1000
1010

1020

1930

1040

1050

1060

PRINT TAB(8);"c*****h*****g"

CALL SOUND(T/2,494,2)

CALL CHAR(114, "89COEOFOFS8FCFEFF")

CALL SOUND(T/2,449,2)

PRINT TAB(B):"\\\\qsh\\\\\\“

CALL SOUND(T/2,392,2,196,3)

PRINT TAB(8);"***‘*‘ghr****™"

CALL SOUND(T/2,175,3)

PRINT TAB(8);"*'*‘*ghhhr***™"

CALL SOUND(T/2,165,3)

CALL SOUND(T/2,147,3)

CALL SOUND(T,523,2,131,3)

PRINT :;

CALL SOUND(T/2,659,2)

CALL SOUND(T/2,523,2)

CALL SOUND(T,392,0)

CALL CHAR(128,"@0Fg70301406F7F43")

CALL SOUND(T,392,2)

CALL CHAR(129, "80COCOEJE6FFFEE")

CALL SOUND(T,659,2,262,6)

CALL COLOR(13,5,1)

CALL SOUND(T/2,784,2)

CALL COLOR(14,12,1)

CALL SOUND(T/2,659,2)
CALL SOUND(T,523,2)
DATA 659,185,1 MADE CAGES FOR MY PETS.
,523,185,GREG BOUGHT A LARGE GONG.,b58
7,196,SHE KEPT A SAFE DISTANCE.
DATA 494,196,TOM HAS SENT THE PACKAGE.
,523,131,THEY MAY STOP THEIR WORK.,b 44
@,131,CHERY HELPED WITH DISHES.

DATA 494,147,ANDY GAVE MY BAND A HAND.
,392,147,LET RANDY SORT THE CARDS.,b44
@,147,PUT A PURE GOLD ONE HERE.
DATA 37@,147,TRY TO TYPE A THIRD CARD.
,392,196,1I WANT TO WIN A SURPRISE.,b44
@,196,SHE HAS MORE TO DO THERE.
DATA 494,196,HE SAID WE RENT A CAMPER.
,523,196, THEY ARE AT THE TENT NOW.,58
7,196,1 HOPE THE TAX IS FOR US.
DATA 659,196,WE KNOW WE HAVE TO DO IT.

289

e eTTTE—— Chapter (e

,749,378,D0 NOT PHOTO THOSE OBOES.,78
4,392,THIS IS FUN TO TYPE THEM.

1870 DATA 880,185,YOU COULD COUNT YOUR OWN.
,784,185,SHE GAVE HIM A FINE WAGE.,74
@,147,SOME OF US HAVE TO DO IT.

108% DATA 659,147,HAVE THE BOY DO THE WORK.
,587,220,HE CAN DO A JOB THE BEST.,52
3,220,EIGHT OF US ARE HERE NOW.

1990 DATA 494,147,YOUR COWS CAN HELP DO IT.
,440,147,1 BOUGHT THE BOX OF CANS.,39
2,196, THEY SHOULD READ MY LIST.

1100 DATA 44000 ,44000,LET ME GET SEVEN OF T
HEM.

1110 RESTORE 1010

1120 FOR I=@ TO 27

1130 READ F1,F2,AS$(I)

1140 CALL SOUND(200,F1,2,F2,6)

115@ NEXT I

1168 FOR I=28 TO 45

1170 READ AS(I1)

1180 NEXT I

1190 DATA YOUR BABY IS AWAKE AGAIN.,CHECK T
HE PAPER FOR DIRT.,THE QUICK QUIZ WAS
TODAY .

1200 DATA FOUR OF THE MEN ARE HERE.,BRING C
ARDS TO THE TABLE.,TRY NOT TO BALK AT
THESE.

1210 DATA SHE MUST TRY TO WORK NOW.,I THINK
IT IS WISE TO DO.,EACH OF US HAD FIV
E JARS.

1220 DATA TRY TO GET SEVEN OF THEM.,THEIR C
AR IS AT THE FARM.,WE HAVE TO WORK TW
O DAYS.

1230 DATA SHE SAID THEY STRUCK OIL.,I WANT
TO GO LATER TODAY.,TRY TO REACH THESE
GOALS.

1240 DATA JANE HAS TO SPEAK AT ONE.,THEY PR
OVED THE THEORIES.,SHE SAID SHE HAS A
LEASE.

1250 IF TEST>4 THEN 1330

1260 CALL CLEAR

290

e Chapterb L

1270
1280

1290

1300

1310
1320
1330
1340
1350
1360

1370
1380
1390

1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600

CALL SCREEN(2)

PRINT "YOU WILL SEE A SENTENCE":"ON TH
E SCREEN."::"TYPE AND ENTER IT."::"YO
U WILL BE TOLD YOUR"

PRINT “WORDS PER MINUTE (WPM)":"FOR TH
AT SENTENCE":" (25 STROKES = 5 WORDS)
"::"AFTER TEN SENTENCES YOUR"
PRINT "FINAL SCORE AND TOTAL WPM

{3 SPACES}ARE SHOWN.":::::

CALL SCREEN(12)

GOSUB 130

TEST=1

CALL CLEAR

CALL SCREEN(B}

PRINT TAB(?) "+TAB(6);"ihhj":
"ihhhhij" :TAB(S),"““‘“:TAB(S)

\\ LT}

PRINT TAB(5):;" *xx"*";TAB(18);"RIGHT:"

PRINT TAB(5);""‘x “"-TAB(la),"wRONG-“

PRINT TAB(5);" “xx""";TAB(18);"WPM:"::

33383838

CALL HCHAR(1,29,120,4)

CALL HCHAR(2,29,121)

CALL HCHAR(2,30,1290,3)

CALL HCHAR(3,29,122)

CALL HCHAR(3,30,120,3)

CALL HCHAR(4,390,123)

CALL HCHAR(4,31,124)

CALL HCHAR(4,32,120)

R=0

w=0

co=-1

TOT=0

TLL=0

RANDOMI ZE

FOR I=1 TO 10

B$=llll

11=0

H=INT(46*RND)

IF AS$(H)="" THEN 1570

CALL HCHAR(18,1,136,128)

FOR J=1 TO 25

TAB(3)

291

1610

1620
1630
1640
1650
1660
1678
1680
1690
1709
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
197@
1980
1990
2000
2010

292

?ALL HCHAR(19,3+J,ASC(SEGS(AS(H),J,1))

NEXT J

CALL SOUND(109,1397,2)
FOR KK=1 TO 27

CALL KEY(@,K,S)
II=II+l

IF S<1 THEN 1650

IF K=13 THEN 1720
CALL HCHAR(20,KK+3,K)
B(KK)=K

NEXT KK

CALL SOUND(100,262,2)
FOR Kl=1 TO KK-1
B$=B$&CHRS$ (B(K1))

NEXT K1

IF B$=A$(H)THEN 1870
CALL SOUND(100,392,2)
CALL SOUND(109,339,2)
W=W+1

IF W<1@ THEN 1850
CALL HCHAR(13,27,49)
CALL HCHAR(13,28,48)
CALL HCHAR(12,28,48)
GOTO 2000

CALL HCHAR(13,28,W+48)
GOTO 2000

FOR F1=523 TO 723 STEP 20
CALL SOUND(5@,F1,2)
NEXT F1l

CO=CO+3

CALL HCHAR(5,C0,128)
CALL HCHAR(5,C0+1,129)
R=R+1

IF R<1@ THEN 1990
CALL HCHAR(12,27,49)
CALL HCHAR(12,28,48)
CALL HCHAR(13,28,48)
GOTO 2000

CALL HCHAR(12,28,R+48)
LL=LEN(B$)

TLL=TLL+LL

e e S Chapter {5 ST

2020
2030
2040
2050
2060
2070
2080
2090
2100

2110
2120
2130
2140
2150
2160
2170

2180
2190

2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320

TOT=TOT+I1
WPM=INT(((234*LL)/(II+1.12*LL))+.5)
WPMS=STRS (WPM)

CALL HCHAR(14,27,32,3)

WC=26

IF WPM>=1@0 THEN 2090

wc=27

FOR KK=1 TO LEN(WPMS$)

??%L HCHAR(14,KK+WC,ASC(SEGS (WPMS$,KK, 1
NEXT KK

A$(H)=""

FOR D=1 TO 200

NEXT D

NEXT I

CALL HCHAR(19,1,136,64)

PRINT "TOTAL AVERAGE WPM =";INT(((234*
TLL)/ (TOT+1.12*TLL))+.5)

RESTORE 2190

DATA 587,784,988,1175,1047,988,880,784
,740,659,784,749,880,784,740,659,659,
587,523,494,587,523,494,440,392

FOR I=1 TO 25

READ F1

CALL SOUND(200,F1,2)

NEXT I

PRINT :"WANT TO TRY AGAIN? (Y/N)"
CALL KEY(9,K,S)

IF K=78 THEN 2310

IF K<>89 THEN 2250

TEST=TEST+1

CALL CLEAR

IF TEST>4 THEN 111@ ELSE 1340

CALL CLEAR

END

293

Sorting

One of the functions of a computer is to organize data. There
are many sort routines to take your raw data and arrange it in
ascending or descending order. The Birthday List program
illustrates sorting by date, and the Name and Address File
program illustrates sorting names alphabetically. Here are four
BASIC algorithms for sorting.

In the first sort program, lines 110-170 find and print 50
random numbers to sort, and lines 500 to the end print out the
sorted numbers. To use names or strings, put a dollar sign after
each variable name that contains an item to be sorted. To make
the program sort in descending rather than ascending order,
change the less than (<) and greater than (>) signs.

Sort 11is the bubble, or simple interchange, sort. It’s better
for lists that are not much out of order or that haven’t very
many items. The program compares each number to the next
number and exchanges numbers where necessary. If even one
switch has been made during a pass through all the numbers,
the loop of comparisons starts over. The number of passes
through the loop depends on how many items were out of
order.

Program 6-7. Sort 1: Bubble Sort

108 REM SORT 1
119 DIM A(59)

120 FOR I=1 TO 50

13@ RANDOMIZE

140 A(I)=INT(RND*100+1)

158 PRINT A(I);

160 NEXT I

17@ PRINT ::

200 LIM=49

210 SW=0

220 FOR I=1 TO LIM

230 IF A(I)<=A(I+1)THEN 290
240 AA=A(1)

250 A(1)=A(I+1)

260 A(I+1)=aAA

270 SW=1

280 LIM=I

294

——— ([AD{E] [e ses———————

290 NEXT I

300 IF SW=1 THEN 210
508 FOR I=1 TO 50
510 PRINT A(I);

520 NEXT I

538 END

The shell sort is considerably faster than the bubble sort,
because the number of comparisons that need to be made is
reduced. In general, for arandom order of 50 numbers, the
shell sort is about two or three times as fast as the bubble sort.

In an array of N numbers, first determine B so that 2B
<N<28+1 Then initialize B to 28-1. The loop varies counter I
from 1 to N-B. First, check if A(I)= < A(I+B). If so, increment I
and continue comparisons. If not, exchange A(I) and A(I +B)
and change the subscript.

When I reaches the value of N, reduce B by a factor of 2 and
start the loop again. When B=0, the sort is complete.

Program 6-8. Sort 2: Shell Sort

1080 REM SORT 2

116 DIM A(50)

120 FOR I=1 TO 5@

130 RANDOMIZE

149 A(I)=INT(RND*100+1)
150 PRINT A(I);

160 NEXT I

178 PRINT ::

200 B=1

210 B=2*B

220 IF B<=50 THEN 210
230 B=INT(B/2)

240 IF B=¢ THEN 500
25¢ FOR I=1 TO 50-B
260 C=1

278 D=C+B

280 IF A(C)<=A(D)THEN 340
290 AA=A(C)

308 A(c)=a(D)

319 A(D)=AA

320 C=C=B

295

o enemameeren (AN ET (0 en———————

330 IF C>@ THEN 270
340 NEXT I

350 GOTO 239

508 FOR I=1 TO 50
510 PRINT A(I);

520 NEXT I

53¢ END

The third is also faster than the first sort if the numbers are
quite out of order. The program goes through all the numbers
and places the lowest value in the first spot of the array. The
loop keeps finding the smallest of the numbers remaining and
places it in order.

Program 6-9. Sort 3: Minimum Search

108 REM SORT 3

110 DIM A(50)

120 N=50

13 FOR I=1 TO N
149 RANDOMIZE

150 A(I)=INT(RND*100+1)
168 PRINT A(I);

1780 NEXT I

180 PRINT ::

208 M=A(1)

210 IM=1

22@ FOR I=2 TO N
230 IF A(I)<M THEN 260
240 M=A(I)

25¢0 IM=I

260 NEXT I

27@8 AA=A(N)

280 A(N)=A(IM)

290 A(IM)=AA

308 N=N-1

310 IF N>1 THEN 200
50@ FOR I=1 TO 5@
519 PRINT A(I);

520 NEXT I

53@ END

296

N TS TR Chapter 6 oE——————

In this fourth sort, each pass through the numbers finds both
the minimum and maximum numbers and places them at the
end points.

Program 6-10. Sort 4: Minimum and Maximum

108 REM SORT 4

116 DIM A(50)

120 N=50

138 FOR I=1 TO 50

140 RANDOMIZE

150 A(I)=INT(RND*100+1)
168 PRINT A(I);

178 NEXT I

180 PRINT ::

200 s=1

210 MN=A(S)

220 IMIN=S

230 MX=MN

248 IMAX=S

250 FOR I=S TO N

260 IF A(I)<=MX THEN 290
2780 MX=A(I)

280 IMAX=I

290 IF A(I)>=MN THEN 320
300 MN=A(I)

319 IMIN=I

320 NEXT I

33¢ IF IMIN<>N THEN 350
340 IMIN=IMAX

35¢ AA=A(N)

360 A(N)=A(IMAX)

370 A(IMAX)=AA

380 N=N-1

390 AA=A(S)

499 A(S)=A(IMIN)

410 A(IMIN)=AA

420 S=S+1

43¢ IF N>S THEN 210

500 FOR I=1 TO 5@

51@ PRINT A(I):

528 NEXT I

538 END

297

e e e e —— Chapte]" e s m———

Conserving Memory

If you are used to working with programs on large mainframe
computers, one of your biggest challenges with a
microcomputer may be to stay within the available memory.
However, as you work with your computer you’ll soon be able
to judge about how much programming the 16K RAM can
handle without memory problems. (Note: The TI-99/4A
console has 256 fewer bytes available than the TI-99/4 console.)

Keep in mind that there are trade-offs in programming.
You may have to sacrifice clear documentation, easy-to-read
lines, ideal graphics, or even speed and efficiency in order to
gain enough memory to RUN. Here are a few hints to help you
reduce memory requirements in your programs.

Specify One OPEN File
If the disk system is plugged into the computer, memory is
reduced by 534 bytes, plus 518 bytes for each OPEN file. In TI
BASIC the number of files open is preset to 3, so 2088 bytes of
RAM are used. By specifying only one OPEN file, you use the
least amount of memory you can and still have the disk system
connected.

When you first sit down at your computer, use this
procedure:

1. From the title screen, press any key to begin.
2. Press 1 for TIBASIC.

3. Enter CALL FILES(1)

4. Enter NEW

5. Proceed as usual.

All of the programs in this book will work with the disk
system connected; however, several of the programs require
the CALL FILES(1) procedure.

Remove or Shorten REM Statements
Deleting REMs is the easiest and perhaps the first step to
reduce program size. While you are developing your program,
REMs help you keep track of different sections or procedures.
However, each REM uses one byte per character, plus the line
number.

While you are developing programs, avoid having
GOSUB, GOTOQO, THEN, and ELSE commands branch to the
line number of a REM; go to the next statement number

298

g e Sa S L Chapter % reemsmresnememmrem—

instead. Later, if you delete the REM statement, you won't
have to worry about changing all references to that line
number.

Combine PRINT Statements

One PRINT statement for each line of print on the screen is
easy to read and understand in the program listing, but each
line number uses more memory. One statement can be 112
characters long, so you can use colons and spaces to combine
several lines into one longer one to save memory.

In this example, line 500 does exactly the same thing as
lines 100-230.

109 PRINT "HELLO"

110 PRINT

120 PRINT

130 PRINT

140 PRINT "CHOOSE:"

150 PRINT

160 PRINT "1 COLORFUL DEMONSTRATION #1"

180 PRINT "2 GAME TWO"

190 PRINT "3 OPTION THREE"

200 PRINT

210 PRINT "4 END PROGRAM"

220 PRINT

230 PRINT

5@ PRINT "HELLO":::"CHOOSE:"::"1 COLORFUL
DEMONSTRATION #1":"2 GAME TWO":
"3 OPTION THREE"::"4 END PROGRAM":::

Plan Your DIMensions

When you use a subscripted variable you haven’t already
DIMed, TI BASIC automatically reserves space for eleven
elements in each dimension used — up to E(10,10,10), when
subscripts start with zero. When you RUN the program, even if
you don’t fill those extra elements, eight bytes per subscript are
reserved for numeric expressions.

If you really are using ten or eleven subscripts, a DIM
statement wouldn’t save you any memory, since the statement
itself takes up several bytes. However, if you are close to full
memory and you need only six elements, a DIM statement like

299

e Chapter £ e —————————

120 DIM E(5) will save 40 bytes — eight per numeric element.

For numbers higher than 10, DIM only the number of
elements you need. Don’t arbitrarily choose a nice round
number such as 50 when you really need only 43.

String variable elements don’t require as much reserved
memory — the subscripted string element is null until it is
actually filled. When you use a DIM statement for a string, the
process uses eight bytes plus twice the value of each subscript.

Also remember that subscripts start with zero unless you
use OPTION BASE 1, which starts subscripts with one.

Trim Your Variables

Limit the number of different variable names used, and use
short variable names. While you are developing a program,
you may use meaningful variable names, such as NAMES,
ADDRESS$, SCORE, DELAY, and COUNTER. However, if
you need to conserve memory, you may have to sacrifice clarity
to be able to RUN your program. Longer names take up more
memory each time they are used than shorter names.

One programming trick is to use the same short variable
name for each independent loop counter, rather than use
several different names, such as FOR MONTH=1TO 12, FOR
DELAY=1TO 500, or FOR CHARACTER =96 TO 120. For each
loop you could use FOR C=1TO 12, FOR C=1TO 500, and
FOR C=96 TO 120, etc.

Use Subroutines for Repetitious Code

Take a look at your listing and note any repetitious code or
sequences of similar statements. Sometimes a FOR-NEXT loop
will be more efficient than a sequence. A GOSUB can be used
for program segments that are used more than once. You may
have a procedure that is used in several different places — write
the coding once, then every time you need the procedure use a
GOSUB. The same subroutine can be used for different
purposes when you ““prime’” the program before using
GOSUB by assigning new values to the variables the
subroutine uses.

Use DATA and READ

Using DATA statements may increase typing errors because of
all the numbers and commas involved, and the program logic
may be harder to follow, but a DATA routine can save a lot of

300

(AR T Chapterb ST s E————

memory by READing values for variables instead of using
endless LET statements. Usually, if you have more than eight
statements in a row that are doing the same process, using a
DATA routine instead would save memory.

Combine Data Where You Can

Rather than working with 20 different last names and their
corresponding first names, combine the names into one
variable: N$(I)=LAST$&"’, *'&FIRST$. Consider whether the
data might best be kept a number or a string if you have a
choice. In a report program for attendance at nine monthly
meetings, the numbers could be READ as DATA:
0,0,3,1,0,0,2,0,1,0,0,1. Stored that way, each digit takes up
three bytes of memory. I also decided I wanted to use a symbol
other than zero for a person who joined the group late.

The numbers can be READ as individual strings, and in the
DATA statement the zeros can be deleted:

500 DATA SMITH,]IM,-,,3,1,,,2,,1,,,1

Another way to arrange this data is to put the zeros back in,
READ all the numbers and symbols as one string, and then use
a few lines of logic to separate each month’s digit:

500 DATA SMITH,]JIM, -03100201001
To work with each digit, use the SEG$ statement:

200 READ LS$,F$,AS
210 FOR M=1 TO 12
220 BS$=SEGS(AS$,M,1)

290 NEXT M

Draw Efficiently
Check your graphics statements to make sure you are drawing
your picture in the best time sequence and in an efficient
manner. Make good use of the repetition factor in CALL
HCHAR and CALL VCHAR statements. Sometimes you can
use fewer statements by using the repetition factor and then
erasing part of the design.

For example, to print REGENA vertically, I can use five
statements for the six letters:

301

T T m——— Chapter H e ———

108 CALL HCHAR(15,25,82)
110 CALL VCHAR(16,25,69,3)
120 CALL VCHAR(17,25,71)
1390 CALL VCHAR(19,25,78)
140 CALL VCHAR(20,25,65)

Keep in mind that the repetitions will continue to the next line
if you want them to. Here are three ways to clear a rectangle of
the screen; the third method uses the least memory.

500 CALL HCHAR(15,1,32,32)
519 CALL HCHAR(16,1,32,32)
520 CALL HCHAR(17,1,32,32)
53¢ CALL HCHAR(18,1,32,32)
540 CALL HCHAR(19,1,32,32)
55¢ CALL HCHAR(20,1,32,32)
or
500 FOR R=15 TO 20
510 CALL HCHAR(R,1,32,32)
520 NEXT R
or
509 CALL HCHAR(15,1,32,192)

Plan Your Logic Carefully

Be careful of overusing GOTO statements. Structured
programming experts never use a GOTO. If you plan the
sequence of your program, you should be able to rearrange
your program lines so that the program executes in sequence
rather than jumping all over and back again. Use the RES
command if you need more line numbers between statements.
Your program will also be much more understandable if you do
not GOTO often.

Check your IF-THEN-ELSE statements. Perhaps an IF-
THEN-ELSE can be used instead of an IF-THEN and a GOTO.
Remember the power of the ON-GOTO and ON-GOSUB
statements. You may be able to reduce many lines of [F-THEN
logic if you can get a numeric expression to relate to
consecutive integer conditions for the ON-GOTO or ON-
GOSUB.

One problem with ON-GOTO statements is that if ON tries
to evaluate an expression with a value less than 1 or greater

302

T ST rCRETHE SRR Chapter £ e —— —————

than the number of line numbers after GOTO, the program will
crash. Unfortunately, true expressions return a value of -1 and
false ones a value of 0, both out of the allowable range for ON.

In order to replace IF-THENs with ON-GOTOs, you can
use the negative of an expression: -(N =N) has a value of 1. This
short program contains a safe ON-GOTO statement:

100 INPUT H

110 ON 1-(H<@)-2*(H=0) GOTO 120,140,160
120 PRINT "POSITIVE NUMBER."

130 GOTO 100

140 PRINT "NEGATIVE NUMBER."

150 GOTO 100

160 PRINT "ZERO."

170 GOTO 160

The 1 at the beginning of the statement acts like an ELSE
statement. No matter what value the other two expressions
return, the ON will have somewhere to branch — in this case,
line 120. There is no value of H that will crash the program.
Notice that because true statements return a negative value,
the subtractions in line 110 actually add if the expression that
follows is true.

Scrutinize the Program Listing

Even if you have a knack for keeping track of things in

your program, it is a good idea to take a final look at the listing.
Sometimes in the process of editing you miss statements that
should have been deleted. Perhaps there are statements that
the program never branches to.

Check all GOTO statements and other branching
statements to make sure they don’t just branch to another
GOTO statement, such as IF S=10, THEN 500 ELSE 600, when
line 600 says GOTO 1000.

As you look at the listing, you may notice patterns or
repetitious code that you overlooked previously. Review the
built-in functions of TI BASIC, because a single function may
be able to replace several lines of IF-THEN logic.

If It Still Won't Fit
If all else fails, write another program. Change your approach
entirely, or write a series of programs. The 16K RAM is a good

303

e T —— Chapter () T S ———

size for one learning unit in educational programs. Rather than
worry about fitting an entire educational program into 16K, it
works better to plan the programs in logical teaching units,
without sacrificing graphics or sound or color because of
memory limitations.

For example, the touch typing programs started out as one
idea, but developed into seven units — seven programs.
Another example is the geography programs to learn the
states. The ideal program would have all 50 states and be able
to blink one state at a time. With high resolution graphics that
wasn'’t possible, so the programs were divided up into the
regions of the United States. “’Western States”” (Program 6-3) is
one unit.

File Processing

You can use either a cassette recorder or a disk system for file
processing with your computer, and store programs or data on
cassettes or diskettes. For cassette files you may use either one
or two cassettes and the dual cassette cable. The remote switch
capabilities are necessary for file processing.

In general, if you have a program that processes stored
information, your program will require an OPEN statement to
alert the computer which device and what type of data file you
are using. Then you may INPUT to read data or PRINT to save
data. The program should also include a CLOSE statement.

Keeping Data on Cassette

Here is a program that illustrates the use of a cassette to store
information in a name and address file. The first menu screen
gives the following options:

1 Load data

2 Add data

3 Edit data

4 Print list

5 Save list

6 End program

The first time you use the program, you would press 2 for
"“Add data.”” You may then enter names, addresses, and
phone numbers. There is also a field for a code. You can set up
the code however you wish. For example, you may want three

304

ST T e AR SRS RE Chapter % e T ———

characters in the code — the first character for the number of
children, the second character for which club the person
belongs to, and the third character for Y if you received a
Christmas card last year and N if you didn’t. Bob’s code may
then be 4]Y for ““four children,”” ““jogging club,”” and ““yes.”
Jim’s code may be 3CN for “‘three children,”” *’computer
club,”” and “'no.””

This code section is quite versatile. If you are keeping a
separate cassette list for computer owners, the codes could be
TI, TRS, APPLE, VIC, and ATARI — or you might want to use
numbers such as 1 for TI, 2 for TRS, 3 for Apple, etc. You may
wish to use codes to determine which region of the country the
person lives in. Or you may wish to use codes to tell you which
people in your advertising list have purchased items from you
and which have not.

If you need to change the information, choose the ‘“Edit”’
option. The program will prompt you so that you can change
any part of the information or delete a name from the list.

Before too long, you will want to save the list. The program
will first alphabetize the list by name. The computer will
prompt you for the procedure to save the list on cassette.

Option 4 is to print the list; you may print the list either on
the screen or with a printer. If you use a printer, you will need
to enter your printer configuration, such as RS232.TW.BA =110
or whatever your usual configuration is.

With the print option you may also choose whether to print
the whole list or just the people who fit a certain code. If you
want to select by code, you enter the code. Using the above
example of codes, suppose I’'m planning a party for all my close
friends who like to jog with their four children. I would enter
the code 4]Y, and the computer would print a list of all the
people who have a code of 4]Y.

If you are printing on the screen, the names will scroll. To
stop the scrolling at any point, just press any key. To continue
the list, press any key.

After you have saved your data once, the next time you run
the program you can select the first option, “Load data,”’ to
read in previously stored information.

305

How "Name and Address File”” Works

Lines

100-140 Print the title.

150 DIM variables for 25 names, addresses, phone
numbers, and codes.

160-230 Print the main options and branch
appropriately.

240-710 Subroutine to alphabetize the list by name. If the
list has been alphabetized, FLAG=1.

720-800 Procedure for reading in data. Line 730 OPENs
device #1, the cassette CS1, for input with
internal and fixed format for a length of 128.
First the number of names (N) is read in, then all
the information.

810-1150 Procedure for adding data. As soon as you add a
name, FLAG =2, because the names may be out
of alphabetical order. The last name and first
name are combined for N$(n). The street
address, city, state, and zip code are combined
for A$(n).

1160-2110 Procedure to edit information. POS and SEG$
are used to work with parts of the name and the
address.

2120 Before the list is printed, it is alphabetized.

2130-2450 Procedure to print the list. If all the names are to
be printed, the code is ZZZZ and the code is not
checked. Otherwise, the codes are compared
before printing.

2460-2600 Procedure to print the list using the printer.

2610 Before the list is saved, it is alphabetized.

2620-2690 Procedure to save the information on cassette.

2700-2760 Procedure if the user selects the ““End program”’

option. The user is first reminded to save the
information. End.

Program 6-11. Name and Address File (Cassette)

100 REM NAME & ADDRESS FILE
110 CALL CLEAR

120 PRINT "NAME AND ADDRESS FILE"
130 CALL CHAR(64,"3C4299A1A1994237")

306

140
150
160
170
180

190

200
210
220
230

240
250
260
279
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520

PRINT :z:ss53

DIM N$(25),A$(25),P$(25),c$(25)
GOTO 180

CALL CLEAR

PRINT "PRESS:"::" 1 LOAD DATA"::" 2 A
DD DATA"::" 3 EDIT DATA"

PRINT :" 4 PRINT LIST"::" 5 SAVE LIST

"s+:" 6 END PROGRAM"
CALL KEY(%,K,S)

IF (K<49)+(K>54)THEN 200
CALL CLEAR

ON K-48 GOTO 720,810,1170,21208,26108,279
@

PRINT ::"--ALPHABETIZING NAMES--"
IF FLAG=1 THEN 700
NN=N

S=1

MN$=N$ (S)

IMIN=S

MX$=MN$

IMAX=S

FOR I=S TO NN

IF N$(I)<=MX$ THEN 360
MX$=N$ (1)

IMAX=I

IF N$(I)>=MN$ THEN 390
MN$=N$ (1)

IMIN=I

NEXT I

IF IMIN<>NN THEN 420
IMIN=IMAX

AAS$=NS$ (NN)

N$ (NN)=N$ (IMAX)

NS (IMAX)=AAS$

AAS=AS (NN)

AS (NN)=AS$ (IMAX)

AS$ (IMAX)=AAS

AAS=PS$ (NN)

P$ (NN)=P$ (IMAX)

P$ (IMAX)=AAS

AAS$=CS$ (NN)

c$ (NN)=C$ (IMAX)

307

e T Chapter £ e E————

530
540
550
560
570
580
590
600
610
620
630
649
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830

840
850
860
870
880
890
900
910
920

308

C$ (IMAX)=AAS

NN=NN-1

AAS=NS$(S)

Ng S)=N$ (IMIN)

NS (IMIN)=AAS

AAS$=AS(S)

AS(s)=AS$ (IMIN)

AS (IMIN)=AAS

AA$=P$(S)

P$(S)=pP$ (IMIN)

P$ (IMIN)=AAS

AAS=CS$(s)

c$(s)=cs (IMIN)

CS$ (IMIN)=AAS

S=S+1

IF NN>S THEN 280

FLAG=1

CALL CLEAR

RETURN

PRINT "READING IN DATA"::
OPEN #1:"CS1",INPUT ,INTERNAL,FIXED 128
INPUT #1:N

FOR I=1 TO N

INPUT #1:N$(I),A$(1),P$(1),C$(1)
NEXT I

CLOSE #1

FLAG=1

GOTO 170

PRINT "ADDING DATA"

IF N<25 THEN 860

PRINT "SORRY, THIS PROGRAM IS FOR":"UP
TO 25 NAMES, AND YOU HAVEENTERED YOUR
QUOTA.":::"PRESS ANY KEY."
CALL KEY(9,K,S)

IF S=1 THEN 170 ELSE 840
FLAG=2

PRINT :"ENTER 'E' TO EXIT"::
INPUT "LAST NAME: ":LN$

IF LN$="E" THEN 170

INPUT "FIRST NAME: ":FNS$

IF FNS="E" THEN 170

PRINT :"STREET ADDRESS:"

TS SRS ST Chapter £ T N TS AR TR T

930 INPUT AAS

949 IF AAS="E" THEN 170

95¢ INPUT "CITY: ":CC$

960 IF CC$="E" THEN 170

970 INPUT "STATE: ":S$

980 IF S$="E" THEN 170

99¢ INPUT "ZIP CODE: ":Z$

1000 IF Z$="E" THEN 179

1019 INPUT "PHONE: ":PP$

102@ IF PP$="E" THEN 170

1030 INPUT "CODE: ":Cl$

1040 IF C1$="E" THEN 170

105@ PRINT :"IS THE ABOVE INFORMATION":"“COR
RECT? (Y/N)"

1060 CALL KEY(@,K,S)

1078 IF K=89 THEN 1090

1080 IF K=78 THEN 810 ELSE 1060

1990 N=§+l

1100 N$(N)=LNS&", "&FNS$

1113 AS(N)=M$&"/“&CC$&“, "&Ss&" ||&z$

1120 P$(N)=PP$

1130 C$(N)=Cl$

1140 CALL CLEAR

1150 GOTO 810

1160 CALL CLEAR

1170 PRINT "EDIT DATA"

1180 PRINT ::"PRESS:"::" 1 DELETE A NAME":
" 2 CHANGE NAME"

1199 PRINT " 3 CHANGE ADDRESS":" 4 CHANGE
PHONE":" 5 CHANGE CODE":" 6 RETURN
TO MAIN MENU"

1200 CALL KEY(@,K,S)

1210 IF (K<49)+(K>54)THEN 1200

1220 IF K=54 THEN 170

1230 ED=K-48

1240 PRINT

1250 INPUT "LAST NAME? ":LNS$

1260 INPUT "FIRST NAME? ":FN$

127@ PRINT

1280 EDNS=LNS$&", "&FN$

1290 FOR I=1 TO N

13900 IF NS$(I)=EDN$ THEN 1370

309

1310
1320
1330

1340
1350
1360
1370
1380
1399
1400
1410
1420
1430
1440
1450
1460

1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
15840
1598
1600
1610
1620
1630
1640
1650

1660
1670

1680
1690
1700

310

NEXT I

PRINT :"SORRY, THAT NAME NOT FOUND."
PRINT :"PRESS: 1 EDIT":TAB(9);"2 PRIN
T LIST":TAB(9):"3 GO TO MAIN MENU"
CALL KEY(@,K,S)

IF (K<49)+(K>51)THEN 1340

ON K-48 GOTO 1160,2120,170

PRINT N$(I)

p=pos(as(1),"/",1)

AA$=SEGS$ (AS$(1),1,P-1)

PRINT AAS

A2$=SEGS$ (A$(1),P+1,LEN(AS$(I)))
PRINT A2$

PRINT PS$(I)

PRINT C$(I)::

ON ED GOTO 1460,1580,1690,1910,1960
PRINT "PRESS 'D' TO DELETE NAME":"
{6 SPACES}'l' TO RETURN TO MENU"
CALL KEY(@,K,S)

IF K=49 THEN 170

IF K<>68 THEN 1470

FOR J=I TO N-1

NS (J)=N$(J+1)

AS(J)=A$(J+1)

PS$(J)=PS$(J+1)

cs(J)=cs(a+1)

NEXT J

N=N-1

GOTO 1160

p=pos(N$(1),",",1)

L$=‘SEG$ (N$ (I) ’ 1 rp"l)

F$=SEGS (N$(1),P+1,LEN(NS(T)))
INPUT "LAST NAME: ":LN$

IF LN$="" THEN 1640
L$=LNS$

INPUT "FIRST NAME: ":FN$
IF FN$="" THEN 1670
FS$=F

Ng(I§iL$&", "&FS

FLAG=2

PRINT :"PRESS <ENTER> IF DATA IS OK"::
PRINT AAS:"STREET ADDRESS: "

e ST T Chapter) ——e———————

1710
1720
1730
1740
1750
1760
177@

1784
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1918
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
211@
2120

INPUT AAlS

IF AAlS$S="" THEN 1740
AAS=AAlS

PRINT :A2$

INPUT "CITY: ":CC$
p=pos(a2s$,",",1)

MN$=SEGS$ (A2$,1,P-1)
MX$=SEGS (A2S$,P+2,LEN(A2S))

IF Ccc$="" THEN 1810
MN$=CC$

INPUT "STATE: ":S$
P=POS(Mxs$," ",1)

PS$=SEGS$ (MX$,1,P-1)
PZ$=SEGS$ (MX$,P+2,LEN(MXS))

IF S$="" THEN 1870
PS$=S$

INPUT "ZIP CODE: ":2Z$
IF Z$="" THEN 1900
PZ$=2$

A$(I}=AA$&"/“&MN$&"; "&PS$&" "&PZ$
PRINT :"PRESS <ENTER> IF DATA IS OK"
PRINT P$(I) ,

INPUT "PHONE NUMBER: ":PPS$

IF PP$="" THEN 1960

P$(1)=PP$

PRINT :"PRESS <ENTER> IF DATA IS OK"
PRINT C$(I)

INPUT "CODE: ":Cl$

IF C1$="" THEN 2010

cs$(1)=C1$

CALL CLEAR

PRINT N$(I)

p=pos(as(z),"/",1)

PRINT SEGS$(AS$(1),1,P-1)

PRINT SEGS$(AS$(1),P+1,LEN(AS(I)))
PRINT :P$(I)

PRINT :C$(I)

PRINT :"INFORMATION CORRECT? (Y/N)"
CALL KEY(9,K,S)

IF K=89 THEN 170

IF K=78 THEN 1580 ELSE 2090

GOSUB 240

311

2130

2140
2159
2169
2170
2180
2190
2200
2210
2220

2230
2240
2250
2260
2279

2280
2290

2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460

2470
2480
2490
2500

312

PRINT "PRESS: "::" 1 PRINT COMPLETE L
IST"::" 2 SELECT BY CODE"

CALL KEY(@,K,S)

IF (K<49)+(K>50)THEN 2140

IF K=50 THEN 2190

CODES="ZZZZ"

GOTO 2210

PRINT ::"ENTER DESIRED CODE"

INPUT CODES$

CALL CLEAR

PRINT "PRESS: "::" 1 PRINT LIST ON SC
REEN"::" 2 PRINT LIST ON PRINTER"
CALL KEY(@,K,S)

IF K=50 THEN 2460

IF K<>49 THEN 2230

CALL CLEAR

PRINT "PRESS ANY KEY TO PAUSE;":"PRESS
ANY KEY TO RESUME.":::

FOR I=1 TO N
IF CODES$S="ZZZZ" THEN 2310

IF CODE$<>C$(I)THEN 2410

PRINT N$(I)

p=pos(A$(1),"/",1)

PRINT SEGS$(AS$(I),1,P-1)

PRINT SEG$(AS$(I),P+1,LEN(A$(I)))
PRINT :P$(I)

PRINT :C$(I):::

CALL KEY(@,K,S)

IF S=0 THEN 2410

CALL KEY(9,K,S)

IF S<>1 THEN 2390

NEXT I

PRINT "END OF LIST.":"PRESS ANY KEY."
CALL KEY(@,K,S)

IF S<>1 THEN 2430

GOTO 178

PRINT ::"PLEASE LIST PRINTER":"CONFIGU
RATION."

INPUT CON$

OPEN #3:CONS$

FOR I=1 TO N

IF CODES$="ZZZZ" THEN 2520

e————moeemerre e Chapter £y e s s e——

2519 IF CODE$<>C$(I)THEN 2580

252@ PRINT #3:N$(I)

253@ p=pos(as$(1),"/",1)

2540 PRINT #3:SEGS$(AS(1),1,P-1)

255@ PRINT #3:SEGS(AS$(1),P+1,LEN(AS(I)))

2560 PRINT #3::P$(I)

2570 PRINT #3::C$(I)zs:

2580 NEXT I

2590 CLOSE #3

26008 GOTO 170

2610 GOSUB 240

2620 PRINT "SAVING DATA"::

2630 OPEN #2:"CS1",0UTPUT, INTERNAL,FIXED 12
8

2649 PRINT #2:N

2650 FOR I=1 TO N

2660 PRINT #2:N$(1),A$(1),P$(1),C$(1)

2670 NEXT I

2680 CLOSE #2

2690 GOTO 170

2760 PRINT "IF YOU END PROGRAM YOU LOSE"::"
ALL DATA."

2710 PRINT ::"PRESS:"::" 1 SAVE DATA"::"
2 END PROGRAM"

2720 CALL KEY(@,K,S)

2730 1IF (K<49)+(K>50)THEN 2720

2749 CALL CLEAR

2750 IF K=49 THEN 2610

2763 END

Using a Printer

One of the first peripherals you may want to add is a printer.
Texas Instruments sells a 30-column thermal printer that
attaches to the side of the computer. To use any other kind of
printer, such as a dot-matrix or letter quality printer, you will
need the RS-232 Interface. This is a serial interface that makes
printers compatible with the computer. If you use the
Peripheral Expansion Box method for accessories, you will
need the RS-232 card to use a printer.

Perhaps one of the main uses of a printer is to get a listing
of your program. The manual that comes with the RS-232

313

S — Chapter {1 er———————

discusses your printer configuration, which you need to specify
in order to use your printer. To list a whole program on the
printer, here are some sample configurations:

LIST ““RS232.TW.BA=110"" (teletype)

LIST "“RS232.BA =600" (TI 825 or T1 840
printer)

LIST “RS232.BA=9600.DA=8"" (Epson MX 80)

To list only certain program lines on your printer, use a
colon and the range of line numbers:

LIST “"RS232.TW.BA =110"":250-350

Using OPEN with Your Printer

You use the same printer configuration when you use your
printer during the run of a program. As with disk drives and
cassette recorders, you will need an OPEN statement to open a
certain device number; then you can PRINT to that device. For
example:

100 OPEN #1:"RS232.BA=600"
110 PRINT #1:TAB(14);"TITLE OF REPORT"

A plain PRINT statement will print to the screen, and PRINT
with a number will print to the device that it has been assigned
to. You may number your devices as you wish, and you may
have several devices open at once. This program will print
HELLO on the screen, speak the word, and then print HELLO
on the printer.

100 OPEN #1:"RS232.BA=600"
110 OPEN #2:"SPEECH",OUTPUT
120 PRINT "HELLO"

130 PRINT #1:"HELLO"

14 PRINT #2:"HELLO"

150 CLOSE #1

160 CLOSE #2

170 END

You should always CLOSE the device when you have
finished using it, or at the end of the program.

314

Getting a Hard Copy

Suppose you were in the market for a house and had to borrow
money. For various amounts of money borrowed, and different
percentage rates, this program calculates what the monthly
payment would be over various time spans. Before you try this

program, be sure to put the appropriate printer configuration
in line 110.

Program 6-12. Monthly Payments

1080 REM MONTHLY PAYMENTS

110 OPEN #1:"RS232.BA=600"

120 PRINT #1:TAB(25); "MONTHLY PAYMENTS"

138 FOR AMT=4000@ TO 8000@ STEP 5000

140 PRINT #1::"AMOUNT BORROWED: $";AMT

1580 PRINT #1::"YEARS{8 SPACES}10%
{7 spPACES}11%{7 SPACES}12%{7 SPACES}13%
{7 sPACES}14%{7 SPACES}15%"

160 PRINT #l:"==—=—- {8 SPACES}---{7 SPACES}-
--{7 SPACES}~-=={7 SPACES}---{7 SPACES}-
--{7 SPACES}---"::

178 FOR YRS=10 TO 3@ STEP 5
180 PRINT #1:YRS;

199 T=2

208 FOR I=18 TO 15

210 1I1=1/1200

220 N=YRS*12

230 F=(1+I11)"N

240 M=AMT*(II*F/(F-1))

250 M=(INT(100* (M+.005)))/100
260 M$=STRS$ (M)

278 p=pOosS(M$,".",1)

280 IF P<>@ THEN 310

290 M$=MS$&".00"

308 GOTO 330

310 IF LEN(M$)-P=2 THEN 330
320 M$=MS$&"@"

330 IF LEN(MS$)=7 THEN 350
340 T=T+1

350 T=T+9

360 PRINT #1:TAB(T);M$;

315

T =T Chapter ot e

370 IF LEN(M$)=6 THEN 390
380 T=T+1

390 NEXT I

400 PRINT #1

410 NEXT YRS

420 PRINT #l:::

430 NEXT AMT

440 CLOSE #1

45@ END

316

——————————— Chapter 7 m——
A Dozen
More
Programs

DQPQ0000Q00000QOQO0QQ000A00O00 G0

Chapter 7

A Dozen

More
Programs

Division

Usually you can use a calculator to check students” homework
that involves calculations. However, if the problem is division,
the calculator will return an answer with the decimal
equivalent of the remainder. This program asks the student to
enter the dividend and the divisor and will give the answer as a
quotient with a remainder. Notice how the INT function is
used. All the calculating is done in lines 240 and 250.

Program 7-1. Division with Remainder

110 REM DIVISION WITH REMAINDER

120 CALL CHAR(37,"804020202020408")

130 CALL CHAR(38, "00000000000003FF")

140 CALL CLEAR

156 PRINT "DIVISION WITH REMAINDER"::::
1680 PRINT TAB(10);"QUOTIENT"

17@ PRINT TAB(9); "&&&&&&&&ESE"

180 PRINT " DIVISORSDIVIDEND"::::

199 INPUT "DIVIDEND: ":D

200 INPUT "DIVISOR: ":I

21@ IF I<>0@ THEN 240

220 PRINT :"SORRY, DIVISOR CANNOT = @"::
230 GOTO 200

240 Q=INT(D/I)

250 R=D-Q*I

268 PRINT :"QUOTIENT =";Q;" R";R

27@ PRINT :::"PRESS 1 FOR ANOTHER PROBLEM"
280 PRINT TAB(7);"2 TO END PROGRAM"

290 CALL KEY(9,K,S)

300 IF K=49 THEN 140

319

T T Chapter Y e e e

310 IF K<>50 THEN 290
320 CALL CLEAR
330 END

Equivalent Fractions

This program can quickly find the unknown in problems such
as 1/2=?/8. The fractions are of the form:

A_C

B D
The student first presses the letter for the unknown, then
enters values for the other three numbers. The equivalent
fractions will be printed.

Program 7-2. Equivalent Fractions

109 REM EQUIVALENT FRACTIONS

110 REM ANSWERS ROUNDED TO TWO DECIMAL PLA
CES

120 CALL CLEAR

139 PRINT TAB(14);"A{5 spACEs}c“

149 PRINT TAB(19);"- =

150 PRINT TAB(14);"B{5 SPACES}D 15

160 PRINT "WHICH IS THE UNKNOWN?"

170 PRINT "CHOOSE A, B, C, OR D.":::

180 CALL KEY(@,K,S)

196 IF (K<65)+(K>68)THEN 180

200 ON K-64 GOTO 210,260,310, 360

210 INPUT "ENTER B = ":B

220 INPUT "ENTER C = ":C

23@ INPUT "ENTER D = ":D

240 A=INT(100*(B*C/D+.005))/100

250 GOTO 490

260 INPUT "ENTER A

278 INPUT "ENTER C

280 INPUT "ENTER D

299 B=INT(100*(A*D/C+. 965))/195

3900 GOTO 400

310 INPUT "ENTER A

320 INPUT "ENTER B

330 INPUT "ENTER D

":A
:C

“:A
1B
“:D

nuu

320

EE———————— Chapter | e

340 C=INT(100*(A*D/B+.005))/100

350 GOTO 400

360 INPUT "ENTER A = "“:A

370 INPUT "ENTER B = ":B

380 INPUT "ENTER C = ":C

390 D=INT(100*(B*C/A+.005))/100

409 CALL CLEAR

410 PRINT TAB(7);:;A,C

420 PRINT TAB(7)j"===== = ====="
430 PRINT TAB(7);B,D

4409 PRINT :::"PRESS 1 FOR ANOTHER PROBLEM"
45@ PRINT TAB(7):;"2 TO END PROGRAM"
460 CALL KEY(9,K,S)

470 IF K=49 THEN 120

480 IF K<>50 THEN 460

490 CALL CLEAR

500 END

Simplifying Fractions

Enter a numerator, then a denominator. The computer
simplifies or reduces the fraction to its lowest terms, or tells if it
cannot be simplified. This algorithm first checks which is
larger, the numerator or the denominator; the first factor to be
checked is the smaller number. If either the numerator or the
denominator is an odd number, then even factors will be
eliminated by choosing a step size of -2 in the checking loop.

Although students usually reduce fractions starting with
the smallest factors, the computer starts with the largest
possible factor and decreases for each check.

Program 7-3. Simplifying Fractions

100 REM SIMPLIFYING FRACTIONS

118 CALL CLEAR

120 PRINT "** SIMPLIFYING FRACTIONS **"::::
13¢ INPUT "NUMERATOR ={3 SPACES}":N

140 INPUT "DENOMINATOR = ":D

150 IF D>N THEN 180

160 LIM=D

178 GOTO 190

321

TR] MR M BT L A T Chapter 7 e T TN AT PR P R T [

180 LIM=N

190 s=-2

208 IF D/2<>INT(D/2)THEN 220

210 IF N/2=INT(N/2)THEN 230

220 S=-1

23@ FOR C=LIM TO 2 STEP S

240 A=N/C

250 IF A<>INT(A)THEN 280

268 B=D/C

27@ IF B=INT(B)THEN 310

280 NEXT C

299 PRINT ::N;"/";D;" CANNOT BE SIMPLIFIED"
308 GOTO 320

318 PRINT :N;"/";D;" = ";A;"/";B

320 PRINT :::"PRESS 1 FOR ANOTHER PROBLEM"
330 PRINT TAB(7);"2 TO STOP PROGRAM"
340 CALL KEY(9,K,S)

350 IF K=49 THEN 110

360 IF K<>5@ THEN 340

378 CALL CLEAR

380 END

Multiplying Fractions

This program multiplies from two to nine fractions. First press
the total number of fractions, then enter each numerator and
denominator. The program multiplies the fractions and
simplifies the final answer.

If you have more than nine fractions, either change this
program to allow more fractions or run the program in steps.

Program 7-4. Multiplying Fractions

1060 REM MULTIPLYING FRACTIONS

110 CALL CLEAR

120 PRINT "** MULTIPLYING FRACTIONS **"::::
130 PRINT "HOW MANY FRACTIONS?":::

140 CALL KEY(@,K,S)

150 IF (K<508)+(K>57)THEN 140

160 CALL HCHAR(21,23,K)

178 C=K-48

322

e ——— | AT] em——————

180
190

200
210
220

230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

570
580

NT=1

DT=1

FOR I=1 TO C

PRINT "FRACTION";I

INPUT "{4 SPACES}NUMERATOR ={3 SPACES}"
:N(I)

NT=NT*N(I)

INPUT “{4 SPACES}DENOMINATOR = ":D(I)
IF D(I)<>@ THEN 280

PRINT :"DENOMINATOR CANNOT BE ZERO."::
GOTO 240

DT=DT*D(I)

NEXT I

PRINT :::"** MULTIPLY **"::
FOR I=1 TO C

PRINT STR$(N(I));"/":STR$(D(I))
NEXT I

PRINT "=———m——m e "
FOR I=1 TO C

A=NT/D(I)

IF A<>INT(A)THEN 420
B=DT/D(I)

IF B<>INT(B)THEN 420

NT=A

DT=B

NEXT I

SW=0

FOR I=1 TO C-1

IF D(I)<=D(I+1)THEN 500
DD=D(I)

D(1)=D(I+1)

D(I+1)=DD

sw=1

NEXT I

IF SW=1 THEN 430

L=D(C)

FOR I=L TO 2 STEP -1
A=NT/I

IF A<>INT(A)THEN 580

B=DT/I

IF B=INT(B)THEN 610

NEXT I

323

B i Chapter e —

590 A=NT

609 B=DT

610 IF A>=B THEN 640

620 PRINT ::STR$(A);"/";STRS$(B)

630 GOTO 700

648 W=INT(A/B)

650 R=A-W*B

660 IF R<>@ THEN 690

670 PRINT W

680 GOTO 700

699 PRINT W:"{3 SPACES}";STR$(R);"/";STRS$(B
)

70@ PRINT :::"PRESS 1 FOR ANOTHER PROBLEM"

716 PRINT TAB(7);:;"2 TO END PROGRAM";

720 CALL KEY(@,K,S)

73¢ IF K=49 THEN 110

740 IF K<>5@ THEN 720

75@ CALL CLEAR

768 END

Dividing Fractions

This program divides one fraction by another fraction. The
numerators and denominators of each fraction are entered, and
the final answer is printed in simplified form.

Program 7-5. Dividing Fractions

100 REM DIVIDING FRACTIONS

1180 CALL CLEAR

129 PRINT "THE FIRST FRACTION IS"
130 PRINT "DIVIDED BY THE"

140 PRINT "SECOND FRACTION."

150 PRINT ::TAB(1@);"N1/D1"

160 PRINT TAB(9);"====—=- »

176 PRINT TAB(1@);"N2/D2":::

184 INPUT "ENTER N1 = ":Nl1

199 INPUT "ENTER D1 = ":D1

200 IF D1<>@ THEN 230

21¢ PRINT :"DENOMINATOR CANNOT BE ZERO."::
220 GOTO 190

230 PRINT

324

":N2
":D2

24@ INPUT "ENTER N2
25@ INPUT "ENTER D2
260 IF D2<>0@ THEN 290

278 PRINT :"DENOMINATOR CANNOT BE ZERO."::
280 GOTO 250

290 NT=N1*D2

300 DT=D1*N2

310 PRINT :::STR$(N1):"/";STR$(D1)
320 PRINT "===——m——mm——e e "

330 PRINT STR$(N2);"/":STRS$(D2)

340 PRINT :::"EQUALS"::

350 IF NT<DT THEN 380

360 L=DT

370 GOTO 390

380 L=NT

390 FOR I=L TO 2 STEP -1

40@ A=NT/I

410 IF A<>INT(A)THEN 440

420 B=DT/I

430 IF B=INT(B)THEN 470

440 NEXT I

45@ A=NT

460 B=DT

470 IF A>=B THEN 500

480 PRINT ::STR$(A);"/":STR$(B)

490 GOTO 590

500 IF B<>1 THEN 530

514 PRINT ::

520 GOTO 599

53¢ C=INT(A/B)

540 R=A-C*B

55¢ IF R=0 THEN 580

568 PRINT C:;" ";STR$(R);:;"/":;STRS(B)
570 GOTO 590

580 PRINT C

599 PRINT :::"PRESS 1 FOR ANOTHER PROBLEM"
60@ PRINT TAB(7);"2 TO END PROGRAM";
610 CALL KEY(9,K,S)

620 IF K=49 THEN 110

630 IF K<>5@ THEN 610

640 CALL CLEAR

65@ END

325

Chapter s e e

Adding Fractions

This program has two main options, adding fractions with like
denominators, such as %, +%,+ 7., or adding fractions with
unlike denominators, such as %+ %+ Y. The program will add
up to nine fractions with like denominators or up to five
fractions with unlike denominators, which is usually sufficient
for fifth- and six-grade mathematics students.

If the option of like denominators is chosen, first press the
total number of fractions to be added. Then enter the
denominator, followed by the numerators.

If the option of unlike denominators is chosen, press from
two to five for the number of fractions. The numerator and
then the denominator are entered for each fraction.

The fractions are added, the problem is rewritten, and then
the answer is printed in simplified terms.

Program 7-6. Adding Fractions

108 REM ADDING FRACTIONS

110 CALL CLEAR

120 PRINT "** ADDING FRACTIONS **"
130 PRINT :::"CHOOSE:"

140 PRINT :"1 LIKE DENOMINATORS"
150 PRINT :"2 UNLIKE DENOMINATORS":

3

160 CALL KEY(9,K,S)

178 IF K=50 THEN 380

180 IF K<>49 THEN 160

190 CALL CLEAR

20@ CH=1

218 PRINT "ADDING FRACTIONS WITH"

220 PRINT "LIKE DENOMINATORS"

230 PRINT ::"HOW MANY FRACTIONS?"

24@ CALL KEY(9,K,S)

250 IF (K<508)+(K>57)THEN 240

260 CALL HCHAR(23,23,K)

27@ C=K-48

280 PFINT :: "WHAT IS THE DENOMINATOR
? 1]

290 INPUT DT

30@ PRINT ::"ENTER THE NUMERATORS"::

326

T pe———— Chapter 7 i ==

310 NT=0

320 FOR I=1 TO C

330 INPUT N(I)

34@ NT=NT+N(I)

350 D(I)=DT

360 NEXT I

370 GOTO 690

380 CALL CLEAR

39¢ PRINT "ADDING UP TO FIVE"

40@% PRINT "FRACTIONS WHICH MAY HAVE"

410 PRINT "UNLIKE DENOMINATORS"

42¢ PRINT ::"HOW MANY FRACTIONS?"::

430 CALL KEY(@,K,S)

449 IF (K<50)+(K>53)THEN 430

45@ CALL HCHAR(22,23,K)

460 C=K-48

470 NT=0

480 DT=1

499 FOR I=1 TO C

5¢0@ PRINT "FRACTION";I

51¢ INPUT "{3 SPACES}NUMERATOR =
{3 SPACES}":N(I)

520 IN?U? "{3 SPACES}DENOMINATOR = "
:D(I

530 IF D(I)<>@ THEN 560

548 PRINT :"DENOMINATOR CANNOT BE ZER
0"1::

550 GOTO 520

560 IF I=1 THEN 600

57¢ FOR J=1 TO I-1

580 IF D(I)=D(J)THEN 620

59@ NEXT J

600 F=D(I)

618 GOTO 630

620 F=1

6309 DT=DT*F

640 NEXT I

650 FOR I=1 TO C

660 F=DT/D(I)

678 NT=NT+N(I)*F

680 NEXT I

690 CALL CLEAR

327

T T ——T Chapter 7 e

7@0@ PRINT "** ADDING FRACTIONS **"::
718 FOR I=1 TO C

720 PRINT STR$(N(I));"/":;STR$(D(I))
73@ NEXT I

74@ PRINT "—=—=——————————— M3s
75¢ IF DT>NT THEN 780

760 L=DT

778 GOTO 790

784 L=NT

790 ST=-2

800 IF DT/2<>INT(DT/2)THEN 820
81@¢ IF NT/2=INT(NT/2)THEN 830
820 ST=-1

839 FOR I=L TO 2 STEP ST

840 A=NT/I

850 IF A<>INT(A)THEN 8880

860 B=DT/I

870 IF B=INT(B)THEN 910

880 NEXT I

890 A=NT

9¢9@ B=DT

91@ PRINT STR$(A);"/":;STRS$(B)
920 IF A<B THEN 990

93¢ W=INT(A/B)

940 R=A-W*B

95¢ IF R<>@ THEN 980

960 PRINT "OR";W

970 GOTO 990

98¢ PRINT :"OR ";W;" ";STRS(R);"/";
STRS$ (B)

99¢ PRINT ::"PRESS 1 FOR ANOTHER PRO
BLEM"

1069 PRINT TAB(7):"2 TO END PROGRAM"
1910 CALL KEY(@,K,S)

1020 IF K=49 THEN 110

1930 IF K<>50 THEN 1010

1040 CALL CLEAR

1050 END

328

Chapter 7

Solving Simultaneous Equations

This program presents a basic algorithm for solving up to nine
simultaneous equations using the matrix inversion technique.
A 9-by-9 system of equations, which may take hours to
calculate by hand, can be solved in less than a minute with this
rogram.
Table 7-1 shows a system of three equations with three
unknowns.

Table 7-1. Three Simultaneous Equations

Xl +X2 +X3 =12
2X]+ Xz +3X3 - 25

In Matrix Form
1 1 1 Xy 12
2 1 3| * X, = 25
1 3 2 X4 25

coefficients unknowns constant vector
[A] * [X] = [B]

Solution Vector
Xz = 4

XS=5

First, enter the degree of the matrix, or the number of
equations and unknowns. Next, enter the coefficients row by
row with the corresponding B elements. In Table 7-1, the value
of N would be entered as 3 for three equations with three
unknowns. In order, the following numbers are entered:

329

ot Bl e S Sl Chapter 7 R ST N EIN | AT

The solution vector is then printed.

Program 7-7. Solving Simultaneous Equations

100
110
120
130
140
150
160
170
180
190
200
210
220
230
2409
250
260
270
280
290
300
310
320
330

330

REM SIMULTANEOUS EQUATIONS

CALL CLEAR

PRINT "SOLVING SIMULTANEOUS"

PRINT "EQUATIONS BY THE"

PRINT "MATRIX INVERSION TECHNIQUE"
PRINT ::"soLVE [A][x] = [B]"

PRINT :"ENTER DEGREE OF THE MATRIX"
PRINT "OR NUMBER OF EQUATIONS"::
INPUT "N = ":N

IF N<1@ THEN 220

PRINT

:"N MUST BE < 190"::

GOTO 18@
IF N>1 THEN 254

PRINT :"1<N<10{3 SPACES}TRY AGAIN"::
GOTO 180

PRINT ::"THE COEFFICIENTS OF X"

PRINT "ARE THE 'A' MATRIX."

PRINT :"INPUT THE VALUES ROW BY ROW:"
PRINT s"A(1,1),A01,2):A{1+3)¢see"
PRINT “E(2,1):A(2,2):402,3); s ss™
PRINT ll.llzllollzl!'ll

PRINT "A(N,1),A(N,2),...,A(N,N)"z::

FOR I=1 TO N
FOR J=1 TO N

340

350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690

709
710
729
730
740

INPUT "A("&STR$(I)&","&STR$(J)&") = ":A
(x,3)

W(I rJ)=A(I fJ)

NEXT J

PRINT

INPUT "B("&STRS(I)&") = ":B(I)
PRINT ::

NEXT I

PRINT ::"==SOLVING--"1:

REM INVERT MATRIX A

FOR C=1 TO N

IF W(C,C)<>@ THEN 460
GOSUB 710

w(c,c)=1/w(c,c)

FOR D=1 TO N

IF (D-C)=0 THEN 540
w(p,c)=w(Dp,C)*w(c,C)

FOR E=1 TO N

IF (E-C)=0 THEN 530
w(D,E)=w(D,E)-W(D,C)*W(C,E)
NEXT E

NEXT D

FOR E=1 TO N

IF (E-C)=@ THEN 580
W(CIE)=_W(CIC)*W(CIE)

NEXT E

NEXT C

PRINT ::"SOLUTION VECTOR X:"::
FOR I=1 TO N

X(1)=0

FOR J=1 TO N
X(1)=x(1)+w(1,J3)*B(J)
NEXT J

PRINT :"X("&STR$(I)&") = ";X(1)
NEXT I

PRINT ::

GOTO 87@

REM SUB TO SWITCH ROWS
FOR F=C+1 TO N

IF W(F,C)=0 THEN 820
FOR E=1 TO N

DW=W(C,E)

331

(s Chapter 7 ceemaresenrse——— s

758 W(c,E)=wWw(F,E)

760 W(F,E)=DW

779 NEXT E

780 DB=B(C)

798 B(cC)=B(F)

800 B(F)=DB

810 GOTO 860

82@ NEXT F

830 PRINT "SORRY, DETERMINANT=@."
84@ PRINT "NO UNIQUE SOLUTION."

8580 GOTO 878

868 RETURN

87@ PRINT :"PRESS 1 FOR ANOTHER PROBLEM"
880 PRINT TAB(7);"2 TO END PROGRAM"
899 CALL KEY(9,K,S)

90@ IF K=49 THEN 110

91@ IF K<>5@ THEN 890

920 CALL CLEAR

939 END

Earning Money

The idea for this program came from the type of problem found
in high school mathematics competency tests. The program
creates story problems. Twelve different names and six
different jobs are READ in as DATA. For each problem the
program picks a name at random, chooses the appropriate
pronoun in the following statement, and picks a job at random
for some wordings. All the numbers chosen are random within
certain limits.

These problems are multiplication problems — an hourly
wage times the number of hours, or an amount earned per
week times a number of weeks.

Program 7-8. Math Competency: Earning Money

109 CALL CLEAR
114 PRINT TAB(6);"MATH COMPETENCY"
120 PRINT :::TAB(7);"EARNING MONEY"
138 PRINT ts

140 DIM N$E§5.J$(5].T$(5)

332

T e Chapter [——

150
l60
179
180

190

200
210
220
230
240
250
260
270
280
290
300
310
320
330
349
350

360
370
380
390
400
410
420

430
440
450
460
4790
480
490
500
510

FOR I=0 TO 5

READ N$(1),J$(1),T$(I)

NEXT I

DATA SAM,DOING ODD JOBS,JOHN,JOE,MOWING
LAWNS, ANDY, BOB, TENDING CHILDREN,MARK
;ANN

DATA RUNNING ERRANDS,LENA,SUE,DOING HOU
SEWORK, AURA,KAY, DELIVERING ADS,DAWN
GOTO 370

PRINT :TAB(15);"PRESS <ENTER>";

CALL KEY(9@,K,S)

IF K<>13 THEN 220

RETURN

CALL SOUND(10@,330,2)

CALL SOUND(150,262,2)

RETURN

CALL SOUND(1086,262,2)

CALL SOUND(109,339,2)

CALL SOUND(10@,392,2)

CALL SOUND(20@,523,2)

RETURN

P=10@+25*INT(RND*10)

P$=STRS$ (P)
PS$="$"&SEGS$(P$,1,LEN(PS$)-2)&" . "&SEGS (P$
,LEN(P$)=-1,2)

RETURN

CALL CLEAR

RANDOMI ZE

N=INT(RND*6)

H=8+INT(RND*11)

GOSUB 330

PRINT NS$(N):;" WORKS";H;"HOURS PER WEEK.
(1]

IF N<3 THEN 460

PRINT :"SHE EARNS "“:

GOTO 470

PRINT :"HE EARNS ":

PRINT P$;" PER HOUR."

IF N<3 THEN 510

PRINT :"HOW MUCH DOES SHE EARN"
GOTO 520

PRINT :"HOW MUCH DOES HE EARN"

333

B e —— Chapter 7 e = e]

520 PRINT :"IN A WEEK?"::
53@ INPUT "$":D
540 D1=P*H/100

55¢ IF ABS(D-D1)>.@01 THEN 610
560 GOSUB 280

57¢ PRINT ::"TRY AGAIN? (Y/N)"

58¢ CALL KEY(@,K,S)

590 IF K=89 THEN 370

600 IF K=78 THEN 680 ELSE 580

61@ GOSUB 250

62@¢ PRINT :"MULTIPLY";H;"HOURS BY ";P$::"PE
R HOUR."

630 P=H*pP

649 GOSUB 340

650 PRINT :"THE ANSWER IS ";P$

669 GOSUB 214

67@ GOTO 379

680 CALL CLEAR

690 RANDOMIZE

780@ N=INT(RND*6)

718 H=INT(RND*11)+8

720 GOSUB 330

73@ PRINT NS$(N);" EARNS ";P$;" PER HOUR."

740 IF N<3 THEN 770

758 PRINT :"SHE WORKS";

768 GOTO 78@

778 PRINT :"HE WORKS";

7804 PRINT H; "HOURS PER WEEK."

790 IF N<3 THEN 820

809% PRINT :"HOW MUCH WILL SHE EARN IN"

819 GOTO 830

820 PRINT :"HOW MUCH WILL HE EARN IN"

830 W=INT(RND*19)+2

840 PRINT :W;"WEEKS?"::

850 INPUT "$":D

860 D1=P*H*W/100

870 IF ABS(D-D1)>.@@1 THEN 930

880 GOSUB 280

899 PRINT ::"TRY AGAIN? (Y/N)"

99@ CALL KEY(9,K,S)

91@ IF K=89 THEN 680

920 IF K=78 THEN 1030 ELSE 900

334

930 GOSUB 250

94¢ PRINT :"MULTIPLY";H; "HOURS BY"

95@ PRINT :P$;" PER HOUR."

960 PRINT :"THEN MULTIPLY BY";W;"WEEKS."
97@ PRINT :"THE ANSWER IS ":

983 P=H*P*W

990 GOSUB 340

1009 PRINT PS$:::

1010 GOSUB 210

1020 GOTO 680

1030 CALL CLEAR

1040 J=INT(RND*6)

1858 T=INT(RND*6)

1068 GOSUB 330

1879 W=INT(RND*8)+2

108% PRINT TS$(T);" EARNED ";P$;" LAST WEEK"

1099 PRINT :3$(J);"."
1108 IF T<3 THEN 1130

1110 PRINT :"IF SHE EARNED THIS AMOUNT"
1120 GOTO 1140

1130 PRINT :"IF HE EARNED THIS AMOUNT"
114@ PRINT :"EVERY WEEK, WHAT WOULD THE"

1158 PRINT :"TOTAL INCOME BE FOR"
1168 PRINT :W; "WEEKS?"::

1179 INPUT "$":D

1180 D1=P*W/100

1190 IF ABS(D-D1)>.@@01 THEN 1250
1203 GOSUB 280

1218 PRINT ::"TRY AGAIN? (Y/N)";
1220 CALL KEY(@,K,S)

1230 IF K=89 THEN 1030

1240 IF K=78 THEN 1330 ELSE 1220
1250 GOSUB 250

1260 PRINT :"MULTIPLY ";P$;" PER WEEK"
1270 PRINT :"BY";W;"WEEKS."

1280 P=P*W

1299 GOSUB 340

1300 PRINT :"THE ANSWER IS ";P$::
1310 GOSUB 210

1320 GOTO 1039

133@ CALL CLEAR
1340 END

335

T T T Chapter 7 s smmm——

Buying Items

In this math competency program, a list of items is printed with
their costs, which are random numbers within certain limits.
One question is how much it would cost to buy everything on
the list. The second question, in multiple-choice form, is which
items could be purchased by a person who has a certain
amount of money.

The DATA statements consist of names and items with a
minimum and maximum cost. The subroutine in lines 460-540
converts the number to a string so that items may be printed
properly in dollars and cents. Lines 1160-1300 randomly choose
the multiple choice items and place the correct answer as one of
the choices.

Program 7-9. Math Competency: Buying Items

109 CALL CLEAR

110 PRINT TAB(6);"MATH COMPETENCY"

120 CALL CHAR(136,"080402FFJ20408")

130 PRINT :::TAB(7);"BUYING ITEMS"

140 CALL COLOR(14,9,16)

150 PRINT :s:s::

169 2%2)13(3.5).1(3.5.2).N$(6).J(5).H$(3):S

178 FOR C=1 TO 6

184 READ NS$S(C)

190 NEXT C

203 FOR A=1 TO 3

218 FOR C=1 TO 5

220 READ 1$(A,C),I1(A,C,1),1(A,C,2)

230 NEXT C

240 NEXT A

250 DATA ANGIE,CINDY,CHERY,RICKY, BOBBY, RAND
Y,PENCIL,8,15

268 DATA ERASER,2,1@,NOTEBOOK,35,99, RULER, 2
9,49

278 DATA PAPER,59,90,DOLL,249,599,BALL,49,8
9, TRUCK, 100,150

280 DATA GAME,27@,50@,MODEL,300,70@,CANDY, 2
2,50

290 DATA MEAT,123,425,FRUIT,24,50,CHIPS,100
,257,BREAD, 100,179

336

T ——— TR T S Chapter 7 Bt S S3s haeS Bails s = = S

300 HS$(1)="PENCIL AND ERASER"
310 HS$(2)="BALL AND TRUCK"
320 HS$(3)="CANDY AND FRUIT"
330 GOTO 55@

349 PRINT TAB(15);"PRESS <ENTER>";
350 CALL KEY(9,K,S)

360 IF K<>13 THEN 358

370 RETURN

380 CALL SOUND(100,330,2)
399 CALL SOUND(15@,262,2)
40@ RETURN

410 CALL SOUND(109,262,2)
42@ CALL SOUND(10@,339,2)
43¢ CALL SOUND(10@,392,2)
440 CALL SOUND(200,523,2)
45@ RETURN

460 P$=STRS$(P)

470 IF LEN(P$)>1 THEN 490
480 pS$="@"&P$

499 IF LEN(P$)>2 THEN 510
508 pS=" "&P$

510 PR$S=SEGS$(P$,LEN(PS$)-1,2)
520 PL$=SEG$(P$‘1hLEN§P$)-2)
530 P$="S$"&PLS$&"."&PR

548 RETURN

55¢0 RANDOMIZE

560 A=INT(RND*3+1)

57¢ TP=0

580 CALL CLEAR

59@ PRINT "GIVEN THIS PRICE LIST:"::
60@ FOR C=1 TO 5

618 p=1(An,C,2)-1(A,C,1)

620 P=I(A,C,1)+INT(RND*D+1)
630 GOSUB 460

640 TP=TP+P

650 PRINT TAB(6);I$(A,C);TAB(15);P$
660 NEXT C

670 R=INT(RND*13+4)

680 CALL COLOR(13,R,R)

690 CALL HCHAR(18,6,128,18)
76¢ CALL VCHAR(19,6,128,5)
716 CALL VCHAR(19,23,128,5)

337

T TR ——— Chapter V e vesse————

720 CALL HCHAR(24,6,128,18)

738 F=INT(RND*2+1)

740 IF F=2 THEN 790

75@ PRINT ::"HOW MUCH WILL IT COST"
76@ PRINT "TO BUY ALL THE ITEMS"
778 PRINT "ON THE LIST?"

788 GOTO 830

790 N=INT(RND*6+1)

80@ PRINT ::NS$(N);" WANTS TO BUY"
814 PRINT "EVERYTHING ON THE LIST."
820 PRINT "WHAT WILL THE TOTAL COST BE?"
830 INPUT "S$":X

840 IF ABS(X-TP/190)<.@@1 THEN 920
85¢ GOSUB 380

860 PRINT :"ADD ALL FIVE NUMBERS."
870 P=TP

880 GOSUB 460

89@ PRINT "THE TOTAL IS ";P$:::

90@ GOSUB 340

919 GOTO 550

920 GOSUB 410

93¢ CALL HCHAR(20,1,32,128)

949 IF F=2 THEN 970

95¢ PRINT "IF YOU COULD ONLY SPEND"
960 GOTO 980

970 PRINT "IF ";N$(N);" COULD ONLY SPEND"
98¢ IF A<>1 THEN 1010

99@ M=INT(RND*5+25)

1008 GOTO 1059

1010 IF A<>2 THEN 1040

1020 M=INT(RND*36+239)

1030 GOTO 1050

1040 M=INT(RND*18+100)

1050 pP=M

1960 GOSUB 460

1878 PRINT P$:", WHICH OF THESE PAIRS"
1980 PRINT "OF ITEMS COULD "“;

1938 RNt hvoy Buvs e

1110 GOTO 1160
1120 IF N>3 THEN 1150
1130 PRINT "SHE BUY?"::

338

e Chapter 7 e e

1140 GOTO 1160

1150 PRINT "HE BUY?"::

1160 R=INT(RND*4+1)

117¢ FOR V=1 TO 4

1180 IF V=R THEN 1280

1190 X=INT(RND*2+4)

1200 s$(v)=1$(A,X)

1210 X=INT(RND*3+1)

1220 s$(v)=s$(v)&" AND "&I$(A,X)

1238 IF V=1 THEN 1290

1248 FOR V1=1 TO V-1

1250 IF S$(V1)=S$(V)THEN 1190

1260 NEXT V1

1278 GOTO 1290

1280 s$(v)=HS(A)

1299 PRINT TAB(3);CHR$(64+V);" "&s$(V)

1300 NEXT V

1310 CALL SOUND(15@,1397,2)

1320 CALL KEY(G,K,SS

1330 IF (K<65)+(K>68)THEN 1320

1340 CALL HCHAR(K-45,4,42)

1350 IF K<>64+R THEN 1410

1360 GOSUB 410

1370 PRINT :"TRY AGAIN? (Y/N)";

1380 CALL KEY(9,K,S)

13909 IF K=89 THEN 550

1400 IF K=78 THEN 1450 ELSE 1380

1410 GOSUB 380

1420 CALL HCHAR(19+R,3,136)

143@ PRINT :"THE TOTAL OF THE TWO ITEMS MU
ST BE LESS THAN ";P$

1440 GOTO 1378

1450 CALL CLEAR

1468 END

339

Y T T T R Chapter 7 e e

Musical Bugle

This is a typing drill for someone who has already learned the
correct fingering for all the letters on the keyboard. This drill
makes it fun to practice typing. As random letters appear in the
bugle, type the letters. The faster the letters are pressed, the
faster the music goes — and it should be a familiar tune if the
letters are typed correctly and fast enough. The letters to be
typed are chosen randomly in lines 640-650, and the notes are

played by READing the frequencies from DATA statements in
lines 680-690.

Program 7-10. Typing Drill: Musical Bugle

119 REM MUSICAL BUGLE

120 CALL CLEAR

139 FOR C=2 TO 8

14¢ CALL COLOR(C,2,12)

150 NEXT C

168 CALL CHAR(95,"9")

170 RESTORE 180

180 DATA FEFS8FJEQCO808,7FlFOrg7030101

190 DATA @0@10103070FlF7F,008080CAEIFAF8FE
209 DATA FFFEFEFCF8F@E@S8,FF7F7F3F1FOF0701
210 DATA O@1@3070F1F3F7FFF,FF7F3F1FOF078301
220 DATA @707070707073707 ,000000FC78787878
230 CALL COLOR(12,12,1)

240 CALL COLOR(13,12,1)

258 FOR C=123 TO 132

260 READ C$

279 CALL CHAR(C,C$)

280 NEXT C

290 CALL HCHAR(23,3,95,28)

300 PRINT "_TYPE THE LETTERS_AS THEY "
310 PRINT " APPEAR IN THE HORN. .
320 PRINT "_IF_YOU_ ~TYPE_EVENLY_ YOU "
330 PRINT " | SHOULD RECOGNIZE THE TUNE. "
340 CALL HCHAR(24 3,95,28)

350 PRINT :: 28283323

360 CALL HCHAR(17,7,131)

37¢ CALL HCHAR(17,8,95,19)

380 CALL HCHAR(16,26,125)

340

T e Chapter 7 e armeseame——

390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590

600
610

620
630
640
650
660
670
680
690
700
710
720
730

740
750

760
770
780
790
800

CALL HCHAR(18,26,124)

CALL HCHAR(15,27,129)

CALL VCHAR(16,27,95,3)

CALL HCHAR(19,27,130)

CALL HCHAR(14,28,129)

CALL VCHAR(15,28,95,5)

CALL HCHAR(20,28,130)

CALL HCHAR(18,11,123)

CALL VCHAR(18,10,95,3)

CALL HCHAR(21,10,128)

CALL HCHAR(20,11,126)

CALL HCHAR(21,11,95,11)

CALL HCHAR(21,22,127)

CALL HCHAR(20,21,125)

CALL VCHAR(18,22,95,3)

CALL HCHAR(18,21,124)

CALL HCHAR(16,15,132,3)

RESTORE 570

DATA 466,3790,415,379,311,370,277
DATA 370,466,370,415,370,311,370
DATA 277,3790,466,370,415,37@,311

DATA 370,277,370 233.?79;238,37@
CALIL SOUND(150,1397,4

FOR C=1 TO 28
RANDOMI ZE
L=INT(RND*26+65)

CALL HCHAR(19,16,L)
CALL KEY(9,K,S)

IF K<>L, THEN 660
READ N

CALL SOUND(-4250,N,1)
CALL HCHAR(19,16,95)
NEXT C

FOR C=1 TO 3
L=INT(RND*26+65)

CALL HCHAR(19,16,L)
CALL KEY(9,K,S)

IF K<>L THEN 750
CALL SOUND(-300,185,1)
CALL HCHAR(19,16,95)
NEXT C

CALL HCHAR(19,16,32)

341

e s e Chapter T s v

818 FOR C=1 TO 16

820 CALL HCHAR(24,2+C,ASC(SEGS$ ("TRY AGAIN?_
(y/N)",c,1)))

830 NEXT C

840 CALL KEY(9,K,S)

850 IF K=78 THEN 898

860 IF K<>89 THEN 8440

87¢ CALL HCHAR(24,3,32,16)

880 GOTO 560

890 CALL CLEAR

909 END

Type Invaders

Here is another typing drill for a student who has learned
where all the letters are, but just needs to practice typing faster.
This program is a game, like many invader-type games. A letter
appears in the sky and starts descending. The sooner you type
it, the higher your score will be. If the letter blinks and comes
down ten steps without being typed correctly, the score is
decreased by five.

At random times a spaceship with a three-letter word
appears. If the word is typed correctly, there is a bonus of ten
points.

The running score is shown at the bottom of the screen.
After ten spaceships the game is over, and the final score and
high score are shown.

Program 7-11. Typing Drill: Type Invaders

11@ REM TYPE INVADERS

120 CALL CLEAR

139 DIM Ss$(14)

149 PRINT "ALIEN LETTERS WILL APPEAR"

15@ PRINT :"FROM SPACE. YOU NEED TO"

160 PRINT :"PREVENT THEM FROM ENTERING"
170 PRINT :"EARTH'S ATMOSPHERE BY"

184 PRINT :"TYPING THE LETTER AS SOON"
190 PRINT :"AS POSSIBLE."

20@ PRINT ::"ONCE IN A WHILE A SPACESHIP"
21@ PRINT :"WILL APPEAR. TYPE THE WORD"

342

e e ST rE———— Chapter T e e

220
230
240
250
260
270
280

290

300
310
320
330
340
350
360
370

380
390
400
410
420
430
4409
450
460
470
480
490
500
510
520
530
540

550

560
570
580
590
600

PRINT :"CORRECTLY FOR 1@ POINTS."
CALL CHAR(123,"101854565EDEFEFF")
CALL COLOR(12,3,1)

CALL CHAR(128,"1122448811224488")
CALL COLOR(13,12,5)

CALL CHAR(136,"081C7F1C3C6642")
DATA @30F3F3F3F3F0F03,00000000030F3FFF,
POPPIIFFFFFFFFFF, 00000000 CAFBFCFF
DATA COFOFCFCFCFCFOC,FFFCFOC, FFFFFFFFFF
,FF3F0F03, FFFFFFFFFFFFFFFF

FOR C=144 TO 152

READ C$

CALL CHAR(C,CS$)

NEXT C

FOR C=@ TO 14

READ SS$(cC)

NEXT C

DATA THE,HIS,ITS,SHE,HER,AND,OUR, FEW, RU
N,TIE,RED, TWO,YOU,ONE, TEN

CALL COLOR(15,16,1)

CALL COLOR(16,16,1)

PRINT :::"PRESS ENTER TO START.":
CALL KEY(9,K,S)

IF K<>13 THEN 410

CALL CLEAR

CALL SCREEN(14)

CALL HCHAR(22,1,123,32)

FOR C=2 TO 8

CALL COLOR(C,2,16)

NEXT C

CALL HCHAR(19,15,128,3)

CALL HCHAR(290,14,128,5)

CALL HCHAR(21,13,128,7)

PRINT "SCORE: ";SC;

FOR A=1 TO 1@

FOR Al=1 TO INT(8*RND+1)
RANDOMI ZE

L=INT(RND*26)+65

DX=1-INT(3*RND)

ROW=2

T=10

COL=INT(9*RND)+11

343

I T e e S P Chapter 7 SRR E AT SRS T

610
620
630
640
650
660
670
680
690
700
710
720
730
740
758
760
778
780
790
800
810
820
830
840
850
860
870
880
899
900
9210
920
930
940
950
960
970
980
9909

CALL HCHAR(ROW,COL,L)
CALL SOUND(158,1397,4)
CALL KEY(9,K,S)

IF K=L THEN 730

T=T-1

CALL HCHAR(ROW,COL,32)
ROW=ROW+1

COL=COL+DX

IF T<>@ THEN 610

CALL SOUND(100¢,-4,2)
SC=sC-5

GOTO 850

CALL SOUND(1009,-7,2)
CALL SCREEN(16)

CALL HCHAR(28,16,K)

CALL SCREEN(10)

CALL HCHAR(ROW,COL,136)
CALL SCREEN(12)

CALL SCREEN(14)

FOR C=1 TO 10

CALL COLOR(14,16,7)

CALL COLOR(14,7,16)

NEXT C

SC=SC+T

CALL HCHAR(ROW,COL,32)
GOSUB 1370

CALL HCHAR(20,16,128)
NEXT Al

R=INT(6*RND)+2
CL=INT(22*RND)+3

CALL HCHAR(R,CL,152,3)
CALL HCHAR(R,CL~-1,144)
CALL HCHAR(R-1,CL,145)
CALL HCHAR(R-1,CL+1,146)
CALL HCHAR(R-1,CL+2,147)
CALL HCHAR(R,CL+3,148)
CALL HCHAR(R+1,CL+2,149)
CALL HCHAR(R+1,CL+1,150)
CALL HCHAR(R+1,CL,151)

1009 RANDOMIZE
1210 W=INT(15*RND)
1020 W$=sSS$ (W)

344

e T Chapter e el

163¢ FOR C=1 TO 3

1040 CALL HCHAR(R,CL-1+C,ASC(SEGS(WS$,C,1)))
195@ NEXT C

1060 CALL SOUND(200,-1,2)

18706 FOR C=1 TO 3

1080 CALL KEY(9,K,S)

1090 IF S<1 THEN 108@

1100 CALL HCHAR(R+3,CL-1+C,K)

1118 B(C)=K

1120 NEXT C
1139 CALL SOUND(120,884,2)

1140 CALL SCREEN(12)

1150 FOR C=1 TO 3

1160 B$=B$&CHRS (B(C))

1170 NEXT C

1180 CALL SCREEN(14)

1190 IF B$=W$ THEN 1290
1208 CALL SOUND(109,392,2)

1210 CALL SOUND(100,262,2)
1220 B$=""

1230 GOSUB 1370

1248 FOR C=R-1 TO R+3

1250 CALL HCHAR(C,CL-1,32,5)
1260 NEXT C

1278 NEXT A

1280 GOTO 1420

1290 CALL SOUND(1000,-7,2)
130@ CALL HCHAR(R,CL,136,3)
1310 FOR C=1 TO 1@

1320 CALL COLOR(14,16,7)
1330 CALL COLOR(14,7,16)
1340 NEXT C

1350 SC=SC+10

1360 GOTO 1220

1378 sc$=sTRS$(sc)&" "

1380 FOR C=1 TO LEN(SCS$)
139¢ CALL HCHAR(24,10+C,Asc(SEc$(scs$,c,1)))
1400 NEXT C

1410 RETURN

1420 CALL CLEAR

1430 CALL SCREEN(8)

1440 FOR C=2 TO 8

345

1450 CALL COLOR(C,2,1)

1460 NEXT C

147@ PRINT "YOUR SCORE: "“;SC
1480 IF HS>SC THEN 1500

1490 HS=SC

1500 PRINT :::"HIGH SCORE: ";HS
1510 PRINT ::::"TRY AGAIN? (Y/N)"::::
1520 sSC=0

1530 CALL KEY(@,K,S)

1540 IF K=89 THEN 430

1550 IF K<>78 THEN 1530

1560 END

Car Cost Comparison

This program is an example of how any financial decision
might be made easier with the computer. The program makes a
cost comparison between two cars. First, enter the EPA
comparative mileage for each car, such as 17 mpg and 26 mpg.
Next, enter the cost of gasoline, between .50 and 2.00 per
gallon. Finally, enter the approximate number of miles driven
per year, such as 15000. The screen clears and the information
is itemized for the two cars, with the total annual cost
difference. You may try again with a different cost for gas,
perhaps, or change the miles driven — and practically instantly
you can analyze the results.

Program 7-12. Car Cost Comparison

160 REM CAR COST COMPARISON

110 CALL CHAR(101,"970E1E3FFFFF0606")
120 CALL CHAR(102, "FF@B8O8FFFFFF")

130 CALL CHAR(103,"CO6Q60FFFFFF1818")
140 CALL CHAR(1@4,"@70E1E3FFFFFO606")
150 CALL CHAR(105, "FFO8OSFFFFFF")

160 CALL CHAR(106, "CO6060FFFFFF1818")
17@ CALL COLOR(9,7,1)

180 CALL COLOR(1%,6,1)

190 CALL CLEAR

20@ PRINT "COMPARISON OF TWO CARS"::::
210 INPUT "CAR A--GAS MILEAGE, MPG: ":A

346

220 IF (A>=1)+(A<=50)=-2 THEN 250

230 PRINT :"SORRY, 1<MPG<58"::

24@ GOTO 210

25@ PRINT

260 INPUT "CAR B--GAS MILEAGE, MPG: ":B

278 IF (B>=1)+(B<=5@)=-2 THEN 300

280 PRINT :"SORRY, 1<MPG<5@0"::

290 GOTO 260

30@ PRINT ::"ENTER COST OF GAS IN DOLLARS"

310 PRINT :"(SUCH AS 1.18)"::

320 INPUT "GAS PRICE = $":C

330 IF (Cc>=.5)+(Cc<=2)=-2 THEN 379

340 PRINT :"GAS PRICE SHOULD BE BETWEEN"

350 PRINT :" .50 AND 2.00"::

360 GOTO 320

37¢ PRINT ::“HOW MANY MILES DO YOU DRIVE"::

380 INPUT "PER YEAR? ":M

399 IF (M>0)+(M<100000)=-2 THEN 420

40@ PRINT :"ASSUME O<MILES<100000"::

410 GOTO 370

420 CALL CLEAR

4309 PRINT "GAS PRICE: $":C

449 PRINT :"ANALYSIS IS FOR"

45@ PRINT M; "MILES PER YEAR."

468 PRINT ::TAB(5);"hij";TAB(19);"efg"

47¢ PRINT :"{3 SPACES}";A;"mpG","
{3 spPACES}";B;"MPG"

480 AI=(INT(100*(M*C/A+.005)))/100

490 BI=(INT(100*(M*C/B+.005)))/100

50@ PRINT ::"COST FOR GAS:"

510 PRINT :"{3 SPACES}$":;AI,"{3 SPACES}$";B
¢

520 PRINT :::"COST DIFFERENCE = $";ABS(AI-B
I)

530 PRINT :::"TRY AGAIN? (Y/N)";

540 CALL KEY(9,K,S)

55¢ IF K=89 THEN 190

560 IF K<>78 THEN 540

57¢ CALL CLEAR

58@ END

347

Appendix

Characters:
Code Numbers and Sets

Code # Character Code # Character
Set #1 Set #5
32 (space) 64 @
33 ! 65 A
34 R 66 B
35 # 67 C
36 $ 68 D
37 % 69 E
38 & 70 F
39 ’ 71 G
Set #2 Set #6
40 (72 H
41) 73 I
42 * 74]
43 S i) K
44 q 76 L.
45 - 77 M
46 : 78 N
47 / 79 (@)
Set #3 Set #7
48 0 80 i 54
49 1 81 Q
50 2 82 R
51 3 83 S
52 4 84 T
53 5 85 U
54 6 86 Y
55 7 87 w
Set #4 Set #8
56 8 88 X
57 9 89 Y
58 : 90 Z
59 : 91 [
60 < 92 N
61 - 93]
62 > 94 ~
63 ? 95 —

e Appendix =T cormrm e mmm—————

-
a?
) Code # Character Code #
Set #9 Set #13*
5, 96 ¥ 128
97 A 129
) 98 B 130
99 53 131
. 100 D 132
101 E 133
102 F 134
- 103 G 135
Set #10 Set #14
104 H 136
105 I 137
106] 138
107 K 139
108 L 140
109 M 141
110 N 142
111 (0] 143
Set #11 Set #15
W, 112 P 144
113 Q 145
’ 114 R 146
115 S 147
116 T 148
117 U 149
118 A% 150
119 W 151
i Set #12 Set #16
120 X 152
121 Y 153
122 Z 154
. 123 { 155
124 : 156
_ 125 } 157
' 126 “ 158
127 DEL 159

- *There are no standard characters for sets 13 through 16. This
has no effect on your ability to define them and use them in
CALL HCHAR and CALL VCHAR statements, but it is very
difficult to use them in PRINT statements.

349

Index

A

ABS 187-88

"’ Adding Fractions’’ 325-27

algebra 190-91

AND 151-52

“Angry Bull”’ 251-53

arrays 35, 235-39 (program listing 237-38)

arrow keys 21-24 (pl 21, 23-24)

ASC 217 (pl)

ASCII character code 217-18, 261-62 (pl 217-218)
ATN 188 (pl)

BAD ARGUMENT message 190
BASICS5, 15

“Bingo’’ 223-28

““Birthday List"" 228-32

branching 34-35, 147-52 (pl 147-51)
““Bubble Sort’’ 294-95

“"Buying Items’’ 335-38

C

CALL CHAR 40-41, 66-69
CALL CLEAR 16, 40-41
CALL COLOR 60-63, 65, 102, 261-62 (pl 62-63)
CALL HCHAR 55-56, 101, 301-2 (pl 302)
CALLKEY 33-34, 282-85 (pl 33-34, 283)
CALL SCREEN 19
CALL SOUND

choreography 101-2, 111

music 69-70, 72-74

noises 119-23

timing devices 282-83 (pl)
CALL VCHAR 55, 101, 301-2 (pl 302)
““Car Cost Comparison’’ 345-46
Case, upper and lower 4
cassette recorder 3, 7-8, 304-5 (pl 304)

350

EEEsTTTEEE SRS eTe lndex fEee— s e o= o

character code 39, 261-62
characters
definer 41-42
designing 39-40, 49-58 (pl 40-41, 52-54)
displaying 55-56
(see also graphics, screen format)
choreography 5, 101-2 (see also music, graphics)
CHRS$ 218 (pl)
circuit design (see electrical engineering)
CLEAR
in editing 23
to stop program 18, 20
colors 4, 58-60, 65, 136 (pl 59-60; see also CALL COLOR, color
sets)
color sets 54-55, 261-62
“’Color Combinations”’ 60-62
“Colors’” 136-39
command 16
““Cookie File’” 239-48
““Coordinate Geometry’’ 166-83
corrections (see CALL CLEAR, ERASE, errors, function keys,
RES)
COS 188, 190
crashing 32
cursor 15

D

DATA 30-31, 40-41, 64-65, 102, 300-301 (pl 31, 102)
and READ 248-49 (pl 248)
and RESTORE 249-50 (pl)

DEF 36, 190 (pl)

"’Defining Characters’’ 41-46

DEL key 22-23

"“Dice Throw’’ 164-66

DIM 35, 239, 299-300

disk drive 7, 9-11

DISPLAY 55-56

“Dividing Fractions’’ 323-24

division 318

“’Division with Remainder’” 318-19

351

s (010 seevesmmser—

E

editing 6, 20-25 (see also arrow keys, ERASE, errors, function
keys)

editor/assembler 11

electrical engineering 191-96 (pl 52-54)

““Electrical Engineering Circuit Design 1"’ 196-208

"“Electrical Engineering Circuit Design 2"* 208-17

END 18

ENTER key 15

equation calculator 4

equations 328-29

“Equivalent Fractions’’ 319-20

ERASE 23

erasing the screen (see CALL CLEAR, ERASE)

ERROR IN DATA statement 8

errors 21-23

EXP 189

Extended BASIC 9, 127

F

“Find Home'” 123-27
fractions 319-21, 323, 325
FOR-NEXT 29-30 (see also loops)
function keys 4, 17, 21-23
functions, mathematical

algebra 190-91

division 318

equations 328-29

fractions 319-21, 323, 325

geometry 166-67
functions, string 217-23 (pl 217-22)
functions, user-defined 190-91 (pl 190)

G

geometry 166-67

““German’’ 139-44

GOSUB 161-67, 300 (pl 163-64)

“GOSUB Demonstration’’ 161-63

GOTO 18-19, 147, 163, 302-3 (pl 19, 303; see also branching,
loops)

352

graph paper 49-51, 110-11, 117-18
graphics 4-5, 49-56, 250-51, 301-2 (pl 302; see also choreography)

H

hard copy (see printer)
hardware 9

““Hey, Diddle, Diddle’” 107-10
""Homework Helper’” 153-60
"Horse’’ 56-58

housekeeping commands 19-20

[F-THEN 9, 32-33, 148-49, 302-3 (pl 148, 303)
INPUT 31-32 (pl 32)

INS key 22-23

INT 318

K

keyboard 4, 15
““Kinder Art’’ 63-69

L

language 5, 139 (see also speech synthesizer, spelling)
“’Language Demonstration’’ 128-29
LEN 219
LET 27-28 (pl 27)
"“Letter Puzzles’’ 222-23
line number 15-17
LIST 19-20
LOG 189
logical OR, AND 151-52
Logo 11
loops 149-50 (pl)
and arrays 237 (pl)
and choreography 101-2 (pl 102)
and sound 120-23 (pl)
and timing 282-83 (pl)
counter 150 (pl)
FOR-NEXT 29-30

353

PO, 700 |5 s e s e g

GOTO 18
two-player games 28 (pl 29)
lowercase 4

M

machine language 11
mass storage (see cassette recorder, disk drive)
"“Math Competency: Earning Money'” 331-34
mathematics (see functions, mathematical)
memory
conserving 101-2, 298-304 (pl 299, 301-3)
RAM 4, 298
memory expansion 11
menus 33-34 (pl 34)
microprocessor 5
““Minimum and Maximum”” 297
““Minimum Search’’ 296
modem 10
modules 6
money 331
“"Monthly Payments’’ 315-16
monitor 11
““Multiplying Fractions”’ 321-23
music 5, 69-75, 83-85
pitch 72-73 (pl 72)
tempo 70 (pl)
teaching 83-85
translating 73-74
(see also sound, choreography)
""Music Steps and Chords’’ 85-100
““Musical Bugle”” 339-41
“Musical Tempo Demonstration”” 70-71

N

“Name and Address File”” 304-13
“Name the Note’” 75-83

NEW 19

"“New England States’’ 262-70
NEXT 29-30 (see also loops)

NO DATA FOUND statement 8
noises 119-23

354

e e 10 e e —r——

beeps 119 (pl)
bomb 122 (pl)
busy signal 119 (pl 119-20)
doorbell 121 (pl)
interrupting 120-21 (pl)
sirens 119 (pl 119, 121)
using noise generator 121-23 (pl 121-22)
with music 123 (pl)
NUM key 16-17
numbering, line 6-7, 16-17
numeric operations 25-26 (see also functions, mathematical)

O
’Oh, Susanna’’ 102-7
OLD CSI 8
ON 34-35, 150-51, 302-3 (pl 150-51, 303)
OPEN
with printer 314 (pl)
with speech 128 (pl)
OR 151-52
P

Peripheral Expansion Box 9
peripherals 7-11
POS 219-20 (pl 220)
PRINT 17, 55-56, 128, 299 (pl 17, 299)
PRINT A$&B$ 217
printer 10, 313-15 (pl 314)
program 16
punctuation
with PRINT 17 (pl)
with speech synthesizer 129 (pl 129-30)

Q

quotation marks 17

R

RAM 4, 298
RANDOMIZE 37-38, (pl 37)
READ 30-31, 300-301 (pl 31)

355

- e T ST lndex A A) 0 OO TN T T P

and DATA 248-49 (pl 248)
and RESTORE 249-50 (pl)
REM 18, 298-99
RES 7, 24-25 (pl 24)
RESTORE 64, 249-51 (pl 249-50)
RND 37-38 (pl 37)
RS-232 interface 9-10
RUN 19

S

screen
color 19
erasing 16
format 38, 49 (illustration 50)
SEGS$ 220-21 (pl 221)
SGN 189
““Shell Sort’’ 295-96
““Simplifying Fractions’” 320-21
SIN 189-90
software 7
“Solving Simultaneous Equations’’ 329-31
sorting 294-97
sound (see noise, music, choreography, speech synthesizer)
Speech Editor 9, 127
speech synthesizer 5, 8-9, 64, 127-33
inflections 130 (pI 130)
modules 5, 127
speech separators 129-30 (pl)
varying 131-33 (pl)
with non-readers 136
spelling 133
""Spelling Practice”’ 134-36
sprites 9
SQOR 189
STOP 18
STR$ 219
strings 6
in defining characters 40
recognizing, in an array 65
string functions 217-23 (pl 217-22)
subroutine 161-64, 166, 300

356

T 1o Ts Lo (e ————

subscript 35, 239
symbols 17

T

TAN 189-90
Terminal Emulator 11 9-10, 64, 127
THEN (see IF-THEN)
title screen 15
TI-99/4A
changes 3
comparison with TI-99/4: 4
features 4-7
TIBASICS, 15
TI Disk Controller 9-10
TI Extended BASIC 9, 127
TI Logo 11
TI memory expansion 11
TI Speech Editor 9, 127
TI Speech Synthesizer 5, 8-9 (see also speech synthesizer)
TI Terminal Emulator 11 9-10, 64, 127
timing 282-85 (pl 282-83)
TRACE7
"“Type-ette’” 270-82
““Type-ette Timer’’ 283-93
“Typing Drill: Type Invaders’’ 341-45
typing 270-93, 341-45

)

UCSD Pascal 11
uppercase 4

\'

VAL 219

variables 26
arrays 35, 235-39 (pl 235, 237-38)
assigning values to 27-28 (pl 27)
function 36-37 (pl)
in FOR-NEXT loops 29-30 (pl)
naming 6, 26-27

numeric 26

357

S S T T Ve W A R e lndex T R T B T SRR AT

string 26
trimming, to conserve memory 300
where to initialize 28

w

““We Wish You a Merry Christmas”” 110-18
““Western States’’ 253-61

X
XBASIC (see T1 Extended BASIC)

358

L L P P LR R R L R R R R L L R R R D L R T P PR PR PR LR L LR DL L L L DL L L L L L ey e L L e L L LI

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!

For Fastest Service,
Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!

P.O. Box 5406
Greensboro, NC 27403

My Computer Is:

[CIPET [JApple [JAtari [JVIC [[]Other []Dontyet have one..

[[]$20.00 One Year US Subscription

[[]$36.00 Two Year US Subscription

[] $54.00 Three Year US Subscription

Subscription rates outside the US:

[]$25.00 Canada

[] $38.00 Europe, Australia, New Zealand/Air Delivery

[]$48.00 Middle East, North Africa, Central America/Air Mail

[] $68.00 Elsewhere/Air Mail

[] $25.00 International Surface Mail (lengthy, unreliable delivery)

Name
Address
City State Zip

Country

Payment must be in US Funds drawn on a US Bank; International Money
Order, or charge card.

[[] Payment Enclosed [JVISA

[J MasterCard [[] American Express

Acct. No. Expires /

12-4

For Fastest Service
Call Our TOLL FREE US Order Line
800-334-0868
In NC call 919-275-9809

Quantity Title Price Total

The Beginner's Guide to Buying A Personal

Computer $ 3.95
________ COMPUTE!'s First Book of Atari $12.95"

Inside Atari DOS $19.95°
_________ COMPUTE!s First Book of PET/CBM $1295

Programming the PET/CBM $2495*
_______ EveryKid'sFirst Book of Robots and

Computers $ 495"

COMPUTE!'s Second Book of Atari $1295°
________ COMPUTE!s First Book of VIC $12.95°

COMPUTE!'s First Book of Atari Graphics $12.95*

Mapping the Atari $1495°
_______ HomeEnergy Applications On Your

Personal Computer $14.95*

Machine Language for Beginners $12.95*

COMPUTE! Books

P.O.Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out, order directly froon COMPUTE!

* Add $2 shipping ond handling. Outside US add 54 air mail, 52
surface mail

** Add $1 shipping and handling Outside US add 54 air mail; §2
surface mail

*** Add 53 shipping and handling Qutside US add $9 air mail, 53
surtace mail

Please add shipping and handling for each book
ordered.

Total enclosed or fo be charged.

All orders must be prepaid (money order, check, or charge). All
payments must be in US funds. NC residents add 4% sales tax.
[]Payment enclosed Please charge my: [(JVISA []MasterCard

[]American Express Acct. No. Expires /
Name

Address

City State Zip
Country

Allow 4-5 weeks for delivery

12-4

A Teaching Book
A Reference Guide

C.Regena, COMPUTE!Magazine’s columnist on the TI
home computer, knows how it feels to be a beginner, trying
to figure out how to make a new computer do all the things
itcando. Yet she alsoknows how to write programs that make
the most of every feature of the TI-99/4A.

Theresultis simple, clear explanations, along with dozens
and dozens of examples that you can type inand try. The pro-
grams range from a few lines, just to show youhow touse a
particular statement or function, to full-fledged programs that
can teach you to touch-type, correct your homework, solve
complex engineering problems, or maintain a birthday list.

Asyouread this book, trying out the example programs
asyougo, you'll discover many programming ideas and skills.
And while you’re working on those new ideas, you canrefer
back to these pages again and again to see how C. Regena
solved the problem you're facing.

ISBN 0-942386-12-4 $14.95

