

v
From the Publishers of COMPUTE! Magazine

v

v
u
u Progralnnler's u
u Reference u
v Guide u
v to the
G

u
u

TI-99/4)(
u
v C.Regena
G
u
v
v
v
v
v
G

COMPUTE!OPublications,lnc·e
L- A SWsodo:y O! ~ &oooros!Ing Componoes, rc

G
Greensboro, North Carolina

C
Iv

When You Type In Programs •..

You may encounter braces enclosing a specified number of
spaces, i.e .:

{ 4SPACES }

In these (and only these) instances, type the appropriate number
of spaces, but do not type the braces.

Copyright " 1983 COMPUTE! Publications, Inc.

Reproduction or transla tion of any part of this work beyond thai permitted by Sections
107 and 108 of the United Slates Copyright Act without the permission of the copyright
owner is unlawful.

Printed in the UnilL>d Slates of America.

ISBN 0-942386- 12-4

10 9 8 7 6 5 4 3 2

COMPUTE! Publications, inc., Post Office Box 54{)6, Greensboro, NC27403, (919)
275-9809, is an independent publisher of quality consumer products for the personal
computer industry, and is not associated with any manufacturer of personal
computers. TJ-9914 and TI-99f4A are trademarks of Texas Instruments.

ji

u

v

u

v

v

u

u

v

v

\J

V

V
Table of Contents

Preface. v

v Publisher's Foreword VII

V Chapter 1: Introduction 1

V

\...,

\J

V

V

v

v

u

Chapter 2: Getting Started 13

Program Listing
2-1. Defining Characters 43

Chapter 3: Graphics and Sound • 47

Program Listings
3-1. Horse 56
3-2. Color Combinations. .. 60
3-3. Kinder-Art 66
3-4. Musical Tempo Demonstration 70
3-5. Name the Note 76
3-6. Music Steps and Chords 88
3-7. "Oh ! Susanna" 103
3-8. " Hey, Diddle, Diddle" 107
3-9. "We Wish You A Merry Christmas" 111
3-10. Find Home 124
3-11. Language Demonstration 128
3-12. Spelling Practice 134
3-13. Colors 137
3-14 . German 139

Chapter 4: Going Somewhere 145

Program Listings
4-1. Homework Helper: Factors 155
4-2. GOSUB Demonstration 162
4-3. Dice Throw 164
4-4. Coordinate Geometry 170

Chapter 5: Built-in Functions 185

Program Listings
5·1. Electrical Engineering Circuit Design 1 1%
5-2. Electrical Engineering Circuit Design 2 208

m

5-3. Letter Puzzles 222
5-4. Bingo 224
5-5. Birthday List 230

Chapter 6: Programming Techniques _ 233

Program Listings
6-1. Cookie File 241
6-2. "Angry Bull " 251
6-3. Western States 254
6-4. New England States 265
6-5. Type-ette, l!nit 2 • 271
6-6. Type-ette Timer 287
6-7. Sort 1: Bubble Sort 294
6-8. Sort 2: Shell Sort 295
6-9. Sort 3: Minimum Search 296
6-10. Sort 4: Minimum and Maximum 297
6-11. Name and Address File (Cassette) 306
6-12. Month ly Payments 315

Chapter 7: A Dozen More Programs 317

Program Listings
7-1. Division with Remainder • 319
7-2. Equivalent Fractions 320
7-3. Simplifying Fractions 321
7-4. Multiplying Fractions•.......... 322
7-5. Dividing Fractions 324
7-6. Adding Fractions 326
7-7. Solving Simultaneous Equations 330
7-8. Math Competency: Earning Money •...... 332
7-9. Math Competency: Buying Items' 333
7-10. Typing Drill : Musical Bugle 340
7-11. Typing Drill : Type Invaders 342
7-12. Car Cost Comparison 346

Appendix - Characters: Code Numbers and Sets 348

Index ... 350

iv

v

v

v

v

v

v

v

v

v

v
V

V

V

V

V

V

V

V

V

v

v

v

Preface
You have your TI-99/4 or TI-99 /4A home computer

now what can you do with it? In this book I present TI
BASIC programming explanations and techniques and a
great variety of programs for you to key-in and RUN.

I would like to offer a special thanks to Richard
Mansfield and Kathleen Martinek for their encouraging
words and their confidence in me. Thanks also to Robert
Lock, President of Small System Services, Inc.; Ottis
Cowper, technical editor; and other members of the
production staff at COMPUTE! Magazine and Small
System Services, Inc.

I also acknowledge my husband, Chandler Whitelaw,
for his patience while I was writing or programming and
would answer his queries with "Uh-huh" or "just one
more thing here . .. " I also appreciate my own in-house
quality control department - Chery, Richard, Cindy,
Bob, and Randy - for their help in testing programs and
keeping me supplied with new ideas.

v

v

v

v

v
v
v

v

v

v

v

v

v

v

v

v
v
v
V

V

v

v

v

v

'v

v

v

v

v

v

v

To: The Texas Instruments 99/4A User Community

From: Robert Lock, Editor In Chief/Publisher,
COMPUTE! Publications, Inc.

When C. Regena began writing a tutorial applications and
programming column in COMPUTE! Magazine, we took our
first steps toward an ongoing commitment to the support of the
owners and users of personal computer products from Texas
Instruments. We're doubly pleased to be introducing the
Programmer's Reference Guide as the first book solely for TI
from OUf COMPUTE! Books Division.

From "Getting Started" to " Programming Techniques," you'll
find this guide an invaluable tool. The author is an experienced
teacher and tutor for the range of users from beginner to most
advanced. You 'll find dozens of applications, tutorials, fully
documented programs, and utilities designed to enhance and
support your fu ll utilization of the power of your personal
computer.

Whether you use the book as simply a source of a tremendous
amount of ready-to-run software, or as an equally valuable
reference guide, you'll enjoy the easy-to-use format and the
quality of the writing. Welcome to COMPUTE! Books.

Our thanks to the many members of our production and
editorial staffs who assisted in the development of this guide.

vii

u

u

u

u

v

v
v
G
-v
-

V

G
-
v
v
u

v
(,
'-'

v
G
G
,
v

o
c

v
v
U
-u

v
u

u
u
v

v
v
V
v

-

v
V
o
u
o
v
v
V

o
o
G
U -u
V

------- Chapter I

Introduction
The Texas Instruments 99/4 home computer cost over $1000 in
1980 and included a TI color monitor. Soon the computer was
sold separately from the monitor for about $600, One of its
most appealing features was the plug-in command modules for
programs, which made the computer very easy to use.

In late 1981, after making improvements on the TI-99/4
calculator-style keyboard, Texas Instruments introduced the
new TI-99/4A console and lowered the price to under $500.

Within a few months, most dealers offered a price near
$400, In September 1982, Texas Instruments changed its
advertising campaign for the TI-99/4A and started offering a
rebate of $100. Many stores were selling the TI-99/4A for $295,
so it was possible to own this very powerful computer for about
$200.

By now, more than 75 command modules are available.
You can do anything from playing a video game to
keeping track of a school district's accounts, simply by using
the command modules.

It's Time for You to Take Command
Valuable as those pre-packaged programs are, you will enjoy
your computer even more when you write your own programs
with the built-in Tl BASIC computer language. This book will
help you design your programs, provide you some hints and
techniques, and remind you of good programming habits. Best
of all, there are some actual programs for you to try.

To use this book, all you need is your TI-99/4 or TI-99/4A
computer and a color monitor or television set with the
appropriate cables. You will probably want a cassette recorder
and the dual cassette cable so that you can save the programs
you write.

If you sit at the computer while you're reading this book,
then you can type in each sample program as you come to it
and RUN the program to see what happens. On many of the
programs, you may experiment by changing some of the
numbers in the commands to see how the program changes.

3

------- Chapter I

All the programs in this book use TI BASIC, the BASIC
language that is built into the TI·99f4 or TI-99/4A console; no
other memory or language cartridges are necessary.

Differences between the TI-99/4 and the TI-99/4A
This book is written for users of the TI-99/4 orTI-99/4A home
computers. For simplicity' s sake, I will usually use "Tl_99/4A"
to refer to both computers, since TI BASIC is the same for both.

The main differences between the TI-99/4 and the TI-99/4A
consoles are:

1. The TI-99 /4 has a " calculator-style" keyboard. The
TI-99/4A's keyboard is more like a typewriter.

2. The placement of several keys and symbols is different.
On the TI-99/4, you use SHIFT plus a key for many of the
functions; on the TI-99/4A, you press the FUNCTION key plus
another key for the functions.

3. The TI-9914A has an ALPHA LOCK key and shifted and
unshifted letters. The letters are actually large and small capital
letters; but if you use a printer with lowercase letters the small
capital letters will turn out to be lowercase letters.

4. The TI~99/4 has an Equation Calculator option that the
TI-99/4A does not have. Essentially, the Equation Calculator
allows you to evaluate mathematical expressions without
actually writing a program.

5. The TI-99/4A has 256 fewer bytes of Random Access
Memory (RAM) than the Tl-99/4. If you have a program that
uses almost all of the memory on a TI-99 /4, it may not work on
the TI-99I4A.

6. Some of the key codes returned by a CALL KEY
statement are different on the two consoles.

Special Features of the TI-99f4A
I'll briefly review some of the advantages of the TI-99/4A. Later
chapters will show you in some detail how you can use some of
these features in your own programs. Don't worry if some of
these features aren't yet clear to you. By the time you've read
the appropriate chapters, everything will make sense.

Graphics and color. Probably one of the most enjoyable
things to do with your computer is drawing pictures. There are
16 colors, and you can use all of them on the screen at the same
time, even in high-resolution graphics. High-resolution means
more detailed drawing. You can easily create your own high-

4

v

v

v

v

v

v

------- Chapter I

resolution graphics characters, and you can also use text
(words) anywhere on the screen at the same time you use high
resolution graphics (drawings). Many other microcomputers
limit your use of text with high-resolution graphics and limit
the number of colors you can use with higher resolutions.

Music. You may play up to three notes and one noise for a
specified time using one statement. The musical tones are
selected by using a number which represents a frequency of
110 Hz to 44733 Hz, which is a tone from low A on the bass clef
to out of human hearing range. The tone may be between
regular musical notes.

Noises. Using different combinations of musical tones and
noise numbers, you can make all sorts of synthesized noises -
everything from crashes and explosions to outer·space tones.

Combining sounds and graphics. "Computer
choreography" is possible because, while music is played,
other statements (including graphics) may be executed. You
may illustrate a song, for example. If you have a game
pr~gram, you may make calculations while you are making a
nOise.

Built·in programming language. TI BASIC is built into the
main console - there's nothing extra to buy. TI BASIC is an
excellent language to learn how to program; it is easy enough
for a beginner, yet powerful enough for an experienced
programmer because of the built·in functions .

Speech. Even though speech is not built·in, I am going to
include it in this list of features. Since Texas Instruments
offered a TI Speech Synthesizer free with the purchase of six
command modules (for about eight months), many TI owners
have a speech synthesizer. The speech synthesizer is a small
box that attaches to the side of your computer console. The
speech feature is relatively inexpensive and very easy to use .
Plug in any of the command modules that contain speech, such
as the game of Parsec or any of the Scott, Foresman educational
command modules, and you can hear the computer speak to
you. Other command modules are available for you to program
your own speech.

16--bit microprocessor. The TI·99/4A uses the TI·9900 16·bit
microprocessor, which offers more computing power and
greater expansion and configuration flexibility than an 8·bit
microprocessor. You can achieve higher numeric precision,
simplified memory addressing, and impressive efficiency.

5

------- Chapter I

Plug-in modules. The easiest way to use the TI-99/4A is to
insert a command module which contains a program. Modules
are available for a variety of applications. The price depends on
the amount of memory built into the module. The modules
actually add memory to the computer.

Variable naming. In your own programming, you may
use meaningful variable names. In many microcomputers, the
BASIC language recognizes only two letters or a letter and a
number for a variable name. IT you have a program with the
variable name BLUE and another variable name BLACK, other
computers may think they are the same variable, BL, but the
TI-99 /4A knows you are using two variables. You also do not
have to worry about embedded reserved words in variable
names. For example, many computers would not allow the
variable name AFFORD because it contains the word FOR. The
TI doesn 't mind.

String manipulation. TI BASIC offers powerful string
operations. Your computer has two ways of interpreting the
letters and numbers you enter from the keyboard. Usually, the
computer assumes you are entering commands and numbers,
to perform mathematical operations. However, when you tell it
to, the TI-99/4A can also interpret letters, numbers, and
symbols as strings. You would enter a list of names and'
addresses, for instance, as strings. It wouldn't make any sense
for the computer to add up your friends' house numbers, or
treat their names as numeric variables. But you might very well
want to arrange those names in alphabetical order. That is just
one example of a string operation that Tl BASIC can perform.

It can also find out the length of a word or phrase, search
for one group of letters contained within another, or cut up
words or phrases into smaller segments. And just as you can
use numeric variables to stand for numbers, you can use string
variables to represent strings. With Tl BASIC you can even use
string variables in arrays.

Line editing. Programmers will enjoy the easy line editing
features. Function keys allow you to change, insert, or delete
characters without retyping the entire line.

Automatic line numbering. You may specify a beginning
line number and an increment, and the computer will
automatically number your lines for you as you are typing
them in.

6

v

v

v

J

I

------- Chapter J

Automatic renumbering. After you have programmed and
added or deleted statements here and there, the automatic
resequencing command, RES, will automatically renumber
your statements, including all statement numbers referenced
by other commands.

Trace. If you use the TRACE command, TI BASIC will
follow the line numbers of statements as they are being
executed to help you in debugging programs. You may stop the
program at any time and print out the value of any variables.

Peripherals
Unless otherwise specified, none of the programs in this book
require extra equipment. However, to give you an idea of the
capabilities and expandability of your TI computer, I will briefly
describe peripherals you can add on to your basic console.
Keep in mind that improvements and enhancements are
constantly being developed and that prices fluctuate.

Software. Your computer is hardware; software is the
programs that will make the computer do what you want it to
do. The easiest way to load a program into the TI computer is to
use a command module. Just plug it in.

Another way to load a program is to type (" key in") the
program each time you wish to use it. If a program is long,
you'll find that it saves a lot of time to store it on a cassette or a
diskette. Most "third-party" (not produced by Texas
Instruments) software is produced on cassette or diskette. A
cassette program requires a cassette recorder and the dual
cassette cable. A diskette program requires a disk drive and the
disk controller.

Software is available for a variety of applications, like
games, education, finance, inventory, engineering, business,
and music.

When you purchase software, the literature or your dealer
should tell you what hardware is required. For example,
business software often requires a printer and two disk drives
(and thus the peripheral box, RS-232 interface, and disk
controller), plus perhaps the Extended BASIC module and
maybe the 32K memory expansion. Some game programs
require joysticks.

Cassette recorder and cassette cable. Probably one of the
first items you will need is a cassette cable to connect a cassette
recorder to the computer to save your own program or to load

7

Chapter I

other cassette programs for your use. Nearly any cassette
recorder is acceptable; however, the TJ-99/4A is more critical on
volume control than the TI-99/4 is, and some brands work
better than others. In general, a battery-operated recorder will
not work well enough for accurate data retrieval all the time.
Also, your recorder should have both a tone and volume
control. Texas Instruments publishes a list of recommended
cassette recorders.

The User's Reference Guide (page 1-9 for TI-9914A, page 15 for
TI-99 /4) tells how to connect the cassette cable and how to save
and load data when you're using a module. The Guide also tells
how to save and load a program you have written (pages
11-40-42 for TI-9914A and pages 68-70 for TI-9914). Some other
hints for using the cassette recorder are:

• Turn the tone control to the highest setting.
• Start with the volume about midrange.
• Type in OLD CSI and follow the instructions printed on

the screen.
• If you get the message "NO DATA FOUND," increase

the volume.
• If you get the message "ERROR IN DATA," decrease the

volume.

With some of the TI-99/4A consoles, a fraction of a change
in volume can determine your success in reading a program.
On a couple of consoles, I alternated between the two error
messages at a volume setting near 2 or 3, then turned the
volume up to about 8 or 9, and the program loaded with no
problems.

The smallest plug of the cassette cable goes into the remote
jack of the cassette recorder, so the computer can turn the
recorder on and off automatically. If the recorder does not turn
on and off properly, simply remove the remote plug from the
jack.

You can operate the cassette recorder manually to save and
load programs. For programs using the cassette recorder for
data entry, you will need the remote capability. An adapter is
available for the remote switch .

Two cassettes are used in some programs where you need
to read and write data, ~uch as updating files .

Speech, The TI Speech Synthesizer is a small box that
attaches to the side of the computer and lets the computer

8

------- Chapter I

speak to you. You will need a command module with built-in
speech to hear the computer speak.

To program your own speech or to use any cassette or disk
programs that use speech, you will need a module. Speech
Editor and Extended BASIC are two modules that have speech
capabilities with a given list of words. The Ten"inal Emulator II
command module allows unlimited speech, and comes with
documentation that gives you ideas and suggestions about
programming speech. The easiest way is to spell something
phonetically for the computer to pronounce.

Extended BASIC. TI Extended BASIC (XBASIC) is a pro
gramming language contained on a module. It comes with a
programming reference card and a thick manuaL No other
peripherals are required to use XBASICi if you want a powerful
programming language, this may be the first "extra" you'll
want to buy for your computer. If a program has been written
in XBASIC, the XBASIC module must be inserted for the
program to run properly. Some of the advantages of XBASIC
are multi-statement lines, complex IF-THEN-ELSE logic, sub
routine and MERGE capabilities, program security (save
protection), excellent formatting, and moving sprites for
graphics. If you like to write action games, Extended BASIC
with the sprites is essential.

Hardware. There are two main ways to add peripherals to
your TI computer. The old method has each peripheral in a
separate box that connects to the side of the computer or the
previous peripheral. The RS-232 Interface, 32K Memory Expan
sion, and Disk Controller look like identical boxes. The disk
drives are hooked by a cable to the disk controller or another
disk drive .

The new method is to add a Peripheral Expansion Box. With
it, each peripheral is a "card " that is placed in the expansion
box. The expansion box is attached to the computer (or speech
synthesizer) by a thick cable, and it has its own power supply,
so there aren't as many power cords dangling around as in the
old system. The RS-232 Interface, 32K Memory Expansion,
Disk Controller, and Disk Drive are "cards" that plug into the
expansion box. Other cards are planned.

RS-232Interface. The RS-232 Interface was my first add
on, because I wanted a printer, and the Interface allows the
computer to " talk" to the printer. The RS-232 Interface has two

9

------- Chapter I

TI-99/4A with Peripheral Expansion Box

ports so that you may be connected to a printer and a modem at
the same time. The instruction book that comes with the
RS-232 tells you how to operate the computer under different
conditions.

Printer. You may use a number of different brands of
printer with your TJ-99/4A. To connect your printer, you' ll
need a cable to go from the RS-232 Interface to the printer. The
cable should be sold where you buy the printer.

Modem. Modems allow you to use phone lines to send
information from one computer to another. There are several
kinds of modems and acoustic couplers that will give you
access to large computer networks, data bases, or other
services. You will need the RS-232 Interface and either the
Tenllinal Emulator 1 or Temlinal Emillator II command module.

Disk controller and disk drives . You can save and retrieve
data or programs with a diskette much more quickly than with
a cassette system. To connect a disk drive, you also need a TI
Disk Controller. One disk controller can handle up to three
disk drives. Many business applications require two disk
drives. The TI-99/4A presently uses single-sided 5 V4-inch
soft-sectored diskettes.

10

J

v

v

v

v

Chapter I

Memory expansion. The TI Memory Expansion gives your
computer 32K RAM. However, that memory won't do you
much good unless you use a module that will access it. You
cannot use it with console BASIC alone. TI Extended BASIC
does not require the memory expansion, but it can access it.
Other programming languages may require the memory
expansion.

Monitor. Although the TI-99/4A may be connected to your
regular television set, a color monitor gives a clearer picture.

Logo. 11 Logo is a fascinating programming language
designed especially to teach computer literacy to young
children. TI Logo is contained in a command module, and the
32K memory expansion is required. Logo I can print using the
TI thermal printer only. Logo II has RS-232 capability so you can
print listings on a regular printer, and it also has music. There
are several manuals and books available to help teachers
implement Logo in their classrooms.

Editor/Assembler. This language requires the memory
expansion, disk controUer, and one disk drive. It allows you to
program in the machine language of the computer's TI 9900
microprocessor.

UCSD PASCAL. This language requires the memory
expansion, P~code peripheral card, disk controller, and at least
one disk drive (preferably two).

11

u
u

u

u
V

V

u
L

u
u
u
u
u

u
u
(;

U

U

U

v
u

u
v

-
u
G
u
u
\)

v
u

U

U
u
u

U

v
u
u
u

u
U
u
u
u
u
U
v
v
u
v
U
G
U
u
u

,
------- Chapter 2 -------

Getting
Started

The best way to learn to use your computer is by using it . Most
parts of this book will be more understandable if you are
actually sitting at your computer, typing in the sample
programs and RUNning them as you go along.

Whenever you start writing a new program, it 's good to
keep in mind that there are certain things that must be done
before you can do other things. That's what this chapter is
about. Along the way, I' ll briefly introduce each command and
concept ofTI BASIC as we come to it.

What You See
The TI-99/4A keyboard is much like a typewriter keyboard. The
letters are all in the same positions, and so are most of the
symbols. If you aren't already a touch typist, you will gradually
learn to type as you program.

When you turn on your computer, you get the title screen.
To do your own programming, press any key; then press 1. TI
BASIC is now ready, waiting for you to begin programming.

The little black square that is blinking or flashing is called a
cursor. Whatever you type in at the keyboard will appear right
where the cursor is; the cursor will then move one space to the
right (or to the next line), waiting for you to type something
else.

How to Make Things Happen

The ENTER key is probably the most important key on the
keyboard. You can find it easily - it is the key with a yellow dot
on the front. Simply typing commands won't make the
computer do anything except put the letters and numbers you
typed on the screen. Things only start happening when you
press ENTER.

As soon as you press ENTER, TI BASIC tries to follow your
instructions. If your instructions begin with a line number, TI
BASIC stores that line as part of your program, to be ca rried
out later, in its proper order. If there is no line number, TI
BASIC will try to carry out your instructions at once.

15

------- Chapter 2

Some BASIC Commands
A command is a word that tells the computer to do something.
The command must be typed correctly; if a word is spelled
wrong, TI BASIC won't understand the command. The TI is
also very particular about spaces, and when a command
requires numbers, those numbers have to be within certain
ranges.

For example, type CALL CLEAR. Then press ENTER. The
screen clears immediately. This is the command we use
whenever we want to erase the whole screen - I often use it
near the beginning of a program to get rid of words or pictures
left over from the last program I ran.

Line Numbers
A program consists of a series of commands for the computer
to perform. The commands are numbered with line numbers so
the computer will perform them in a certain order. No matter
what order you type your lines in, when you enter RUN the
computer will start with the lowest line number and carry out
the commands on each line in numerical order, unless one of
the commands directs it to do otherwise. The main thing a
programmer does is arrange commands in a certain order to get
the computer to do something,

If you would like the computer to number your lines for
you as you are typing a program, type NUM. Then press
ENTER. The number 100 will appear on the screen. After you
type in the statement for line 100 and press ENTER, the
number 110 automatically appears.

You do not have to start with line 100. For example, if you
want to start at 20000, type NUM 20000.

The computer automatically increments the line numbers
by ten unless you specify another number. If you prefer to start
at line 50 and number by fives, enter the command NUM 50,5.
The first number is always the beginning line number; then,
after a comma, the second number is the increment between
line numbers. If you don ' t specify your own choices when you
enter NUM, by default 11 BASIC will start at line 100 and
number by tens.

Why should you skip line numbers when you are
programming? If you don't, you may find that you need to
insert a few instructions between lines 7 and 8; you would have

16

-

------- Chapter 2

to renumber your program to do it. By leaving nine unused
numbers between every two lines, you have plenty of room to
insert lines later.

The PRINT Command
One of the most used commands in computer language is
PRINT. You may print messages by typing PRINT, followed by
the message in quotation marks. To type the quote marks on the
TI-99/4A, you will need to simultaneously press the function
key (FCTN, the key with the gray dot) and the letter P. In fact ,
all the symbols on the fronts of the keys are obtained by
pressing FCTN and the appropriate key.

You can put more than one message in the same PRINT
command. Just put each message in its own set of quotation
marks, and separate the messages with one or more print
separators - either a colon, a comma, or a semicolon. TI BASIC
interprets the print separators as instructions. A colon tells the
computer to go to the next line; several colons in a row make
the computer skip several lines. Semicolons tell the computer
to join two messages together, with no space between them at
all on the screen. Commas tell the computer to tabulate before
printing the next message. Remember, though, that print
separators must be outside the messages. If they occur inside
the quotation marks, the computer will assume they are part of
the message and simply print a colon, comma, or semicolon on
the screen.

100 REM PRINT
110 CALL CLEAR
120 PRINT "HI"
130 PRINT "HELLO THERE"
140 PRINT "HERE ARE EXAMPLES"
150 PRINT :: :"HERE ARE THREE COLONS"
160 PRINT :·GEORGE ·,·SUSAN ft

170 PRINT :-DOUG · ,-SHEILA -
180 PRINT : "ROGER" : "SHERYL "
190 END

Did you remember to type in the space after "GEORGE"
in line 160? It makes quite a difference in what you see on the
screen.

17

------- Chapter 2 -------

REMand END
You probably noticed that in the sample program you just ran,
there are two new commands: REM and END.

REM means "remark ." Anything that comes after that
word is ignored when the computer runs the program. Why
include REM statements if they have nothing to do with the
program? They're really a guide for you - or for any other
programmer who looks at your program and tries to figure out
what you' re doing. In a simple program like the one we just
wrote, it's easy to see what's going on. But when a program
has a few dozen lines and the variables start coming thick and
fast, a REM statement here or there can help you keep track of
what those lines of code are doing. REM statements use up
memory, however, so if your program starts getting too large
for your computer, you can always delete a few REMs to make
space.

The command END stops the computer and tells the
computer that is the end of the program. I like to put END as
the last statement of my programs so that you will know you
have all of the lines when you are typing in these programs.
Actually, you may leave off the last line, and the computer will
end by itself. A similar command is STOP, which also stops the
computer as if at the end of a program. I usually use STOP
when J want the computer to stop within a program (such as
between subroutines or different sections of a program), and
END as the last line of the program.

Skipping Around with GOTO
Remember that the computer executes a program line by line,
taking the lines in numerical order. One way that you can
change that order, though, is with a GOTO statement. GOTO
is always followed by a line number: GOTO 150. [f you GOTO
the first line in the program, you start the program over again.
You can create loops by telling the computer to GOTO an
earlier line. You can even make the computer stand completely
still by telling it to GOTO the very line it is already on:

320 GOTO 320
The only way to stop the program then is to press CLEAR. You
can also GOTO a later line, skipping as many program lines as
you like along the way.

Type in the following program. It is very inefficient, but it

18

v

------ Chapter 2 ------

v

V illustrates how you can GOTD all over the place. Press CLEAR
to stop the program.

V

J

v

v

v

v

v

100 REM GOTO
llO CALL CLEAR
120 GOTO 150
130 PRINT 'SECOND'
140 GOTO 170
150 PRINT 'FIRST'
160 GOTO 130
170 PRINT 'THIRD'
180 GOTO 180
190 END

The CALL SCREEN Command
A command I often use at the beginning of a program or at the
beginning of a section of a program is CALL SCREEN. The 16
colors available on the TI are numbered, and the CALL
SCREEN statement allows you to specify what screen color you
want. For example,

100 CALL SCREEN(14)
110 GOTO 110

RUN this program and you will see a magenta screen.

Housekeeping Commands
Some TI BASIC commands almost never appear in programs,
but programmers use them often while they are creating
programs. NEW is like a broom. When you enter NEW, it
sweeps away every bit of the program that is currently in
memory. You'll use it to make sure you aren't getting old
program lines mixed in with the new ones. But be careful
NEW sweeps clean. Hyou want to keep whatever you've been
working on before, make sure to save it on cassette or disk
before you enter NEW.

RUN is the command that tells the TI-99/4A to start at the
lowest-numbered line of the program currently in memory and
begin executing the commands it finds there. Any time during
your programming you can enter RUN and see how your
program is working so far.

LIST is the command that lets you look at the program lines

19

------ Chapter 2 ------

that are currently in memory. If you simply enter LIST, the
TI~99/4A will display the entire program, from the first line to
the last . If the program is short, it will all fit on the screen. But if
the program is long, o~Y the last few lines will stay on the
screen (or you to examme.

One solution is to watch carefully as your program scrolls
up the screen . When the lines you want to examine are on the
screen, quickly press CLEAR. This will stop the scrolling and
let you look at whatever was on the screen at the moment you
pressed CLEAR.

A better solution is to LIST only a portion of the program. If
you wanted to look only at line 320, you would enter LIST 320.
If you want to look at a range of lines, then enter LIST plus the
beginning and ending line numbers, with a hyphen (minus
sig n) in between:

Command
LIST
LIST 200-300
LIST -150

LIST 300-

Lists:
Whole program
Lines 200 through 300
All lines from the beginning
up to and including line 150
All lines from 300 to the end

If you ask for a range of lines that doesn 't exist, there 's no harm
done - the computer just doesn't LIST anything.

Editing
Not so long ago, to try a program out you had to punch
computer cards and then submit the deck to a computer center.
Hours or days later you could pick up your results. Of course,
sometimes there were typing (or syntax) errors or logic errors
which would need correcting. The job would be resubmitted,
and another day would go by before you could see the results.

Now, with home computers and terminals, the whole
process of programming, correcting, and getting results is
much, much faster . Within seconds you may change a number
in a s tatement and see the results .

The TI has very easy-to-use editing capabilities built in .
Either before or after you have pressed ENTER, you may
correct typing errors on any line in the program. On some
commands, if you have typed the statement incorrectly, and

20

v

v

v

v

v

v

v

------ Chapter 2 ------

then pressed ENTER, the computer will immediately remind
you that something is wrong (for example, if you spell CALL
with only one L).

For simplicity, I will describe editing u sing the TI-99/4A. If
you have the TI-99/4, be sure you have the programming
overlay. You will use the SHIFT key and the appropriate key
marked on the overlay.

The Editing Function Keys
Most of the editing on the Tl-99f4A can be done by pressing the
function key (FCTN, the key with the gray dot) with another
key. You should have a narrow strip overlay that fits above the
number keys. The bottom li ne of the overlay has a gray dot at
the right. If you push the key with the gray dot (FCTN) plus the
number key, the computer will do the corresponding
command. For example, FCTN 4 is CLEAR. To stop a program
at any time, you may press FCTN 4, CLEAR. The function keys
used in editing are the arrow keys and numbers 1, 2, 3, and 4.
The other numbers are used with some of the modules.

Now take a look at the arrow keys (found on letter keys E,
5, D, and X). These are the same arrow keys you use to move in
games; you also use them with the FCTN key to edit . If you want
to back up as you are typing in a command, just press FCTN
and the left arrow key. Type over whatever it is you want to fix;
then press FCTN and the right arrow key to get back where you
were. The right arrow and left arrow keys will repeat if you
hold them down longer than a second.

Let ' s try some examples. Type in the following example
program exactly as shown, including errors.

190 CALL CLEAAR
110 CALL SCREEN(14)
129 PRINT "HI"
130 GOTO 130
140 END

Correcting Errors
Of course you noticed that in line 100, the word CLEAAR is
misspelled. One way to correct the error is to type line 100 over
again, but you can save yourself some retyping by using the
editing keys. To edit line 100, type 100; then press Fe TN and

21

------ Chapter 2 ------

the I key. (You could also have typed in EDIT 100
and then pressed ENTER, but the first method is quicker.)

You'll notice that line 100 appears at the bottom of the
screen with the cursor on the first character of the line. Now
press FCTN and the right arrow key until you are directly over
one of the extra A 's in CLEAAR. Now press FCTN and 1 (for
DELete). The word should now appear as CLEAR.

Watch Qut, because DElete is also a repeating key . If you
hold it down too long, you ' ll lose more letters than you want.

When you press ENTER, the new line as corrected will
replace the old line.

Revising a Program
Let' s assume you don 't like my magenta screen. First we need
to find out which line we need to change. LIST your program
by typing LIST, then pressing ENTER. The line you need to
change is 110, so type 110 and then press FCTN + .

Use the right arrow, FCTN-, to move the cursor to the 4 in
14. Type 6 and then press ENTER. This time your screen color
is 16. RUN the program again.

Suppose you don't like that color either. Press FCTN 4
(CLEAR), then type 110 and press FCfN I . Say you want color
6. Use FCTN- to get to the 1. Press FCTN 1 for DElete: Then
press ENTER.

Did the editing work? Enter LIST 110 to see. Line 110
should say CALL SCREEN(6).

You have probably noticed that you do not have to be at the
end of the line to press ENTER. No matter where you are on
the line when you press ENTER, the entire line will be stored in
the program.

Now RUN the program again. This time let' s edit line 120.
Type 120 and press FCfN + . Use FCfN- to get to the I in
" HI" . Stop right on top of the I and type ELLO" to replace
" HI" with " HELLO. "ENTER and RUN to see the change.

Inserting Characters
Let ' s try another function key. INSert is used to add characters
to a line without having to type the whole line over. Type 120
and press FCTN. to bring line 120 into editing mode. Press
FCfN- until the cursor is directly over the H.

Press FCfN 2 for INSert. Then type JIM, and notice how

22

v

v

------- Chapter 2

the Test of the line moves over. (Remember to type a space after
the comma so the phrase w ill look righ t.)

When you are through inserting characters, press FCTN -
and go to the second quote mark (a fter the 0 in HELLO). Now
insert an exclamation mark. Be sure you u se the SHIFT key and
not the FCTN key when you press 1. After your line looks
right, press ENTER.

Changing Your Mind
If you are editing a line and decide you don ' t want to change it
after all, press FCTN 4 for CLEAR and the line will stay as it
was before you began editing it.

When you are typing in a program, FCTN 4 will get you off
a line, and the computer w iJI ignore that line . If it is a new line,
it will not be entered as part of the program.

FCTN 3 for ERASE will erase the line you are typing. You
may wish to pause here a few minutes and experiment with
ERASE and CLEAR to see the difference .

To delete or get rid of a whole line, type the line number
only; then press ENTER. The left arrow, right arrow, and
DELete keys have the automatic repea t feature; just hold the
key down for longer than one second and it will start repeating.

The INSert key needs to be pressed ju st once, and
characters will keep being inserted as you type until you press
ENTER, DELete, or one of the arrow keys.

Up and Down
When you are edi ting more than one line, the up arrow and
down arrow keys will come in handy . Let's assume you have
the following lines in yo ur program:

200 CALL BCBAR(3,S,42)
210 CALL BCBAR(3,8,42)
220 CALL BCBAR(3,20,33)

You RUN your program and discover the graphics needs to be
a line lower - the row value needs to be changed from 3 to 4 in
all three lines.

Type 200 and press FCTN I to begin editing line 200. Use
the right arrow to go over and change the 3 to a 4.

Now, however, instead of pressing the ENTER key, press

23

------- Chapter 2 -------

FCTN + . The very next line, line 210 in th is case, will appear
for editing; line 200 has also been entered. Likewise, the up
arrow will give you the line just before the one on which you
were working. You can scroll up and down from line to line
through your whole program using the up and down arrows.

If you have pressed ei ther the up arrow or the down arrow
and find yourself on a line that does not need editing, you may
press CLEAR to get out of the editing mode.

Renumbering
RES is a command that stands for resequ.ence. If you have been
programming, adding lines here and there, your program can
get quite crowded and confusing. If you were to renumber all
the lines yourself, it could take a long time, especially because
you would have to find and change every reference to a line -
every GOTO or GOSUB or THEN command that sends the
computer to the line whose number you have changed.

The TI-99f4A makes it easy. Just type RES and press
ENTER. As soon as the cursor reappears, your program has
been resequenced, or renumbered, including all line numbers
referenced in other lines. Try this sample:

100 REM RES SAMPLE
11 0 CALL CLEAR
120 GOTO 300
150 CALL SOUND(150,440,2)
200 CALL HCHAR(INT(RND*24+1) ,INT(RND*32+1)

,42,5)
210 RETURN
300 GOSOB 150
310 GOSUB 200
320 GOSOB 150
330 GOTO 300
500 END

First LIST the program and notice the line numbers. Now
type RES and press ENTER. LIST the program again. The lines
are resequenced, starting with 100 and incrementing by 10.
Notice that the numbers after GOSUB and GOTO have been
changed.

As with the NUM command, you may specify the starting

24

v

v

v ------- Chapter 2

line number and the increment. The first number after RES is
the starting line number; the second is the increment.

Try RES 10. Then LIST to see the line numbers.
Try RES ,5. Then LIST.
Try RES 1,1. Then experiment with your own numbers.

Organizing the Program
Quite often when I am writing a program, I start off with the
command NEW, then NUM, and then enter the preliminary
statements of the program. If the program is gong to have
several sections, I start the first section with line 1000; I use the
command NUM 1000 to start typing in lines. Then I start the
second section with line 2000, and so on. After the program is
finished, I can RES so the line numbers are arranged starting
with 100 and incrementing by 10.

You can also use the RES command to help you add lines.
Suppose the lines are numbered in increments of 10, but you
discover you need to add 15 lines between two statements.
RES ,50 will spread the line numbers apart so you' ll have
plenty of in-between numbers to use.

Another reason I RES when I'm fin ished with a program is
so others who look at my program can't tell where I pla.nned
poorly and had to add lines.

InitiaUzing Variables

All that your computer understands is numbers. Even the
letters that make up commands are just numbers to the
computer. Fortunately, TI BASIC takes care of letting the
computer know whether to treat any particular number as a
command, a character, or a number. All you have to worry
about are a few rules for entering your commands, characters,
and numbers. I've already gone over some of the commands.
Now it's time to start giving the computer some numbers and
getting back results.

Numeric Operations

Arithmetic is simple. Just enter a statement like PRINT
456+5997 and yourTI-99/4A will give you a quick answer. The
four simple arithmetic symbols are + (add), - (subtract),
* (multiply), and I (divide). You can make your problems as
complex as you like: PRINT (4'(9913))-(1111 +(8814)).

25

------- Chapter 2

There are three ways that numbers can get into your
program . The first way is the one I just used, putting the
numbers directly in a program statement: PRINT 88/(14*2-6).
Another way is to have a list of data in a DATA statement, and
have the program read the DATA - I' ll explain more about that
later. A third way is to use INPUT statements, and have the
computer user enter the numbers while the program is
running.

Storing Numbers as Variables
But the real power of the computer is that you don't have to
put the numbers directly into your programs. Instead, you can
use variables. Variables are like a very long row of cupboards.
When you start your program, the cupboards have no labels.
So you label the first cupboard A, and then store a number
inside it. From now on, whenever your program uses the
variable A, TI BASIC goes to the memory location named A and
brings back whatever number is stored there .

You can name quite a few variables in each program, and
you can change the value of that variable (the number stored in
that cupboard) as often as you like. When your program uses a
variable name, TI BASIC will use the most recent value you
assigned to it.

Types of Variables
There are two types of variables, string and numeric. The
difference is that string variables are given names that end with
a dollar sign, like A$, NAME$, or R5S$, and whatever value is
assigned to a string variable is treated as characters rather than
numbers. String operations are performed on string variables;
numeric operations are performed on numeric variables.

Naming Variables
There are a few simple rules in naming variables. Firs t, variable
names have to start with a letter. Second, variable names can
only consist of letters and numbers. AI, BS3RN,
NUMBEROFPEOPLE, and WATERGATE55 are all legitimate
variable names. A@, 15B, WHAT'S THIS, and #OFDOCTORS
are not legal variable names.

Third, no two variables can have the same name - if two
variables have the same name, the computer assumes they are
the same variable. But it doesn 't take much to make the names

26

v

------ Chapter 2 ------

different. If even one character in the variable names is
different, your TI-99/4A will always be able to teU which is
which.

Fourth, your variable name can't begin with a complete
command. LIST14 is not a legal variable name.

Your variable names don' t have to mean anything, but it's
often a good idea to use words that have some meaning. In a
long program, you'll sometimes have dozens of variables at
once, and it's a lot easier to keep track of what each one means
when, instead of naming them A, B, C, 0 , and so on, you have
named them SCOREl, SCORE2, TIME, SPEED, and TVCOL.

Assigning Values to Variables
In many BASIC languages, when you want to use regular
statements of your program to give values to variable names,
you have to use the LET statement: LET A=7. However, in TI
BASIC, the word LET may be omitted, so all you need is the
variable name and the value: A=7. This tells the computer to
use 7 whenever your program calls for the variable A.

If you use a variable in a calculation without previously
assigning a value to it, the computer automatically assumes a
value of zero.

Here is a sample program.

100 A=7
110 B=10
120 PRINT A'B
130 END

If you RUN this program, the result printed would be 70.
Now suppose you had entered this program:

100 A=7
~ 110 PRINT A'B

120 END

This time the value of B was never assigned. The computer
assumes that B equals 0, and the result printed is zero.

The Tt-99/4A sets all variables to zero each time a program
is run. If you want your variables to start at zero, you won't

27

------ Chapter 2 ------

need to define them. However, any time your program has an
option to do a process more than once, you will need to make
sure your variables have the right value each time the process
begins again. Many of the variables will need to be
re-initialized, while others will not.

Where Should Variables Be Initialized?
For example, let's say you are designing a game in which two
players take turns moving a figure around a screen for a limited
amount of time. At the end of the game, the players have the
option of starting over.

While I won't try to show you the whole program, I can
show you the basic design of it. There are three principal loops.
The inner loop is the player movement loop. This one repeats
hundreds of times in a game, each time the player moves his
on-screen figure. The program keeps track of where the
on-screen figure is with the variables X and Y. (In this book, X
represents the row numbers, or vertical placement of the
character; Y is the column number, or horizontal position.)

The next loop is the player-turn loop. When Player One's
time is up, it is Player Two's turn; when his or her time is up, it
is time for Player One again. The program keeps track of the
amount of time that has passed with the variable TIME ..

The outer loop is the play-again loop. When a game is over,
the players are asked if they want to play again. If their answer
is yes, then the whole game starts over again from the
beginning, and their scores are set at zero. The program keeps
track of their scores with the variables SCOREl and SCORE2.

Figure 2-1 is a diagram of the program, including five LET
statements. If the variable assignment statement is inside a
loop, then each time the loop repeats that variable is initialized
- set back to its original value. Otherwise, the variable keeps
whatever value it received during the last time through the
loop.

Notice where the values of the variables are initialized. X
and Yare set to their starting position only at the beginning of a
turn, outside the movement loop. If those values were
initialized inside the movement loop, then every time the
figure moved, it would immediately come right back to the
starting place. TIME is also initialized at the beginning of each
turn. But SCOREl and SCORE2 are only initialized at the start

28

v

v

Chapter 2 -------

Figure 2-1. Planning Program Loops

0-

~
C
.~

• ,
~

i

(Initialize the program - define characters, draw the
screen.)

> (Beginning of play. The play-again loop starts here .)

200SCORE1 - 0

0-

~
c • ,
! • ~ • 0.

210SCORE2- 0

> (Beginning of the player's turn. The player-turn loop
starts here.)

0-

3OOTIME .. O
310X - 16
320Y . 12

8 [) (Check to see if the player wishes to move the figure. The
~ player movement loop starts here.)

~
~ > (Move the figure by changing the values of X and Y. Check
~ to see if the time is up. If no, then return to the beginning

of the player movement loop. If yes, then return to the
> beginning of the player-turn loop.)

(End of play.)

1000 PRINT "PLAY AGA IN? (YIN)"

> (If yes, return to the beginning of the play-again loop.)

1200 END

of each new game - otherwise, every time a player's turn
ended, the scores would be reset to zero.

Variables In FOR-NEXT Loops
Another way variables are given values is in FOR-NEXT loops.
(FOR-NEXT loops are described in more detail in Chapter 4.)
Briefly, a variable is used as a counter in the loop, and each
time through the loop, the counter increases or decreases by a
set amount. Try this program:

100 FOR C=S TO 10
~ 110 PRINT C

120 NEXT C
130 END

29

------ Chapter 2 ------

The first time through the loop, C has the initial value of 5.
When the computer executes line 120, it increments (adds 1 to)
C and then checks to see if it is less than or equal to 10. If C is
less than or equal to 10, the computer goes back to line 100 and
begins the loop again. After the loop is finished, C has the
value of 11 because it was incremented one last time after it
reached the target value of 10.

This can be very powerful in programming. Add these
lines to the program you just ran:

112 D=D+(23*C)
114 PRINT 0,
116 PRINT 400-(10*C)

Now RUN the program . By performing various operations
using the counter variable, you can produce many different
effects in the same loop.

DATA and READ
Directly defining variables in statements or using FOR·NEXT
loops is the easiest way to keep track of the value of a variable.
That way, however, each variable needs a separate statement
every time its value changes. If you need to save memory or
prefer to use fewer statements, then the DATA method may be
used.

A DATA statement consists of the command DATA
followed by as many items of data as will fit on a line. DATA 9
is a complete, valid statement. So is DATA 9,50, DONNA
SMITH,3,-580,O,O,28,1899, 10, FRANK WADE. There can be as
many DATA statements as you like in a program, and you can
put them anywhere in the program you want. The computer
doesn 't do anything with them until it comes to a READ
statement.

The READ statement is always followed by as least one
variable name. READ A is valid. So is READ
A,B,C$,D,E,F,G, H,I,j,K$. (Notice that when the DATA is a
string, it must be READ into a string variable.) When the
computer encounters the first READ statement in a program, it
starts at the beginning of the program and looks for the first
DATA statement. The first variable after the READ statement is
assigned the value of the first item of data after the DATA

30

------ Chapter 2 ------

statement. The second variable after READ is given the value of
the second item of data, and so on. (READ and DATA are
described in more detail in Chapter 6.)

Following this paragraph are two programs assigning the
same values to the same variables. The o ne on the left assigns
the values in separate statements. The one on the right uses
READ and DATA. The DATA statement happens to come after
the READ statement. It could have come before; it makes no
difference.

199 A=7
119 B=19
129 C=6
139 D=2
149 E=5
159 PRINT A"B+C/D+E

User INPUT

199 READ A,B,C,D,E
119 PRINT A*B+C/ D+E
129 DATA 7,19,6,2,5

One more way to get information into the computer is to let the
user of the program INPUT the data. Here is an example:

100 CALL CLEAR
110 INPUT "ENTER A NUMBER ':A
120 PRINT "YOUR NOMBER SQUARED IS ";A*A
130 END

In line 110, the computer waits for the user to type something
in and then press the ENTER key. The variable A is assigned
the value of whatever number the user enters.

Line 110 shows only one way of using the INPUT
statement. Another way is to use a PRINT statement and an
INPUT statement:

110 PRINT "ENTER A NUMBER"
115 INPUT A

If your message to the user, or prompt, is part of the INPUT
statement, then it must come immediately after the command
INPUT. After the message, type a colon and the variable name.

31

------ Chapter 2 ------

User Errors
What happens if the user doesn' t follow your instructions, and
enters a letter or symbol, or a number too large for your
program to handle? If the user INPUTs a letter or symbol, the
computer gives him or her a chance to try again. If the user
INPUTs a number too large to handle, the program crashes - it
stops abruptly and won' t go on. So it's a good idea to test the
value entered and make sure it is within reasonable limits for
your particular program before you actually try to do anything
with the INPUT variable. For example:

100 CALL CLEAR '-..
110 PRINT "ENTER A NUMBER",,"FROM 1 TO 100

"
120 INPUT N
130 IF N)=l THEN 160
140 PRINT ,"SORRY, TRY AGAIN."",
150 GOTO 110
160 IF N<=100 THEN 190
170 PRINT ,"SORRY, MUST BE LESS THAN 100"
180 GOTO 120
190 PRINT , ,"YOUR NUMBER SQUARED IS"/N*N
200 END

The symbol < means " less than ." The symbol> means
"greater than." Combined with the equal sign (=), these
symbols mean "less than or equal to" or "greater than or equal
to. "

Testing with the IF-THEN Command
The IF-THEN command is very powerful. It tests to see if a
particular condition is true or not . U it is false, then the
computer goes on to the next line of the program. But if the
condition is true the computer goes somewhere else.

In line 130, the command IF was followed by the test
condition. Is it true that the value of variable N is greater than,
or equal to, 1? If not, the computer will go on to line 140 - the
user entered a number that the program cannot use . UN is
greater than or equal to 1, however, the program branches to
the line number that foUows the command THEN. If the

32

------- Chapter 2 -------

statement following IF is true, the program will always go to
the line number following THEN.

CALL KEY for User-proof Input
One way to avoid user errors is to give the user fewer choices .
If you ask a yes or no question and use the INPUT method of
getting the user's answer, what is to stop the user from typing
YEP or AFFIRMATIVE or OF COURSE NOT? A better way is to
give him only two choices, each consisting of only one letter .
Then use the CALL KEY statement to find out what letter the
user chose.

The CALL KEY statement is always followed by a zero and
two variables, all in parentheses: CALL KEY(O,K,S). All that
concerns us now is the first variable - in this case, K. After the
CALL KEY statement is executed, the value of that variable will
be the numeric code for the last key that the user pressed.

800 PRINT "PRESS Y FOR
810 CALL KEY(O,K,S)
820 IF K=89 THEN 200
830 IF K<>78 THEN 810

YES, N FOR NO"

(Y WAS PRESSED)
(ANY KEY OTHER
THAN N)

840 (PROGRAM CONTINUES FOR N)

If the user presses Y, the program branches to line 200 for the
YES procedure. If the user presses N, the program continues to
line 840 for the NO option. Any other key pressed sends the
computer back to line 810, to ask for another key. The program
will not continue until the user presses either Y or N.

Menus
The CALL KEY method isn ' t limited to "yes/no" situations.
You may have a menu of options on the screen. Label each
option with a letter or numberi then use a CALL KEY
statement to read which key was pressed and branch
appropriately. If the user presses a key that is not one of the
choices, you can send the computer back to ask for a new key.

In the following example, the user must press 1, 2, 3, or 4.
If any other key is pressed, the value of K is less than the ASCII
code 49 (the code for the character " 1") or greater than 52 (the

33

------- Chapter 2 -------

code for the character " 4"}, and the computer will return to the
CALL KEY statement in line 120.

100 CALL CLEAR
110 PRINT "CHOOSE 1, 2, 3, OR 4"
120 CALL KEY(O,K,S)
130 IF (K(49)+(K>52) THEN 120
140 ON K-48 GOTO 1000,2000,3000,4000
1000 PRINT "1"
1010 GOTO 120
2000 PRINT "2"
2010 GOTO 120
3000 PRINT "3"
3010 GOTO 120
4000 PRINT "4"
4010 GOTO 120
5000 END

The ON Command
In line 140, we used the ON command. ON is similar to
IF-THEN, because it can cause the program to branch to
another line. This time, though, instead of having only one
possible branch, there can be many.

Instead of testing the statement that follows ON to see if it
is true or fa lse, TI BASIC finds out the numerical value of the
expression. In line 140, the expression after ON was K-48. The
variable K held the value of the ASCII code for the key the user
pressed; because of the test in line 130, you know that K is a
number from 49 to 52. Now we subtract 48, so that the value of
the expression is a number from 1 to 4.

Now comes the multiple branching. If the value of the
expression is 1, the program will branch to the first line number
following the GOTO command. If the value is 2, the program
branches to the second line number, and so on. If our menu
had 10 options, we could have specified ten line numbers after
the GOTO statement.

However, you must be careful when using ON statements
to make sure that the expression tested by ON has a value no
less than one and no greater than the number of line numbers
specified after the GOTO command. The program will crash if

34

Chapter 2 -------

ON finds a value for which there is no corresponding line
number after GOTO.

Initializing Arrays with DIM
Earlier in this chapter we noted that variables all need to have
different names so the computer can teU them apart. There is
an exception. A variable array is a group of variables with the
same name. However, the computer can tell them apart
because the variable name is followed immediately by a
number in parentheses, ca lled a subscript. Arrays are discussed
in more detail in Chapter 6; what matters now is how you
initialize a variable array.

Since each variable in an array takes up space in memory
(whether you are using it or not), it is important to make sure
that each variable array has as many individual subscripted
variables as you need - and no more. The DIM ("dimension")
statement does this. If you use a subscripted variable, like A(7),
before DIMensioning the array, TI BASIC will automatically
DIMension that variable array as if you had entered the
statement DIM A(10). That will allow you to use subscripted
variables from A(O) to A(lO). If you tried to use a variable like
A(11), however, you would crash your program.

So it is usually a good practice to use a DIM statement early
in the program for all the variable arrays your program will use.
The DIM statement sllOuld come right at the beginning of the
program, so that in editing you don 't aCcidentally add a line
that uses a subscripted variable before the DIM that creates it.

A DIM statement can create several arrays, separated by
commas, and each array can provide for up to three subscripts,
like this:

100 DIM A(7), B(2,30),C(S,2, 7), 0(3)

Subscripts may be zero, and the computer automatically
reserves a spot for the variable with zero subscripts. The
statement DIM A(7) actually creates eight subscripted variables,
from A(O) to A(7). If you need to save memory and prefer to
start the subscripts numbering with 1, use the following
procedure:

100 OPTION BASE 1
110 DIM A(7),B(2,30)

3S

------ Chapter 2 ------

Defining Functions
Another statement that needs to be near the beginning of the
program is a DEF (" define function") statement. It is used to
DEFine a [unction, or series of commands, that will be used
often in the program.

Here is a segment of a program that could be used to check
homework. Assume the algebra teacher wanted you to
evaluate F(X) =X3+ 2X2+ X /2 for various values ofX. The
program is:

leS CALL CLEAR
lIS DEF F(X)=X'3+2*X'2+X/2
12S INPUT "ENTER VALUE FOR X: ":Q
13S PRINT : "ANSWER =";F(Q):::
149 GOTO 129
ISS END

The symbol A means " to the power of"; XA 2 means "X to '-'
the power cf2," or " X squared."

RUN this program and INPUT values of 3, 7, 4, or any
other numbers.

Function Variables
In this program the name of the function is F.ln line 110, the X
in parentheses immediately after F is a variable name used
inside the function. That is, when the computer carries out this
function, it will use whatever value it finds inside the paren
theses after the function name as the value of the variable X.
When the function was carried out in line 130, the value inside
the parentheses was the value of the variable Q, which got its
value from the INPUT statement in line 120.

Also, the variable X in this program is used only within the
function. It has no value outside the function. You can even use
X as a variable elsewhere in the program, and function F will
have no effect on it. To test this, add the following lines to the
program:

9OX - 1000
135 PRINT X

Now RUN the program. You can see that no matter what value

36

------ Chapter 2 ------

'-' X has inside the function, it has no effect on the rest of the
program.

'-' Functions don't have to have variables associated with
them. They can also be used as often as you like within a
program. Try this program:

100 CALL CLEAR
110 DEF R~INT(RND*10)+1
120 CALL HCHAR(R,R,47+R,R)
130 GOTO 120
140 END

R is first defined as a random number from 1 to 10. In the CALL
HCHAR statement, a random number from 1 to 10 is placed a
random number of times on the screen starting at a random
row and random column.

Using Random Numbers
One other statement that needs to be used before a related
statement is RANDOMIZE. Random numbers are used many
times in computer applications. TI BASIC uses the RND
function to specify a random number. Try this program:

100 CALL CLEAR
110 FOR I=l TO 10
120 PRINT INT(100*RND)+1
130 NEXT I
140 END

This program will print ten random numbers from 1 to 100.
RUN the program and note the results.

Now RUN the program again. And again. You'U notice that
the same sequence of numbers is printed each time.

It could be very handy in debugging a program to know
exactly what sequence of numbers will appear. However, in
most situations you really want random numbers - different
every time.

To get it truly random, use RANDOMIZE. Add this line to
the program:

115 RANDOMIZE

37

Chapter 2

Now try the program several times; the results will be
different.

Sometimes it works to place one RANDOMIZE statement
near the beginning of the program, bu t not always. It's
probably best to use RANDOMIZE just before you use a
statement involving the RND function.

Defining Graphics Characters

Chapter 5 of Beginner's BASIC, the manual that comes with the
TI-99 /4 or TJ-99f4A, teaches you how to place graphics
characters on the screen, how to define your own graphics
characters, and how to set colors for your graphics. Let's look
at some additional graphics concepts.

Defining graphics characters is part of getting started
because usually you will want to define colors and characters
before you place them on the screen. Chapter 3 of this book will
give you more ideas about graphics and colors, along with
some programs using graphics for you to try.

How t he Screen Is Organized
The TI-99/4A divides the television in to squares. These are
arranged in 24 rows and 32 columns.

Each of those squares is further divided into 64 tiny dots
arranged in eight rows and eight columns. Each dot in that 8 by
8 square can be turned on or off - colored in or not. The
arrangement of colored and not-colored dots gives the shape of
each character.

To define a character of your own, think of that square as if
it were divided into half. Each half is four dots wide .

.•.. ~ ..

. , ... ~ ..

38

------- Chapter 2

v

v Figuring Out the Character Code
Each four-dot row can have anyone of sixteen possible

'-' combinations of colored and not-colored dots. Each possible
combination has a code which you can use to tell your
computer what arrangement of dots you want in the character
you're defining. The following chart shows each combination
of dots and the corresponding codes.

J

Pattern Code

a
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

To design your character, figure out which dots on your
eight-by-eight grid should be colored or filled in. Then, using
the code chart, figure out what the code for each four-dot
segment is. Then arrange the code for all the segments in
order, starting in the upper left-hand corner of the character

39

------- Chapter 2

and proceeding just as you do when you read a book - left to
right, then down to the next line, then left to right again. There
will be sixteen segments in each finished character code.

For a ball. the pattern might be

.----f--, 00

" 3C
7E
7E
3C

" 00

The finished code is "OOlB3C7E7E3CIBOO."

The String Method
Once you get the code in proper order, there are several ways
to tell the computer how you want to define the character. The
easiest way is using one statement to define each character.

120 CALL CHAR(12B,"FF81B1B1818181FF")
130 CALL CHAR(129,"FFFFFFFFFFFFFFFF")

If your character definition ends with zeroes, you may omit
them. The computer assumes that if you use fewer than sixteen
codes to define a character, all the rest of the character will be
blank. For the baU shown above, the definition could be CALL
CHAR(130, "OO183C7E7E3CIB"), leaving off the two final
zeroes, but not the two beginning zeroes.

The String-Variable Method
Another method of defining characters is to assign the code to a
string variable first and then use the CALL CHAR statement:

120 A$="FFFFFFFFFFFFFFFF"
130 CALL CHAR(128,A$)
140 CALL CHAR(136,A$)

The OAT A Method
One more method of defining characters is to use DATA
statements. Here are two examples:

40

'--

'-'

'-'

'-

v

v

V

'-'

'-'

'---

~

'-'

------- Chapter 2 -------

100
llO
120
130
140
150

160

170

CALL CLEAR
FOR C=l TO 10
READ C1,C$
CALL CHAR(C1,C$)
NEXT C
DATA 96,000000FFFF,97,2070DOBB09050602
,102,OBOBOBOFOF,104,OB0808FFFF
DATA 110,0070888F8F887,111,06137CFFFF7
C1306,117,071820404380808
DATA 118,301884823281B101,120,FF,136,0

Notice that in line 120 the program reads the character number,
then the code string, and assigns them to the variables Cl and
C$. If you are defining a series of character numbers in order,
use the counter variable to specify the character number, like
this:

100
llO
120
130
140
150

160

CALL CLEAR
FOR C=96 TO 105
READ C$
CALL CHAR(C,C$)
NEXT C
DATA FF,FFFF,FFFFFF,FFFFFFFF,FF81B1B18
181B1FF,FFFFFFFFFFFFFFFF
DATA 0808080FOF,080808FFFF,08080BF8F8,
FFE

A Character Definer Program
The following program allows you to design a graphics
character without resorting to paper and pencil. You will see a
large square which has been divided into sixty-four smaller
squares, representing the eight-by-eight character grid. Use the
arrow keys to move the cursor. Press F if you want the square
filled in and the space bar if you don't want the square filled in.
Press ENTER when you are finished with your square. The
computer will calculate the pattern of on and off dots and will
print the code values. Then an actual-size character will be
placed on the screen so you can see what your character looks
like. The definition is then repeated in string form so you may
write it down and use it in your own program.

41

/

------ Chapter 2 ------

After the character is defined, you have the option of ... ~
modifying it, defining a new character, or ending the program.

If you choose to modify, the character you just drew will '-'
reappear. You may alter any squares you wish.

If you choose the new-character option, a blank square '--
appears.

How the Program Works
Naturally, some characters were defined in order to create the
screen display in this program. Character 97, a, is fe-defined as
an open square, 0 , and Character 98, b, is defined as a filled
square, • (lines 200-210). When the 8x8 grid is drawn on the
screen, it is done by printing the string "aaaaaaaa" eight times
(lines 420-440).

The character codes as they will appear on the screen are
READ in as DATA (lines 120-170). The string array H$(O,l)
through H$(lS,1) holds the sixteen patterns of blank (" a") or
filled-in ("b") squares. The string array H$(0,2) through
H$(15,2) holds the corresponding code number or letter as you
would use it in your programs later.

The flashing cursor is red so that you can tell where you are
on the pattern you are designing (lines 180-190).

CALL GCHAR(X,Y,C) determines what character number
C is at row X and column Y (line 480).

Lines
120-170

180-190
200-210

220-270
280

290-410

420-440
450-460

42

READ in from DATA statements the pattern and
corresponding hex code.
Define red cursor as Character 128.
Define "a" as a blank square and "bit as a filled
square.
Clear the screen and print the instructions.
For the first run of the program and for Option
2, to design a new character, branch to line 420.
For the option to modify the previously
designed character, evaluate the character
definition code numbers one at a time and print
the corresponding patterns on the 8 x 8 grid.
Print new 8x8 grid to begin character designing.
Assign starting values to the cursor position
variables, X (horizontal) and Y (vertical).

v

------- Chapter 2 -------

470
480

490-520

530-750

760

770-950

960-970

980
990-1040
1050-1100

1110·1120

Beep a tone to indicate user may move.
Determine the cursor character and put it at X
and Y.
Blink the cursor over square while waiting for
user to press a key.
If a key is pressed, branch appropriately. If an
arrow key is pressed, move the cursor in the
correct direction, making sure of the boundaries
first . If the space bar is pressed (K=32), print a
blank square. If " F" is pressed (K=70), print a
filled square.
If ENTER was pressed (K-13), beep a short
tone.
For eight rows, determine the character pattern
of the first four squares and print the corres
ponding character code; then find the pattern of
the second four squares and print the corres
ponding code. D$ collects the codes for the
string definition.
Draw the actual size character, as defined by the
user, at row 20, column 20.
Print the code string that defines the character.
Print the options and branch appropriately.
Subroutine to compare user's pattern wi th pre
assigned patterns to determine corresponding
hex code.
End.

Program 2-1 . Defining Characters

110 REM DEFINING CHARACTERS
12a DIM H$(lS,2)
13a FOR I=a TO 15
14a READ H$(I ,1),H$(I,2)
lSa NEXT I
160 DATA aaaa,e,aaab,1,aaba,2,aabb,3,abaa,4

,abab,S,abba,6,abbb,7,baaa,8,baab,9
170 DATA baba,A,babb,B,bbaa,C,bbab,D,bbba,E

,bbbb,F
18a CALL COLOR(13,9,l)
19a CALL CHAR(128,"FFFFFFFFFFFFFFFF")

43

------ Chapter 2 ------

2~~ CALL CHAR(97,"FF818181818181FF")
2l~ CALL CHAR(98, "FFFFFFFFFFFFFFFF")
22~ CALL CLEAR
23~ PRINT "DEFINE A GRAPHICS CHARACTER"
24" PRINT : "PRESS F TO FILL THE SQUARE"
25~ PRINT "PRESS SPACE TO CLEAR SQUARE"
26~ PRINT "PRESS ARROW KEYS TO MOVE"
27~ PRINT ,"PRESS ENTER WHEN FINISHED",
280 IF (K=5~)+(K=0)THEN 420
29~ FOR 1=1 TO 15 STEP 2
3ee FOR L=0 TO 15
31~ IF SEG$(D$,I , 1)=H$(L,2)THEN 33~
32~ NEXT L
33~ C$=H$(L,1)
34~ PRINT "{3 SPACESj",C$,
35~ FOR L=~ TO 15
36~ IF SEG$(D$,I+1,1)=H$(L,2)THEN 38~
37~ NEXT L
38~ C$=H$ (L, 1)
390 PRINT C$
4~~ NEXT I
41~ GOTO 45~
42~ FOR 1=1 TO 8
430 PRINT If{3 SPACES}aaaaaaaa"
44~ NEXT I
45~ X=16
46~ Y=6
470 CALL SOUND(15~,1397,2)
480 CALL GCHAR(X,Y,C)
49~ CALL KEy(~,K,S)
5~0 CALL HCHAR(X , Y,128)
51~ CALL HCHAR(X,Y,C)
52~ IF S<~ THEN 49~

530 IF K=13 THEN 76~
540 IF K=7~ THEN 74~
55~ IF K=32 THEN 72~
56~ IF K<>68 THEN 6~~
57~ IF Y=13 THEN 470
58~ Y=Y+l
59~ GOTO 48~
6~~ IF K<>88 THEN 64~

44

v

v

VI

v

v

v

v

v

------ Chapter 2 ------

61~ IF X=23 THEN 470
620 X=X+l
630 GOTO 48~
640 IF K<>83 THEN 680
650 IF Y=6 THEN 470
660 Y=Y- 1
670 GOTO 48~
680 IF K<>69 THEN 490
690 IF X=16 THEN 470
70~ X=X- 1
7l~ GOTO 480
72~ CALL HCHAR(X,Y,97)
730 GOTO 47~
74~ CALL HCHAR(X,Y,98)
75~ GOTO 47~
76~ CALL SOUNO(15~,44~,2)
770 D$=""
78~ FOR 1=1 TO 8
79'21 C$=""
8~~ FOR J=6 TO 9
81~ CALL GCHAR(I+15,J , C)
82~ C$=C$&CHR$(C)
830 NEXT J
84~ GOSUB 1~5~
85~ CALL HCHAR(I+15,16,ASC(01$»
86~ 0$=0$&01$
870 C$=" "
88~ FOR J=1~ TO 13
890 CALL GCHAR(I+15,J , C)
9~~ C$=C$&CHR$(C)
91'21 NEXT J
92~ GOSUB 1~5~
93~ CALL HCHAR(I+15 , 17,ASC(01$»
94~ 0$=0$&01$
95~ NEXT I
96~ CALL CHAR(136 , 0$)
97~ CALL HCHAR(2~ , 2~,136)
98~ PRINT : "DEFINITION = ",0$
99~ PRINT . : "PRESS 1 TO MODIFY"
1~00 PRINT "(6 SPACES)2 TO START OVER"
1~10 PRINT "(6 SPACES)3 TO END PROGRAM",

45

------ Chapter 2 ------

1020 CALL KEY(0.K.S)
1030 IF (K=49)+(K=50)THEN 220
1040 IF K=51 THEN 1110 ELSE 1020
1050 FOR L=0 TO 15
1060 IF C$=H$(L.l)THEN 1090
1070 NEXT L
1080 L=L- l
1090 Dl$ =H$(L.2)
1100 RETURN
1110 PRINT • •
1120 END

46

v

v

v

v

v

v

v

v

• _Chapter3_ • • • • • Gra~ics • • and • Sound • • • • • • • • • • • • • • • • • •

u
-u

u
u
-v

U

u
-v

v
U
.

u
U

U

U

U

U

U

U

U

U

U

U

U
u
G
G
u
u

v

v

v

v

------ Chapter 3 ------

Graphics
and

Sound
Planning Graphics

The screen display for the TI computer is a rectangle of 24 rows
and 32 columns. PRINTed characters are in the middle 28
columns (columns 3 through 30), but graphics characters may
be placed in a1132 columns. (Some television sets may cut off
the outer columns of a 32-column display.)

Designing the Screen
To plan graphics, I use a sheet of graph paper with the rows
and columns numbered (Figure 3-1). The numbers start with
"1," not "0." I sketch the basic screen with colored pencils.

Each square represents one character. It 's a good idea to
use full squares of color as much as possible. The more odd
shapes you use, the more special graphics characters you'll
need to define . That will use up memory and slow down the
program.

Designing the Characters
Each square of the 24 x32 rectangular screen can be thought of
as an 8 x 8 character grid (Figure 3-2). Take part of your basic
screen design and draw it in more detail on this high resolution
graph paper. As you draw, you'll begin to see where you need
to create new characters to express vital details. Try to define as
few characters as possible, even if it means your drawing is less
than perfect in unimportant areas.

You may be able to use one defined character in several
places. For example, in a map of the United States, the same
character can be used as part of the slope of the coast of
California, part of the border along the Rio Grande of Texas,
and part of the southern coast of Florida.

49

50

, ,
,
• • · • ,

,
,
, , , , ,

•
•

Chapter 3

,---

...... -t -0- ----- r +

• ,

, ,
, , ,

• ~ • ~
•• ~
~
~

§
E
L
~

B
~ • 0

• "' 0

.~

.~
~

v

v

v

v

Chapter 3

FIgure 3·2. High Resolution Graph Paper - Each 8x8 Grid
Is One Character

I'

-.~ -i+o--..L_
- --.--,--.

.=~-..........-

~ --_ .. -------'-

,,:~-- -_P........ ----........-
--+-'--- -----

=

----. -----~-............ ----

-.~-_ .•.. ,....-."
. -~

~.-

Permission gTanted 10 photocopy this page.

51

------ Chapter 3 - -----

Economy in Character Design
In an electric circuit analysis program, I needed to draw a
resistor that looked like this: ~ . I mig ht have done it
this way:

. ,., •• , •• -;-•• , ••• , ••• , ••• ~.. .., ••• , ••• ~ •• < ••• ' •••••• .,.. ., •• ., •• , ••• , ••• , •• .,.. . . , ••• , ••• , , •• .,.. .., •••••• .,,. ••

......... _ .. _•........ , .. -.. ~ ~.. .,,•...•..•.. ~ .. , ... , .. -.- ... "., .. ~ .. -......... -... ,'"

... -..... _ .. _•........ ; ..•..•.. , -...........•.. ~ _ .. _ _ , ..•.. ~- .•... ; .. ~ .

.. , ~ .. ~ ..•...... ~ i ... , .. ~ : ... ,.,~.. ., ~' ,...... ., .. ~ .. ~. _ . ..,-.. , .. --.~ .. , ... ,

...... , .. ~ ..•.. , ... , .. ~ ..

.. , ~ ..

.. , ~ .. -.. , ...•.. -.. ., .. ., .. ~,. ..•... , .. _ , ... , .. ~ .. .,. .. , ... , .. -..
......•.. ~ .. -.. , _ ..•. _ _ , ... , .. _ _ .. ~ : .. ~ : ... i .. .i .. ~•......

.. i , ... , .. ~ ..•... , ... , .. _.. , .. ~ .. ; ...•.. * , ... , .. _ , _ , ... , .. ~ .. _ ._i •. .•.. ~_ .
• , •••• , , ., ••• , •••• , ••• ; •• ~ •• - •• , ••• , ••• ; •••• ; ., •• ~ •• .;. •• ; ••• , •• ->., •• ; ••• , •••••• , ••• ; ••• , •• .; •••• , ••• , •• ," ,

The program to produce that drawing takes five different
character definitions:

100 CALL CLEAR
110 CALL CHAR(12S,"000000FP")
120 CALL CHAR(129,"207051S90A0604')
130 CALL CHAR(130,'40EIA312140COS')
140 CALL CHAR(131 , 'SOC040272ClSl")
150 CALL CHAR(132,'000000FC')
160 CALL HCHAR(12,12,12S)
170 CALL HCHAR(12,13,129)
ISO CALL HCHAR(12,14,130)
190 CALL HCHAR(12,15,131)
200 CALL HCHAR(12,16,1 32)
210 END

52

------ Chapter 3 ------

But a more efficient way is:

..

v

And the program must define only two characters:

v 100 CALL CLEAR
110 CALL CHAR(128,"000000FFFF")

-- 120 CALL CHAR(129,"2070D088090S0602")
130 CALL HCHAR(12,12,128,S)

v 140 CALL HCHAR(12,13,129,3)
150 END

If you have a diagonal line, go through corners of squares to
economize on graphics. For example, this method requires two
character definitions and places four characters on the screen.

, .

, :

-

53

------ Chapter 3 ------

100 CALL CLEAR
110 CALL CHAR(128,"081020408")
120 CALL CHAR(129,"0000000000010204")
130 CALL HCHAR(12,17,128)
140 CALL HCHAR(1~,16,129)
150 CALL RCHAR(13,16,128)
160 CALL HCRAR(13,15,129)
170 END

The following method produces the same line, but needs only
one character definition and places only two characters on the
screen.

......... , .. ,.-., ... , "",-,., ... , ... , .. .,.•.......•.. , .
... , .. -....... -.

. -.~ ..•.. -... ~ ..

. , .. , •...... , , , ...•... , .. ,
..•...•...•.. -..•...... ~

...... , ..•..•
..... " ..•..•.. ,.......... .:•..

..•..•....•.. .. ,•..•
.., , .. ,.

·-'-· .. ··1·"···,·· .. ··~ ..•...... - .. ~
." " , ... , ...•........ , ... , , ... , ... , .. , ... , .. _,_ ..•. _.,.,.,.-., .. ,.

100 CALL CLEAR
110 CALL CHAR(128,"010204081020408")
120 CALL RCHAR(12,17,128)
130 CALL RCHAR(13,16,128)
140 END

Keep Track of Color Sets
Each color set can have up to eight different characters. If you
want a magenta hat and a magenta purse, you should design
one color set so that only eight characters will be enough to
draw both the hat and the purse.

You can, of course, assign the same color to two different
sets of eight characters - but not only does that reduce the
total number of colors you can place on the screen, it also

54

------ Chapter 3 ------

requires a separate color set definition for each set, even if they
are the same color. For example, suppose you have designed a
green tree that requires nine special characters. Can you
redraw the tree so you'll need only eight characters? Then
you 'd need to define only one color set, rather than two.

Putting Your Cha racters on the Screen
To display your graphics on the screen, you may use CALL
HCHAR, CALL VCHAR, PRINT, or DISPLAY statements.
CALL HCHAR is used to draw a horizontal row that repeats
the same character. CALL VCHAR is used to draw a vertical
column repeating the same character.

Both statements work the same way if you are placing a
single character on the screen. Three numbers in parentheses
follow the CALL statement. The first number is the row
number, the second is the column number, and the third
number is the character number. But if you are placing a row or
column on the screen, a fourth number is added within the
parentheses, telling TI BASIC how many times you want the
character repeated. Then, when the statement is executed, the
computer starts at the row and column you specified and then
repeats the character, either downward (CALL VCHA~) or to
the right (CALL HCHAR).

Try to take a good look at the drawing you have designed.
If there are places where the same character (for instance, a
solid square of color) is repeated several times in a row or
column, you can save quite a few program lines by figuring out
what arrangement of horizontal or vertical rows you can put on
the screen with the fewest single HCHAR and VCHAR calls.

The DISPLAY and PRINT statements give identical results
when you are printing something on the screen. Using PRINT
will draw something faster than using HCHAR and VCHAR, if
there are a lot of characters and very few horizontal and vertical
repetitions, and if you don't mind having the screen scroll.

Before using PRINT, redefine the characters you'll need. Be
sure not to change a character that you will need to use
elsewhere, unchanged. If you are going to PRINT the word
MISSISSIPPI, don't redefine S.

In the following example, the characters from 96 through
126 are graphically defined. These are the lowercase letters and
a few seldom-used symbols. (See Appendix.) When you use
these letters and symbols in the PRINT statement, the listing

55

------- Chapter 3

will show the original letters and symbols; but when you RUN
the program, the characters are redefined.

Drawing a Horse
Figure 3·3 is a picture of a horse . Method 1 of drawing the
horse uses PRINT statements; the horse appears as the lines on
the screen scroll upward. Method 2 uses CALL HCHAR to
place each character on the screen .

In Program 3-1, line 110 clears the screen. Lines 120-150
define graphics characters from character number 96 through
126, using definitions in the DATA statements of lines 160-210.
Line 220 labels the two drawings. Lines 230-250 use PRINT
statements to draw the horse. Lines 260-290 draw the horse on
the screen again, a character at a time, READing the row,
column, and character number from DATA in lines 300-340.
Line 350 keeps the picture on the screen until you press
CLEAR. Notice that when you stop the program all characters
return to their origin al definition .

Program 3·1. Horse

100 REM HORSE
IllZl CALL CLEAR
120 FOR C=96 TO 126
130 READ C$
140 CALL CHAR(C,C$)
150 NEXT C
160 DATA 0000000001010103,42227DFFFFFFFFBF,

0060FEFFFFFFFFFF,000000008080E0F,0300
0001030 70707

170 DATA 67E7EFFFFFFFFEFD,FFFFFFFFFFFFFFFF,
F0EIZlFIZlF0FIZlF0F2FE,01Zl1Zl31Zl31Zl7lF1F3F3F,1Zl1Zl1Zl
080C0E0F0F0F9

180 DATA 07000000000000E,83030307070F1F3F,7
E7EBCB8B8B080C,0003030100010703 , 7FFFF
FFFFEFEFEFE

190 DATA FFFF9F3F7F7F7F7F,C0C0C08080C6FFFF,
BE3E3EFFFF3F3E3E,3F3F1F1F1F1F3F7F,F7F
7F7EFDFBF8

200 DATA FFFFFFFFFEFCE,FFFFFCF0F0F0F0F,CFBF
1F3E7CF8F0E,01030301,7EFCFCF8 , 7F3F0F0
703030101

56

v

V

'--' "

"

"
"

"

Chapter 3

f1aure 3-3. Craphlcally Defined Horse

57

------ Chapter 3 ------

21~ DATA F8FEFFFF8E8~C0C,F0F~F~F0F~F0F~78,0
303~3010101,E0E0E0F0F8F87,787C3C

22121 PRINT "METHOD 1: "; TAB(15); "METHOD 2:"
230 PRINT: : :"{3 SPACES}~abc":"

{3 SPACES}defg":" hl.jkfl"
240 PRINT "mnofffp": II qrstuv"
25121 PRINT "wxyz { " :"" I)"'''::
260 FOR I~l TO 35
270 READ X,Y,G
28~ CALL HCHAR(X,Y,G)
29~ NEXT I
300 DATA 13,21,96,13,22,97,13,23,98,13,24,9

9,14,21,100,14,22,101,14,23,102,14,24,
1~3

310 DATA 15,19,104,15,20,105,15,21 ,106,15,2
2,107,15,23,102,15,24,108,16,18,109,16,
19,110

320 DATA 16,20,111,16,21,102,16,22,102,16,2
3,102,16,24,112,17,19,113,17,20,114,17,
21,115

330 DATA 17,22,116,17,23,117,17,24,118,18,1
8,1 19, 18,19,120,18,20,121 ,18, 21 , 122,18 ,
23,123

340 DATA 19,20,124,19,21,125,19,23,126
350 GOTO 350
360 END

Remember that the computer performs each statement in
turn by number. Plan your graphiCS so the picture appears in
the right order. You will usually want to define the colors
before the characters are drawn. You may wish to change the
colors at a certain place in the process of drawing. I drew the
horse from the head down. You may prefer to draw the head
first, then the forebody, the legs, the rest of the body, and
finally the tail. You can tell the computer exactly which
character must be drawn before another.

Colors

With your Tl you may use all 16 colors at any time, even in high

v

'-.

resolution graphics. To see all the colors, try this program: '-"

58

------- Chapter 3 -------

100 FOR COLOR=l TO 16
II 0 CALL CLEAR
120 CALL SCREEN (COLOR)
130 PRINT "COLOR NUMBER";COLOR
140 CALL SOUND(1000,9999,30)
150 NEXT COLOR
160 CALL CLEAR
170 END

Change the 1000 in line 140 if you want to see the colors for
a different length of time.

Each color has a number, and these same numbers are used
in any statements requiring a color number. Color 1 is
transparent. If you have a transparent graphics character, it
w ill be the same color as the existing screen color. However, if
you specify CALL SCREEN(l), the screen will be black. Color
number 2 is black; and since printing is also black, you will not
see a "COLOR NUMBER" message for black in the above
program. For the first second of this program, your screen will
be black for color 1, and the next second the screen will be black
for color 2.

Enter 155 GOTO 100 if you wa nt to keep cycling through
the colors - then press CLEAR to stop your program. You may
need to adjust your television or monitor to get the proper
colo rs.

Another program to see the colors is:

100 CALL CLEAR
110 FOR COL=l TO 16
120 CALL COLOR (COL, COL ,COL)
130 CALL VCHAR(1,COL*2-1,32+8*(COL-l) ,48)
140 NEXT COL
150 GOTO 150
160 END

The colors may vary depending o n th e screen color, the
'-' adjacent colors, and the character shapes . Notice in this

program how the sky darkens as more stars appear.

100 CALL CLEAR
~ 110 CALL SCREEN(2)

120 CALL COLOR(2,16,1)

59

------ Chapter 3 ------

130 CALL BCHAR(INT(RND*24+1) ,INT(RND*32+1)
,42)

140 GOTO 130
150 END

Press CLEAR to stop the program.

Setting the Foreground and Background Colors
Each graphics character you define may have a foreground
color ami a background color. This is done with the statement

CALL COLOR(set,foreground,background)
Keep in mind that if you specify the color to be number 1, it will
be the screen color. To get an idea of what the combinations of
screen color, foreground color, and background color look like,
fun this program:

Program 3-2. Color Combinations

lee REM COLOR COMBINATIONS
ll~ DIM C$(16)
12~ DATA TRANSP,BLACK,MED GREEN,LT GREEN
130 DATA DARK BLUE,LIGHT BLUE,DARK RED
14" DATA CYAN,MED RED, LIGHT RED, DARK YELLOW
15~ DATA LT YELLOW,DARK GREEN. MAGENTA. GRAY.

WHITE
16~ FOR 1=1 TO 16
17~ READ C$(I)
18~ NEXT I
19~ CALL CLEAR
200 CALL CHAR(96,"FFFFFFFFFFFFFFFFF to

)

21~ CALL CHAR(92. "3C4299AIA199423C")
22~ PRINT TAB(6) ,"COLOR COMBINATIONS"
23~ PRINT , , , , , , , ,
24~ CALL CHAR(97. "FF~~55A1\55A~~FF")
25e CALL CHAR(98. "~")
26~ PRINT "YOU MAY CHOOSE A COLOR"
2713 PRINT II NUMBER FROM 1 TO 16. 11

28~ PRINT ,"FIRST CHOOSE A SCREEN COLOR"
29121 PRINT "THEN A FOREGROUND"
3~~ PRINT "THEN A BACKGROUND."
31121 PRINT ; ; ; ; "PRESS ANY KEY TO START."
32~ CALL KEY(~.K.S)

60

v

v Chapter 3 -------

333 IF 5<1 THEN 323
343 CALL CLEAR
353 PRINT" 1 TRAN5PRNT[3 SPACES)9 MEDIUM R

ED"
363 FOR I~2 TO 8
373 PRINT I;C$(I);TAB(14);I+8;C$(I+8)
383 NEXT I
393 PRINT . .
433 INPUT "SCREEN COLOR, ", SC
413 CH=SC
423 GOSUB 743
433 IF R=l THEN 400
440 INPUT "FOREGROUND COLOR: ": F
450 CH=F
460 GOSUB 743
473 IF R=l THEN 440
480 INPUT "BACKGROUND COLOR: ":8
493 CH=B
533 GOSUB 740
510 IF R=l THEN 480
520 CALL CLEAR
530 CALL SCREEN(SC)
540 FOR 1=1 TO 8
550 CALL COLOR(I,2,16)
560 NEXT I
573 CALL COLOR(9,F,B)
580 CALL HCHAR(7,l,96,198)
590 CALL HCHAR(13,l,97,198)
600 CALL HCHAR(19,1,98,198)
613 PRINT ,'SCREEN COLOR"; SCi C$ (SC)
620 PRINT "FOREGROUND "; F; C$ (F)
630 PRINT "BACKGROUND "; B; C$ (B)
643 PRINT ,"PRESS C TO CHANGE; N TO END"
650 CALL KEY(0 ,K,S)
660 IF K=78 THEN 810
673 IF K<>67 THEN 653
680 CALL CLEAR
690 CALL SCREEN(8)
733 FOR 1=1 TO 8
713 CALL COLOR(I ,2,l)
720 NEXT I

61

730 GOTO 350
740 R=0

Chapter 3 -------

750 IF (CH>0)+(CH<17)=-2 THEN 800
760 CALL SOUND(ls0,131,2,-l,2)
770 PRINT : "SORRY , COLOR NUMBER MUST BE"
780 PRINT "FROM 1 TO 16. TRY AGAIN.": :
790 R=l
800 RETURN
813 CALL CLEAR
820 END

Each character number is assigned to a color set, and there are
eight characters per set. The Appendix includes a character
chart with the eight-character sets marked off for easy
reference. In the stars program above, I u sed color set 2
because the asterisk, character number 42, is in color set 2.

1£ you do not define colors in a set, the characters will
automatically be black on a transparent background. When you
use a CALL COLOR statement, all characters in that set will be
the color you specified. If there are already characters on the
screen, their color w ill change as soon as the CALL COLOR
statement in the program is executed.

Flash and Twinkle
It 's possible to make objects flash by using CALL COLOR
statements. If you want stars to twinkle, you can use this
technique:

100 CALL CLEAR
110 CALL SCREEN(s)
120 CALL COLOR(2,16,1)
130 FOR 1=1 TO 15
140 CALL HCHAR(INT(RND*24+1) ,INT(RND*32+1)

,42)
150 NEXT I
160 CALL COLOR(2,11,1)
170 CALL COLOR(2,16,1)
180 GOTO 160
190 END

62

v

-

------ Chapter 3 ------

Using color I , you can draw something invisible, then
make it appear all at once with another CALL COLOR
statement:

19 9 CALL CLEAR
119 CALL COLOR(6,1,1)
129 CALL VCHAR(S,19,72,7)
139 CALL VCHAR(S,14,72,7)
149 CALL HCBAR(II,II,72,3)
159 CALL VCHAR(S,IS,73,7)
169 CALL VCHAR(S,23,73,S)
179 CALL HCHAR(14,23,73)
lS9 CALL COLOR(6,9,9)
199 GOTO 199
299 END

Press CLEAR to stop the program.
All the characters in anyone set will be the same color. To

get varied colors, you need to use characters from different
color sets. You will need to plan so that your characters will be
in the right color sets. (The Choreography section of this
chapter il lustrates planning and using color with music.)

Solid Squares
There are several ways to get a solid square of color for a
character. One way is to assign the same color to both
foreground and background in the CALL COLOR statement.
In the program above, the characters in set 6 are fi rst defined to
be transparent on transparent, or invisible . To make the design
appear, the color set is assigned a red foreground and a red
background; all characters in the set then become red squares,
regardless of the on~off patterns of the characters. Only when
you break the program can you see what the actual characters
are.

Another way to get a solid colored square is to define the
character as "0," or as completely filled:
" FFFFFFFFFFFFFFFF". The " Kinder-Art" program (Program
3-3) illustrates this technique. I gave a group of children graph
paper marked off in 24 rows and 32 columns, representing the
computer screen. The children were instructed to draw a
design, people, animals, buildings, or whatever they wanted to
by coloring in the squares.

63

------- Chapter 3 -------

Kinder·Art redefines printable characters as solid colors.
Each drawing is converted a line at a time into a string of
characters representing the colors. The strings are stored in
DATA statements. Depending on the complexity of the
artwork, from fifteen to twenty drawings can be put into one
program without exceeding available memory.

With the Speech Synthesizer and Tennirlal Emulator II
command module, Kinder-Art greets the students by name.
(Be sure to try out the pronunciations ahead of time.) If you
want to try this program without speech, delete lines 170, 1030,
1090, and 1160.

RESTORE with OAT A
When I used this program, I had one child at a time come up
and type in his or her name. The computer would then search
the array of names to find a match and RESTORE the proper
DATA. The computer says " HELLO," followed by the child's
name, prints the child's picture, repeats the child's name, and
declares, " THIS IS YOUR PICTURE." To continue the cycle for
the next child, press ENTER and type in the next name. To end
the program, type END instead of a child's name.

When you use DATA statements, the computer usually
READs the DATA in order. This is fine for work that is always
done in the same order, like defining character sets and
drawing screens. But in this case, you don't want to have to
bring the students to the computer in any particular order.
RESTORE, followed by a line number, tells the computer that
the next READ statement should begin with the first item in the
DATA statement at that line number. This gives you random
rather than sequential access to your data.

Repeating Procedures Keeps a Program Brief
Since each drawing is PRINTed a line at a time, a general
procedure can be used for all drawings - no need to figure out
individual HCHARs and VCHARs for each. The first character
of each color set is defined as "0, II and the second character is
"FFFFFFFFFFFFFFFF," to give solid colors. Orange and brown
are simulated with mixtures. Table 3-1 gives the character and
the square of color it represents.

64

Chapter 3 -------

Table 3·1. Characters and Colors for Klnder·Art Program

Character Color Command
(space) Cyan CALL COLOR(1,3,8) , Green

(Red CALL COLOR(2, 12, 7)
) Light Yellow
• Orange
0 Dark Yellow CALL COLOR(3, 14, 11)
1 Magenta
2 Brown
8 Blue CALL COLOR(4, 16,5)
9 White
@ Black Color set 5 is already black

Only 23 lines of the drawing are PRINTed, so one line remains
to print the child' s name.

Recognizing Strings in an Array
The list of all the names in the class is READ in as an array
A$(I). The DATA for the drawings is in the same order as the
children ' s names in the A$(I) array _ When a child ' s name is
entered, the program compares it with each name in A$(I) to
determine what position the DATA is in, so the program can
branch to the appropriate RESTORE statement. I did not
RESequence the line numbers in this program, so you could
more easily see how to add DATA.

I included only two of the pictures to illustrate how to
arrange the DATA. You will, of course, draw your own pictures
and change the names when you use this program.

In the DATA statements, remember that blank lines are
included as "" and that leading spaces require quote marks:
" @@889", not " @@889"

What's Happening In "Kinder-Art"
Lines
150
160
170
180·260
270·310
320·350

Dimension array for number of names .
Clear screen.
Open speech output device.
Define characters and colors fo r graphics .
READ array of names.
Clear screen and receive child ' s name.

65

------- Chapter 3 -------

360-400

410-680

1000-1030

1040-1070
1080-1090

1100-1110
1150-1170

2000-2050
2100-2170
2200-

Compare input name with array of possible
names and determine position of name.
RESTORE appropriate DATA depending on
name.
Clear screen, PRINT child's name on screen,
and greet child by name w ith Speech
Synthesizer.
Draw child's picture.
PRINT child's name on screen . Say child's name
and "This is your picture."
Wait until ENTER is pressed before continuing.
If END is en tered, clear screen, CLOSE speech
device, and s top program.
DATA for Bob's picture.
DATA for Cindy's picture.
User adds more DATA here.

Program 3-3. Kinder-Art

100 CALL CLEAR
110 CALL CHAR(92, "3C4299A1A199423C")
120 PRINT TAB(8);"KINDER-ART": : : :
130 FOR 1=1 TO 600
140 NEXT I
150 DIM A$(14)
160 CALL CLEAR
170 OPEN il:"SPEECH",OUTPUT
180 FOR 1=32 TO 56 STEP 8
190 CALL CHAR(I, "113")
200 CALL CHAR{I+l,"FFFFFFFFFFFFFFFF")
210 NEXT I
220 CALL CHAR(64,"FFFFFFFFFFFFFFFF")
222 CALL CHAR(50,"5BB55BB55BB55BB5")
224 CALL CHAR(42,"AA55AA55AA55AA55")
230 CALL COLOR(l,3,8)
240 CALL COLOR(2,12,7)
250 CALL COLOR(3,14,ll)
260 CALL COLOR(4,16,5)
270 RESTORE 310
280 FOR 1-1 TO 14

66

v

------ Chapter 3 ------

2ge READ A$(I)
3ee NEXT I
310 DATA BOB,CINDY,CHERY,RICHARD,RANDY,LENA

, ANDY, AURA, GRANT, KELLY,JENNIE,ANGELA,
BRYAN , LEWIS

32e CALL CLEAR
330 PRINT "TYPE YOUR NAME": :
34e INPUT NAME$
35e IF NAME$="ENO" THEN llse
36e FOR 1=1 TO 14
37e IF NAME$=A$(I)THEN 41e
38e NEXT I
3ge PRINT : : "DID YOU TYPE YOUR NAME": ,"CO

RRECTLY?": :"DO IT AGAIN PLEASE.": : :
4ee GOTO 34e
410 ON I GOTO 420,440,460,480,500,520,540,5

60,580,600 , 620,640,660 , 680
42e RESTORE 2eee
43e GOTO ieee
44e RESTORE 21ee
4se GOTO ieee
46e RESTORE 22ee
47e GOTO ieee
48e RESTORE 23ee
4ge GOTO ieee
see RESTORE 24ee
sle GOTO ieee
s2e RESTORE 2see
S3e GOTO ieee
54e RESTORE 26ee
sse GOTO lee0
56e RESTORE 2700
570 GOTO le00
S8e RESTORE 2800
590 GOTO U?H2H'
600 RESTORE 2900
610 GOTO 10e0
620 RESTORE 3000
630 GOTO ie0e
640 RESTORE 310e
650 GOTO HHH!l

67

------- Chapter 3 -------

660 RESTORE 3200
670 GOTO 1000
6B0 RESTORE 3300
1000 CALL CLEAR
1010 READ N$
1020 PRINT NAME$
1030 PRINT #l:""HELLO.",N$
1040 FOR 1=1 TO 23
1050 READ D$
1060 PRINT D$
1070 NEXT I
10B0 PRINT NAME$,
1090 PRINT #l: N$, ". "THIS IS YOUR PICTURE."
1100 CAlL KEY(0.K.S)
1110 IF K<>13 THEN 1100 ELSE 320
1150 CAlL CLEAR
1160 CLOSE #l
11 70 STOP
2000 DATA "BOB." (4 SPACES)(((((((((((((« ("

,"{4 SPACES}(*****«(******(","{4 SPAC
ES)(·····«(······(".««««««««(
««((("

2010 DATA ««««««««««««.(BBBB(11
11«(IIII(BBBBB(. (BBB8(1111«(1111(8B
BBB(.(BB88(1111«(IIII(B8888(

2020 DATA (BB88(1111 « (1111 (88888(. (8888(11
1 1 (((1 1 1 1 (88888 (• (8B 88 (1 1 I 1(((1 1 1 1 (88
888(. (8888(1111«(1111(8888B(

2030 DATA (BBBB(1111 « (1111 (BBB88(. (888B(11
11 (((1111 (BBBBB (. (8888 (1111 (((1111 (B8
888(

2040 DATA (BB«««««««««88(.(BB(1111
11 « (1111111 (88 (. (88 (111111 « (1111111
(88 (. (88 (111111 (((1111111 (88 (

2050 DATA (88(111111«(1111111(88(.««««
«««((((((((((,(*********(((******* ---(,C··_···_·_«(·····_----(

2100 DATA "SINNDY.9991111199999999999999911
111,9991{4 SPACES)1@@@@@999@@@@@1
{4 SPACES)1,9991111 1999@@@@@9991 111 1

68

v

v

v

------ Chapter 3 ------

2ll~ DATA 9991 1111 199@@@@@991 1111 1,9991
11(11 11@@@@@11 11(11 1,9991 1111 1
1@@@@@1 1 1111 1

212~ DATA 99991 II 1 1@@@@@1 1 II 19,9999
91 1 I 1@@@@@1 I 1 199,99999911 II
1@@@@@1 I I 11999

213~ DATA 9999991 III 1@@@@@1 III 1999,9999
91 1111 l@@@@@1 1111 199,99991 11 (11
1@@@@@1 11(11 19

214~ DATA 9991 11«11 1@@@@@1 11«11 1,9991
11 « 11 1@@@@@1 11 « 11 1,9991 11 « 11
1@@@@@1 11 « 11 1

215~ DATA 99991 11(11 1@@@@@1 11(11 19,9999
91 1111 1@@@@@1 1111 199,999991 1111
1@@@@@1 1111 199

216~ DATA 999991 I I 1@@@@@1 I I 199,9999
991 11 11@@@@@11 11 1999,999999919919
9@@@@@9919919999

217~ DATA 9999999999999999999999999999,9999
999999999999999999999999

218~ END

Music

Music is produced by using a CALL SOUND statement . In the
parentheses following the CALL SOUND statement, the first
number (parameter) is the duration of the sound in
milliseconds. It can be any integer from 1 to 4250.

The second parameter is the frequency (pitch) of the tone
you want to hear (for example, the note A is 440). The
frequency may be from 110, low A on the bass clef, to 44733,
which is out of human hearing range. You may specify any
number between these limits: you are not limited just to the
n')tes of a scale .

The third parameter is the loudness, and can range from 0
(loudest) through 30 (softest). Of course , the volume also
depends on the loudness setting of your monitor or television
set.

You may specify up to three musical tones, with a loudness
for each, in one statement; thus you may playa three· note
chord.

69

------ Chapter 3 ------

Setting Sound Durations
I like to specify the tempo (speed) before I use any CALL
SOUND statements by assigning values to variables and using
them as the duration parameter in each CALL SOUND
statement. This method makes it possible to change the tempo
of the whole tune by changing only the variable assignment
rather than each CALL SOUND statement. For example:

100 T=350
110 CALL SOUND(T,440,2)
120 CALL SOUND(T/2,554 , 2)
130 CALL SOUND(T/2,659,2)
140 CALL SOUND (2 *T,880,2)
150 END

Line 100 sets the variable T to represent a duration of 350
milliseconds. If I want T to be a quarter note, T/2 is an eighth
note and 2*T is a hall note. Line 110 plays a quarter note, lines
120 and 130 play eighth notes, and line 140 plays a half note. To
change the tempo of the arpeggio here, change line 100 to have
a different value for T.

This program allows the user to INPUT a number for the
duration. The number entered will determine how fast or how
slow the computer plays the tune.

Program 3-4. Musical Tempo Demonstration

H"3 CALL CLEAR
1121 PRINT TAS(8);"·· MUSIC •• "
12a CALL CHAR(64, "3C4299AIA1994237")
13a PRINT , , ,
14" PRINT: : :"THIS COMPUTER CAN PLAY"
lSa PRINT ,"UP TO THREE TONES AT A TIME"
160 PRINT: "USING ONE STATEMENT."
17" PRINT : : "HERE IS A SAMPLE TUNE."
lea PRINT : "YOU MAY ENTER A NUMBER"
190 PRINT: "FROM 6 TO 1062 FOR DURATION . "
200 PRINT, "FOR EXAMPLE, DURATION = 450":

210 INPUT "DURATION = ",T
22a IF (T>=6)+(T<=la62)=-2 THEN 2Sa

70

------ Chapter 3 ------

230 PRINT :"SQRRY, 6<0<1062":
240 GQTQ 210
250 CALL CLEAR
260 PRINT "DURATION ==" j T
270 CALL SQUNO(T,392,1,330,6,131,9)
280 CALL SQUNO(T / 3,262, 2 ,165,8)
290 CALL SQUNO(T / 6,330,2,165,8)
300 CALL SQUNO(T / 6,330,2,196,8)
310 CALL SQUNO(T / 3,392,2,196,8)
320 CALL SQUNO(T,349,2,196,7,123,9)
330 CALL SQUNO(T,349,1,196,6,123,8)
340 CALL SQUNO(T / 2,330,2,165,7,131,9)
350 CALL SQUNO(T/ 2,294,2,165,7,131,9)
360 CALL SQUNO(T / 2,262,2,165,7,131,9)
370 CALL SQUNO(T/ 2,294,2,165,7,131,9)
380 CALL SQUNO(2*T,330,2,165,6,131,8)
390 CALL SQUNO(T,440,1,220,6,175,6)
400 CALL SQUNO(T*3 / 4,440,2,175,6)
410 CALL SQUNO(T / 4,440,3)
420 CALL SQUNO(T,52 3 ,1,220,6,175,8)
430 CALL SQUNO(T,523,2,220,7,175,9)
440 CALL SQUNO(T/ 2,659,1,208,7,165,9)
450 CALL SQUNO(T/ 2,587,1,208,7,165,9)
460 CALL SQUNO(T/ 2,5 23,1,208,7,165,9)
470 CALL SQUNO(T/ 2,587,1,208,7,165,9)
480 CALL SQUNO(T*2,659,0,165,6,131,8)
490 CALL SQU NO(T/ 3,784,0,165,6,131,8)
500 CALL SQUNO(T / 3,659,1)
510 CALL SQUNO(T/ 3,523,1)
520 CALL SQUNO(T/ 3,392,1,165,6,131,8)
530 CALL SQUNO(T/ 3,330,1)
540 CALL SQUNO(T/ 3,262,1)
550 CALL SQUNO(T*2,330,0,196,6,131,8)
560 CALL SQUNO(T / 4,294,1,175,6,123,8)
570 CALL SQUNO(T*4,262,2,165,6,131,8)
580 PRINT: : : "TRY AGAIN? (y i N) ":
590 CALL KEY(0,K,S)
600 IF K=78 THEN 620
610 IF K=89 THEN 210 ELSE 590
620 CALL CLEAR
630 END

71

------ Chapter 3 ------

Setting Up Pitch Values
At the beginning of the program, you may wish to assign to
variables the frequencies or pitches you wa nt to use in the
music in your program. If you use the letter names of the notes
as the corresponding variable names, the values will be much
easier to remember.

100 T=400
110 C=262
120 D=294
130 E=330
140 F=349
150 G=392
160 CALL SOOND(T,E,l)
170 CALL SOUND(T,D,2)
180 CALL SOUND(T,C,2)
190 CALL SOOND(T,D,2)
200 CALL SOUND(T,E,2)
210 CALL SOUND(T,E,l)
220 CALL SOUND(T*2,E,0)
230 END

If you read music, you can tra nsla te any written music to
the computer, though only three notes will play at anyone
time. You can also use a frequency chart (Figure 3-3).

Figure 3-3. Frequencies of the Musical Scale
A Ab G Gb F E

880 831 784 740 698 659

, F ~p#r) r ~r (-F) r f
D

587

F
G

392

c
m

Gb F
370 349

,
494

J
E

330

,b
466

A
440

pj tid) d
Eb
311

D
294

Db
277

Eb
622

Ab
415

C
262

j oJ (#J) J 3 bUt,S) J bJ iF) 1
72

v

v

v

------- Chapter 3

C B Bb A Ab G Gb
262 247 233 220 208 196 185

~): r F be (#rJ r pr (#r r I'm (~r
F E Eb 0 Ob C B

175 165 156 147 139 131 123

F f bF (@r) J ~J @lJ} J J
Bb A
117 110

bJ (~~ j
Melody and Accompaniment
It ' s convenient to use the first frequency and volume as the
melody tone, then the second and third frequencies and
volumes as the accompaniment tones. This is just so you can
keep track of which number is the melody; the order doesn' t
matter to the computer.

If you start to run out of memory in a piece, you can go
back to the CALL SOUND statements and delete
accompaniment tones. It' s easy to find them if the first
frequency and volume are always the melody. Also, you might
want to use a lower volume setting for the low notes in order to
emphasize the melody note.

One method of accompaniment is to use two notes of the
three basic chords of the key in which the music is written. For
example, if a song is written in the key of C Major (no sharps
and no flats) , the basic chords are C, F, and G7• When you play
Middle C as the melody note, two notes of the C major triad
may be chosen for accompaniment - perhaps E and G. The
program statement is:

CALL SOUND(400,262,2, 1%,6,165,8)

Translating Published Music
Rather than compose your own music, you may prefer to work
from a copy of published music. The top note is usually the
melody note. Any two notes written directly under that note
may be chosen fo r the accompaniment in your CALL SOUND
statement.

73

------- Chapter 3 -------

If you have two successive CALL SOUND statements
which specify the same frequency and volume, the notes may
sound like one long note rather than two separate notes. To
make the notes sound distinct, just change the volume number
for one of the notes. To make a bass note sound tied while two
melody notes are played, keep the frequency and the volume
the same in both statements.

Here is the written music for the Musical Tempo
Demonstration (Program 3-4) so you can see how I translated
the music for the computer version.

--- --
I

-
I r-::I

I I

,

...
J- ...

~ ~ .
What You Can Do with Music

I

- -
oJ.

~ - •
--

I

I

~

There are all kinds of applications using the computer's music
fea ture. Writing music on the TI-99/4A is fun because you can
immediately hear any changes you want to implement as you

74

v

v

v ------ Chapter 3 ------

are composing. You can put some music on the computer and
have a sing-along.

Or perhaps you are trying to learn a piece that has a
difficult rhythm. Program it onto the computer, play it at a slow
tempo, then gradually increase the tempo as you practice the
piece along with the computer.

You might also wish to program an accompaniment on the
computer, then play along with a melody instrument like the
clarinet or violin.

Musical tones also work well in inte ractive programs. For
example, in an educational program you might use a happy
musical interlude for a correct answer.

learning Musical Notation
"Name the Notes" and " Music Steps and Chords" are
educational programs for music students. A piano or organ
teacher can use them before or after a student's regularly
scheduled lesson as enrichment, drill, or as a different
approach to teaching. Music students could use these
programs at home for additional practice. A programmer who
doesn' t read music may be interested in using the first program
to learn enough about reading notes to incorporate printed
music in his or her own programs.

"Name the Note" is a tutorial program designed for the
beginning music student. The first option, Keyboard, shows
the letter names of the keys on a piano or organ keyboard and
then presents a drill of ten keys chosen at random. A question
mark appears on a key, and the student must press the correct
letter name. When the correct letter is pressed, the name of the
key appears and the tone is played.

The second and third options are " Treble Clef" and "Bass
Clef." These two sections display the appropriate staff and
clef, and present words and phrases to help the student
remember the letter names of the notes. A drill of ten notes is
then presented.

How "Name the Note" Works
Lines

110-120 Option Base 1 sets the lowest numbers in the
array to 1 rather than O. N is an array that keeps
track of the ASCII code of the letter name of a
note and the note's frequency .

75

------- Chapter 3 -------

130-220
230-320

330-530

540-580

590-630
640-710

720-770
780-820
830-860
870-920

930-1090
1100-1370
1380-1450
1460-1600

1610-2020
2030-2070
2080-2210

2220-2260
2270

Define graphics characters and colors.
Print title screen with options; branch
appropriately after student presses number of
option.
Subroutine to draw piano keyboard (may be
entered at line 380).
Subroutine to PRINT " Press Enter" and wait for
student to respond.
Subroutine to play arpeggio for right answer.
Subroutine to PRINT " Try Again" and wait for
student to respond.
Subroutine to define graphiCS characters.
Subroutine to draw treble clef and staff.
Subroutine to draw bass clef and staff.
Subroutine to draw graphics characters that put
phrases on staff.
Instruction for learning the names of the keys.
Drill for keyboard.
Define graphics characters for treble clef.
Present instruction for learning the names of the
treble notes.
Drill for treble clef.
Define graphics characters for bass clef.
Present instruction for learning the names of the
bass notes.
Drill for bass clef.
End.

Program 3·5. Name the Note

lee REM!3 SPACES)NOTES
lle OPTION BASE 1
12e DIM N(1l,2)
l3e CALL CHAR(96 , "eeeeeeFF")
14~ L$="··· ········· ······· ·· ·,'
lSe CALL CHAR(64,"3C4299A1A199423C ")
16e RESTORE 17e
17e DATA eeeeeeeeeeeF3eC,e0eeeeeeeeFeeCe3,e

102e2e404040201,708808304040004,80404
e2e2e2e4eS,Se6eleeF,ele6eSF

180 FOR C=144 TO lSe

76

v

v

v ------ Chapter 3 ------

190 READ C$
200 CALL CHAR(C , C$)
210 NEXT C
220 CALL COLOR(15,7,1)
230 CALL CLEAR
240 CALL COLOR(4 ,2,1)
250 CALL SCREEN(8)
260 PRINT" N A M E[3 SPACES)T H E

[3 SPACES)N 0 T E""" ,"[6 SPACES)CHOOS
E:"::::" (6 SPACES] 1 KEYBOARD"
,,"[6 SPACES)2 TREBLE CLEF"

270 PRINT ,"[6 SPACES)3 BASS CLEF", ,'
[6 SPACES)4 END PROGRAM""""

280 CALL KEY(0,K,S)
290 IF (K<49)+(K>52)THEN 280
300 CALL CLEAR
310 F'=K-48
320 ON F GOTO 930,1380,2030,2270
33~ CALL CHAR(152 , "~")
340 CALL CHAR(153 ,"FFFFFFFFFFFFFFFF ")
350 CALL CHAR(154,"0101010101010101")
360 CALL CHAR(155,"808080808080808")
370 CALL COLOR(16,2,16)
380 CALL HCHAR(I,I,152,480)
390 RESTORE 400
400 DATA 3,6,12,15,18,24,27,9,21,30
410 FOR C=1 TO 7
420 READ J
430 CALL VCHAR(I,J,153,12)
440 CALL VCHAR(I,J+l,153,12)
450 CALL VCHAR(13,J,154,3)
460 CALL VCHAR(13,J+l,155 ,3)
470 NEXT C
480 FOR C=l TO 3
490 READ J
500 CALL VCHAR(I,J,154,15)
510 CALL VCHAR(I,J+l,155,15)
520 NEXT C
530 RETURN
540 PRINT TAB(16), "PRESS <ENTER>",
550 CALL KEY(0,K,S)

77

Chapter 3 -------

560 IF K<>13 THEN 550
570 CALL HCHAR(24,18,32,13)
580 RETURN
590 CALL SOUND(150,262,2)
600 CALL SOUND(150,330,2)
610 CALL SOUND(150,392,2)
620 CALL SOUND(300,523,2)
630 RETURN
640 FOR C=l TO 15
650 CALL HCHAR(24,C+l2,ASC(SEG$("TRY AGAIN

(Y/ N)",C,l)))
660 NEXT C
670 CALL KEY(0,K,S)
680 IF K=78 THEN 230
690 IF K<>89 THEN 670
700 CALL HCHAR(24 , 13,32,15)
710 RETURN
723 READ C
730 FOR J=97 TO C
740 READ A$
750 CALL CHAR(J , A$)
760 NEXT J
770 RETURN
780 CALL CLEAR
790 PRINT TAB(9); "TREBLE CLEF":::
800 PRINT "{3 SPACES)a":"(3 SPACES]b":""'c

""&L$:" de":""fg""&L$:" h i":"'jklm
'''&L$

810 PRINT II nop q":"'rsc'c"&L$:" u v w":""
xyz' "&L$:" (3 SPACES) (": "(3 SPACES) (":"
(3 SPACES):"

820 RETURN
830 CALL CLEAR
840 PRINT TAB(l0):" BASS CLEF":::
850 PRINT ::""abc'''&L$:'' d{3 SPACES]e k":"

'f"'g"&L$:"{S SPACES}h k":"·····i"&L$:
"(4 SPACES) h":""" i' "&L$:" (3 SPACES) j"
:"······"&L$:::

860 RETURN
870 READ C,J
880 FOR I=C TO J
890 READ K,G

78

v

------- Chapter 3 -------

v

~ 900 CALL HCHAR(K,I,G)
910 NEXT I

~ 920 RETURN
930 PRINT "A KEYBOARD HAS GROUPS OF"" "TWO

--' BLACK KEYS AND GROUPS":: "OF THREE BLA

v

v

v

CK KEYS.":::
940 GOSUB 330
950 GOSUB 540
96" PRINT "THE NAMES OF THE KEYS ARE":: "THE

FI RST 7 LETTERS."::
970 RESTORE 980
98" DATA 67,68,69,70,71,65,66,67,68,69,70
990 FOR J=2 TO 32 STEP 3
1000 READ G
1010 CALL HCHAR(9,J , G)
1020 NEXT J
1030 GOSUB 54(:1
104" CALL CLEAR
1050 PRINT "YOU MAY REMEMBER THAT JUST": : OIL

EFT OF THE TWO BLACK KEYS"" "IS THE K
EY CALLED Ie'.;;:::

1060 GOSUB 380
1070 CALL HCHAR(14,2 , 67)
1080 CALL HCHAR(14,23,67)
1090 GOSUB 540
1100 CALL CLEAR
1110 CALL SCREEN(12)
1120 PRINT TAB(8) ,"NAME THE KEY"""
1130 GOSUB 380
1140 RESTORE 1150
11513 DATA 67,262,68,294,69,330 , 70,349,71,39

2,65,440,66,494,67,523,68,587,69,659,
70,698

1160 FOR C=l TO 11
1173 READ N(C,1),N(C,2)
1180 NEXT C
1190 FOR T=l TO 10
1200 RANDOMIZE
1210 X=INT(RND*ll+l)
1220 Jz:l3*X-l
1230 CALL HCHAR(14,J , 63)
1240 CALL KEY(0 , K,S)

79

------ Chapter 3 ------

1250 CALL COLOR(4 , 16 , 16)
1260 CALL COLOR(4 , 7,16)
1270 IF S<l THEN 1240
1280 IF K=N(X , l)THEN 1310
1290 CALL SOUND(500,-8,2)
1300 GOTO 1240
1310 CALL HCHAR(14 , J , K)
1320 CALL SOUND(600,N(X , 2) , 2)
1330 CALL SOUND(l , N(X,2) , 30)
1340 CALL HCHAR(14,J , 152)
1350 NEXT T
1360 GOSUB 640
1370 GOTO 1190
1380 PRINT TAB(9), "TREBLE CLEF "",
1390 RESTORE 1400
1400 DATA 124,0000384482828282,828282828282

8282,848488FF889090A , 0000000000010102
, A0A0C0C0C040404 , 040810FF2040808

1410 DATA 404040FF2020202 , 010204040810101 , 2
0 2020 202020202 , 202040FF4040404 , 000000
FF0304081, 10 10 10FF1010101

1420 DATA 000000FF18040201 , 808080808080808 ,
102020202040404 , 0808080808080808 , C020
201010080808 , 808080FF4040402

1430 DATA 404040FF2020100C , 040404FF04040404
,2020101008040403 , 0202020202010101 , 08
0808101020408,804038FF

1440 DATA 010101FF01010101,030C30FF,0101010
101010101 , 0101010111110E

1450 GOSUB 720
1460 GOSUB 800
1470 PRINT : "THINK OF THE WORD 'FACE ' FOR":

,"THE NOTE NAMES ON SPACES
1480 CALL HCHAR(14,14,70)
1490 CALL HCHAR(12 , 17 , 65)
1500 CALL HCHAR(10,20,67)
1510 CALL HCHAR(8,23,69)
1520 GOSUB 540
1530 GOSUB 780
1540 PRINT : "MEMORIZE THIS PHRASE TO HELP":

: "LEARN LINE NOTES E G B D F."::
1550 RESTORE 1560

80

v

v

v

--

------ Chapter 3 ------

1560 DATA 9,28,15,69,15,86,15,69,15,82,15,8
9,13,71,13,79,13,79,13,68,11,66,11,79
,11,89,9,68,9,79

157121 DATA 9,69,9 , 83,7,7121 ,7,73,7, 78,7,69
1580 GOSUB 870
1590 GOSUB 540
1600 GOSUB 780
1610 RESTORE 1620
162121 DATA 7121,698,69,659,68,587,67,523,66,49

4,65,44121,71,392,7121,349,69,33121
1630 FOR C=l TO 9
1640 READ N(C,1),N(C,2)
1650 NEXT C
1660 PRINT TAB(8), "NAME THE NOTE":::::
1670 FOR T=l TO 10
1680 RANDOMIZE
1690 X=INT(9*RND+l)
17121121 J=5+X
1710 CALL HCHAR(J,20,144)
172121 CALL HCHAR(J,21,14S)
1730 CALL HCHAR(J+l,19,146)
1740 CALL HCHAR(J+l,22,148)
1750 CALL HCHAR(J+2,20,149)
1760 CALL HCHAR(J+2,21,150)
1770 CALL HCHAR(J+l,21,147)
1780 CALL SOUND(150,1397,4)
1790 CALL KEY(0,K,S)
1800 IF S<l THEN 1790 '
1810 IF K=N(X,1)THEN 1840
1820 CALL- SOUND(200,-5,4)
1830 GOTO 1790
1840 CALL HCHAR(J+l,21,N(X,1))
185121 IF F=2 THEN 19121121
1860 FOR I=N(X,2)TO N(X,2)+48 STEP 12
1870 CALL SOUND(150,I,2)
1880 NEXT I
1890 GOTO 1910
19121121 CALL SOUND(500,N(X,2),2)
1910 CALL SOUND(1,N(X,2),30)
1920 IF X/2=INT(X/2)THEN 1970
1930 CALL HCHAR(J,20,32,2)

81

------- Chapter 3

1940 CALL HCHAR(J+l,19,96,4)
1950 CALL HCHAR(J+2,20,32.2)
1960 GOTO 2000
1970 CALL HCHAR(J,20,96,2)
1983 CALL HCHAR(J+l,19,32,4)
1990 CALL HCHAR(J+2,20,96,2)
2000 NEXT T
2010 GOSUB 640
2020 GOTO 1670
2030 PRINT TAB(l0);"BASS CLEF":::
2040 RESTORE 2050
2050 DATA 107,000000FF0FI0608,000000FFFF,00

0000FF80700c03 ,010204181020204,804020
2010080804,40583CFF3C18

2060 DATA 040202FF01010101 ,0101020204040408
,080810FF2040808,0101020408,000EIF1Fl
F0E

2070 GOSUB 720
2080 GOSUB 850
2090 PRINT : "LEARN THIS PHRASE FOR THE": : "N

OTES ON SPACES, ACE G.";:
2100 RESTORE 2110
2110 DATA 13,30,15,65,15,76,15,76,15,32,13,

67,13,79,13,87,13,83,13,32,11,69,11,6
5,11,84,11,32

2120 DATA 9,71,9,82,9,65,9,83,9,83
2130 GOSUB B70
2140 GOSUB 540
2150 GOSUB B30
2160 PRINT : "THIS PHRASE HELPS YOU KNOW"::"

THE LINE NOTES, G B D FA."::
2170 RESTORE 2180
2180 DATA 8,31,16,71,16,82,16,69,16,65,16,8

4,14,66,14,73,14,71,12,68,12,79,12,71
,12,83,10,70,10,73

2190 DATA 10,71,10,72,10,84,8,65,8,78,8,73,
8,77,8,65,8,76,8,83

2200 GOSUB 870
2210 GOSUB 540
2220 GOSUB 830
2230 PRINT

82

v

'-"

'-"

~

~

'-'

~

------ Chapter 3 ------

2240 RESTORE 2250
2250 DATA 65,220,71,196,70,175,69,165,68,14

7,67,131,66,123,65,117,71,110
2260 GOTO 1630
2270 END

Teaching Basic Musical Theory
A piano teacher can get bored, discouraged, impatient, or
frustrated trying to drill a student in the basic fundamentals of
the keyboard . A computer is an ideal teaching aid because it
can choose questions randomly, perform repetitious drills
without intimidating the student, and, with effective graphics
and sound, can encourage the student to have fun learning.

"Music Steps and Chords" is designed as a tutorial to
supplement the teacher's instructions for distinguishing
between half steps and whole steps in music, counting the
steps between two notes, and using this counting method to
identify basic triads.

Half Step. A half step is a rise or fall in pitch from one
piano key to the adjacent key . The program draws a keyboard .
Examples of half steps are illustrated with arrows. A quiz asks
if the arrow on the keys represents a half step. The tones are
sounded so the student will see and hear the difference
between the two notes. The student presses 1 for yes or 2
for no.

Whole Step. A whole step is equal to two half steps.
Again, the program shows this on a keyboard. The quiz for this
section asks the student to press 1 for a half step and 2 for a
whole step for ten examples. Arrows are drawn and tones are
sounded for each problem.

Count the Steps. The third section is a quiz with ten
questions . Two keys are randomly chosen and played. The
student must indicate the correct number of half steps between
the two keys. If the answer is correct, an arpeggio is played. If
the answer is incorrect, the correct answer is shown, and
arrows for each half step are drawn so the student may see how
to get the correct answer.

83

------ Chapter 3 - -----

Identifying Triads. One method of teaching the identifi
cation of triads (three-note chords) and the naming of chords is
to count the steps between each note of the root chord and find
the pattern. Each triad has its own specific pattern of intervals.
This counting method is used in this program to identify a
major triad, a minor triad, an augmented triad, and a
diminished triad.

First, make sure the triad is in the root position: the three
notes are all on adjacent spaces of the musical staff, or all on
adjacent lines.

Root Position Not Root Position

The name of the chord is the name of the bottom note of the
root triad.

Next, the number of whole steps between the first and
mjddle note are counted, then the number of steps between the
middle and top note. An example is shown on the keyboard
with the C chords. The number of steps is always either 11/2
or2.

1')= ~ CMajor C (2 steps) E (1'h steps) G

I~l: &§ C minor C (1 V2 steps) Eb(2 steps) G
-'

IV: ~§ C Augmented C (2 steps) E (2 steps) G'

IV: IJ'§ C diminished C (1 'h steps) Eb(1 'h steps) Gb

Each type of chord is described, played, and illustrated on the
keyboard with the number of steps labeled.

A way to learn the chords is to remember that the major
chord has 2 steps, then 1 % steps. The minor chord lowers the

84

v

------- Chapter 3

middle note, so its order is Ph steps, then 2 steps. The
augmented chord starts with the major chord (2,1112), then
"augments" or enlarges the chord; so the order is 2 steps, then
2 steps. The diminished chord always starts with the minor
chord (l1f2, 2), then " diminishes" or reduces the chord to I 1f2

steps, then 1 V2 steps.
The quiz randomly chooses a beginning note, a middle

note e ither Ilh or 2 steps higher, and a top note either 1 'h or 2
steps higher than the middle note. The three notes are sounded
separately, then together. The student chooses whether the
chord is major, minor, augmented, or diminished.

If the answer chosen is correct, an arpeggio is played. If the
answer is incorrect, the number of steps between each note is
illustrated and the correct answer is given. After ten chords,
the student's score is printed. The student may then choose to
return to any section of the program.

How " Music Steps and Chords" Wor ks

Lines

110

120
130-210

220-290

300-330

340-390

400-570
580-930
940-1090
1100-1140
1150-1420

DIMension variables. H(CH) is the Y-coordinate
for the key chosen; NN(CH) is the frequency for
the key chosen, to be used in the CALL SOUND
statements.
Branch to the title screen subroutine.
Print menu screen and wait for student's
response; branch appropriately. For a tutorial
program, the first-time student should choose
each option in order, repeating drills as
necessary.
Subroutine to PRINT message "(PRESS ENTER)"
and wait for student's response; clear message.
Subroutine to PRINT message A$ on the screen
without scrolling. Row K and column J must be
specified.
Subroutine to draw graphics characters from
DATA statements.
Subroutines to draw arrows for half steps.
Subroutines to draw arrows for whole steps.
Subroutine to draw keyboard.
Subroutine to play music after a correct answer.
Subroutine for half steps.

85

~

Chapter 3
~

"
1150-1210 Print definition and keyboard.
1220-1250 Print example arrows and wait for student to 'J

press ENTER.
~

1260-1290 Clear arrows and printing.
1300-1400 Print instructions for drill.

~

1410-1420 Perform drill for half steps, then return to menu
screen. \J

1430-1690 Subroutine for half step or whole step drill.
1430-1440 Randomize choice and perform drill for ten 'J

problems.
1450-1460 Randomly choose half step or whole step. '-'
1470-1490 Randomly choose starting key and draw arrow.
1500-1520 Call subroutine for quiz; erase arrow. ~

1530-1570 Randomly choose starting key for whole step,
draw arrow, present quiz, erase arrow. ~

1580-1590 After ten questions, return.
1600-1660 Subroutine to play tones of starting key and next ~

tone; wait for student's response. 1£ the answer
~

is correct, play an arpeggio; if the answer is
incorrect, playa noise .

~

1670-1690 Subroutine to play noise for incorrect response.
1700-2020 Subroutine to teach whole steps. '-'
1700-1830 Print definition; draw keyboard and example

arrows. '-'
1840-1890 Wait for student to press ENTER, then clear

arrows and printing. v
1900-2000 Print instructions for drill.
2010-2020 Perform drill for whole steps, then return. v
2030-2240 Subroutine to perform drill for counting steps

between keys. '-'

2030-2070 Print instructions and draw keyboard.
2080-2100 Perform drill for counting steps. '-'

2110-2150 Clear printing, then print score.
2160-2220 If score was 100 percent, playa tune.

~

2230-2240 Wait for student to press ENTER, then return. '-' 2250-2580 Subroutine to randomly choose keys for drill .
2250-2290 Randomly choose a key from the first nine keys ~

of the keyboard, sound that note, and place an X
on the key. '-"

2300-2340 Randomly choose a number of steps ST, sound
the correct note, and place an X on the second '-'

key .
'-

86

~

'-'

v
Chapter 3

~

2350-2360 Wait for student to choose an answer.
~ 2370-2450 If the answer is incorrect, draw arrows on the

keyboard, print" Ill " under each half step to
show how the correct answer is obtained, and
move another arrow down to the correct choice.

2460-2530 Wait for student to press ENTER, then clear all
arrows.

2540-2550 If the answer is correct, play an arpeggio and
increment the score.

2560-2580 Replace the X marks on the keys with the
~ original key names; return.

2590-2860 Subroutine to print title screen and define
-/ characters.

2590-2610 Clear screen; print title.
~ 2620-2730 Define graphics characters from DATA.

2740-2790 Read in from DATA the Y-coordinate and , frequency for each key on the keyboard.
2800-2840 Define color sets .
2850-2860 Change the screen color to yellow and return.
2870-4500 Subroutine to teach basic triads, identifying

-J them by the counting-steps method.

'-J
2870-2970 Print instructions about triads; wait for student

to press ENTER after each screen of instructions.
~

2980-3010 Clear screeni print description of C major triad;
draw keyboard.

~ 3020-3070 Sound the tones of the chord as the keys are
marked.

'-' 3080-3110 Illustrate number of steps between keys at top of
keyboard .

J 3120-3400 Wait for student to press ENTER, then change
major triad description to minor triad

v description.
3410-3600 Print description of augmented triad.

~ 3610-3790 Print description of diminished triad .
3800-3840 Print summary table of triads.

J 3850-3870 Print instructions for dril l and draw keyboard.
3880-3940 For ten problems, randomly choose the first key,

sound the appropriate note, and print X on the
key.

3950-3990 Randomly choose the next key three or four half
steps above the first note; sound the appropriate
note and print X.

87

------ Chapter 3 ------

4000-4040

4050-4140

4150-4180

4190-4350

4360-4380
4390-4430

4440-4480

4490-4510

Randomly choose the top key three or four half
steps from middle key; sound the appropriate
note and print X.
Depending on the steps between notes,
determine correct answer.
Play the chord and wait for the student to press
an answer; place an asterisk in front of the
answer chosen.
If answer is incorrect, label the number of steps
between the keys, put an arrow before the
correct choice, and wait for the student to press
ENTER.
Clear the marked answer.
If the answer is correct. play an arpeggio and
increment the score.
Clear the marked keys and the chosen answerj
go to the next problem.
Print the final score; return; END.

Program 3-6. Music Steps and Chords

100 REM MUSIC STEPS AND CHORDS
110 DIM H(17) , NN(18)
120 GOSUB 2590
130 CALL CLEA.R
140 PRINT "CHOOSE"::: "1 HALF STEPS " :: "2 W

HOLE STEPS"::"3 COUNT THE STEPS"
150 PRINT: " 4 IDENTIFYING TRIADS";: "5 TRI

ADS QUIZ"::: "6 END PROGRAM":::
160 CALL KEY(0 , K,S)
170 IF (K<49)+(K>54)THEN 160
180 CALL CLEAR
190 ON K- 48 GOSUB 1150,170e,2030,2870,3850,

210
200 GOTO 130
210 STOP
220 A$= " (PRESS ENTER)"
230 FOR Y=l TO 13
240 CALL HCHAR(24,Y+18,ASC(SEG$(A$,Y , l)))
250 NEXT Y
260 CALL KEY(0,K , S)
270 IF K<>13 THEN 260

88

v ------ Chapter 3 ------

280 CALL HCHAR(24,19,32,13)
290 RETURN
300 FOR 1=1 TO LEN(A$)
310 CALL HCHAR(K,J+1,ASC(SEG$(A$,I,l»)
320 NEXT I
330 RETURN
340 READ N
350 FOR 1=1 TO N
360 READ X,Y,G
370 CALL HCHAR(X,Y,G)
380 NEXT I
390 RETURN
400 CALL HCHAR(14,Y,l12)
410 CALL HCHAR(14,Y+1,l14)
420 RETURN
430 CALL HCHAR(14,Y,98)
440 CALL HCHAR(14,Y+1,99)
450 RETURN
460 CALL HCHAR(12,Y,106)
470 CALL HCHAR(13,Y+1,l16)
480 RETURN
490 CALL HCHAR(12,Y,97)
500 CALL HCHAR(13,Y+1,96)
510 RETURN
520 CALL HCHAR(13,Y,l15)
530 CALL HCHAR(12,Y+1,107)
540 RETURN
550 CALL HCHAR(13,Y,96)
560 CALL HCHAR(12,Y+1,97)
570 RETURN
580 CALL HCHAR(14,Y,112)
590 CALL HCHAR(14,Y+1,l13,2)
600 CALL HCHAR(14,Y+3,l14)
610 RETURN
620 CALL HCHAR(14,Y,96,4)
630 CALL HCHAR(14,Y+l,98)
640 CALL HCHAR(14,Y+2,99)
650 RETURN
660 CALL HCHAR(11,Y,104)
670 CALL HCHAR(11,Y+l,l13)
680 CALL HCHAR(11,Y+2,105)
690 RETURN

89

~

Chapter 3
'-'

~

700 CALL HCHAR(11,Y,97)
710 CALL HCHAR(11,Y+l,96) ~

720 CALL HCHAR(11 , Y+2,97)
730 RETURN -
740 CALL HCHAR(13 , Y,117)
750 CALL HCHAR(13,Y+1 , l18) ~

760 CALL HCHAR(12,Y+2,119)
~

770 CALL HCHAR(12,Y+3,108)
780 RETURN

~

790 CALL HCHAR(13,Y,98)
800 CALL HCHAR{13,Y+l,99) ~

810 CALL HCHAR(12,Y+2,96)
820 CALL HCHAR(12,Y+3,97)
830 RETURN
840 CALL HCHAR(12 , Y,109) ~

850 CALL HCHAR(12,Y+l,120)
860 CALL HCHAR(13,Y+2,121) '-'
870 CALL HCHAR(13,Y+3,122)
880 RETURN ~

890 CALL HCHAR(12,Y , 97)
900 CALL HCHAR(12,Y+1,96) ~

910 CALL HCHAR(13,Y+2,98) '-' 920 CALL HCHAR(13,Y+3,99)
930 RETURN v
940 CALL HCHAR(l , l , 96,480)
950 RESTORE 960 -960 DATA 3,6,12,15,18,24 , 27,9,21 , 30
970 FOR I~l TO 7 ~

980 READ Y
990 CALL VCHAR(l,Y,97,12) ~

1000 CALL VCHAR(l,Y+l,97 , 12)
1010 CALL VCHAR(13,Y,98,3) '-'

1020 CALL VCHAR(13,Y+l,99,)
1030 NEXT I
1040 FOR I~l TO 3

'-' 1050 READ Y
1060 CALL VCHAR(l, Y ,98,15) -1070 CALL VCHAR{1,Y+l,99,lS)
1080 NEXT I v
1090 RETURN
1100 CALL SOUND(150,262 , 2) '-'
1110 CALL SOUND(150,330,2)

~.

90
'-'

'-'

v

v

------ Chapter 3 ------

112~ CALL SOUND(15~,392,2)
113~ CALL SOUND(3~~,523,2)
114~ RETURN
115~ PRINT" (4 SPACES)H A L F(3 SPACES)S T

116~

117~
11B0
1190
1200
121~

122~

123~

1240
1250
1260
127~

128~
129~
13~~

131~

132~
1330
134~

1350
136~
137~

13B~
139~
14~~

1410
142~

143~
1440
145~
1460
1470
14B~

E P s":::::::::::
PRINT "A HALF STEP IS FROM ONE KEY
"TO THE VERY NEXT KEY.":::
FOR 1=1 TO 4
CALL HCH~R(19.4+I,127+I)
NEXT I
CALL HCHAR(22,10,113,9)
GOSUB 940
RESTORE 1230

"

DATA 8,12,4,1~6,13,5,116,13,11,115/12,
12,107,14,21,112,14,22,114,13,26,115,
12,27,137
GOSUB 340
GOSUB 220
RESTORE 1270
OATA 8,12,4,97,13,5 , 96,13,11 , 96,12.12,
97,14,21,98,14,22,99,13,26,96,12,27,97
GOSUB 340
CALL HCHAR(19,I,32,114)
A$="IS THIS A HALF STEP?"
K=19
J=5
GOSUB 300
A$="PRESS 1 FOR YES"
K=21
J=9
GOSUB 300
A$="PRESS 2 FOR NO"
K=23
GOSUB 300
GOSUB 1430
RETURN
RANDOMIZE
FOR 1=1 TO Ie
ANS=INT(RND*2+l)
IF ANS=2 THEN 1533
CH=INT(RND*17+1)
Y=H(CH)

91

------ Chapter 3 ------

1490 ON CH GOSUB 52~,460,520,460 , 400,520,46
0,520 , 460,520,460,400,520 , 460 , 520 ,460
,400

1500 GOSUB 1600
1510 ON CH GOSUB 550,490,550,490,430,550,49

0,550,490,550,490,430,550,490,550,490
,4 3'1'

1520 GOTO 1580
1530 CH=INT(RND*16+1)
1540 Y=H(CH)
1550 ON CH GOSUB 580,660,580,840 , 740,580,66

0,580,660 , 580,840,740,580,660,580,840
1560 GOSUB 1600
1570 ON CH GOSUB 620,700,620,890,790,620,70

0,620 , 700,620,890,790,620,700,620,890
1580 NEXT I
1590 RETURN
1600 CALL SOUND(200,NN(CH) , 0)
1610 CALL SOUND(200,NN(CH+ANS),0)
1620 CALL KEY(0,K,S)
1630 IF (K=49)+(K=50)<>-1 THEN 1620
1640 IF K<>48+ANS THEN 1670
1650 GOSUB 1100
1660 RETURN
1670 CALL SOUND(600,-8,2)
1680 CALL SOUND(l,-8,30)
1690 RETURN
1700 PRINT "{3 SPACES)W H 0 L E{3 SPACES)S

T E P s":::::::::::
1710 PRINT "A WHOLE STEP IS EQUAL TO":: "TWO

HALF STEPS (1 = % + %)":::
1720 RESTORE 1730
1730 DATA 5,19,5,132,19,6,128,19,7,133,19,8

,130,19,9,134
1740 GOSUB 340
1750 GOSUB 940
1760 Y=2
1770 GOSUB 580
1780 Y=13
1790 GOSUB 660
1800 Y=21
1810 GOSUB 740

92

v

v
1820
1830
1840
1850
1860

1870

1880
1890
1900

../
1910
1920

.../
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050

2060

2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170

Chapter 3 -------

Y=28
GOSUB 840
GOSUB 220
RESTORE 1860
DATA 15 ,1 4 , 2,96 , 14 , 3,98,14,4,99,14 , 5 , 9
6 , 11,13 , 97 ,11, 14 , 96,11,15 ,9 7,13,21 , 98
DATA 13,22 , 99,12,23,96 , 12,24,97,12 , 28 ,
97,12,29,96,13,30,98 , 13 , 31,99
GOSUB 340
CALL HCHAR(19,1,32,92)
A$="WHAT KIND OF MUSICAL STEP? "
K=1 9
J = 3
GOSU8 300
A$="PRESS 1 FOR HALF STEP"
K=21
J =5
GOSUB 300
A$ =" PRESS 2 FOR WHOLE STEP"
K=23
GOSUB 300
GOSUB 1430
RETURN
R=0
SC=0
PRINT "NOW COUNT HOW MANY STEPS": "THER
E ARE BETWEEN TWO NOTES. ": :"
(4 SPACES)l HALF STEP"
PRINT "{4 SPACF.S}2 WHOLE STEP":"
(4 SPACES)3 1% STEPS":"(4 SPACES)4 2

STEPS ":" (4 SPACES)5 2% STEPS",
GOSUB 940
FOR 11=1 TO 10
GOSUB 2250
NEXT II
CALL HCHAR(17,1,32,256)
A$ ="SCORE = "&STR$(SC)&"0 PERCENT"
K=19
J=8
GOSUB 300
IF SC<>10 THEN 2230
RESTORE 2180

93

------ Chapter 3 ------

2180 DATA 262,330,392 , 523,392 , 523 , 330,392,5
23,659,523 , 659,392,523,659,784,659 , 78
4,44333

21913 FOR 1=1 TO 19
22ee REAO F
221e CALL SOUNO(15e,F , 2)
222e NEXT I
223e GOSUB ne
224e RETURN
225e CH=INT(RNO*9+1)
2260 Yl=H(CH)
227e CALL SOUNO(2ee , NN(CH),e)
22se CALL GCHAR(S , Y1 , GC1)
2293 CALL HCHAR(8,Yl,135)
23ee ST=INT(RNO*4+1)
231e Y2=H(CH+ST)
232e CALL SOUNO(2ee,NN(CH+ST),e)
233e CALL GCHAR(S,Y2,GC2)
234e CALL HCHAR(S,Y2,135)
2353 CALL KEY(0,K , S)
236e IF (K<49)+(K>53)THEN 2350
237e IF K- 4S=ST THEN 254e
23se FOR 1=1 TO ST
23ge Y=H(CH+I - 1)
240e ON CH+I-1 GOSUB 520,46e , 520 ,46e ,4ee , 52

3,463,523,463,523,463 , 433 , 523
241e CALL HCHAR(16,Y, 1 23)
242e CALL HCHAR(19+I-1 , 5 , 32,2)
243e CALL HCHAR(19+I , 5,113)
244e CALL HCHAR(19+I,6,114)
2450 NEXT I
246e GOSUB 220
2470 CALL HCHAR(16,Y1 ,3 2 , S)
2480 CALL HCHAR(19+I - 1 , 5 , 32 , 2)
2490 FOR 1=1 TO ST
2500 Y=H(CH+I-1)
2510 ON CH+I - 1 GOSUB 550,490 , 550,490, 430,5 5

3,493,5513 ,493,553,493 , 4313 , 5 50
2520 NEXT I
2530 GOTO 2560
2540 GOSUB 1100

94

v

v Chapter 3

v
2550 SC=S C+1
2 560 CALL HCHAR(B,Yl,GCl)
2570 CALL HCHAR(8,Y2,GC2)
2580 RETURN
2590 CALL CLEAR
2600 CALL CHAR(92 , "3C4299A1A199423C")
26 10 PRINT "{3 SPACES)M U S I C{3 SPACES)S

T E P S " : : ::TAB(12);"A N D"::::TAB(9)~
"e H 0 R D S" ::::::::

262 0 RESTORE 2630
J 2630 DATA 96 , ~ , 97,FFFFFFFFFFFFFFFF,98,ele10

J
10101010101 , 99 , 8080808080808080,37, 40
42444817214207,104,000000C0FFC

, 2640 DATA 123,4042444817214207 , 105 , 00300C02
FF020C3,106 , C0C02~1008040201 , 107 , 3F03

05091121408
2650 DATA 108,7C0C34C404,109,C0F00C03 , 112,0

00000C0FFC , 113,00000000FF , 114,00300C0
2FF020C3

2660 DATA 115,0102040B1020C0C , 116,804021110
905033F , 117 , 00000000030CF0C , 118,030C3

.I 0C,119 , 00000000030C30C
2670 DATA 120 , 00000000C0300C03,121 , C0300C03

,122,00000004C4340C7C,128,0044447C444
444,129,003844447C4444

2680 DATA 130,0040404040407C,131 , 007C407840
404,132,00444444545428,133,007C444444
447C , 134,007C407840407C

2690 DATA 135 , 00442810102844,60,000000003F2
0202,62,00000000FC040404,64,20202C342
428302

2700 FOR 1=1 TO 34
2710 READ A,A$
2720 CALL CHAR(A,A$)
2730 NEXT I
2740 DATA 2 , 13 1, 4 , 139,5,147,7 , 156 , 9 , 165 , 11,

175 , 13,185,14,196,16,208 , 17,22O,19,233
2750 DATA 21 , 247,23,262 , 25,277 , 26 , 294,28,31

1,30,33'21
2760 FOR 1=1 TO 17
2770 READ H(I),NN(I)
2780 NEXT I

95

v

------- Chapter 3 -------

2790 NN(l8)=349
2800 FOR 1=9 TO 13
2810 READ A,SC
2820 CALL COLOR(I,A,SC)
2830 NEXT I
2840 DATA 2,16,9,2,9,16,9,16,9,16
2850 CALL SCREEN(12)
2860 RETURN
2870 PRINT" (s SPACES) IDENTIFYING TRIADS"::

: itA TRIAD CONSISTS OF 3 NOTES. ":: "IT I
S IN ROOT POSITION"

2880 PRINT: "IF ALL THREE NOTES ARE ON":: ilL
INES OR IF ALL THREE":: "NOTES ARE ON
SPACES": : "ON THE STAFF."

2890 PRINT:: "THE BASIC TRIADS ARE":: "MAJOR
, MINOR, AUGMENTED, "::"AND DIMINISHED
" . :::

2900 GOSUB 220
2910 CALL CLEAR
2923 PRINT "TO IDENTIFY A CHORD ," : : "FIRST M

AKE SURE THE NOTES"::" ARE IN ROOT POS
ITION "

2930 PRINT :" (INVERT IF NECESSARY)."::: "THE
NAME OF THE CHORD IS":: "THE BOTTOM N
OTE OF THE":: "ROOT CHORD.":::

2940 GOSUB 220
2950 CALL CLEAR
2960 PRINT "THE TYPE OF TRIAD MAY BE":: "DET

ERMINED BY COUNTING"::"STEPS BETWEEN
NOTES OF":: "THE ROOT CHORD ."::::

2970 GOSUB 220
2980 CALL CLEAR
2990 PRINT "(3 SPACES)M A J 0 R{3 SPACES)T

R I A 0":: "THE C MAJOR TRIAD CONSISTS
OF C, E, AND G."

3000 PRINT: "2 STEPS FROM C TO E": "1% STEP
S FROM E TO Gil

3010 GOSUB 940
3020 CALL SOUND(200,262,0)
3030 CALL HCHAR(14,2,135)
3040 CALL SQUNO(200 , 262 , 2 ,330,0)
3050 CALL HCHAR(14,8,135)

96

v

!

v

------- Chapter 3 -------

3~6~
3~7~
3~80
3~9~
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
334~
3350
3360
3370
3380
3390
3400
3410
3420

3433

3440

CALL SOUND(600,262,2,330,1,392,0)
CALL HCHAR(14,14,135)
A$="<--2--><-1%->~

J=l
K=2
CALL HCHAR(1,1,32,96)
GOSUB 300
GOSUB 220
CALL HCHAR(19,1,32,160)
CALL RCHAR(17,8,73)
CALL HCHAR(17,10,78)
A$="TO CHANGE TO A MINOR TRIAD"
K=19
J=2
GOSUB 300
A$="LOWER THE MIDDLE NOTE % STEP."
K=20
GOSUB 300
A$="C-l%-><--2-->"
J=l
K=2
GOSUB 300
CALL SOUND(200,262\0)
CALL HCHAR(14,8,96
CALL SQUNO(200,262,2,311,0)
CALL HCHAR(11,7,135)
CALL SOUND(600,262,2,311,1,392,0)
A$="l% STEPS FROM C TO E-FLAT"
J=2
K=22
GOSUB 300
A$="2 STEPS FROM E-FLAT TO Gil
K=23
GOSUB 300
GOSUB 220
CALL CLEAR
PRINT "{6 SPACES)AUGMENTED TRIAD": ::"s
TART WITH THE MAJOR TRIAD.":::'" AUGMEN
T' THE TRIAD"
PRINT: "BY MOVING THE TOP NOTE":: "UP 0
NE HALF STEP." ••••
GOSUB 22~

97

------- Chapter 3 -------

34 50 CALL CLEAR
3460 PRINT "(6 SPACES) AUGMENTED TRIAD":: "NO

TES ARE C, E, G# "
3470 PRINT :"2 STEPS FROM C TO E": "2 STEP

S FROM E TO G#": :
348~ GOSUB 94~
349~ CALL SOUND(20~,262 , 0)
3500 CALL HCHAR(14,2,135)
3510 CALL SQUNO(200,262,2 , 330,0)
3520 CALL HCHAR(14,8 , 135)
3530 CALL SQUNO(600,262 , 2,330,1,41S , 0)
354~ CALL HCHAR(11 , 16,135)
3550 A$= "<- -2--><-- 2-- >"
356~ K=2
3570 J=l
3580 CALL HCHAR(1,1,32,96)
3590 GOSUB 300
36~0 GOSUB 220
3610 CALL CLEAR
3620 PRINT "(5 SPACES)DIMINISHEO TRIAD " :: :"

START WITH THE MINOR TRIAD. "
3630 PRINT ::" I DIMINISH' THE TRIAD BY " : : "LO

WERING THE TOP NOTE"::"ONE HALF STEP.
" : : : ; :

364~ GOSUB 22~

3650 CALL CLEAR
36612' PRINT "{S SPACES}OIMINISHED TRIAD " : :"N

OTES ARE C, E@ , G@ " :: "1% STEPS FROM C
TO E @"; "1% STEPS FROM E@ TO G@ "

3670 GOSUB 940
3680 CALL SOUND(200,262,0)
3690 CALL HCHAR(14,2 , 135)
3700 CALL SOUNO(200,262,2,311 ,0)
371~ CALL HCHAR(11,7,135)
3720 CALL SOUNO(6~~,262,2 , 311 , l,370,0)
3730 CALL HCHAR(11,13,135)
3740 A$="< - l% - >(- l%->"
3750 K=2
3760 J=l
3770 CALL HCHAR(l,l,32,96)
3780 GOSUB 3~~
379~ GOSUB 22~

98

~"

-'

------ Chapter 3 ------

3800 CALL CLEAR
3810 PRINT TAB(9), "STEPS BETWEEN NOTES",TAB

(9),"lST(5 SPACES)2NO{5 SPACES)3RO"
3820 PRINT ::"TRIAD"::::"MAJOR II ;TAB(14);"2

(7 SPACES)1%"", "MINOR",TAB(l4), "1%
(6 ·SPACES) 2"

3830 PRINT" "AUGMENTEO{4 SPACES)2
{7 SPACES)2";;,"OIMINISHEO{3 SPACES)1%
(6 SPACES) 1% ", "

3840 GOSUB 220
3850 PRINT "NAME THE TYPE OF TRIAD.":: "PRES

S{3 SPACES)l MAJOR",TAB(9),"2 MINOR"
3860 PRINT TAB(9),"3 AUGMENTEO",TAB{9) ,"4

DIMINISHED"
3870 GOSUB 940
3880 SC=0
3890 FOR 11=1 TO 10
3900 CH=INT(RND*9+1)
3910 CALL SOUNO{500,NN(CH),0)
3920 Yl=H(CH)
3930 CALL GCHAR{8 , Y1,GC1)
3940 CALL HCHAR(8,Y1,135)
3950 ST=INT(RND*2+1)+2
3960 CALL SOUNO{-500,NN(CH+ST),0)
3970 Y2=H(CH+ST)
3980 CALL GCHAR(8,Y2,GC2)
3990 CALL HCHAR(8,Y2,135)
4000 ST2=INT{RNO*2+1)+2
4010 CALL SOUNO(-500,NN{CH+ST+ST2),0)
4020 Y3=H(CH+ST+ST2)
4030 CALL GCHAR(8,Y3,GC3)
4040 CALL HCHAR(8,Y3,135)
4050 IF {ST=4)+(ST2=3)<>-2 THEN 4080
4060 ANS=l
4070 GOTO 4150
4080 IF (ST=3)+(ST2=4)<>-2 THEN 4110
4090 ANS=2
4100 GOTO 4150

_ 4110 IF (ST=4)+(ST2=4)<>-2 THEN 4140
4120 ANS=3
4130 GOTO 4150
4140 ANS=4

99

v

------- Chapter 3 -------

4150 CALL SOUND(1000,NN(CH),2,NN(CH+ST),l,N
N (CH+ST+ST2) ,0)

4160 CALL KEY(0,K,S)
4170 IF (K<49)+(K>52)THEN 4160
4180 CALL HCHAR(19+K-48,10,42)
4190 IF K-48~ANS THEN 4390
4200 CALL SQUNO(500,-S,2)
4210 IF ST/2~2 THEN 4240
42213 SI$"","I%"
4230 GOTO 4250
4240i 51$".11-2-"
4250 IF ST2 / 2~2 THEN 4280
4260 52$="1%"
4270 GOTO 4290
42813 52$="-2-"
4290 A$="<-"&Sl$&"-><-"&S2$&"->"
4300 K~2
4310 J~Yl -1
4320 CALL HCHAR(l,l,32,96)
4330 GOSUB 300
4340 CALL HCHAR(19+ANS,9,l14)
4350 GOSUB 220
4360 CALL HCHAR(19+ANS,9,32)
4370 CALL HCHAR(2,l,32,32)
4380 GOTO 4440
4390 CALL SOUND(150,NN(CH),2)
4400 CALL SOUND(150,NN(CH+ST) ,2)
4410 CALL SOUND(150,NN(CH+ST+ST2),2)
4420 CALL SOUND(200,2*NN(CH),2)
4430 SCsSC+l
4440 CALL HCHAR(8,Yl,GC1)
4450 CALL HCHAR(8,Y2,GC2)
4460 CALL HCHAR(8,Y3,GC3)
4470 CALL VCHAR(20 ,10,32,4)
4480 NEXT II
4490 GOSUB 2110
4500 RETURN
4510 END

100

------ Chapter 3 ------

Choreography
Coordinating computer graphics with music is an art, very
much like the art of stage choreography, which combines
dance movements with music. While a tone is being played
after a CALL SOUND statement, the computer goes on to
execute other statements - calculations, character or color
definitions, or graphics. Because of this feature, it is fun to
make your TI show pictures while a song is being played -
with certain drawings appearing at certain precise times.

Keeping Time
A new CALL SOUND statement will always wait for the
previous sound to finish before it starts playing. Depending on
the duration of each sound, you can insert a number of
graphics statements between the execution of the CALL
SOUND statements. Choreography takes a lot of
experimentation so that you avoid jerky sounds (irregular
silences between two tones) while the graphics keeps up with
the music.

Here is a situation where it is a definite advantage to
designate a duration variable at the beginning of the p~ogram
and then use that variable in the CALL SOUND statements.
This way, if you need to increase the duration slightly, you will
need to change only one statement, not each CALL SOUND
statement. (See "Musical Tempo Demonstration," Program
3-4.)

Be careful in your use of FOR-NEXT loops. Remember that
each statement in the loop is performed again, and you will be
able to hear CALL SOUND statements if they are repeated.
That may be fine for a chorus - but do you also want the
graphics repeated? If a FOR-NEXT loop for graphics is used
between CALL SOUND statements, the duration of the first
statement must be long enough for the whole loop to finish, or
you may have an unwanted break in the music .

Watch Your Memory
Running out of memory may be a problem with graphics
programs because defining characters consumes a lot of
memory. Try to plan your color sets wisely, and use as few
special characters as possible. Use CALL HCHAR and CALL
VCHAR efficiently to draw with as few statements as possible.

101

Chapter 3

DATA statements may be used to preserve memory if the
same process or number sequence is repeated. A note of
warning: sometimes there is a pause before the last iteration of
(or single pass through) a FOR-NEXT loop that reads data
(especially in longer programs). You can often avoid the
problem by adding one more set of "dummy data" and
increasing the loop limit by one. For example, if you are
drawing graphics characters, draw a space where it won't be
noticed, or repeat the last character:

100 CALL CLEAR
110 FOR I=l TO 10
120 READ X,Y,G
130 CALL HCHAR(X,Y,G)
140 NEXT I
150 DATA 12,13,42,12,18,42,20,14,43,18,10,

65,14,12,66
160 DATA 10,8,77,19,15,64,8,18,80,7,10,43,

1,1,32
170 END

With CALL SOUND statements, it is more difficult to avoid
the pause. You may add another set of data with a duration of
one millisecond, a high frequency that cannot be heard, and a
volume of 30 to avoid the pause before the last sound in the
loop, but there will be a pause between the loop and the next
CALL SOUND statement.

In general, it is easier simply to alternate CALL SOUND
and graphics statements than to use DATA statements and
FOR-NEXT loops.

Songs with Pictures
In " Oh! Susanna," several graphics characters are defined first
(lines 110·160) and then the screen is cleared. The tempo is set
with T =400, then CALL SOUND statements are alternated
with graphics statements so that certain pictures appear as the
appropriate words are sung in the familiar song. Some objects
are drawn invisibly by assigning the color set a
transparent foreground and background. Then, at the
appropriate time, another CALL COLOR statement colors the
object the right color.

102

v

'-' Chapter 3

'-'

'-' Program 3·7. "Oh! Susanna"

'-' 100 REM OH I SUSANNA
110 FOR C=104 TO 110

J 120 READ C$
130 CALL CHAR(C,C$)

oJ 140 NEXT C
150 DATA FFFFFFFFFFFFFFFF,00030F1F3F3F7F7F,

-..I 03C7FEECD4AC5EAE, FDFAF5EBD7BFSFBF, 707

oJ
A3D3F1F0F03

160 DATA FEFEFCFCF8F0C,03070E1C3870E0C
170 CALL CLEAR

v 180 T=400
190 CALL CHAR(96 , "FFFFFFFFFFFe~'et"F")

~ 200 CALL SOUND(T /2 ,392,2)
210 CALL CHAR(97,"FFFFFFFFFFFFE7Cl")

'-' 220 CALL SOUND(T / 2,440,2)
v 230 CALL CHAR(98,"80808080C0C0C0C")

240 CALL SOUND(T,494,2,392,5 , 294,8)
v 250 CALL CHAR (99, "C0C0C0E0E0E0E0E")

260 CALL SQUNO(T,587,1,392,5,247,7)
'-' 270 CALL CHAR(100, "F0F0F0F0F0F0F0F")

280 CALL COLOR(9,3,l)
v 290 CALL SQUNO(T,587,2,392,G,196,7)

300 CALL VCHAR(7,5 ,96, S)
oJ 310 CALL VCHAR(12,5,97)

320 CALL VCHAR(l2,6,98)
oJ 330 CALL SQUNO(T,659,2,392,5,262,a)

340 CALL VCHAR(7,6,96,5)
'-' 350 CALL VCHAR(7,7 ,96, 5)

'-'
360 CALL SQUNO(T,587,2,392,5.247,7)
370 CALL VCHAR(9,8,98)

oJ 380 CALL VCHAR(10,8,99)
390 CALL SQUNO(T,494,2,392,5,294,7)

- 400 CALL VCHAR(l1 , 8,100)
410 CALL COLOR(10,l,l)

~ 420 CALL SQUNO(T*1.5,392,2.247,5,196,6)
430 CALL VCHAR(9,12,104,3)

'-' 440 CALL HCHAR(10,ll,104,3)
450 CALL HCHAR(9,l1,105)

v 460 CALL HCHAR(9, 13, UJ6)
470 CALL SOUND(T / 2,440 , 2,262,5)

'-'

-../ 103

'-'

~

Chapter 3 ~

~

480 CALL HCHAR(10,12,107) '-'
490 CALL HCHAR(ll,l1,108)
500 CALL SOUNO(T,494,2,392,5,294,6) ~

510 CALL HCHAR(11,13 ,109)
520 CALL HCHAR(8,l4,110) '-'
530 CALL HCHAR~ 7 , 15 ,110)
540 CALL SOUND T ,494 ,1,392,6) "-
550 CALL COLOR(l0 ,1 5 ,1)
560 CALL HCHAR(6,16,110) ~

570 CALL SOUNO(T,440,2,262,5,196,8)
580 CALL COLOR(11,1,1) '-
590 CALL CHAR(112,"FFFFFFFFFFFFFFFF")
600 CALL SOUNO(T,392,2,247,5,196,8) ~

610 CALL CHAR(113, "7F3FIFIFlFIFl FlF")
'-620 CALL CHAR(114, "lFlFIFIFIFlFIFIF")

630 CALL SOUNO(3*T,440,2,349,5,147,8) '--640 CALL CHAR(115,"lFIF3F3F7F78E0C")
650 CALL CHAR(116,"FFFFFFFFFFIE") ~

660 CALL CHAR(117, "F0F0F8F8FCFCFCIC")
670 CALL CHAR(118, "E0E0E0E0F0F0F0F") ~

680 CALL CHAR(119, "E0E0E0C0C0808")
690 CALL SOUNO(T / 2,392,2)
700 CALL HCHAR(14,15,112,3)
710 CALL SOUNO(T/2,440,2) '-'
720 CALL HCHAR(15,15,l12,3)
730 CALL SQUNO(T,494 , 2,392,6,294,e) '--
740 CALL VCHAR(14,18,l18,2)
750 CALL HCHAR (16, 15 , 113)
760 CALL SOUND(T,587,2,392,6,247,8) v 770 CALL HCHAR(17 , 15 ,114)
780 CALL HCHAR(18 ,15 ,115)

~

790 CALL SOUNO(1.5*T,587,1,392,5,247,9)
800 CALL HCHAR(16,16,l12,2) '-'
810 CALL HCHAR(17,16,112,4}
820 CALL HCHAR(18,16,116,4) v
830 CALL SOUNO(T/2,659,2,392,5,262,8)
840 CALL COLOR(l1,14 ,l) ~

850 CALL SQUNO(T,587,2,392,S,247,7)
860 CALL VCHAR(14,18,118) ~

870 CALL VCHAR(16 ,18,l19)
880 CALL SQUNO(T,494,2,392,6,294,B) '-'

890 CALL VCHAR(17 ,20,118)
'-'

104 ~

v

'"
J Chapter 3

~

'-' 900 CALL VCHAR(18,20 , 117)
910 CALL SOUNO(1.S·T,392 , 2 , 247,S)

'" 920 CALL CHAR(120 , "101038387C7C7C38")
930 CALL COLOR(12,8 , 1)

~ 940 CALL SOUNO(T / 2,440,2)
950 CALL SQUNO(T,494,2,392,6 , 294 , 8)

~ 960 CALL CHAR(128, "FFFFFFFFFFFFFFFF")
970 CALL SOUNO(T,494 , 1 , 392,S,147,8)

'"' 980 CALL CHAR(129, "00030FlF3F3F7F7F") , 990 CALL SQUNO(T,440,2,370,5,262 , 8)
1000 CALL CHAR(130, "00C0F0F8FCFCFEFE")

., 1010 CALL SQUNO(T,440,1,370,6,147,8)
1020 CALL CHAR(131, "7F7F3F3 F1F0F03")

, 1030 CALL SQUNO(3*T,392 , 1 , 247,5 , 196 , 8)
1040 CALL CHAR(132, IIFEFEFCFCF8F'2lC")
1050 CALL COLOR(l3,l,l)
1060 CALL HCHAR(6 , 27,128,3)

"' 1070 CALL VCHAR(S,28,128,3)
1080 CALL SOUNO(T/ 2 , 392,2)

~ 1090 CALL SOU NO(T/ 2,440,2)
1100 CALL SOUNDiT,494,2 , 392,6,294,B) - 1110 CALL HCHAR 6,21,120)
1120 CALL HCHAR(8 , 20,120)

'-" 1130 CALL HCHAR(7 , 22 , 120)

~
1140 CALL SQUNO(T,587,2,392 , 5 , 247 , B)
1150 CALL HCHAR(9,22,120)

~
1160 CALL HCHAR(l0 , 21 , 120)
1170 CALL SQUNO(T,587,1,392,6 , 196 , S)

'-' 1180 CALL HCHAR(S,27 , 129)
1190 CALL SQUNO(T,659,2,392,5 , 262 , 8)

, 1200 CALL HCHAR(S,29 , 130)
1210 CALL SQUNO(T , 587,2 , 392 , 5 , 247 , 8)

~ 1220 CALL HCHAR(7 , 27,131)
1230 CALL SQUNO(T , 494,2 , 392,5 , 294 , 8}

v 1240 CALL HCHAR(7,29,132)
12S0 CALL SOUNO(1 . S·T,392 , 2,247,S,196 , 8)

'-' 1260 CALL SOUNO(T/ 2,440,2 , 262,4)
1270 CALL SQUNO(T , 494,2 , 392,5,294 , 8)

~
1280 CALL SOUNO(T , 494,1,392,4,196 , 8)
1290 CALL SQUNO(T,440,2,271,5,165,8)

~

1300 CALL SQUNO(T , 392,2 , 330 , S,262 , 8)
~

1310 CALL SQUNO(3*T,440,2,370 , 5,294,S)

./ 105

'.../

~

Chapter 3 ~

'-'

1320 CALL SOUNO(T / 2 , 392 , 2) ~

1330 CALL SOUNO(T/ 2 ,440 , 2)
1340 CALL SQUNO(T,494,2,392,5,294,S) '-'

1350 CALL COLOR(13 , 12 , ll
1360 CALL SQUNO(T,587 , 2,392,5 ,24 7 , B)
1370 CALL SQUNO(T , 587,0 , 392,6 , 196 , 8)
1380 CALL SOUNO(T,659 , 2 , 392 , 5 , 262 , 8) ~

1390 CALL SQUNO(T,587 , 2,392,S , 196 , 8)
1400 CALL SOUNO(T,494,2,392 , 5 , 294 , 8) ~

1410 CALL SQUNO(2*T , 392,1 , 2 4 7,4,196,S}
SOUNO(T/ 2,440 , 2 , 131 , 8)

~

1420 CALL
1430 CALL SOUND(T/ 2 ,494 , 2 ,392 , 5)

~

1440 CALL SQUNO(1 . S*T , 494,1,392,4,147,8)
1450 CALL SQUNO(T,440 , 2,370,5 , 262 , B) ~

1460 CALL SQUNO(T ,440,!,370,4, 147,8)
1470 CALL SQUNO(4 *T,392,0,247 , 5 ,1 96 , B) ~

1480 CALL SQUNO(2*T , 523,0 , 330 , 5,262 , B)
1490 PRINT "OH 1 ";
1500 CALL SOUND(2*T,523,l,330,4 , 262 , 7)
1510 PRINT " su" ; ...
1520 CALL SOUND(T,659 ,0, 392 , 5 , 262 , 8)
1530 PRINT "SAN " i '-
1540 CALL SQUNO(2*T,659,1 ,392,4,131 , 7)
1550 PRINT "NA"; '-'

1560 CALL SQUNO(T , 587,1,392 , 5 , 247,7)
~

1570 CALL SQUNO(T,587,0 , 392 ,4,196 , 7)
1580 CALL SQUNO(T ,494,0 , 392,5,294,B)
1590 CALL SOUND(T,392,l,247 , 5 ,196 , 8)
1600 CALL SQUNO(3*T,440,1,370 , 5 , 294 , 8) ~

1610 CALL SOUND(T / 2,392,2)
1620 CALL SOUND(T / 2,440 , 2) '-'
1630 CALL SQUNO(T,494,2,392 , 7 , 294 , 9)
1640 CALL SQUNO(T,587 , 2,392,5,294 , 9) ~

1650 CALL SQUNO(T,587 ,1,392,6,196,8)
1660 CALL SQUNO(T,659, 1,392,5,262 ,8) ~

1670 CALL COLOR(11,9 ,1)
1680 CALL SOUND(T,587,2,392,5,247,9) -./

1690 CALL SOUNO(T,494,2,392,5,294,8)
1700 CALL SOUND(1.5*T,392,2,247\5,196,8)
1710 CALL SOUND(T/ 2 ,440, 2,131,8
1720 CALL SQUNO(T,494,1,392,5,147,a) '-'

1730 CALL COLOR(10,16 ,l)
~

106 '"'
~

------ Chapter 3 ------

1740 CALL SOUND(T,494,0,392,4,294,8)
1750 CALL COLOR(10,15,1)
1760 CALL SOUND(T,440,0,370,5,147,8)
1770 CALL SQUND(T,440,1,370,4,262,B)
1780 CALL SQUND(4*T,392,0,247,5,196,8)
1790 GOTO 1790
1800 END

"Hey, Diddle, Diddle" is such a short song that the graphics
need to come on quickly. So, all the characters are defined at
the start using DATA statements (lines 120w 310). AU the color
sets are set to invisible (lines 320-340).

PRINT statements are faster than CALL HCHAR or CALL
VCHAR, so some of the figures are PRINTed on the screen.
You'll notice the PRINT statements (lines 380-480) print
symbols or lowercase letters. Those characters have actually
been redefined graphically, so that when they are printed on
the screen they are really pictures rather than symbols and
numbers . Again, the pictures are drawn invisibly. Then when
the music comes to the appropriate word, the associated
picture is turned on with a CALL COLOR statement.

Program 3·8. "Hey, Diddle, Diddle"

1~3 REM HEY, DIDDLE, DIDDLE
110 CALL CLEAR
120 FOR I=l TO 6
130 READ A, B
140 FOR C=A TO B
150 READ C$
16e CALL CHAR(C,C$)
17e NEXT C
180 NEXT I
190 DATA 4~,66,FFFFFFFFFFFFFFFF.0000010DIF~

F070F,00008080E0F0F838 ,00000e0021331E
0C,010F3F7FC7870707

200 DATA FFFFFFFFFFFEFEFC,38FCFE6EeC,070707
0F1F3F7FFE,FFFFFFFFFFFEFCF8,FFFFFFFF7
FIF,FFFFFFFFFF8703

210 DATA F8F0F0F0FBFCFEFF,76C707070E0C0B,7F
0706,80E06 "eee000ele3e7eC7C,e00030F0
F0FBF8FC,0000806030383838

107

------- Chapter 3 -------

220 DATA 7F0F000001073F3F,FCFFFFFFFFFFFFBF,
00FFFFFFFFFFFFFFFF,F0E0F0F8F8F8F8F8,3
F,0F01,FEFC,F878FBFB

230 DATA 96,107,0000000070797D7F,000000007C
FEFFFF, 000000001C7CFCF8, 7F3F7FFFFFFBF
IFl,FFFFFFFFFFFBFlFl

240 DATA F0E0F0F0F0F0F0F,001C3E3E3E3F3FIF,F
IFF7F0FIFFFFFFF, BIIFFFIEFFFFFFFF, E7CF
9F3FFFFEFCF8

250 DATA 0F03080C0C1E1F1F,lF0F07,l12,131,FF
FF1F1F3F7F7FFF,FFFFFFFFFFFFFFFF,E0800
0000080E0F

260 DATA F0F8F8F8F8F8F8F8,FFFFFFFFFFFF1F,DF
9F0F0F070701,F8F8F0F0F0F0C"lF3F7FFFF
FFFFFFF ,00 C0 E0F0F8FCFBF8

270 DATA FF7F7F3F3F1808,F8FCFFFFFFFFFFFF,40
40E0F0FBFBFCFE,FFFFFFFF7F3FIF0F,FFFFF
FFFFFFFFFFF,0F0703

280 DATA F7E3C1,80C0E0F0783C1C0F,0703070707
0703,C0E0E0E0C08,136,140,FFFFFFFFFFFF
FFFF,00030F1F3F3F7F7F

290 DATA 00C0F0F8FCFCFEFE,7F7F3F3F1F0F03,FE
FEFCFCF8F0C,144, 148, FFFFFFFFFFFFFFFF,
00030FlF3F3F7F7F

300 DATA 00C0F0F8FCFCFEFE,7F7F3F3F1F0F03,FE
FEFCFCFBF0C,152,155,183C7EFFFFFFFFFF,
FF7E3C1818181818

310 DATA 1818181818181818,10282848448484C3
320 FOR I=2 TO 16
330 CALL COLOR(I ,l,l)
340 NEXT I
350 T=350
360 CALL SCREEN(8)
370 CALL SOUND(T,440,2,175,8)
380 PRINT TAB(l5),")·",TAB(10),".,«(-.··
390 CALL SOUND(T,440,l,131,9)
400 PRINT TAB(1l)," / 0123" , TAB(1l),"4

(3 SPACES)56"::
410 CALL SOUND(T,440,2)
420 PRINT ::::::
430 CALL SOUND(T,440,2,220,5,175,8)

108

-

J

------ Chapter 3 ------

440 PRINT" 'ab":" cde xy{7 SPACES)89 "
450 CALL SOUNO(T,494,2,175,8)
463 PRINT "fghl. Z { : {6 SPACES J ; (==) ": "jpqr

J-[6 SPACESJ?@AB
470 CALL SOUNO(T,523,2)
480 PRINT "kqqs":" t.uv":::
490 CALL SOUNO(T,392,2,131,8)
500 CALL COLOR(9 , 15,1)
510 CALL COLOR(10,15,1)
520 CALL COLOR(11,6,1)
530 CALL SOUNO(T,392 , 1 , 196,8)
540 CALL HCHAR(20,9,127)
550 CALL HCHAR(20,10,12S)
560 CALL SOUNO(T,392,2)
570 CALL HCHAR(20,11,129)
580 CALL HCHAR(21,11,130)
590 CALL SOUNO(T,392,0,233,5,165,8)
600 CALL COLOR(12,10,1)
610 CALL COLOR(13,10,1)
620 CALL , SOUNO(T,349,2 , 233,5,165,8)
630 CALL HCHAR(21,12,131)
640 CALL SOUNO(T,392,2)
650 CALL SQUNO(2*T,440,2,175,8)
660 CALL COLOR(2,14,1)
670 CALL COLOR(3 , 14,1)
6S0 CALL HCHAR(10,14,136,3)
690 CALL VCHAR(9,15,136 , 3)
700 CALL SOUNO(T,440,1)
710 CALL HCHAR(9,14,137)
720 CALL HCHAR(9,16,138)
730 CALL SQUNO(T , 440,2 , 220,8,175,9)
740 CALL HCHAR(11,14,139)
750 CALL SQUNO(T,466,2,220,8,175,9)
760 CALL SOUNO(T,523,2)
770 CALL HCHAR(11,16,140)
780 CALL SOUNO(5*T,392,2,131,8)
790 CALL COLOR(14,16,1)
S00 CALL SOUNO(T,440,2)
810 CALL SOUNO(T,466,2,117,a)
820 CALL SOUNO(T,466,1,233,S)
830 CALL SOUNO(T,466,0)
840 CALL COLOR(4,3,1)

109

'--'

Chapter 3 '-'

'--'

8se CALL COLOR(S,3,l) '-'
86e CALL SQUNO(T,466,1,175,B,294,6)
87e CALL HCHAR(20,25,144,3) ~

88e CALL SOUNO(T,523,1,175,B,294,6)
8ge CALL VCHAR(19,26,144,3) .~

gee CALL SOUND(T,S87,l,17S,8,294,6)
9le CALL HCHAR(19,25,145) '-'
92e CALL SOUND(T*2,523,2,11~,8)
93e CALL HCHAR(19,27,146) ~

94e CALL HCHAR(21,25,147)
9se HCHAR(21,27,148)

~

CALL
96e CALL SOUND(T,44e,2)

'--97e CALL SQUNO(T,349,2,220,6,147,8)
98e CALL HCHAR(22,26,lSS)

'-9ge CALL SQUNO(T,392,2,220,6,147,8)
1eee CALL SOUND(T,44e,2) ~

lela CALL SQUNO(2*T,262,2,233,6,165,B)
le2e CALL COLOR(lS,12,l) '-'
1e3e CALL COLOR(16 ,11,1)
le4e CALL SOUND(T,262,l) ~.

lese CALL SQUNO(T,262,2,233,6,165,8)
1e6e CALL SQUNO(T,294,2,233,6,165,a) '-'
le7e CALL SQUNO(T,330,2)
le8e CALL SQUNO(6*T,349,l,220,8,131,9) ~

lege CALL HCHAR(18,29,lS2)
'--llee CALL HCHAR(19,29,153)

llle CALL VCHAR(20,29,154,2)
112e CALL VCHAR(22,29,lSS)
113e GOTO 113e '--
114e END

-
"We Wish You a Merry Christmas" is an electronic Christmas

~

card - a computerized Christmas message with graphics and
music. First, the picture was drawn on 24-by-32 graph paper.
(See Figure 3-4.) The star and the edges of the Christmas tree

~

are redefined graphics characters. The border is made up of a
~

repeated graphics character which is red and green. At the end
of the song, red foreground and green background will '-'
alternate with green foreground and red background.

To use larger letters for the word "COMPUTE!, " ~

characters needed to be defined. To create the pieces of these

110
~

~

v

v

------ Chapter 3 ------

large letters, the more detailed graph paper with squares
divided up into 8 by 8 grids can be used. The word
"COMPUTE!" was traced from a magazine cover, then the
tracing was approximated with filled-in squares. (See Figure
3-5.)

Since it would take quite a while to define the necessary
twenty characters and place them graphically on the screen,
the characters were assigned to the first twenty lowercase
letters. These characters are defined in DATA statements and a
READ routine in lines 120 to 190 at the beginning of the
program.

The graphic letters are put on the screen very quickly with
a PRINT statement (line 210), first PRINTing "abcdefghij,"
then. directly under those characters, PRINTing
"klmnopqrst." As music is played, "COMPUTE! " scrolls up
the screen as the program PRINTS blank lines below it.

All other graphiCS characters and colors are defined and
drawn on the screen between CALL SOUND statements. At
the end of the piece, the star, the lights on the tree, and the
border all blink as CALL COLOR statements and a GOrO
statement repeat the color definitions.

Program 3·9. "We Wish You A Merry Christmas"

leU!' REM XMAS
110 CALL CLEAR
120 FOR C~97 TO 116
130 READ C$
140 CALL CHAR(C,C$)
150 NEXT C
160 DATA 00001F3F7FF0E0E,000001C3E7EFEE0E,0

000F0F8FCIE0E0E,0000F0F0F8F8FDFD, 0000
7B7BFBFBFBFB

170 DATA 0000FIF9FD9D9DFD,0~00C7C7C7C7C7C7,
00007F7F7F0E0E0E,0000DFDFDFICIFIF,000
0DCDCDCICDCDC

180 DATA E0E0F07F 3FIF,0EEEEFE7C301 , 0E0EIEFC
F8F ,EFEFEFE7E7E7,BBBBBB3B3B3B , F9F1818
1808,C7C7EFFFFE7C

190 DATA 0E0E0E0E0E0E,lF1C1C1F1F1F,DC1C00DC
DCDC

200 T~500

111

------ Chapter 3 -----_

2UJ PRINT "abcdefghij":"klrnnopqrsc":::::
220 CALL SOUNO(T , 330,2)
230 PRINT :::
240 CALL SOUNO(T,440 , 1,277,7,110 , 9)
250 PRINT ::::
260 CALL SOUNO(T/2,440 , 1 , 277 , 7,165 , 9)
270 PRINT ::
283 CALL SOUND(T/ 2,494,1,277,7,165,9)
290 PRINT •.
300 CALL SOUNO(T/2,440,1,277,7,220,9)
310 PRINT :TAB(7);"MER";
320 CALL SOUNO(T/ 2 , 415,1,277,7,220,9)
330 PRINT "RY ":
340 CALL SOUNO(T,370 , 1 , 294,7,147,9)
350 PRINT "CHRIST " ;
360 CALL SQUNO(T , 370 ,1,294, 7,185 , 9)
370 PRINT "MAS":::
380 CALL SQUNO(T , 370,1,294,7 , 220 , 9)
390 CALL CHAR(128, "FFCDB7009063AOFF")
400 CALL SOUNO(T , 494 , 1,294 , 7,123,9)
410 CALL COLOR(13,9,3)
420 CALL SOUNO(T/2 ,494,1,294,7,185,9)
430 CALL HCHAR(1 , 1,128,32)
440 CALL SQUNO(T/ 2,554,1,294,7 , 185,9)
450 CALL VCHAR(2 , l,128,23)
460 CALL SOUNO(T/ 2,494,1 , 294,7 , 247,9)
470 CALL VCHAR(2 , 32,128,23)
480 CALL SOUNO(T/ 2,440,1,294,7,247,9)
490 CALL HCHAR(24,2,128,30)
500 CALL SQUNO(T,41S,1,330,7 , 165 , 9)
510 CALL CHAR(136, "081818FF7C3C6683 ")
520 CALL COLOR(14,12,1)
530 CALL SQUNO{T,330,1,208 , 9)
540 CALL CHAR(48, "1010383B387C7CFE")
550 CALL SOUNO(T , 330 , 1,165,9)
560 CALL COLOR(3,3,1)
570 CALL CHAR(49, "000103070F1F3FFF")
580 CALL SQUNO(T,554,0,330,6,110,9)
590 CALL COLOR(2,16,3)
600 CALL CHAR(50,"FFFFFFFFFFFFFFFF")
6 10 CALL SOUNO(T/ 2,554 , 0,330 , 6 , 165,9)
620 CALL CHAR(51,"00B0C0E0F0F8FCFF")

112

~

v Chapter 3

'--'

~ 630 CALL SOUNO(T/ 2,587,0,330,6,165,9)
640 CALL CHAR(52,"0F0F1F1F3F3F7FFF")

--' 650 CALL SOUNO(T/2,554,0,330 ,6,220,9)
660 CALL CHAR(53,"F0F0F8F8FCFCFEFF")

-- 670 CALL SQUNO(T/2,494,0,330,6,220,9)
680 CALL CHAR(54, "FFFFFFFFFFFEF8C ")

~ 690 CALL SQUNO(T,440,0,294,6,147,8)
700 CALL CHAR(55 ,"FFFFFFFFFF7F1F03 ")

~ 710 CALL HCHAR(2 ,16,136)
720 CALL SQUND{T,370,0,294,6,220,8) - 730 CALL HCHAR(3,16,48)
740 CALL HCHAR(4,lS,49)
750 CALL HCHAR(4,16,42)
760 CALL HCHAR(4 ,1 7,51)
770 CALL SQUNO(T/2,330,1,220,6,139,9)

'--' 780 CALL HCHAR(5,15,52)
790 CALL HCHAR(5,16,50)

J 800 CALL HCHAR(5,17,53)
810 CALL SOUNO(T / 2,330,l,220,6)

~ 820 CALL HCHAR(6,14,49)
830 CALL HCHAR(6,lS,42,)

~ 840 CALL HCHAR(6,16,50)
850 CALL HCHAR(6,18,51)
860 CALL SOUNO(T,370 ,0,294,6,147,8)
870 CALL HCHAR(7,14,52)

'--' 880 CALL HCHAR(7,15,50,3)
890 CALL HCHAR(7,18,53)

'--'
900 CALL HCHAR(8,13,49)
910 CALL SOUNO(T,494,0,294,6 , 185,8)
920 CALL HCHAR(B,14,5e,S)
930 CALL HCHAR(8,19,51)
940 CALL HCHAR(B,16,42)

'--' 950 CALL SQUNO(T,415,1,330,7,247,9)
960 CALL HCHAR(9 ,13,52)

~ 970 CALL HCHAR(9,14,42,S)
980 CALL HCHAR(9,15,50,3) -, 990 CALL HCHAR(9,19,53)
1000 CALL SQUNO(T*2,440,0,277,5,110,8}

~ 1010 CALL HCHAR(10,12,49)
1020 CALL HCHAR(10,13,50,7)

~ 1030 CALL HCHAR(H', 20, 51)

~
1040 CALL HCHAR(11,12,52)

113

'-'

~

Chapter 3 ~

~

1~5~ CALL HCHAR(11,13,5~,7)
~

1~6~ CALL HCHAR(11, 2~, 53)
1~7~ CALL HCHAR(11,17 ,42) J

1~8~ CALL HCHAR(l2 ,11,49)
1~9~ CALL HCHAR(12,12,5~,9) -
11~~ CALL HCHAR(12,21,51)
111~ CALL SOUNO(T,33~,2) ~

112~ CALL HCHAR(12,14,42)
1130 CALL HCHAR(13,11,52) ~

1140 CALL HCHAR(13,12,50,9)
1150 CALL HCHAR(13,21 ,53) J

1160 CALL SQUNO(T,440,2,277,8,110,10)
1170 CALL HCHAR(14,10,49) ~

1180 CALL HCHAR(14,ll,50,ll)
~

1190 CALL HCHAR(14 , 22,51)
1200 CALL HCHAR(l3,12,42) -121~ CALL SOUNO(T / 2 , 440,2,277,8 , 165,10)
1220 CALL HCHAR(15,l~,52) ~

1230 CALL HCHAR(15,ll,50,ll)
1240 CALL HCHAR(15,22,53)
1250 CALL SQUNO(T / 2,494,2,277 , 8,165,10)
1260 CALL HCHAR(16, 9,49) '"
1270 CALL HCHAR(16,l~,50 ,13)
128~ CALL HCHAR(16,23,51) -
129~ CALL SOUNO(T/2,440,2,277 , 8,22~,l~)

~
1300 CALL HCHAR(17,9,52)
1310 CALL HCHAR(17,10,50,13) -1320 CALL HCHAR(17,23,53)
1330 CALL SOUNO(T/ 2,415,2,277,8 , 220,10) J

1340 CALL HCHAR08,8,49)
135~ CALL HCHAR08,9,54)
1360 CALL HCHAR(18,l~,50,14)
1370 CALL SQUNO(T,370,2,294,8,147,10) -1380 CALL HCHAR(18, 24,51)
139~ CALL HCHAR(18,11,54) ~

1400 CALL HCHAR(l8,13 , 54)
1410 CALL HCHAR(18,15,54) ~

1420 CALL HCHAR(18,17,55)
1430 CALL SOUNO(T,370,2,294,8,185,10) -
1440 CALL HCHAR(18,19,55)
1450 CALL HCHAR(18,21,55) -
146~ CALL HCHAR(18 , 23,55) -
11' '--

'-

~

~ Chapter 3

'-'

- 1470 CALL COLOR(15 ,13 ,13)
1480 CALL SQUNO(T,370,2,294,S,220,10)
1490 CALL HCHAR(19,15,144,3)
1500 CALL HCHAR(20,15,144,3)

~ 1510 CALL SOUND(T,494,l,294,7,123,9)
1520 CALL HCHAR(13,16,42)

~ 1530 CALL HCHAR(13,19,42)
1540 CALL HCHAR(15,11, 42)
1550 CALL HCHAR(15,13,42)
1560 CALL HCHAR(lS,18,42)
1570 CALL SOUND(T / 2,494,l,294,7,185,9)

~
1580 CALL HCHAR(15,20,42)
1590 CALL HCHAR(17,10,42)
1600 CALL SOUND(T/ 2,554,l,294,7,185,9)
1610 CALL HCHAR(17,13,42)
1620 CALL HCHAR(17,17,42)
1630 CALL HCHAR(17,20,42)
1640 CALL SOUND(T / 2,494,l,294,7,247,9)
1650 CALL HCHAR(17,22,42)
1660 CALL HCHAR(l6,15,42)
1670 CALL SOUND(T / 2,440,l,294,7,247,9)

'- 1680 CALL COLOR(l4 ,ll,l)
1690 CALL SOUND(T,415,l,330,7,165,9)

~ 1700 CALL IICHAR(l8, 30,82)
1710 CALL IICHAR(19,30,69\3)
1720 CALL IICHAR(20,30,71
1730 CALL SOUND(T,330,2,208,6)
1740 CALL IICHAR(22,30,78)
1750 CALL IICHAR(23,30,65)
1760 CALL SQUNO(T,330,1,165,6)
1770 CALL SQUNO(T,554,0,330,6,110,9)
1780 CALL COLOR(2,14,3)

~ 1790 CALL COLOR(14,12,1)
1800 CALL SOUND(T/ 2,554,0,330,6,165,9)

~ 1810 CALL COLOR(2 ,11, 3)
1820 CALL SOUNO(T/ 2,587,0,330,6,165,9)

~ 1830 CALL COLOR(14,16,l)
1840 CALL SOUND(T / 2,554,0,330,6,220,9)
1850 CALL COLOR(2,10 ,3)
1860 CALL SOUNO(T / 2,494,0,330,6,220,3)

~ 1870 CALL COLOR(14,12,l)
1880 CALL SOUND(T,440,0,294,6,147,9)

~

~ 115

'-'

-
Chapter 3 ~

'-'

lSge CALL COLOR(2,16,3) '--1gee CALL COLOR(l4,11,1)
191e CALL SQUND(T,37e,e,294,6,220,9) -192e CALL COLOR(2,12,3)
193e CALL COLOR(l4,16,1) -194e CALL SOUNO(T / 2,33e,e,22e,6,139,9)
195e CALL COLOR(2,16,3) -196e CALL SOUNO(T/2,33e,3,223,6)
1973 CALL COLOR(l4,12,1) -19S3 CALL SOUNO(T,373,3,294,6,147,9)
1993 CALL HCHAR(23,9,72)
2333 CALL HCHAR(23,13,65)
2313 CALL HCHAR(23,11,S3,2) '-

2323 CALL SOUNO(T,494,0,370,6,123,9)
2333 HCHAR(23,13,S9) ~ CALL
2343 CALL SQUNO(T,41S,0,294,6,165,9) -2353 CALL HCHAR(23,15,7S)
2363 CALL HCHAR(23,16,69) ~

2373 CALL HCHAR(23,17,S71
23S3 CALL SQUNO(4*T,440,0,330,6,139,9) ~

2393 CALL HCHAR(23,19,S9)
2133 CALL HCHAR(23,23,69) '-

2113 CALL HCHAR(23,21,65)
2123 CALL HCHAR(23,22,82) -
2133 CALL HCHAR(23,23,33)
2143 CALL COLOR(14,12,1) '-

2153 CALL COLOR(2,16,3)
2163 CALL COLOR(13,3,9) '-
2173 CALL COLOR(14,16,1)
2lS3 CALL COLOR(2,12,3)
2193 CALL COLOR(13 ,9,3)
2233 GOTO 2143 -
2213 ENO

'-'

~

116

v

v

,

•
• • · •
•
• •

• • •

--.----------

Chapter 3

• ,

•

117

'-

Chapter 3 '-'

'-

'-

~

~

'-'

~

~

~

~

'-

~

'-'

'-'

'-'

-
'-

'-'

-
-
'-

-
-
-

118 -
~

------- Chapter 3

Noises

You can quickly enliven your game or adventure programs
with some " noises, " The CALL SOUND statement isn't
limited to music - it can produce any type of electronic sound
from your computer. Here are a few ideas. But you 'll soon find
that it is more fun to experiment and create your own sounds.

Beeps
You can use the random function to create "beeps." You might
want to use random sounds while you are placing characters
randomly on the screen or as you are drawing lines for a maze.
The following program illustrates random sounds and was
originally written to simulate an old-fashioned computer with
blinking lights and sounds. Each tone has a duration of 100
milliseconds, and the tone may be of a frequency from 880 to
1379.

100 REM RANDOM TONES
110 CALL SOUND(100,SOO*RND+880,2)
120 GOTO 110
130 END

Sirens
Since you have all the frequencies from 110 to 44733 to

\.......t work with, you can try to duplicate any tone you have heard .
Here is an emergency siren:

100 REM EMERGENCY SIREN
110 CALL SOUND(SOO,S63,0)
120 CALL SOUND(SOO,282,0)
130 GOTO 110
140 END

'-J Busy Signal
You may use one, two, or three frequencies and volume in each

J CALL SOUND statement: CALL SOUND (duration,fl,vl, f2,
v2,f3,v3). A very high frequency with a volume of 30 cannot be
heard and will create a gap in your noise or sound program:

100 REM BUSY SIGNAL
110 CALL SOUND(400,233,2,262,2)

119

------ Chapter 3 ------

120 CALL SOUND(10,9999,30)
130 GOTO 110
140 END

Interrupting a Sound
The first number in the list of parameters in the CALL SOUND
statement is the duration, the number of milliseconds you
would like your computer to make the sound. When the
computer comes to a CALL SOUND statement, it starts the
sound and goes on to execute more statements. The sound
continues until the duration time runs out; the next CALL
SOUND statement usually waits for the previous one to finish.
In the "Emergency Siren" program above, the computer plays
a frequency of 563 for 500 mliliseconds, then a frequency of 282
for 500 milliseconds, and then repeats until you CLEAR the
program.

Sometimes, though, you'll want to start a sound as soon as
the computer comes to a CALL SOUND statement, rather than
wait for the previous sound to finish. You can do this by using
a negative number for the duration. CALL SOUNO(-SOO,282,O)
will start a sound, with a frequency of 282, as soon as the
computer comes to the statement, whether the previous sound
is finished or not. The duration will be 500 milliseconds unless
it is interrupted by another statement with a negative duration.

Using the negative duration and a FOR~NEXT loop can
create a variety of sounds. Here is an example of a FOR~NEXT
loop that varies the frequency from 600 to BOO, then another
loop that varies the frequency from 800 back to 600 to produce a
different kind of siren:

199 REM SIREN
119 FOR N=600 TO 800 STEP 10
129 CALL SOUND(-200,N,O)
DO NEXT N
140 FOR N=800 TO 600 STEP -10
150 CALL SOUND(-200,N,O)
169 NEXT N
170 GOTO 110
180 END

120

Chapter 3 -------

In loops like these, the size of the negative duration
number is not really critical because the statement will be
executed immediately and the previous sound has not had time
to finish. You do need to specify a number large enough to give
the computer time to execu te the in-between statements
(otherwise there will be gaps). Here is another kind of siren:

100 REM ALERT SIREN
110 FOR M=440 TO 784 STEP 20
120 CALL SOUND(-99,M,0)
130 NEXT M
140 GOTO 110
150 END

Varying the Volume
.....,I You can get a different effect by using a variable for the volume

and changing it in a FOR-NEXT loop. Here is a doorbell sound:

100 REM DING-DONG
110 FOR V=O TO 16 STEP 2
120 CALL SOUND(-100,659,V,784,V+5)
130 NEXT V
140 FOR V=O TO 16 STEP 2
150 CALL SOUND(-100,523,V,659,V+5)
160 NEXT V
170 END

Making Noises with Negative Frequencies
Besides musical tones, the TI computer has a noise generator.
In the CALL SOUND statement, specify a negative number
from one through eight for the frequency:

CALL SOUND(UJOO,-8,O)
If you'd like to hear how these noises sound, run this program:

199 REM NOISES
119 FOR I=-l TO -8 STEP -1
128 CALL CLEAR
138 CALL SOUND(1888,I,9)
148 CALL SCREEN(-I+2)
158 PRINT 'NOISE NUMBER 'II

121

------- Chapter 3

160 CALL SOUND(1,r,30)
170 NEXT r
180 GOTO ll0
190 END

Notice that in line 110 I used the STEP command to make the
FOR-NEXT loop count downward by ones instead of the normal
upward count, decrementing instead of incrementing.

Crashes and Crunches
For one object hitting another, you may want a rather short
duration:

CALL SOUND(200,-6,O)
For a bomb sound, you may want a longer duration.

100 REM BOMB
110 FOR S=659 to 220 STEP -15
120 CALL SOUND(-200,S,3)
130 NEXT S
140 CALL SOUND(-1000,-6,0)
150 END

Try varying the volume in a FOR-NEXT loop to get different
effects.

100 REM MOTOR 1
110 FOR r=10 TO 1 STEP -1
120 CALL SOUND(-99,-6,r)
130 NEXT r
140 GOTO llO
150 END

The frequency can be varied in a loop.

100 REM MOTOR 2
110 FOR F=-S TO -7 STEP -1
120 CALL SOUND(-99,F,0)
130 NEXT F
140 GOTO llO
150 END

122

J

J

J

J

.J

)

------ Chapter 3 ------

You can also combine a noise w ith a regular " musical"
frequency.

100 REM MOTOR 3
110 FOR I a 10 TO 1 STEP -1
120 CALL SOUND(-99,-6,I,110,I)
130 NEXT I
140 FOR I =l TO 10
150 CALL SOUND(-99,-6,I,110,I)
160 NEXT I
170 GOTO no
180 END

It does not matter what order the noises and frequencies are
listed in, but the volume always goes with the frequency that it
follows:

100 REM OUTER SPACE
110 FOR I=l TO 30
120 CALL SOUND(-99,1800,2,-S,8)
130 CALL SOUND(-99,1500,2,-6,8)
140 NEXT I
150 END

Combine a noise with more than one frequency:

100 REM EXPLOSION
110 FOR L=O TO 16
120 CALL SOUND(-99,-7,L,120,L,131,L)
130 NEXT L
140 END

In one CALL SOUND statement you may specify as many
as three frequencies, and o ne noise and a volume for each
frequency or noise. With eight no ises, 31 volume levels, and
over 44,000 frequencies - and you can choose up to three at a
time - you could spend quite a bit of time experimenting and
trying all the combinations!

A Game to Get You Home
Here is a simple game that illustrates noises and may give you
an idea of how to l,l se them in your own g ames. First, 60 trees

123

------ Chapter 3 ------

are placed randomly on the screen with a random tone for each
tree (lines 400~430). Next, 30 white traps are placed randomly
on the screen with Noise -1 (lines 440-470). You are placed in
the upper left corner of the screen, and you need to use the
arrow keys to go to the opposite corner of the screen to your
home base. Lines 550 and 950 have Noises -6 and -5 to create
noises for each movement of your ship. There is a different
noise when you hit a tree (-7) than when you hit a trap (-8).

How "Find Home" Works
Lines

100-180
190-280
290-300

310-330

340-380
390-430
440-470
480-490
500-540
550-%0

970-1010
1020-1090
1100-1110

Clear screen and print title and instructions.
Define graph ics characters and colors.
Define random number functions for
coordinates.
Wait for the player to read the instructions and
press a key.
Clear the screen; draw the border.
Randomly place 60 trees.
Randomly place 30 traps.
Draw home base.
Initialize variables for the position of the ship.
Move the ship, depending on which arrow key
was pressed. GCHAR determines what
character is in the next square - 120 is the red
home base, 128 is a trap, 32 is a blank space, 104
is a tree, and 112 is a border.
Procedure if a white trap is hit .
Procedure if the ship reaches home base.
Clear screen and end.

Program 3-10. Find Home

1121121 CALL CLEA.R
110 CALL CHAR(64, "3C4299A1A1994237")
120 PRINT "! 3 SPACES}"'" FIND HOME
13121 PRINT ::: "YOU ARE IN A FOREST."
140 PRINT : "USE THE ARROW KEYS TO"
150 PRINT : "GO AS FAST AS YOU CAN"
16121 PRINT : "TO YOUR RED HOM~ BASE . "
170 PRINT :: "BEWARE OF WHITE TRAPS 1"

124

'-

------ Chapter 3 ------

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590

PRINT ;;
CALL CHAR(96,"815A3C66663C5AB1")
CALL COLOR(9 ,7,1)
CALL CHAR(104,"101038107C10FE1")
CALL COLOR(10,3,1)
CALL COLOR(11 ,5, S)
CALL COLOR(12,9,9)
CALL CHAR(128, "1038387C7CFEFEFF")
CALL COLOR(13,16,1)
CALL CHAR(136, "FF81BOA5A5B081FF")
CALL COLOR(14 , 7,16)
OEF R22=INT(RNO*22)+2
OEF R30=INT(RNO*30)+2
PRINT I,: "PRESS ANY KEY TO START."
CALL KEY(e , K,s)
IF 5<1 THEN 320
CALL CLEAR
CALL HCHAR(l,l,112,32)
CALL VCHAR(2,32,112,23)
CALL HCHAR(24 , 1,112 ,31)
CALL VCHAR(2 ,1,11 2,22)
RANOOMIZE
FOR 1=1 TO 60
CALL 50UNO(-50,INT(RNO*500)+B00,4)
CALL HCHAR(R22,R30 ,104)
NEXT I
FOR 1=1 TO 30
CALL 50UNO(-50,-1,2)
CALL HCHAR(R22,R30,128)
NEXT I
CALL VCHAR(21,31,120,3)
CALL VCHAR(21,32,120,3)
X-2
Y=2
T-0
Dx=e
DY=0i
CALL 50UND(-200,-6,1)
CALL HCHAR(X,Y\96)
CALL KEY(1,K,5
T=T+l
IF 5=0 THEN 950

125

'-

Chapter 3 '-

'-'

6ee IF K>5 THEN 95e '-' 610 ON K+l GOTO 830,950,860,890,950,920
620 IF X+DX<24 THEN 650 '" 630 Dx=e
640 GOTO 670 '-
650 IF X+DX>l THEN 670
660 Dx=e '-
670 IF Y+DY<32 THEN 7ee
68e DY.,.0 '-'
6ge GOTO 72e
700 IF Y+DY>l THEN 720 '-'

7le Dy::z0
72e CALL GCHAR(X+DX,Y+DY,CC)
73e IF CC~120 THEN 1020
740 IF CC=128 THEN 970 '-'

750 IF CC=32 THEN 790
~

760 CALL SOUND(100,-7,0)
770 CALL HCHAR(X,Y,32) ~

78e GOTO 550
790 CALL HCHAR(X,Y,32) ~

80e X=-X+DX
810 Y"'¥+DY '-
820 GOTO 550
830 DX=l
84e DY=0
850 GOTO 620 ,
860 DY=-l
870 OX""'"

~

880 GOTO 620
"-890 DY=l

900 OX"'" '-910 GOTO 620
920 DX=-l ~

930 DY=0
940 GOTO 620 ~

950 CALL SOUND(-200 ,-5,1)
96e GOTO 620 '-'
970 CALL SOUNO(S"",-8,0,131,0)
980 CALL HCHAR(X, Y, 32) ,
990 CALL HCHAR(X+DX,Y+DY,136)
1000 PRINT "SORRY, GOT CAUGHT I " -
le10 GOTQ 1060 -
126

"
"

------- Chapter 3

1020 CALL HCHAR(X,Y,32)
1030 CALL HCHAR(X+DX , Y+DY,96)
1040 CALL SOUND(1000, - 1 , 0)
1050 PRINT "CONGRATULATIONS I TIME-",T
1060 PRINT. "TRY AGAIN? (y IN) ",
1070 CALL KEY(0,K,S)
1080 IF K=89 THEN 340
1090 IF K<>78 THEN 1070
1100 CALL CLEAR
1110 END

Speech

To hear speech on the TJ-99/4A, you will need a module
that has speech built in and the TI SpeeCh Synthesizer, a small
box that attaches to the right side of the computer.

You also need a module to p rogra m your own speech . At
this writing, there are three modules available. Speech Editor
was the first module designed to be used with the Speech
Synthesizer. Speech Editor has about 400 letters, numbers,
words, and phrases that can be used with the CALL SAY and
CALL SPGET commands.

T1 Extended BASIC is another module that allows the use of
speech in your own programming. It has the same vocabula ry
as Speech Editor and is designed so you can use speech at the
same time you use the features of Extended BASIC.

The most versatile command mod ule for speech
capabilities is Temlinal Emulator 1I. This mod ule is also used ,
with an RS-232 Interface and a telephone modem, to make
your com puter act as a terminal to another computer or a large
data base . The advantage of Tennina/ Emulator 1I is that there is
unlimited speech - you are not restricted to certain words. You
can use allophone numbers to crea te speech, or you may print
words for the computer to speak pho ne tically. The module
comes with an instruction manual.

Programs in this part o f the book require Tenninal Emlliator
1I and the TI Speech Synthesizer. To program with speech,
turn the mo nitor or televis io n on, turn the compu ter on, and
then plug in the Tenninal Emulator 1I command module . Press 1
for TI BASIC.

127

------ Chapter 3 ------

OPEN and PRINT
To use speech in a program, you will need to OPEN the speech
device. You may use any number. The statement is:

110 OPEN HL"SPEECH",OUTPUT

Once speech has been OPENed, whenever you want the
computer to speak simply use the command PRINT ' I
Remember to CLOSE speech when you're through w ith it.

Here is a little program for you to try. You may type in any,
word or phrase; then the computer will speak it. Notice that
the computer pronounces phonetically, according to a few,
standard rules, and our spoken language does not always
follow those rules. v

100 CALL CLEAR
110 OPEN f1 : "SPEECH",OUTPUT
120 PRINT :::"TYPE A WORD OR PHRASE."::
130 INPUT A$
140 PRINT tl :A$
150 GOTO 120
160 END

To illustrate that the computer can say anything, try this
language demonstration (Program 3-11). Notice that in lines
360-420 the words are spelled phonetically. Your programs
involving speech will take some experimentation for the words
to sound right.

Program 3-11. Language Demonstration

133 REM(3 SPACES}LANGUAGES DEMO
110 OPEN '1: "SPEECH" ,OUTPUT
123 CALL CLEAR
130 CALL CHAR(128, "083818FF7E346681")
143 CALL COLOR(13,16,6)
153 PRINT TAB(5);"LANGUAGES DEMO"
163 PRINT :::TAB(5);"CHOOSE"
17e PRINT :TAB(7)r"1 ENGLISH"
180 PRINT ,TAB(7); "2 FRENCH"
193 PRINT :TAB(7);"3 SPANISH"
20e PRINT : TAB(7)~"4 GERMAN"
21e PRINT tTAB(7)r"5 JAPANESE"

128

v

v

------ Chapter 3 ------

220 PRINT :TAB(7),"6 END PROGRAM"::::
230 CALL HCHAR(2,2,128,30)
240 CALL VCHAR(3,2,128,22)
250 CALL VCHAR(3,3l,128,22)
260 CALL HCHAR(24,2,128,30)
270 CALL SOUND(150,1397,4)
280 CALL KEY(0,K,S)
290 IF (K<49)+(K>54)THEN 280
300 CALL HCHAR(2*(K-48)+8,7,62)
310 ON K-48 GOSUB 340,360,380,400,420,440
320 CALL VCHAR(10,7,32,10)
330 GOTO 270
340 PRINT 11:""1 2 3 4 5 6 7 8 9 TEN"
350 RETURN
360 PRINT tl:" "UN DU TWA KATR SAYNK CEES SE

TWEET NUF DEES"
370 RETURN
380 PRINT tl,""OONO DOSE TRACE QUATRO SEENQ

o SASE SEE ETA 0 CHO NUEVA DEE s"
390 RETURN
400 PRINT U:" "EYENS TSWIE DRY FEAR FOONF S

EeHS ZEEBEN AUKT NOYN TSAYN"
410 RETURN
420 PRINT tl:" "EECHEE NEE SAWN SHE GO HEECH

EE HAWCHEE HRO KU KOO JOO"
430 RETURN
440 CALL CLEAR
450 END

Speech Separators
Speech separator symbols may be used to create pauses and
some inflections in the voice. You may use a space between
words or letters for a slight pause. Other separating symbols
are the comma, the semicolon, the colon, the period, the
exclamation point, and the question mark.

Listen to the differences in the following program.

v 100 REI! SEPARATORS
110 CALL CLEAR

" 120 OPEN f1:"SPEECH",OUTPUT
130 PRINT "SPEECH WITH SEPARATORS"::

v
v 129

------ Chapter 3 ------

140 FOR 1=1 TO 7
150 READ A$
160 PRINT : :A$
170 PRINT 11 :A$
180 NEXT I
190 DATA HELLO LEWIS THIS IS A TEST
200 DATA "HELLO LEWIS, THIS IS A TEST,"
210 DATA "HELLO LEWIS, THIS IS A TEST;"
220 DATA "HELLO LEWIS: THIS IS A TEST:"
230 DATA "HELLO LEWIS . THIS IS A TEST."
240 DATA "HELLO LEWISJ THIS IS A TEST 1"
250 DATA "HELLO LEWIS? THIS IS A TEST?"
260 END

Inflections
You may also change inflection with a stress mark. The caret
(/\) is used to indicate a primary stress point, and you may use
only one such mark per line. The underline symbol (_) is used
to indicate a secondary stress point. The greater.than sign (>)
is used to shift stress pOints within a word.

This demonstration program shows what happens when
you put the primary stress point in different places in a
sentence.

100 REM STRESS POINT
11 0 CALL CLEAR
120 OPEN .1 : "SPEECH",OUTPUT
130 PRINT "SPEECH WITH PRIMARY STRESS"
140 FOR 1=1 TO 5
150 READ A$
160 PRINT :: A$
170 PRINT 11:A$
18e NEXT I
190 DATA "HEAR THIS STRESS POINT"
2ee DATA " ' HEAR THIS STRESS POINT"
210 DATA "HEAR 'THIS STRESS POINT"
220 DATA "HEAR THIS ~STRESS POINT"
23e DATA "HEAR THIS STRESS 'POINT"
24e END

130

v

v

v

v

------ Chapter 3 ----- -

Two more parameters which you may specify to vary the
voice are the pitch period and the slope lroe1. The form is the
string " I/xx yyy" where xx is the pitch period and yyy is the
slope level indication. The space between xx and yyy is
required.

The pitch should be a number from 0 through 63, and the
slope level should be a number from 0 through 255. The
manual recommends that the best results occur when the slope
is 32 times 10% of the pitch. If you do not specify pitch and
slope, the default values are 43 and 128. With a little
experimentation, you can make the computer voice do just
what you want it to do.

Ta give you an idea of how the pitch and slope level
numbers change the sound of the voice, here are some
demonstration programs. The first program varies the pitch
from 0 to 63 and sets the slope level at the recommended ratio.

100 REM PITCH , SLOPE 1
11 0 CALL CLEAR
120 OPEN . 1 : "SPEECH " , OUTPUT
130 FOR P=O TO 63
140 S=INT (3. 2*P+.5)
150 B$="// "'STR$(P) '" "'STR$(S)
160 PRINT B$
170 PRINT fl : B$
180 PRINT ' 1: "NOW HEAR THIS."
190 NEXT P
200 END

The second demonstration program varies the pitch and
the slope. You will notice that in some combinations of pitch
and slope the speech is garbled.

100 REM PITCH , SLOPE 2
11 0 CALL CLEAR
120 OPEN 'l : "SPEECH" ,OUTPUT
130 FOR S=O TO 255
140 FOR P=O TO 63
150 B$ ="//" 'STR$(P) '" "' STR$(S)
160 PRINT B$
170 PRINT fl:B$

131

------ Chapter 3 ------

180 PRINT tl,"NOW HEAR THIS."
190 NEXT P
200 NEXT S
210 END

The third demonstration program varies the slope for
different pitches. Since there are 255 variations for the slope
level, I incre ment the s lope level by 20 instead of 1. If you want
to get to the next pitch level w ithout going through all the s lope
levels, press any key.

100 REM PITCH & SLOPE 3
11 0 CALL CLEAR
120 OPEN tl,"SPEECH",OUTPUT
130 FOR P=O TO 63
140 FOR S=O TO 255 STEP 20
150 B$="// "&STR$(P)&" "&STR$(S)
160 PRINT B$
170 PRINT n,B$
180 PRINT tl,"NOW HEAR THIS . "
190 CALL KEY(O,K,ST)
200 IF ST <) O THEN 220
210 NEXT S
220 NEXT P
230 END

The fourth demonstration program on pitch and s lope '-"
allows you to enter values for the pitch and the s lope. The
computer will the n say the phrase "Hear this test" using the ''''
values you have entered. To stop the program, press CLEAR.

100 REM PITCH & SLOPE 4
110 CALL CLEAR
120 OPEN tl,"SPEECH",OUTPUT
130 PRINT "SPEECH WITH PITCH AND SLOPE"
140 PRINT ,"PITCH MAY BE FROM 0 TO 63."
150 PRINT ,"SLOPE MAY BE FROM 0 TO 255."
160 PRINT ,"BEST RATIO, SLOPE=3.2*PITCH"" ,
170 INPUT "PITCH = R,P
180 IF (P) =O)+(P <=63)=-2 THEN 210
190 PRINT , "SORRY. 0<P<63""

132

------- Chapter 3

200 GOTO 170
210 INPUT ·SLOPE = ·,s
220 IF (5) =0)+(5 <=255)=-2 THEN 250
230 PRINT : "SORRY. 0<5 <255" : :
240 GOTO 210
250 B$="//"&STR$(P)&" "&STR$(S)
260 PRINT ::B$::::
270 PRINT tl: B$
280 PRINT '1: "HEAR THIS TEST."
290 GOTO 170
300 END

You can probably think of all sorts of uses for speech in
'-I your programs - everything from comments in games to

teaching foreign languages.

J

v

v

Spelling Practice
It seems that one of the standards in education is weekly
spelling tests. This program lets you set up the week's words
and save the program on cassette. Any time during the week,
students can load the tape and practice at their own pace.

The words are chosen in a random order from the original
list. A word is spoken. If you want to hear the word again,
press ENTER.

When you're ready, type in the word. If it is correct, a star
appears and the word won't appear again . If the spelling is
wrong, you get one more chance to try. If it is spelled
incorrectly the second time, the correct word appears and you
are given time to review it. That word will then be used again,
later in the list.

A sample list of words is given in this program. To use your
own word list, start at line 810 DATA. First type the word
correctly spelled, then a comma, then type the word spelled
phonetically. Continue through the spelling list, separating
each pair of items with a comma. Be sure the last two entries
are@,@tosignifytheend ofthedata. If you have more than 20
words, change the DIM statement in line 110.

Be sure to experiment to make sure the words sound right
as spoken by the computer. You may want to add your own
graphics to make this program more interesting for your
student.

133

------ Chapter 3 ------

Program 3·12. Spelling Practice

lee REM SPELLING
lle DIM W$(2e),S$(2e)
12" OPEN tl;"SPEECH",OUTPUT
13" CALL CLEAR
l4e CALL CHAR(64, "3C4299A1A199423C")
lse CALL COLOR(2,14,16)
160 PRINT h{3 SPACES}···_··_-_······.·_···"

:OI{) SPACES}*";TAB(24);"*":"{3 SPACES}
SPELLING PRACTICE.II

170 PRINT OI{3 SPACES}*";TAS(24);"*","
{3 SPACES}---*--------**-----*-":::::::
: : : :

lse CALL CHAR(12S, "elelelele3e3FF3F")
1ge CALL CHAR(129,"eeeesececeE0FFFC")
200 CALL CHAR(130, "eFe7eFeFlE1C302")
210 CALL CHAR(131, "FeFeFB7B3Blcece4")
22e CALL COLOR(13,12,l)
23e I~l
24e RESTORE
2S0 READ W$(I),S$(I)
26e IF W$(I)~"@" THEN 31e
27e CALL COLOR(2,16,14)
2B0 I~I+l
290 CALL COLOR(2,14,16)
3ee GOTO 2se
310 N~I-l
32e CALL CLEAR
33e CALL COLOR(2,2,l)
34e CALL SCREEN(12)
3se PRINT "PRACTICE YOUR SPELLING I " ••• "YOU

WILL HEAR A WORD.": : "TYPE THE WORD"::
"THEN PRESS <ENTER>."

360' PRINT ,:, "IF YOU WANT TO HEAR THE";: "wa
RD AGAIN, JUST",; "PRESS <ENTER>."

37e PRINT •• I I "PRESS ANY KEY TO START." I I

3se CALL KEY(e,K,S)
3ge IF s-e THEN 3B0
4ee CALL CLEAR
41e CALL SCREEN(S)
42e FOR 1-1 TO N

134

v

v

v

v

------ Chapter 3 ------

430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680

690
700
710
720
730
740
750
760
770
780
790
800
810

T~0

RANDOMIZE
R~INT(N*RND)+l
IF W$(R)-"" THEN 450
CALL CLEAR
PRINT tl.S$(R)
CALL SOUND(150,1397,2)
INPUT X$
IF X$-"" THEN 470
IF X$-W$(R!THEN 640
CALL SOUND 100,330,2)
CALL SOUND(100,262,2)
T-T+l
IF T-2 THEN 600
PRINT tl," '"'TRY AGAIN."
PRINT tl,""'SPELL",S$(RJ
GOTO 490
PRINT ::" "1W$(R)
PRINT I I "PRESS ANY KEY TO CONTINUE."
CALL KEY(0,K,S)
IF S-l THEN 430 ELSE 620
CALL SOUND(100,262,2)
CALL SOUND(100,330,2)
CALL SOUND(100,392,2)
CALL SOUND(300,523,2)
PRINT TAB(15),CHR$(128),CHR$(129).TAB(1
5),CHR$(130),CHR$(131),: ••
W$(R)::>:""
NEXT I
CALL CLEAR
PRINT "WANT TO TRY AGAIN? (y i N)"::
CALL KEY(0,K,S)
IF K=78 THEN 780
IF K<>89 THEN 730
CALL CLEAR
GOTO 230
CALL CLEAR
CLOSE H
STOP
DATA ALWAYS,AALWAYS.,DADDY,ADADDY.,OFF,
"'OFF.,SISTER,"'SISTER.,LETTER,ALETTER.
,START,"'START.,HAPPY,AHAPPY.

135

------ Chapter 3 ------ v

820 DATA RING, "RING. ,WASH, "WASH. ,FALL, "FALL '--'
.,SLEEP,~SLEEP.,ONCE,~ONCE.,SADLy,ASA
DLY. , DRESS, ADRESS.

83e DATA SET,"'SET.,ROUND,AROUND.,@,@
840 END '-'

Using the Speech Synthesizer with Non-readers
"Colors" is a program designed to teach a two-year-old the
names of the colors. It could also be used to teach beginning
readers how to read the color names in lowercase letters.

In a random order, a color name appears on the screen.
After a short delay, the color itself appears and the computer
says the color name. If you would like a longer delay (for
example, for someone practicing reading), put a larger number
in place of 300 in line 540.

After the color appears, the user may press ENTER for
another color or E to end the program.

How "Colors" Works
Lines

110·120
130·170
180·200
210·280

290·380
390
400
410
420·470
480·510
520

530
540·550
560·580
590
600·620

136

Clear screen, select cyan as screen color.
DATA to define characters for lowercase letters.
Print title screen.
Define blocks of solid colors for the first two
character numbers in each of sets 13 through 16.
Draw color bars on title screen.
Print instructions.
OPEN the speech device.
Randomize choices.
Define characters for letters; branch.
Choose a color.
Read character number; three lines to PRINT in
order to spell the color name in big lowercase
letters; and the phonetic pronunciation.
Print the color name.
Delay before drawing color.
Draw block of color.
Say color name.
Wait for user to press a key. If E is pressed, the
program ends; if ENTER is pressed, the program
branches back to choose another color; any other
key is ignored.

'-/

v Chapter 3

v

v 630-860 RESTORE the appropriate DATA for the color
chosen.

V 870-890 Clear screen, CLOSE speech device, and end

V
program.

v Program 3·13. Colors

'-' 100 REM[4 SPACES}COLORS
110 CALL CLEAR

~ 120 CALL SCREEN(8)
130 DATA 0,3D4381818181433D,BCC281818181C2B

V C,3C4280808080423C,3000010101010101,3
C4281FF8080423C ,18242220202020F8

'-/ 140 DATA 0101010131221C,000080808080808,000
00008,0808080808887,8890A0C0A0808884,

J 0808080808080808
150 DATA 3C84020202020202,BCC2818181818181,

'-' 3C4281818181423C,80808080808,01010101
0101,BCC281808080808

~ 160 DATA 3C42403C0202423C,0000080808087F08,

~
818181818181433D,4141222214140808,040
488885050202,8244281028448282

v 170 DATA 10102020404,7F0204081020407F,20202
0202020202

'-' 180 PRINT TAB(le),"C 0 LOR SOl::::
190 CALL CHAR(64 , "3C4299A1A199423C")

'--' 200 PRINT
210 FOR C=128 TO 152 STEP 8

J 220 CALL CHAR(C, "0 10
)

230 CALL CHAR(C+l,"FFFFFFFFFFFFFFFF")
'-' 240 NEXT C

250 CALL COLOR(13,7,12)
260 CALL COLOR(14,6,4)
270 CALL COLOR(15,14,16)

v 280 CALL COLOR(16,2,15)

J 290 C=128
300 FOR D=5 TO 23 STEP 6

v 310 CALL VCHAR(8,D,C,6)
320 CALL VCHAR(8 , D+l, C, 6)

V 330 CALL VCHAR(8,D+2,C,6)
340 CALL VCHAR(8,D+3,C+l,6)

'-'

'--' 137

V

------ Chapter 3 ------

353 CALL VCHAR(8,D+4,C+1,6)
360 CALL VCHAR(8,D+S , C+l,6)
373 C~C+8
380 NEXT D
390 PRINT ;:: II AFTER EACH SCREEN,":: "PRESS <

ENTER> TO CONTINUE":: "PRESS <E> TO EN
o PROGRAM." i

400i OPEN il:"SPEECH",OUTPUT
413 RANDOMI ZE
420 FOR C~96 TO 123
430 READ C$
440 CALL CHAR(C,C$)
450 CALL SOUND(-150,INT(RND*1000)+200,4)
460 NEXT C
470 GOTO 600
483 RANDOMIZE
490 C~INT(RND*8)+1
500 CALL CLEAR
510 ON C GOSUB 630,660,690,720,750,780 , 810,

840
520 READ D,A$, B$,C$,D$
530 PRINT TAB(9);A$:TAB(9);B$:TAB(9);C$
540 FOR T~l TO 300
550 NEXT T
560 FOR I~B TO 13
570 CALL HCHAR(I,10,D,13)
580 NEXT I
590 PRINT U: D$
600 CALL KEY(0 , K, S)
610 IF K~69 THEN 870
620 IF K~13 THEN 490 ELSE 600
630 RESTORE 640
640 DATA 129,""'d,'r'e'a"A RED
650 RETURN
660 RESTORE 670
670 DATA 128, ""1'1 ,v 'e'1'1'o'vw ,y,·YELLO
680 RETURN
690 RESTORE 730
700 DATA 136"a'r'e'e'n , g , AGREEN
713 RETURN
720 RESTORE 730
730 DATA 137 , h'1,b'1'u'e"A BLUE

138

v

v

------ Chapter 3 ------

74e RETURN
7se RESTORE 76e
76~ DATA 144,"'h'i't,vw'n'1'1'e"AWHITE
77e RETURN
7Be RESTORE 7ge
7ge DATA 145, """"l,b'u'r'b'l'e,p""'p,

·PURPL
Bee RETURN
Ble RESTORE B2e
820 DATA 153,h'1""'h,b'1'a'c'k"ABLACK
B3e RETURN
B4e RESTORE Bse
sse DATA 152"a'r'a'v,g""'y,AGRAy
B6e RETURN
B7e CALL CLEI\R
BBe CLOSE tl
Bge END

Teaching a Foreign Language
Here is a program to teach ten basic German words. The same
logic may be used to teach different words or even a different
language.

As pictures are drawn, the German word is spoken. After
the ten words are presented, there is a quiz in which a German
word is spoken and a question mark appears on one of the
pictures.

If the question mark is on the correct picture, press ENTER.
If you want to move the question mark, press the space bar

and the question mark will move to a different picture.
The words are chosen in a random order. You must get the

picture correct to continue the quiz. If you get the picture
correct with the first response, that word will not reappear;
however, if the word has been missed at least once, the word
will reappear before the end of the quiz.

Program 3·14. German

lle REM GERMl\N
l2e OPEN U: "SPEECH" ,OUTPUT
l3e CALL CLEI\R
l4e PRINT TAB(8),"G E R M 1\ N"

139

------- Chapter 3 -------

150 PRINT ::: "FIRST YOU WILL BE TOLD II : : "TEN
GERMAN WORDS."

160 PRINT ::"NEXT THERE WILL BE A QUIZ."
170 PRINT : "LISTEN TO THE GERMAN WORD."
1 80 PRINT :"PRESS <ENTER> IF '] ' IS"
190 PRINT : "ON THE RIGHT PICTURE."
200 PRINT : "PRESS THE SPACE BAR TO MOVE"::"

THE QUESTION MARK."
210 PRINT :: "PRESS ANY KEY TO START.";
220 CALL KEY(0,K,S)
230 IF S<l THEN 220
240 CALL CLEAR
250 FOR I=2 TO 10
260 READ S$(I),X(I),Y(I)
270 T$(I)=S$(I)
280 J=8*(I+3)
290 CALL CHAR(J, "FFFFFFFFFFFFFFFF")
300 READ N
310 FOR C=J+l TO J +N
320 READ c$
330 CALL CHAR(C,C$)
340 NEXT C
350 READ F
360 CALL COLOR(I ,F, 8)
370 NEXT I
380 DATA DOS AHOUSE,21,10,2,0103070FIF3F7F

FF,80C0E0F0F8FCFEFF,9, D A TEUR ,20,14,
O,4, DOS ApENSTER,18 ,1 8 ,0,14

390 DATA-_ DOS AOOGHC,11,13,2,0103070FIF3F7F
FF,80C0E0F0F8FCFEFF,11

400 DATA D ASHORNSTINE,12,17 ,1,FF7F3FIF0F0
70301-;-2

410 DATA DARE A ROZN ,23,26,1,8088ABECEEFEFE
FF,3 -

420 DATA D AVO KA,4,6,4,0307~F0FIF7FFFFF,7
F3F~701,FFFFFFFFFF7F3F1F,FFFCF8F8F0E0
C0C,16

430 DATA D ·ZO NA,3,30,4,7F7F7F7F3F3F3F1F.
1F0F0F07070301,7F3F1F0701,FFFFFFFFFF7
FeF,12

440 DATA D AROUHC,7,17,2,1018183838383C3C,
3C3C3E7E7E7E7E7E,15

140

v

v Chapter 3

v
'-. 45e CALL CHAR(112, " FFFEFCF8FeEeCe8 ")

46e CALL CHAR(113 , "FF7F3F1F"Fe703e1") v 47e CALL COLOR(11,l l , 9)
48e CALL COLOR(6,~,ll) v 4ge S$ (l)="_DARE HIMMEL"

v s e e T$(l)~S$(l)
510 X(1)=9

..; 520 Y(1)~22
53e CALL COLOR(l,l,8)

..) 540 PRINT #1 : S$ (1)
550 GOSUB 15ge

) 560 R=16
57e FOR C=8 TO 13

~ 580 CALL HCHAR(R,C,41)
5ge CALL VCHAR(R+l,C , 40,C)

~ 600 R=R- 1
61e NEXT C

..I 62e R=ll
630 FOR C=14 TO 19
640 CALL HCHAR(R,C , 42)
650 CALL VCHAR(R+1 , C, 40,24- R)
66e R=R+l
670 NEXT C

~ 680 PRINT U:S$(2)

-'
6ge GOSUB 1590
700 CALL VCHAR(18,13,48 , 7)

'--' 710 CALL VCHAR(18,14,48,7)
72" CALL VCHAR(18,lS,48,7)

..I 73" PRINT n : S$ (3)
74e GOSUB 1590 - 75e CALL VCHAR(18,10,56,2)
76e CALL VCHAR(lB,ll , 56,2)

~ 770 CALL VCHAR(lB,17 , 56,2)
780 CALL VCHAR(18,18 , 56,2)

J 790 PRINT #1:S$(4)
8ee GOSUB 15ge v 810 FOR C=7 TO 12
820 CALL HCHAR(R,C,65) ,
83e CALL HCHAR(R,C+1,l12)
840 R=R- 1
85e NEXT C

J

- 141

'-'

v

Chapter 3 v

'-'

S60 CALL HCHAR(11,13,6S) ~.

S70 CALL HCHAR(11,14,66)
SS0 R=12 '-'
S90 FOR C=14 TO 19
900 CALL HCHAR(R,C,113) '-'
910 CALL HCHAR(R,C+l,66)
920 R=R+l '-'
930 NEXT C
940 PRINT #1:s$(S) ~

950 GOSUB 1590
960 CALL VCHAR(11,17,72,3) ~

97e CALL VCHAR(14,17,73)
'-" 9Se PRINT U,S$(6)

9ge GOSUB lSge v
leee CALL HCHAR(23,l,Sl,32)
1010 CALL HCHAR(24,1,80,32)

~

le2e PRINT 11,S$(7)
le30 GOSUB lS90,
le4e CALL HCHAR(4,3,S9)
lese CALL HCHAR(4,4,SS,6) '-'
106e CALL HCHAR(4,le,92)
le70 CALL HCHAR(S,3,90) ~

10S0 CALL HCHAR(S,4,9l)
1090 CALL HCHAR(S,5,88,4) '-'
1100 CALL HCHAR(S,9,92)
1110 PRINT tl:S$(S) ~

1120 GOSUB 1590
1130 CALL HCHAR(l,29,9 6 ,4) ~

1140 CALL HCHAR(2,29,97)
HCHAR(2,30,96,3)

~

1150 CALL
1160 CALL HCHAR(3,29,9S)
1170 CALL HCHAR(3,30,96,3)
l1S0 CALL HCHAR(4,30,99) ~

1190 CALL HCHAR(4,31,10e)
1200 CALL HCHAR(4,32,96) ~

l2l0 PRINT H:S$(9)
1220 GOSUB 1593 '-'

1230 CALL VCHAR(7,17,106,4)
1240 CALL VCHAR(6,17,10S) '-'

1250 PRINT #l , s$(l0)
1260 GOSUB lS90 ~

1270 FOR 1=1 TO 10
'-'

142 '-'

'-.I

------ Chapter 3 -----_

1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690

T2 0
RANDOMIZE
R=INT(RNO *10+l)
IF S$(R)="" THEN 1300
FOR J=1 TO 10
PRINT H:S$(R)
CALL GCHAR(X(J) ,Y(J),C)
CALL KEY(0,K ,S)
CALL HCHAR(X(J) ,Y(J),63-)
CALL HCHAR(X(J),Y(J),C)
IF K=13 THEN 1420
IF K<>32 THEN 1350
NEXT J
GOTO 1320
IF J=R THEN 1480
CALL SOUND(150,330,2)
CALL SOUNO(150,262,2)
T=l
CALL SOUNO(l,9999,30)
GOTO 1330
CALL SOUNO(150,262,2)
CALL SOUND(150,330,2)
CALL SOUND(150,392,2)
CALL SOUND(300,523,2)
IF T=0 THEN 1550
I:::cI-l
GOTO 1560
S$(R)=""
CALL SOUND(l ,9999,30)
NEXT I
GOTO 1620
FOR D=l TO 500
NEXT D
RETURN
CALL CLEAR
FOR I=1 TO 10
CALL COLOR(I , 2,1)
NEXT I
CALL CHAR(65, "003844447C444444"j
CALL CHAR(72, "004444447C444444"
CALL CHAR(73,"0038101010101038")
PRINT "DER HIMMEL"

143

'-'

Chapter 3 v

'-' -
17~~ PRINT U,T$(l) '-'
171~ PRINT : "DAS HAUS"
172~ PRINT n,T$(2) '-'
1730 CALL CHAR(144 , "00000000000044")
1740 PRINT :"DIE TUR" -J

1750 CALL HCHAR(22,8,144)
1760 PRINT tl ,T$ (3) '-'
1770 PRINT : "DAS FENSTER"
1780 PRINT n,T$(4) v
1790 PRINT :"DAS DACH"
1800 U ,T$ (5)

~

PRINT
1810 PRINT : "DIE SCHORNSTEIN" '-'
1820 PRINT U,T$(6) ~

1830 PRINT : "DER RASEN" '-'
184~ PRINT U.T$(7)
1850 PRINT :"DIE WOLKE" '-'
1860 PRINT U , T$(8)
1870 PRINT : "DIE SONNE" v
1880 PRINT tl 'T$ (9)
1890 PRINT : "DIE RAUCH" ~

1900 PRINT tl,T$(10)
1910 CLOSE n '-'

1920 END
'-

~

'--

'-'

~

'--
~

'--

'-'

'-'
~

'>J

'-'

144 '-'

V

u
v
v
U

v

v
v
v
V

v
U

v
v
u
v
v
V

v
v
v
v
v
U

U
U

\J

U

V

v ------- Chapter 4 -------

Going
Somewhere

Changing the Sequence
As you enter a program, each line is numbered. As the
program is run, the computer executes each statement in
numerical order, unless there is a command telling the
computer to branch - to go to some other line number. I
explained some of these commands earlier, as they were
needed.

Unconditional Branching
GOTa is a command that tells the computer to go immediately
to a different line rather than to the next one in numerical
order. You may GOTO a previous line number, a later line
number, or the same line number . If you have a statement that
commands the computer to GOTO its own line number, the
computer stays at that line until you press CLEAR to interrupt
the program.

Figure 4·1. Unconditional Branches

100 REM GOTO

,--- 110 GOTO 1000

> 120 PRINT "HELLO"

[J00 GOTO 500

L-~-> 1000 PRINT "PROGRAM BRANCHED TO 1000"

1010 GOTO 120

1020 END

147

Chapter 4 -------

Conditional Branches
You may have a conditional branch by using an IF-THEN
statement. The command IF is followed by an expression, like
A = B, or N> "" A/55. 1£ the expression is true, the computer
branches to the line number that follows the command THEN.
If the condition is false, the computer goes on to execute the
very next line in order.

100 REM IF-THEN
11 0 CALL CLEAR
120 I=l
130 PRINT I
140 I=I+l
150 IF I <11 THEN 130
160 END

In this simple program, the numbers are printed. The
variable I is incremented by one each time. If I is less than 11,
the program branches to line 130, where the value is printed.
As soon as I is equal to or greater than II, the program goes to
line 160 and ends.

TI BASIC also allows the use of ELSE. Change line 150
above to

150 IF I < 11 THEN 130 ELSE 120
This statement says IF the variable I has a value less than the
number 11, THEN branch to line 130, otherwise (or ELSE)
branch to line 120. Your program should now be:

100 REM IF-THEN-ELSE
11 0 CALL CLEAR
120 I=l
130 PRINT I
140 I-I+l
150 IF I <11 THEN 130 ELSE 120
160 END

RUN the program and see how it has changed from the first
example. Notice that there is now no way for the computer to
reach line 160.

148

v

v

Chapter 4 -------

Remember, there are almost always several ways a
program can be written to produce the same result. Line 150
could be written:

150 IF I > 10 THEN 120 ELSE 130

Make this change, then RUN the program. The result should
be the same as in the previous example.

Finite Loops
Another way to change the order in which the computer
executes statements is to use a FOR-NEXT loop. When the
computer reaches NEXT, there is a conditional branch, either
back to FOR or on to the next line . Here is a program to print
the numbers from 1 to 10.

100 REM FOR-NEXT
~ llO CALL CLEAR

120 FORI=l TO 10
130 PRINT I
140 NEXT I
150 END

RUN the program. The results are the same as those in the
IF-THEN example.

In this program, first the screen is cleared. Next the
computer lets the variable I start at the value of 1. Line 130
prints I. Line 140 tells the computer to increment I and go to the
statement just after the FOR statement. This is looping. I is
assigned the value of 2; the computer prints 2, increments I ,
and so forth - until the limit of 10 is reached. Unlike a GOTO
loop, a FOR-NEXT loop has an ending built in.

The last time through the loop, the value for I is 10. Then,
when the computer hits the NEXT statement, it increments I,
which makes I equal to 11. The computer then tests to see if I is
within the limit of 10. Since I has exceeded the limit, the
computer goes to the next statement.

If you would like this program to be like the IF-THEN-ELSE
example, add line 145:

145 GOTO 120

The computer will go through the FOR-NEXT loop printing the
numbers . After the loop is finished, the computer hits the
statement GOTD 120, branches to line 120, and starts the

149

------ Chapter 4 ------

FOR-NEXT loop again . This GOTO loop w ill go on endlessly,
unless you intervene to stop it.

Controlling the Counter
In a regu lar FOR-NEXT loop, the counter variable is
incremented by 1 each time the loop is performed . However,
you can specify the step size if you do not want the increment
to be 1. Let's go back to the original FOR-NEXT example
program and change line 120:

120 FOR I = 1 TO]O STEP 2
Your program should now look like this:

100 REM FOR-NEXT
11 0 CALL CLEAR
120 FOR I=l TO 10 STEP 2
130 PRINT I
140 NEXT I
150 END

RUN the program. You will see from the PRINTed values of I
that I starts with the value of 1, then increments by twos until it
is past the limit of 10.

YOUT step size can be a negative number:

100 REM FOR-NEXT-STEP
11 0 CALL CLEAR
120 FOR I=10 TO 1 STEP -1
130 PRINT I
140 NEXT I
150 END

Multiple Branches
A variation of the IF-THEN sta tement is ON-GOTO, which
allows more possible branches from the same statement.
However, the value of the evaluated expression must be more
tightly controlled.

190 REM ON-GOTO
110 CALL CLEAR
129 PRINT:"PRESS 1,2,3, OR 4"
130 CALL KEY(0,K,S)

150

v

v

v

'J

------ Chapter 4 ------

140 IF K(49 THEN 130
150 IF K>52 THEN 130
160 A=K-48
170 ON A GOTO 1000,2000,3000,4000
1000 PRINT "1"
1010 GOTO 120
2080 PRINT "2"
2818 GOTO 120
3088 PRINT "3"
3018 GOTO 120
4990 PRINT -4"
4018 GOTO 120
4028 END

The screen is cleared, and the message " PRESS 1, 2,3, OR 4"
is printed. CALL KEY scans which key you press.

If K, the value in ASCII code of the key pressed, is less than
49 or greater than 52, this means I , 2, 3, or 4 has not been
pressed, and the program branches back to the CALL KEY
stateme nt .

When one of the correct keys has been pressed, the value
of A is set equal to K-48, so A will be a number from 1 to 4. In
line 170, the computer branches depending on the value of A. If
A is equal to 1, the program goes to the first number, line 1000.
lf A is equal to 2, the program goes to the second number, line
2000, etc.

You do have to be careful when using ON-GOTO. The
value of A must not be less than 1, or greater than the number
of line numbers you have listed, or your program will crash . In
the above program, the values for K are checked so the value of
A will always be 1, 2, 3, or 4.

You may use an expression rather than a variable in the
ON·GOTO statement. This program could be changed by
deleting line 160 and changing line 170 to

170 ON K-48 GOTO 1000,2000,3000,4000

Again, just make sure, before using the ON-GOTO statement,
that the expression cannot turn out to be less than 1 or greater
than the number of line numbers listed.

Logical OR and AND
In this sample program, lines 140 and 150 may be combined
into one IF statement. Delete line 150 and change line 140 to

151

------- Chapter 4 -------

140 IF (K < 49) +(K>52) THEN 130

The plus sign (+) is a " logical OR," which indicates that if
either K < 49 or K >52 is true, then the program must branch to
line 130.

The IF-THEN statement may be written other ways to get
the same result. Line 140 could also be written:

140 IF (K>48)"(K<53) THEN 170 ELSE 130

The asterisk (*) is the " logical AND" sign. If both K>48and
K<53 are true, then the program must branch to line 170;
otherwise it goes back to line 130.

True Plus True Is Minus Two
Another way line 140 could be written is:

140 IF (K > 48) + (K < 53) < > - 2 THEN 130

This statement depends on the fact that trne and false have a
numerical value in BASIC. If a true expression is evaluated,
you will get a value of - 1. If the expression is false , the value is
zero.

In this case, if K > 48 is true and K < 53 is true, the sum of
the two expressions added together will be -2. If at least one of
the statements is false , then the value is not - 2, and you branch
back to line 130.

This should give you an idea of how lOgical OR and AND
work.

Here is an example of logical OR: IF (K~50)+(X~55)
THEN 500. The 1F command tests to see whether the
expression is false - whether it returns a value of zero. In this
case, if either K=50 or X=55 is true, then IF will evaluate a
result of either (-1) +0 or 0+ (-1). The value is not zero, the
expression is not false, and so the program will branch. If both
are true, then IF eva luates a result of (-1)+(- 1), which is -2;
this is still not zero, and so is not false; again the program will
branch.

With logical AND, however, the computer multiplies the
values, so that if only one of the expressions is true, IF will end
up evaluating either 0*(-1) or (-1)*0. Either way, the result is 0,
or false, and the program will not branch. Only if both
expressions are true will the result be non·zero: (-1)*(-1)::: 1. So
only if both expressions are true will the program branch.

152

,

v

------- Chapter 4 -------

Branching In Action
This program is called "Homework Helper: Factors" because it
is designed to help a student qu ickly check the answers to an
assignment with problems involving factoring. The student
will learn most by doing the class assignment in the usual way,
writing the problem down on paper and working it out step by
step. " Homework Helper" is then used only to check the
answers.

The program has four sections.
All factors. The student enters a number, and all possible

factors or divisors of that number are list~d from largest to
smallest. The list of factors includes the number itself and the
number 1. To return to the menu screen, the student enters
zero.

Prime factors. Finding the prime factors is also called
complete jactorization or the prime factor tree. The student enters a
number, and the prime factors of that number are listed from
smallest to largest. The student's answer does not have to list
the factors in exact order to be correct. If only the prime factors
are desired, the student would still choose this option of the
program, and the answer would consist of the list of factors not
including duplicated numbers.

For example, all factors of 12 would be 12, 6, 4, 3, 2, and 1;
prime factors of 12 would be 2, 2, and 3. The prime factors,
without duplication, would be 2 and 3.

Greatest common factor. The student enters two numbers.
The program lists the greatest common factor, which is the
largest number that can be divided evenly into both the input
numbers. If both numbers are prime or if they have no
common factors , then the greatest common factor is 1.

Least common multiple. The student first presses 0, 2, or
3. A zero will return the program to the menu screen. A two or
three indicates that the student will input either two or three
numbers. (This is adequate for fifth- or sixth-grade
mathematics.) The program will list the least common multiple,
or the lowest number that all the given numbers may be
divided into without remainders. For example, the least
common multiple of 4 and 12 is 12. The least common multiple
of 5, 7, and 2 is 70.

153

~

Chapter 4
>./

~

How " Homework Helper: Factors" Works
Lines v

130-210 Clear screen and print title.
220-250 FOR-NEXT loop blinks colors 20 times.
260-300 Define graphics characters and colors. '-
310-420 Print menu screen of options.
430-470 Receive student's option, clear screen, and ~

branch appropriately.
480-550 PRlNT option " Finding all the Factors" and ~

draw graphiCS.
~.

560-660 Receive student's given number and test that it

670-760
is larger than 1 and less than 1000.
Print all factors of the number.

~

770-790 Wait for student to press a key to continue.
800-860 Print option "Finding the Prime Factors" and -

draw a sample factor tree. ~'
870-970 Receive student's given number and test that it

is larger than 1 and less than 10000. -980-1080 Print prime factors of given number.
1090-1110 Wait for student to press a key to continue. ~

1120-1220 PRINT option "Greatest Common Fact9r" and
draw graphics. ~

1230-1400 Receive student's given numbers and test that
they are larger than 1 and less than 10000. ~

1410-1560 Calculate and print greatest common factor.
1570-1590 Wait for student to press a key to continue. ~

1600-1700 PRINT option "Least Common Multiple" and
draw graphics. -

1710-1750 Receive student's option for number of given
numbers.

~.

1760-1850 Rece ive student's given numbers and test that '-'
they are larger than 1 and less than 1000.

1860-2000 Calculate least common multiple for two ~

numbers.
2010 Print least common multiple. ~

2020-2040 Wait for student to press a key to continue.
2050-2140 For three numbers, arrange numbers from '-'

smallest to largest.
2150-2270 Calculate least common multiple for three ~

numbers.
2280-2310 Subrout ine for warning message for large ~.

numbers .
'-'

154
~

J

------ Chapter 4 ------

Program 4·1. Homework Helper: Factors

100 REM ••••••• _.-.
110 REM • FACTORS •
120 REM -_ •••••••••
130 CALL CLEAR
140 CALL CHAR(64, "3C4299A1A1994237")
150 PRINT TAB(7);"H 0 MEW 0 R K"
160 PRINT "TAB(9);"H E L PER"
170 CALL COLOR(2,9,16)
180 PRINT :~t:TAB(9):"···********"
190 PRINT TAS(9);"* FACTORS * ..
2"" PRINT TAB(9);"*·********·"
210 PRINT ::::::::
220 FOR 1=1 TO 20
230 CALL COLOR(2,16,9)
240 CALL COLOR(2,9,16)
250 NEXT I
260 CALL CHAR(60, "010204081020408")
270 CALL CHAR(62,"8040201008040201")
280 CALL CHAR(96, "FFFFFFFFFFFFFFFF")
290 CALL CHAR(97,"0")
300 CALL COLOR(9,5,9)
310 CALL CLEAR
320 CALL COLOR(2,16,9)
33e1 PRINT "CHOOSE:"
340 PRINT ,," 1 ALL FACTORS"
35" PRINT ::" 2 PRIME FACTORS"
36" PRINT:: "3 GREATEST COMMON FACTOR"
370 PRINT ,,"4 LEAST COMMON MULTIPLE"
380 PRINT :: "5 END PROGRAM"::::
390 CALL HCHAR(l,l,42,32)
400 CALL VCHAR(2,32,42,22)
410 CALL VCHAR{2,l,42,22)
420 CALL HCHAR(24,1,42,32)
430 CALL KEY(0,K,S)
440 IF (K<49)+(K>53)THEN 430
450 CALL CLEAR
460 CALL COLOR(2,2,l)
470 ON K-48 GOTO 480,800,1120,1600,2310
480 PRINT "," FINDING ALL THE FACTORS"",

I:;:::::

155

------- Chapter 4 -------

49~ CALL VCHAR(17,9,96,5)
5~~ CALL VCHAR(17,1~,96,5)
51~ CALL VCHAR(17,11,96,5)
520 CALL HCHAR(19,14,61)
53e CALL VCHAR(17,17,96,S)
540 CALL HCHAR(19,20,42)
SS0 CALL HCHAR(19,23,96,3)
5611' PRINT :: "ENTER '0' TO STOP";;
57121 INPUT "WHAT IS THE NUMBER? ":N
580 IF N=0 THEN 310
59~ IF N>l THEN 620
6~0 PRINT : "PLEASE ENTER A NUMBER" I "LARGER

THAN I." : :
610 GOTO 57~
620 IF N<1000 THEN 670
630 GOSUB 2280
640 CALL KEY(0,K,S)
650 IF K=78 THEN 480
660 IF K<>89 THEN 640
67121 PRINT ;;"ALL THE FACTORS OF";N;"AREt"ll

N,
680 L2=INT(N/ 2+1)
690 FOR TRY=2 TO L2
700 IF N/ TRY<>INT(N/ TRY)THEN 750
710 L2=N/ TRY
720 PRINT L2,
730 IF L2=1 THEN 770
740 IF L2=2 THEN 760
750 NEXT TRY
760 PRINT" 1·
77121 PRINT : 1 "PRESS ANY KEY TO CONTINUE."
780 CALL KEY(0,K,S)
790 IF S<l THEN 780 ELSE 480
8"" PRINT ; :, "FINDING THE PRIME FACTORS";tt

I

810 CALL HCHAR(22,14,96,41
820 CALL HCHAR(23,14,96,4
83121 PRINT TAB(13);tI<>";TAB(12);"< >";TAS(l

1);"«4 SPACES}>"
B49 PRINT TAB(U.I):"<>{S SPACES}>"rTAS(9);1I<

>(5 SPACES}>"
850 PRINT TAS(8),"«3 SPACES)<>(4 SPACES)<>

156

J

J

J

J

J

J

J

)

)

~J

J

'-'

------- Chapter 4 -------

" : TAS(7)r"<{3 SPACES}< > <)"
863 PRINT TAB(7)'CHR~(96)&"(3 SPACESj"&CHR$

(96)&" "&CHR$(96)&" "&CHR$(96)&" "&C
HR$ (96):111

873
883
893
933

PRINT :: "ENTER 'f2I' TO STOP.": I

INPUT "WHAT IS THE NUMB~R? "oN
IF N=3 THEN 313
IF N>l THEN 933

913 PRINT : "PLEASE ENTER A NUMBER": "LARGER
THAN 1."::

923
933
943
953
963
973

GOTO 883
IF N<13300 THEN 980
GOSUB 2280
CALL KEY(0,K,S)
IF K=78 THEN 803
IF K<>89 THEN 950

983 PRINT ::"THE PRIME FACTORS OF";N;"ARE:"
: :

990 L2=INT(N/ 2)
1000 FOR TRY=2 TO L2
1010 IF N/ TRY<>INT(N/TRY)THEN 1060
1020 N=N/ TRY
1030 L2=N
1040 PRINT TRY,
1050 GOTO 1000
1060 NEXT TRY
1070 IF N=l THEN 1090
1080 PRINT N
1090 PRINT 00 "PRESS ANY KEY TO CONTINUE."
1100 CALL KEY(0,K,S)
1110 IF S<l THEN 1133 ELSE 800
112121 PRINT ::::.. GREATEST COMMON FACTOR"
1130 PRINT :" OF TWO NUMBERS"::::::::
1140 CALL VCHAR(18,7,96,3)
115121 CALL VCHAR(lB,8,96,3)
1160 CALL VCHAR(18,9,97,3)
117/21 CALL HCHAR(lS,13,96,3)
1180 CALL HCHAR(19,13,97,3)
1190 CALL HCHAR(20,13,96,3)
1200 CALL HCHAR(21,13,96,3)
1210 CALL HCHAR(19,18,46,3)
1220 CALL VCHAR(18,23,97,3)

157

Chapter 4 -------

1230 PRINT : "ENTER '0' TO STOP.":::
1240 INPUT "FIRST NUMBER == ":A
1250 IF A=0 THEN 310
1260 IF A>l THEN 129121
1270 PRINT: "SORRY, PLEASE r.:NTER NUMBERS":"

LARGER THAN 1."::
1280 GOTO 1240
1290 IF A<10000 THEN 1330
1303 PRINT : "SORRY I": "MUST BE LESS THAN 1121121

00. ": "TRY AGAIN. "::
1310 GOTO 1240
1320 PRINT
133I?J INPUT "SECOND NUMBER = "; B
1340 IF B=0 THEN 310
135121 IF 8>1 THEN 1380
1360 PRINT : "SORRY, PLEASE ENTER A NUMBERLA

RGER THAN 1. ";:
1370 GOTO 1330
1380 IF B<1000 THEN 1410
1390 PRINT : "SORRY, ": "MUST BE LESS THAN 100

121121. ": "TRY AGAIN."::
1400 GOTO 1330
1410 PRINT:: "GREATEST COMMON FACTOR IS"::
1420 IF A=B THEN 1550
1430 IF A<B THEN 1470
1440 D=A
1450 A=B
1460 B=D
1470 FOR TRY=l TO A
1480 IF (A/ TRY) <>INT(A/ TRY)THEN 1530
1490 L2=A/TRY
1500 IF B/ L2<>INT(B / L2)THEN 1530
1510 GCF=L2
1520 GOTO 1560
1530 NEXT TRY
1540 GCF=l
1550 GCF=A
1560 PRINT GCF
1570 PRINT :: "PRESS ANY KEY TO CONTINUE."
1580 CALL KEY(0,K,S)
1590 IF S<l THEN 1580 ELSE 1120

158

v

v

v

------ Chapter 4 ------

1600 PRINT :::" {3 SPACES l LEAST COMMON MULTI
PLE"::" {4 SPACES}OF 2 OR 3 NUMBERS":::
::::::

1610 CALL VCHAR(18,7,96,3)
1620 CALL VCHAR(18,8,96,3)
1630 CALL VCHAR(18,ll,96,4)
1640 CALL VCHAR(lB,12,96,4)
1650 CALL VCHAR(18,13,96,4)
1660 CALL HCHAR(19,lG,46,3)
1670 CALL HCHAR(18,21,96,6)
168121 CALL HCHAR(19,21,96,6)
1690 CALL HCHAR(20,21,96,6)
17121121 CALL HCHAR(21,21,96,6)
171121 PRINT "HOW MANY NUMBERS ARE GIVEN--":"

PRESS 121, 2, OR 3.":::
1720 CALL KEY(0,K,S)
1730 IF K=48 THEN 310
1740 IF (K<50)+(K>51)THEN 1720
1750 CALL HCHAR(21,22,K)
176121 FOR 1=1 TO K-4B
177121 PRINT "NUMBER";!;": ";
1780 INPUT M(I)
1790 IF M(I»l THEN 1820
1800 PRINT : "SORRY, NUMBER MUST BE": "GREATE

R THAN 1.": "TRY AGAIN. "::
1810 GOTO 1780
1820 IF M(I)<1000 THEN 1850
183121 PRINT : "SORRY, NUMBER MUST BE": "LESS T

HAN 11211210. TRY AGAIN."::
1840 GOTO 1780
1850 NEXT I
1860 I=K-48
1870 IF 1=3 THEN 2050
1880 IF M(1)<>M(2)THEN 1910
1890 LCM=M(l)
1900 GOTO 2010
1910 IF M(1)<M(2)THEN 1950
1920 D=M(l)
1930 M(l)=M(2)
1940 M(2)=D
1950 FOR J=l TO M(l)

159

Chapter 4 -------

196~ IF J'M(2) / M(1)=INT(J'M(2) / M(1))THEN 2~
~~

197~ NEXT J
198~ LCM=M(1)'M(2)
199~ GOTO 2313
2~~~ LCM=J 'M (2)
2010 PRINT; "LEAST COMMON MULTIPLE IS" ; :LCM
2~2~ PRINT :: "PRESS ANY KEY TO CONTINUE."
2~3~ CALL KEY(~.K.S)
2~4~ IF S<l THEN 2~3~ ELSE 16~~
235~ IF (M(1)=M(2))+(M(2)=M(3))=-2 THEN 189

~
2~6~ SW=~
2~7~ FOR J=l TO 2
2~8~ IF M(J) <=M(J+1)THEN 213~
2~9~ D=M(J)
2l~~ M(J)=M(J+l)
211~ M(J+l)=D
212~ SW=1
2l3~ NEXT J
214~ IF SW=l THEN 2~6~
2153 FOR J=1 TO M(2)
216~ TRY=J'M(3)
217~ IF (TRY/ M(1)=INT(TRY/ M(1)))+(TRY/ M(2)=

INT(TRY/ M(2)))=-2 THEN 2263
218~ NEXT J
2193 LCM1=M(2)'M(3)
22~~ FOR J=1 TO M(1)
221~ TRY=J'LCMl
222~ IF TRY/ M(1)=INT(TRY/ M(1))THEN 226~
223~ NEXT J
224~ LCM=LCM1'M(1)
225~ GOTO 2~1~
226~ LCM=TRY
227~ GOTO 2~1~
228~ PRINT , "ARE YOU SURE7" ' ''IT TAKES LONGE

R TO DO" : "LARGE NUMBERS . "
2290 PRINT ;"IF YOU STILL WANT THIS" ; "NUMBE

R PRESS ' Y''':''OR PRESS 'N' FOR NO."
23~~ RETURN
2313 END

160

------- Chapter 4 -------

Subroutines
A subroutine and the casus command are used when a
process is performed several times. Rather than enter identical
lines of code several places in the program, you may put the
process in a subroutine, and then use GOSUB to perform the
routine each time you want it.

GOSUB is similar to GOTO. It is followed by a line
number, and when the program comes to the casus
statement it will branch to the line number, just as it does with
GOTO. However, with CO SUB the computer will now
remember where it branched from. When it comes to the
command RETURN, it will branch back to the first line after the
GOSUB statement. GOSUB works like a boomerang - it goes
where you want it to, hut it always comes back.

Be careful to make sure that every casus is matched with
a RETURN - and that your program never runs into a
RETURN without having first executed the corresponding
GOSUB. Whenever the computer encounters a RETURN
statement, it branches back to the last GOSUB it executed,
whether that was the COSUB you had in mind or not . The
advantage of this is that you can have many different GOSUBs
branching to the same subroutine. As long as the subroutine
ends with RETURN, the computer will always go back where it
came from .

A GOSUB Demonstration
The following sample program illustrates the use of
subroutines. Lines 410 to 460 are a subroutine to playa little
music. Everywhere in the program that you see the statement
GOSUB 410, the music will be played. Lines 340-400 are a
subroutine to draw a yellow circle starting in row X and
column Y.

Lines 130 to 170 define graphics characters for the circle,
and line 180 makes the characters yellow. Lines 190-220 draw a
red box. Lines 230-250 draw a yellow wheel at row 21 and
column 8. The subroutine is cailed by line 250.

Line 260 changes the column coordinate to 21 , and COSUB
340 in line 270 draws the yellow wheel on the same row, but in
a different column. Lines 290-300 set different coordinates, and
CaSUB 340 in line 310 draws the yellow circle for the sun
h igher in the picture. Notice that even though the same

161

-
Chapter 4 ~

~

subroutine draws the yellow wheel every time, by changing '-'
the variables I control where the subroutine puts the wheel each
time. ~

Line 330 branches to line 330 to hold the picture on the
screen. Press CLEAR to stop the program . ~

Program 4·2, GOSUB Demonstration ~

100 REM GOSUB '-'
110 CALL CLEAR
120 GOSUB 410 '-'

130 CALL CHAR(96,"FFFFFFFFFFFFFFFF")
'-'

140 CALL CHAR(97, "00030F1F3F3F7F7F")
150 CALL CHAR(98, "00C0F0F8FCFCFEFE") ~

160 CALL CHAR(99, "7F7F3F3FlF0F03")
170 CALL CHAR(100, "FEFEFCFCF8F0C ") '-'
180 CALL COLOR(9,12,1)
190 CALL COLOR (10 ,9,9) '-'
200 CALL HCHAR(18,8,104,16)
210 CALL HCHAR(19,S,104,16) v
220 CALL HCHAR(20,8,104,16)
230 X~21 '-'
240 Y~8
250 GOSUB 340 '-'
260 Y~21
270 GOSUB 340 ~

280 GOSUB 410
290 X~4 ~

300 Y~27
310 GOSUB 340 ~

320 GOSUB 410
330 330 '-' GOTO
340 CALL HCHAR(X, Y ,97) '-
350 CALL VCHAR(X,Y+l,96,3)
360 CALL HCHAR(X,Y+2,98) '-'
370 CALL HCHAR(X+l,Y,96,3)
380 CALL HCHAR(X+2,Y,99) '-
390 CALL HCHAR(X+2,Y+2,100)
400 RETURN '-'

410 CALL SOUND(lS0,262,2)
420 CALL SOUNO(150,330,2) '-'

430 CALL SOUNO(150,392,2)
'-'

162 '-'

v

------- Chapter 4 -------

443 CALL SOUND(lS3,333,2)
4S3 CALL SOUND(lse,262,2)
46e RETURN
47e END

The subroutines may be placed anywhe re in the program -
just make sure the computer can get to the subroutine only
from casus statements . Ru nn ing into an unexpected
RETURN can lead to u npredictable bran ching or a program
crash.

You can avoid this problem by putting a GOTO statement
just before the subroutine that will force the program to branch
around the subroutine. Or put all your subroutines at the end
of the program, right after a STO P statement. Some BASICs
will execute programs faster if the subroutines are at the
beginning of the program; however, in numerous stopwatch
tests of the TI, I haven 't noticed a difference dependent on
placement of subroutines.

Conditional GOSUBs
The ON-COS US statement works just like the ON-GOTO
statement, except that the computer w ill come back when it
reaches RETURN .

100 REM ON-GOSUB
11 0 CALL CL EAR
120 PRINT "CHOOSE:"
130 PRINT :"1 GAME 1"
140 PRINT :"2 GAME 2"
lS0 PRINT :"3 GAME 3"
160 PRINT :"4 END PROGRAM"
170 CALL KEY (O,K,S)
180 IF (K <49)+(K >S2)THEN 170
190 CALL CLEAR
200 ON K-48 GOSUS 1000,2000,3000,4000
210 PRINT ::ftpRESS ANY KEyft
220 CALL KEY(O,K,S)
230 IF S=l THEN 110 ELSE 220
240 STOP
1000 PRINT :::"YOU CHOSE GAME 1"
1010 RETURN
2000 PRINT : : :"YOU CHOSE GAME 2"

163

------ Chapter 4 ------

2010 RETURN
3000 PRINT :::"YOU CHOSE GAME 3"
3010 RETURN
4000 END

A Game with COSUB
This program illustrates the ON-COSUB statement. Five dice
are drawn. For each die, the number of dots (D) is chosen
randomly, from one to six. Depending on D, the computer
draws the correct number of dots on the screen by going to the
correct subroutine to draw the dots.

Program 4·3. Dice Throw

100 REM DICE
110 REM BY REGENA
12 0 CALL CLEAR
139 PRINT "SAMPLE DICE THROW"::::::::::::::
140 CALL CHAR(96, "0000183C3C18")
150 CALL COLOR(9,7,6)
160 CALL CHAR(104, "0000000000070404")
170 CALL CHAR(105, "0000000000FF")
180 CALL CHAR(106, "0000000000E0202")
190 CALL CHAR(107,"202020202020202")
200 CALL CHAR(108, "2020E")
210 CALL CHAR(109, "0000FF")
220 CALL CHAR{l10,"040407")
230 CALL CHAR(111, "0404040404040404")
240 CALL COLOR(10,2,6)
250 CALL COLOR(16,6,6)
260 R~12
270 FOR C=2 TO 30 STEP 6
280 RANDOMIZE
290 FRE~INT(1100'RNO)+440
300 CALL SOUNO(300,FRE,2)
310 CALL HCHAR(R,C,104)
32 0 CALL HCHAR(R,C+l,105,3)
330 CALL HCHAR(R,C+4,106)
340 CALL VCHAR(R+l,C+4,107,3)
350 CALL VCHAR(R+4,C+4,108)
360 CALL HCHAR(R+4, C+l,109,3)
370 CALL HCHAR(R+4,C,l10)

164

-

~
Chapter 4

~

380 CALL VCHAR(R+1,C,lll,3)
390 FOR I=R+l TO R+3

~
400 CALL HCHAR(r,C+l,157,3)
410 NEXT I - 420 NEXT C
430 REM PRINT DOTS
440 FOR N=l TO 5
450 RANDOMIZE
460 D=INT(6*RND+l)
470 J~2+6*(N-1)

/ 480 ON D GOSUB 570,600,640,69O,750,790
490 NEXT N

~ 500 PRINT "TRY AGAIN? (y I N)"
510 CALL KEY(0,K,S)

~

520 IF K-78 THEN 850
530 IF K(>89 THEN 510
540 CALL CLEAR
550 GOTO 270
560 REM ONE
570 CALL HCHAR(R+2,J+2,96)
580 RETURN

~ 590 REM TWO
600 CALL HCHAR~R+l,J+l,96~

~ 610 CALL HCHAR R+3,J+3,96
620 RETURN

~ 630 REM THREE
640 FOR 1-1 TO 3
650 CALL HCHAR(R+I,J+I,96)

~ 660 NEXT I
670 RETURN

~ 680 REM FOUR
690 CALL HCHAR(R+1,J+1,96)

~ 700 CALL HCHAR(R+1,J+3,96)
710 CALL HCHAR(R+3,J+l,96)

~ 720 CALL HCHAR(R+3,J+3,96)
730 RETURN

~ 740 REM FIVE
750 GOSUB 690
760 CALL HCHAR(R+2,J+2,96)
770 RETURN
780 REM SIX
790 FOR 1-1 TO 3

~
165

'--'

------ Chapter 4 ------

800 FOR JJ=l TO 3 STEP 2
810 CALL HCHAR(R+I,J+JJ,96)
820 NEXT JJ
830 NEXT I
840 RETURN
850 CALL CLEAR
860 END

Nested Subroutines
Subroutines can be nested. That is, a second COSUB can be
executed before RETURNing from the first. Remember that the
computer always RETURNs to the most recent GOSUB.

Program 4-4 consists of four main sections:
Plotting pOints. A rectangular coordinate system is

printed with a random pOint. The point is defined by its x
coordinate and y-coordinate. If you press Y for another
example, a different point may be chosen with the coordinates
labeled. If you press N, the screen is cleared. This time a point
is shown, and you must press the numbers for the coordinates.
If your answer is incorrect, you will be shown the correct
answer and given another problem. If your answer is correct,
you have the option to choose another problem of the same
type or to continue the program.

The next part gives the coordinates, and you must locate
the point. You move the point by pressing the arrow keys.
When your point is at the desired position, press ENTER. If
your paint is incorrect, the correct answer is shown, and you
will be given another problem. If your point is correct, you
have the option of choosing another problem of the same type
or continuing the program.

Positive and negative coordinates. This section is just like
the first section, except that you may have positive and
negative coordinates.

Slope of a line. Given two points on a line, you can find
the slope of the line by calculating the ratio of the difference
between the two y-coordinates and the difference between the
two x-coordinates. After some instruction, you are given a
quiz.

Distance between pOints. This section teaches you how to
find the distance between two given points on a graph, using
the Pythagorean theorem. A problem is also presented.

166

../

------ Chapter 4 ------

If you are using this program for the first time, it would be
best to choose the options in numerical order.

Since this program is a tutorial program, I have tried to
make it as user-friendly as possible. Whenever one key-press is
required, a CALL KEY statement is used rather than an INPUT
procedure. Any time INPUT is used, there is a greater
poss ibility of the program "crashing." In this program, all
INPUT prom pts require that numbers be entered. Whenever
an answer is incorrect, the correct answer is given and another
problem of the same type is presented.

After each correct answer, the student has the choice of
doing another problem of the same type or cont inuing the
program.

How "Coordinate Geometry" Works
..... Lines

--

100

110-130
140-350
360-380
390-410
420-460

470-480

490-510
520-560
570-610
620-660

670-710

720-1840
720-830

840-870

880-910
920-1110

DEFine a function R(N) to be a random number
from 1 to N.
Clear the screen and print the title.
Define the graphics characters and colors.
Define strings to be printed for graphics.
Print the menu screen of options.
Receive the student's option and branch
appropriately with an ON-GO SUB statement.
After a section is complete, clear the screen and
return to line 390 to print the main options.
Subroutine to play music for incorrect answer.
Subroutine to play music for correct answer.
Subroutine to print coordinate system.
Subroutine to PRINT "PRESS ENTER" and
wait for the student to press ENTER key.
Subroutine to draw graphiCS. For N number of
characters, draw character number C at row A
and column B.
Subroutine for main option 1, Plotting Points.
Draw a coordinate system, plot a random
example point, and illustrate the coordinates.
Print option for another example, branch
appropriately.
Print the instructions.
Plot a random point and wait for the student to
press coordinate numbers.

167

~

Chapter 4 v

~

1120-1130 Test for the correct answer. '"' 1140-1180 For a correct answer, play music and print the
next option; branch appropriately. ~

1190-1240 For an incorrect answer, play music, show the
correct answer, and branch to line 920 for ~

another problem.
1250-1280 Print instructions. ~

1290-1410 Choose random coordinates for problem and
initialize coordinates for the pOint. '--'

1420-1690 Move the pOint depending on the arrow key
pressed.

~

1700-1720 Sound a beep, then test to see if the point has
~

been placed correctly.
1730-1780 If the point is incorrect , play music, show the '-'

correct answer, and branch to line 1290 for
another problem. ~.

1790-1840 If the point is correct, play music, print the next
option, branch appropriately, and return to the ~

main menu screen.
1850-1900 Subroutine to plot a random point on graph. /

1910-1940 Subroutine to show coordinate for x-value.
1950-1980 Subroutine to show coordinate for y-value. '-'

1990-2040 Subroutine to draw the coordinate system for
positive and negative coordinates. ~

2050-2970 Subroutine for main option 2, Positive arid
Negative Coordirlates. ~

2050-2140 Draw four example pOints on the coordinate
'--system.

2150-2220 Draw a random point and ask for coordinates. '--
2230-2240 Receive the student's [NPUT coordinates.
2250-2260 Test to see if the answer is correct.
2270-2310 For a correct answer, play music, print the next

option, and branch appropriately. ~

2320-2380 For an incorrect answer, play music, give the
correct answer, and branch to line 2150 for '--
another point.

2390-2420 Print instructions. ~

2430-2550 Choose a random point for the student to plot.
2560-2830 Move the point depending on the arrow key ~

2840-2860
pressed.
Sound a beep, then test if point has been placed '--

correctly.

168 '-'

~

~

-' Chapter 4

~

2870-2900 For an incorrect answer, play music, plot the
correct point, and branch to line 2430 for another

~ point.
2910-2970 For a correct answer, play music, print the next - option, and branch appropriately. Return to the

main menu screen.
~ 2980-3860 Subroutine for main option 4, Distance behveen

Points.
---' 2980-3080 Print review information and illustration.

3090-3210 Subroutine to draw the iUustration for distance.
~

3220-3480 Presents the instruction for distance.

v 3490-3510 Clear the screen; randomly choose one of six
problems.

3520-3690 RESTORE proper DATA and READ numbers A,
B, and C, which are numbers in a Pythagorean

3700-3750
triple.
Print the problem, with random coordinates for - the first point, and coordinates depending on
the DATA for the second pOint. - 3760-3770 Student INPUTs an answer; test for the correct
distance.

~ 3780-3800 For an incorrect answer, play music, show the
correct answer, and branch to line 3480 for

~ another problem.
3810-3860 For a correct answer, play music, print the next

~ option, and branch appropriately. Return to the
main menu screen.

3870-4640 Subroutine for main option 3, Slope of a Litle
between Two Points.

3870-4090 Present the instruction for slope.
~ 4100-4220 Randomly choose two points and ask for the

difference in y-coordinates.
~ 4230-4270 Print the key that the student presses for delta-y.

4280-4350 Ask the student for delta-x and print the
~ response.

4360-4370 Ask the student for slope and receive the - student's INPUT.
4380-4390 Calculate the correct answer and compare it with

~ the student's answer.
4400-4420 For a correct answer, play music, pause, and

branch to line 4460.

169

------ Chapter 4 ------

4430-4450

4460-4580

4590-4640

4650

For an incorrect answer, play music, give the
correct slope, and branch to line 4090 for another
problem.
Present another problem for slope w ithout the
intermediate s teps.
For a correct answer, play mus ic, print the next
option, and branch appropriately. Return to
main menu screen .
End .

Program 4·4. Coordinate Geometry

100 DEF R(N)~INT(N*RND+l)
110 CALL CLEAR
120 PRINT" ***********************

":" *"~TAB(25)i"*":" * COOROIN
ATE GEOMETRY .. "

130 PRINT" *";TAS(2S)j"*":" *****
******************"::::TAS(ll);"
POINTS":::

140 A$="1818181818181 8 18"
150 B$="181818FFFF181818"
160 C$="000000FFFF"
170 FOR C=96 TO 112 STEP 8
180 CALL CHAR(C,A$)
190 CALL CHAR(C+l,B$)
200 CALL CHAR(C+2,C$)
210 NEXT C
220 CALL CHAR(120,"183 C7EFFFF7E3C18"

)
230 CALL CHAR(l28, "1 8 3C7EFFFF7E3C1 8 "

)
240 CALL CHAR(129,"00000000030C30 C")
250 CALL CHAR(130, "030C30C")
260 CALL CHAR(64,"3C4299A1A199423C")
270 CALL CHAR(94,"00102828444482FE")
280 CALL COLOR(10, S ,1)
290 CALL COLOR(11,10,1)
300 CALL COLOR(12,11,1)
310 CALL COLOR(13,7,1)
320 CALL CHAR(140, "101010101010101")

170

v Chapter 4 -------

33~ CALL CHAR(Hi, "~~~~~~FF")
34~ CALL CHAR(142, "l~l~l~F")
35~ CALL COLOR(14,13,l)
360 A$="' h h h h h h hOI
373 B$="ajjijjljjljjijjijjijji"
38~ C$="abbabbabbabbabbabbabbabb"
393 PRINT "CHOOSE:"::"l PLOTTING POI

NTS": "2 + AND - COORDINATES":" 3
SLOPE OF A LINE"

4~0 PRINT "4 DISTANCE BETWEEN POINTS
":"5 END PROGRAM"

410 PRINT ::;::
420 CALL KEY(0,K,S)
430 IF (K<49)+(K>53)THEN 420
44~ CALL CLEAR
450 CALL COLOR(2,2,l)
460 ON K-48 GOSUB 720,2050,387~,2980

,4650
470 CALL CLEAR
48~ GOTO 390
490 CALL SOUND(1~0,330,2)
5~~ CALL SOUND(1~~,262,2)
51~ RETURN
52~ CALL SOUND(1~~,262,2)
530 CALL SOUND(100,330,2)
540 CALL SOUND(100,392,2)
550 CALL SOUND(200,523,2)
560 RETURN
570 CALL CLEAR
580 PRINT" {4 SPACES)Y" I" (4 SPACES)"

;A$:"{4 SPACES)";A$:"{3 SPACES)4
": B$: II {4 SPACES} II: A$:"
{4 SPACES)";A$:"{3 SPACES)3",B$:
"{l SPACES}·:A$~"(4 SPACES}":A$:"
{3 SPACES)2";B$

59~ PRINT "{4 SPACES)";A$:"
(4 SPACES)";A$:"{3 SPACES)l";B$:
"{4 SPACES)";A$:"(4 SPACES)";A$:
"(3 SPACES)0";C$:"(4 SPACES)0 1
2 3 4 5 6 7":::

6~~ CALL HCHAR(2~,31,88)

171

------ Chapter 4 ------

610 RETURN
620 PRINT TAS(16) i "PRESS <ENTER>";
630 CALL KEY(0,K,S)
640 IF K<>13 THEN 630
650 CALL HCHAR(24,18,32,13)
660 RETURN
670 FOR 1=1 TO N
680 READ A,B,C
690 CALL HCHAR(A,B,C)
700 NEXT I
710 RETURN
720 GOSUB 570
730 PRINT "THE LOCATION OF A POINT I

s": "GIVEN BY ITS X-COORDINATE II : M

AND Y-COORDINATE (X, Y)"
740 RANDOMIZE
750 X-R(5)
760 GOSUB 1860
770 GOSUB 1910
780 CALL HCHAR(Y1,X1+2,40)
790 CALL HCHAR(Y1,X1+3,48+X)
800 CALL HCHAR(Y1,X1+4,44)
810 GOSUB 1950
820 CALL HCHAR(Y1,X1+5,48+Y)
830 CALL HCHAR(Y1,X1+6,41)
840 PRINT ,"WANT ANOTHER EXAMPLE? (y

IN) ",
850 CALL KEY(0,K,S)
860 IF K-89 THEN 720
870 IF K<>78 THEN 850
880 CALL CLEAR
890 PRINT "YOU WILL BE SHOWN A POINT

. ": : "PRESS THE NUMBER OF THE"::"
X-COORDINATE THEN THE"

900 PRINT ,"NUMBER OF THE Y-COORDINA
TE.":::::::

910 GOSUB 620
920 CALL CLEAR
930 GOSUB 570
940 PRINT '"
950 RANDOMIZE
960 GOSUB 1850

172

------ Chapter 4 ------

970 CALL HCHAR(21.7.40)
980 CALL HCHAR(21.9.44)
990 CALL HCHAR(21.11.41)
1000 CALL KEY(0.K.S)
1010 CALL HCHAR(21.8.63)
1020 CALL HCHAR(21.8.32)
1030 IF S<l THEN 1000
1040 CALL HCHAR(21.8.K)
1050 X2=K
1060 CALL KEY(0.K.S)
1070 CALL HCHAR(21.10.63)
1080 CALL HCHAR(21.10.32)
1090 IF S<l THEN 1060
ll~e CALL HCHAR(21,10,K)
1110 Y2=K
1120 IF X2<>X+48 THEN 1190
1130 IF Y2<>Y+48 THEN 1190
1140 GOSUB 520
1150 PRINT "PRESS": "1 FOR SAME TYPE

PROBLEM": "2 TO CONTINUE PROGRAM
" . •

1160 CALL KEY(0.K.S)
1170 IF K=49 THEN 920
1180 IF K=50 THEN 1250 ELSE 1160
1190 GOSUB 490
1200 GOSUB 1910
1210 GOSUB 1950
1220 PRINT "THE CORRECT ANSWER IS ("

~STR$(X)i","~STR$(Y}i")"
1230 GOSUB 620
1240 GOTO 920
1250 CALL CLEAR
1260 PRINT "NOW YOU WILL BE GIVEN TH

E" S l "COORDINATES." I I"USE THE AR
ROW KEYS TO MOVE":: "THE POINT TO
THE CORRECT"

1270 PRINT I "PLACE, THEN PRESS <ENTE
R> • ": : : 1 :

~ 1280 GOSUB 620
1290 CALL CLEAR

~ 1300 GOSUB 570
1310 RANDOMIZE

173

'-'

Chapter 4
'-'

~

1320 X~R(7)
1330 Y~R(4)

~

1340 Xl=7+3*X
~

1350 Yl=17-3'*Y
1360 PRINT : "PLOT ("~STR$(X);",":STR ~

$(y);I1)"::
1370 Cl~97 ~

1380 A~17
1390 Al=A --
1400 B~7
1410 Bl~B '-'

1420 CALL HCHAR(A, B,120)
1430 CALL KEY(0,K,S) ~

1440 IF 5<1 THEN 1430
1450 IF K=13 THEN 1700 ~

1460 IF K<>69 THEN 1510
~

1470 IF A~5 THEN 1430
1480 CALL GCHAR(A-3,B,C)

~

1490 A=A-3
1500 GOTO 1650 ~

1510 IF K<>88 THEN 1560
1520 IF A=17 THEN 1430 ~

1530 CALL GCHAR(A+3,B,C)
1540 A=A+3 '--'
1550 GOTO 1650
1560 IF K<>B3 THEN 1610 ~

1570 IF B=7 THEN 1430
1580 CALL GCHAR(A,B-3,C) -
1590 B~B-3
1600 GOTO 1650 ~

1610 IF K<>68 THEN 1430
1620 IF B=28 THEN 1430

~

1630 CALL GCHAR(A,B+3,C)
~

1640 ~B+3
1650 CALL HCHAR(Al,Bl,Cl) ~

1660 Al~A
1670 Bl=B -1680 Cl=C
1690 GOTO 1420 '-'

1700 CALL SOUNO(150,1397,2)
1710 CALL GCHAR(Yl,Xl,C) ~

1720 IF C=120 THEN 1790
'--

174
~

'--'

J ------ Chapter 4 ------

1730 GOSUB 490
1740 CALL HCHAR(Yl,Xl,128)
1750 GOSUB 1910
1760 GOSUB 1950
1770 GOSUB 620
1780 GOTO 1290
1790 GOSUB 520
1800 PRINT "PRESS " ,"l FOR SAME TYPE

PROBLEM": "2 TO CONTINUE PROGRAM
" ,

18 10 CALL KEY(0,K,S)
1820 IF K=49 THEN 1290
1830 IF K<>50 THEN 1810
1840 RETURN
1850 X=R(7)
1860 Y=R(4)
1870 Xl=7+3*X
1880 Yl =17-3'Y
1890 CALL HCHAR(Yl,Xl,128)
1900 RETURN
1910 FOR I=Yl+l TO 17
1920 CALL HCHAR(I , Xl , l12)
1930 NEXT I
1940 RETURN
1950 FOR I=Xl-l TO 7 STEP - 1
1960 CALL HCHAR(Yl , I,l14)
1970 NEXT I
1980 RETURN
1990 CALL CLEAR
2000 PRINT TAB(14) , "y","jijjijjijjij

3ajjijjijjijjijj " ,D$, D$, " jijjij
ji j jij2ajjijjijjijjijj",D$:D$

2010 PRINT "j i jjijjijjijlajjijjijjij
jijj" : D$:D$:"babbabbabbabl2labbab
babbabbabX "

2020 PRINT "-4 -3 - 2 -1 0 1 2 3
4";D$:"jijjijjijji-lajjijjijji

j j i j j " ,D$,D$, " j i j j i j j i j j i - 2 a j j i j
jijjijjijj"

2030 PRI NT D$,D$,"jijjijjijji-3ajjij
jijjijjijj":D$

2040 RETURN

175

------ Chapter 4 ------

2050 D$=" h h h h • h h h h"
2060 GOSUB 2000
2070 PRINT "HERE ARE EXAMPLES PLOTT I

NG(3 SPACES}+ AND - COORDINATES
"

2080 RESTORE 2090
2090 DATA 5,25,128,6,26,43,6,27,51,6

,28,44,6,29,53,6,313,41,5,7,128,
6,5,43,6,6,45,6,7,51,6,8,44

2133 DATA 6,9,513,6,13,41,14,22,128,1
5,23,43,15,24,53,15,25,44,15,26
,45,15,27,49,15,28,41

21113 DATA 17,4,128,18,5,40,18,6,45,1
8,7,52,18,8,44,18,9,45,18,13,53
,18,11,41,18,12,32

2120 N=29
2130 GOSUB 670
2140 GOSUB 620
2150 GOSUB 1990
2160 RANDOMIZE
2170 X=R(9)-5
2180 Y=R(7)-4
2190 Xl=3*X+l6
2200 Yl=13-3*Y
2210 CALL HCHAR(Yl,Xl,128)
2220 PRINT "COORDINATES:"
2230 INPUT "(4 SPACES}X = ":X2$
2240 INPUT "(4 SPACES}Y = ",Y2$
2250 IF STR$(X)<>X2$ THEN 2320
2260 IF STR$(Y)<>Y2$ THEN 2320
2270 GOSUB 520
22B3 PRINT :"PRESS":"l FOR ANOTHER P

OINT": "2 TO CONTINUE PROGRAM" i

2290 CALL KEY(0,K,S)
2300 IF K=49 THEN 2150
2310 IF K=50 THEN 2390 ELSE 2290
2320 GOSUB 490
2333 P$="("&STR$(X)&","&STR${Y)&")"
2340 FOR 1=1 TO LEN(P$}
2353 CALL HCHAR(Yl-2,I+Xl-2,ASC(SEG$

(P$,I,l»}
2360 NEXT I

176

------ Chapter 4 ------

2373 GOSU6 623
2383 GOTO 2153
2390 CALL CLEAR
2403 PRINT "PLOT THE GIVEN POINT."::

"USE THE ARROW KEYS TO MOVE"::"
THE YELLOW SPOT TO THE"

241121 PRINT : "CORRECT POSITION, THEN"
: : "PRESS <ENTER>.":::::::

2420 GOSUB 620
2430 CALL CLEAR
2440 RANDOMI ZE
2450 X=R(9)-5
2460 Y=R(7)-4
2470 X1=16+3*X
2480 Yl=1l-3*Y
2490 GOSUB 1990
2500 A1=1l
2510 A=A1
2520 61=16
2530 6=61
2540 C1=97
2550 PRINT : "PLOT POINT (" &STR$ (X) &"

,"&STR$(Y)&")"
2560 CALL HCHAR(A,6,123)
2570 CALL KEY(0,K,S)
2580 IF S<l THEN 2570
2590 IF K=13 THEN 2840
2630 IF K<>69 THEN 2650
2613 IF A=2 THEN 2570
2620 CALL GCHAR(A-3,B,C)
2630 A=A-3
2640 GOTO 2790
2650 IF K<>88 THEN 2700
2660 IF A=20 THEN 2570
2670 CALL GCHAR(A+3,B,C)
2680 A=A+3
2690 GOTO 2790
2700 IF K<>68 THEN 2750
2710 IF B=28 THEN 2570
2720 CALL GCHAR(A,6+3,C)
2730 B=6+3
2743 GOTO 2793

177

------ Chapter 4 - -----

2750 IF K<>83 THEN 2570
2760 IF B~4 THEN 2570
2770 CALL GCHAR(A,B-3,C)
2780 B~B-3
2790 CALL HCHAR(A1,B1,C1)
2800 A1~A
2810 B1~B
2820 C1~C
2830 GOTO 2560
2840 CALL SOUND(150,1397,2)
2850 CALL GCHAR(Y1,X1,C)
2860 IF C~120 THEN 2910
2870 GOSUB 490
2880 CALL HCHAR(Y1,X1,128)
2890 GOSUB 620
2900 GOTO 2430
2910 GOSUB 520
292121 PRINT : "PRESS": "1 TO PLOT ANOTH

ER POINT":"2 TO CONTINUE PROGRA
M" ;

2930 CALL KEY(0,K,S)
2940 IF K=49 THEN 2430
2950 IF K<>50 THEN 2930
2960 CALL CLEAR
2970 RETURN
2980 CALL SCREEN(8)
2990 CALL CHAR(136,"3D4381818181433D

")
3000 CALL CHAR(137,"000080808080808"

)
3010 CALL CHAR(138,"BCC281818181C2BC

")
3020 CALL CHAR(139,"3C4280808080423C

")
3030 PRINT "REVIEW, FIND THE DISTANC

E",TAB(9),"BETWEEN A AND B.",.,
n un;;:

31214121 PRINT "IN A RIGHT TRIANGLE,MIIT
AB(8),"2(3 SPACES)"&CHR$(137)&"
2(5 SPACES)2"

3050 PRINT TAB(7),CHR$(l36)," + ",c
HR$(138)," ~ " , CHR$(139),,"OR

178

------ Chapter 4 ------

LENGTH ",CHR$(139)," = SQUARE ROOT"
3060 PRINT TAB(l7),CHR$(137):"OF ",

CHR$(136)," SQUARED + ",CHR$(13
8) ~" SQUARED. "::

3070 GOSUB 3090
3080 GOTO 3220
3090 CALL HCHAR(11,8,128)
3100 CALL HCHAR(11,7,65)
3110 CALL HCHAR(5,20,128)
3120 CALL HCHAR(5,21,66)
3130 CALL VCHAR(6,20,104,5)
3140 CALL HCHAR(11,9,106,11)
3150 CALL HCHAR(11,20,105)
3160 RESTORE 3170
3170 DATA 10,9,129,10,10,130 , 9,11,12

9,9,12,130,8,13,129,8,14,130,7,
15,129,7,16,130,6,17,129

3180 DATA 6,18,130,5,19,129,7,13 , 139
,8,22,136,12,14,137,13,14,138,1
,1, 32 ~

3190 N=16
3200 GOSUB 670
3210 RETURN
3220 GOSUB 620
3230 CALL CLEAR
3240 PRINT "FIND THE DISTANCE ",CHR$

(l39);"BETWEEN POINT 1 AND POIN
T 2."::::::::::::::

3250 PRINT CHR$(136)," = Y2 - Y1"::C
HR$(137):CHR$(138)," ~ X2 - Xl" . ' , , ,

3260 CALL CHAR(92, "0102022414180808 "
)

3270 CALL CHAR(95,"00000000000000FF"
)

3280 CALL CHAR(91, "380418203C")
3290 PRINT CHR$ (139):'' = \ (X2-Xl) [+

(Y2-Yl)[": :
3390 CALL HCHAR(21,8,95,19)
3310 GOSUB 3090
3320 M1$="(Xl,Y1)"

179

,
Chapter 4 ~'

'-'

3339 M$~· (X2, Y2)·
,

3340 FOR 1==1 TO 7
3350 CALL HCHAR (5,20+I ,ASC(SEG$(M$, I -

,1) »
3369 CALL HCHAR(12,2+I,ASC(SEG$(M1 $,

1,1»)
3370 NEXT I ~

3380 CALL HCHAR(11,7,32)
3390 GOSUB 620
3400 RESTORE 3410
3410 DATA 5,22,53,5,23 , 44 , 5 , 24,52 , 5 ,

25,41 , 12 , 5 , 4~,12 , 6 ,49,12 , 7 , 44 ,1
2 , 8 , 49,16,16,61 , 16 ,1 8 ,51,1 9 ,1 6,61 -

3420 DATA 19 , 18,52,22 , 27 ,61, 22, 29,53
3430 CALL HCHAR(S , 22,32,6) v

3440 CALL HCHAR(12 , 3 ,32,6)
3450 N=14
3460 GOSUB 670
3470 CALL HCHAR(2,3,32 , 28)
3480 GOSUB 620
3490 CALL CLEAR
3500 I~R(6)
3510 ON I GOTO 3520 , 3550 , 3580 ,3610,3

640 , 3670 ~

3520 RESTORE 3530
3530 DATA 3,4,5
3540 GOTO 3690
3550 RESTORE 3560
3560 DATA 4,3,5
3570 GOTO 3690
3580 RESTORE 3590
3590 DATA 5,12,13
3600 GOTO 3690 ~

3610 RESTORE 3620
3620 DATA 12,5 , 13 -36 30 GOTO 3690
3640 RESTORE 3650 ~

3650 DATA 8,15,17
3660 GOTO 3690
3670 RESTORE 3680
3680 DATA 15,8,17
3690 READ A,B,C

180

~'

~I

J

------ Chapter 4 ------

3700 X1=R(5)-1
3710 Yl=R(5)-1
37UJ PRINT "POINT 1 = (";STR$(Xl):",

":STR$(Yl);II)"
3730 X2=Xl+A
3740 Y2=Yl+B
3750 PRINT ,"POINT 2 = (",STR$(X2),"

, ": STR$ (Y2):")": : : "WHAT IS THE
DISTANCE": : "BETWEEN THE POINTS?"::

376el INPUT Cl
3770 IF C=C1 THEN 3810
3780 GOSUB 490
3790 PRINT ,CHR$(136)," = ",BICHR$(l

37):CHR$(138):" = ":A::"OISTANC
E "&CHR$(139);" = H;e;:

3800 GOTO 3480
3810 GOSUB 520
3820 PRINT: "PRESS": "1 TRY ANOTHER P

ROBLEM": "2 CONTINUE PROGRAM"
3830 CALL KEY(0,K,S)
3840 IF K=49 THEN 3490
3850 IF K<>50 THEN 3830
3860 RETURN
3870 PRINT "THE SLOPE OF A LINE BETW

EEN": "TWO POINTS IS DEFINED AS
THE": "RATIO OF THE CHANGE IN Y TO"

38B0 PRINT "THE CHANGE IN X."
3890 GOSUB 580
3900 RESTORE 3910
3910 DATA 17,10,128,11,22,128,16,11,

129,16,12,130,15,13,129,15,14,1
30,14,15,129,14,16,130,13,17,129

3920 DATA 13,18,130,12,19,129,12,20,
130,11,21,129,1,1,32

3930 N=14
3940 GOSUB 670
3950 CALL VCHAR(12,21,140,5)
3960 CALL HCHAR(16,13,141,8)
3970 CALL HCHAR(16,21,142)
3980 GOSUB 62e
3990 CALL HCHAR(14,22,94)

181

------ Chapter 4 ------

4eee
4010
4020
4e3e

4ege
4100
411e
412e
413e
4140
4150
416e
417e
418e
4190

4200
421e
4220
423e
424e
425e
4260
427e
428e
4290
430e
431e
432e
433e
4340
435e

182

CALL HCHAR(14,23,89)
CALL HCHAR(17 , 17,94)
CALL HCHAR(17,18,88)
PRINT IIAy = 2" : ""'X = 4":"SLOPE
M = 2 / 4 = 1 / 2 = . 5"
GOSUB 62e
CALL CLEAR
PRINT "'y IS THE DIFFERENCE BET
WEEN" : I "THE Y-COORDINATES . M

PRINT t : ""'X IS THE DIFFERENCE B
ETWEEN" : : "THE X-COORDINATES."
PRINT ::sTAB(ll) i ""'Y" ; "SLOPE M
= --" , TAB(ll)iW"'X"::: t :
GOSUB 62e
CALL CLEAR
PRINT "GIVEN TWO POINTS,"
RANDOMIZE
Xl~R(3)-l
X2~R(8)-1
IF X2<=Xl THEN 4140
Yl-R(3)-1
Y2=R(5)-1
IF Y2<-Y1 THEN 4170
PRINT , " (.. 'STR$ (Xl)' " , "'STR$ (Yl
),")!3 SPACES}AND!3 SPACES}(" 'S
TR$(X2)'","'STR$(Y2)'")" " ,
PRINT " "'y =":
DY=Y2-Yl
CALL SOUND(150.1397 , 2)
CALL KEy(e,K,S)
CALL HCHAR(24,8,63)
CALL HCHAR(24,8,32)
IF K<>DY+48 THEN 423e
PRINT DY
PRINT: "AX -"i
DX=X2-Xl
CALL SOUND(150,1397,2)
CALL KEy(e,K1,S)
CALL HCHAR(24.8,63)
CALL HCHAR(24,8.32)
IF Kl(>DX+48 THEN 4310
PRINT DX

------- Chapter 4 -------

4363 PRINT ","SLOPE M ~ 'y/'X",,"EX
PRESS M AS A DECIMAL.":::

437'11 INPUT "M - "1M
4383 Ml~DY/DX
4390 IF ABS(M-Ml».005 THEN 4430
4400 GOSUB 520
4410 GOSUB 620
4420 GOTO 4460
4430 GOSUB 490
444" PRINT : "THE CORRECT SLOPE IS"; I

NT(100*(Ml+.005» / 100"
4450 GOTO 4090
4460 CALL CLEAR
4470 PRINT ,"GIVEN TWO POINTS:"
4483 Xl=R(3)-1
4490 X2=R(8)-1
4530 IF X2<=Xl THEN 4490
4513 Yl-R(2)-1
4520 Y2-R(5)-1
4530 IF Y2<-Yl THEN 4523
4540 PRINT ," (" &STR$ (Xl) &" , "&STR$ (Yl

)&"){3 SPACES}AND{3 SPACES}("&S
TR$(X2)&","&STR$(Y2)&")"".

4556 PRINT '"WHAT IS THE SLOPE M?"111
4560 Ml-(Y2-Yl) / (X2-Xl)
4579 INPUT "M - "aM
4580 IF ABS(M-Ml».005 THEN 4430
4590 GOSUB 520
4690 PRINT I"PRESS":"l FOR SAME TYPE

PROBLEH"I'"2 TO CONTINUE PRQGRA
M" :

4613 CALL KEY(0,K,S)
4620 IF K-49 THEN 4460
4630 IF K<>50 THEN 4610
4640 RETURN
4650 END

183

u
u
U

U
-u

v
u
u
V
u
U

U

u
u
u
u
-

\,..,

u
V

V

U

v
v

-
v
U

v
u

v ------- Chapter 5

Built .. in
Functions

Commands, like RUN, GOSUB, ON, and LET, stand at the
beginning of a statement and control everything else that
happens in the line. Functions, on the other hand, are like
small subroutines within a statement. They can never stand
alone, and always return a value or a string.

You have been using some numeric functions all along. The
symbols +, -, I, *, and /\ all require the computer to leave the
current command, perform an operation, and return with a
value. In the command Line LET A=3, the computer simply
follows the command LET. But in the command line LET
A=3*C, the computer has to perform the function of
multiplying 3 by the value of C before carrying Qut the
command LET.

Functions cannot stand alone. Your computer does not
know what to do with a statement like 4+4. Not until the
statement includes a command can the computer tell what you
want it to do: PRINT 4+4. Now the computer knows that it is
required to PRINT, and performs the function + on the way to
carrying out the command.

Mathematical Functions
Tl BASIC can do difficult calculations just like big computers,
and it has many of the functions that are on the more expensive
calculators.

The mathematical functions, aside from the one-symbol
arithmetic operations already mentioned, consist of three-letter
abbreviations and an argument or numeric expression in
parentheses. The name of the function is a reserved word,
which means you cannot use it alone as a variable name in your
programs. However, the word can be embedded within a
variable name.

ABS
ABS(x) gives the absolute va lue of a numeric expression or

187

------ Chapter 5 ------

number x. The absolute value of a number is the number itself
without a negative sign.

ATN

Command
PRINT ABS(-3)
PRINT ABS(3)
PRINT ABS(O)

Result
3
3
o

ATN(x) gives the arctangent of the expression x. The
arctangent of x is the angle whose tangent is x. The value is in
radians; if you want the equivalent angle in degrees, multiply
your answer by lBO/pi or 180/(4" ATN(l)) or 57.295779513079.

Here is a short program that illustrates ATN (x). Values for
x are read in as numbers from DATA. The angle whose tangent
is x is printed first in radians, then in degrees.

100 REM ATN
110 CALL CLEAR
120 PRINT· X·,wATN(X)-
130 FOR C=l TO 10
140 READ X
150 PRINT : X,"R "IATN(X)
160 PRINT TAB(15)I"D "IATN(X)*(180/(4*ATN(

1»)
170 NEXT C
180 DATA .10,.22,.44,.50,1,0
190 DATA -.33,-10,-50,lE35
200 END

The value for pi can be obtained by the command:

PRINT4"ATN(l)

It is given as 3.141592654.

COS
COS(x) gives the cosine of an angle x, w here the angle is
expressed in radians. If your angle is in degrees, you may
convert by multiplying by pi/IBO or W ATN(l))I1BO or
0.01745329251994.

188

------ Chapter 5 ------

EXP
EXP(x) gives the exponential function, or the value of ex, where
e is approximately 2.718281828.

INT
INT(x) gives the integer function of a number x, which is the
whole number part of the number x if x is positive, and the next
smaller whole number if the number x is negative. Another
way to think of the integer function is that the result is the
closest integer (whole number) which is to the left of the
number x on a number line . The value returned by INT(3.S) is
3, and INT(-7.4) returns -B.

LOG
LOG (x) gives the natural logarithm of x, or lo~(x). Remember
that the argument or expression x must be greater than zero.
The logarith m function is the inverse of exponential function,
so

x ~ LOG(EXP(X)) and x ~ EXP(LOG(X))

Here are formulas to keep in mind for logarithms:
If you want to find the logarithm of a number in base N:

10gN(X) ~ iog,,(X)/log,,(N)

Probably the most common base you would need is base 10:

log10(X) ~ 10g,,(X)1I0g,,(10)

SGN
SGN(x) gives the sign of a number x. If X is negative, SGN(x) is
equal to -1. If x is positive, SGN(x) is equal to 1. If x is zero,
SGN(x) is equal to O.

SIN
SIN(x) gives the sine of an angle x, where x is expressed in
radians. Multiply degrees by pil1BO or (4'ATN(l))/1BO to get
radians .

SQR
SQR(x) gives the positive square root of the expression x. You
cannot evaluate the square root of a negative number.

TAN
TAN(x) gives the tangent of the angle x, where X is expressed in
radians.

189

------ Chapter 5 ------

The functions SIN(x), COS(x), and TAN(x) all have the '"
limit that the angle x must be between positive and negative
1.5707963266375 • 1010 or you will get a " BAD ARGUMENT" "-
message and the program will stop.

DEFining Your Own Functions
If you wish to use a function that is not listed here, a
combination of these functions, or any sort of formula or
equation, you may define your own functions with a DEF
statement. The main stipulation is that the OEF statement line
must be numbered lower than any line number that uses the
function. It 's usually Simplest to put DEF statements at the
beginning of a program.

You may use the OEF statement any time you have an
expression that you would rather not type several times. For
example, in "Coordinate Geometry" (program 4*4), line 100
defines a function R(N} to be a random integer number from 1
to N. The statement is:

100 DEF R(N)~INT(WRND+ 1)

This function is executed in several places later in the program.
Line 750 is X = R{5}, which chooses a random x-coordinate from
1 to 5. Lines 1320 and 1330 have X ~R(7) and Y ~ R(4), and lines
1850 and 1870 have X =R(7) and Y = R(4). These lines choose a
point within the limits of the graph . Nearly all the problems
and examples in the program use the defined random function.

The foUowing program defines some fu nctions, then prints
the results for the answers to some algebra homework.

199 REM FUNCTIONS
110 DEF F(X)=X'3+2*X'2-5*X
129 DEF G(X)=X'3+X'2+X
139 DEF H(X)=F(X)+G(X)
149 CALL CLEAR
150 INPUT WX = w:X
169 PRINT :"F(X) =";F(X)
179 PRINT :"G(X) =";G(X)
180 PRINT :"H(X) =";H(X)
199 PRINT :::
200 GOTO 150
219 END

190

J

v

J

J

J

J

J

Chapter 5

The user INPUTs a value for X. The computer then
evaluates each function and prints the answers. Of course, you
can add printer statements and have the computer print out the
homework.

The computer allows rapid iterations of numerical
combinations that would otherwise be time consuming because
of the mathematics involved. Following are two programs on
electrical engineering circuit design that illustrate how much
easier it is to make complex calculations with the computer
than by hand.

Electrical Engineering Circuit Design
These two programs are designed to he lp the electrical
engineering professional or s tudent analyze and design basic
electrical circuits. Elementary circuits are illustrated on the
screen and can be evaluated or converted quickly without the
user having to work with tedious mathematical equations.

The professional engineer may use these programs to
design several circuits with varying data to quickly optimize a
solution. An electrical engineering student can learn about
circuits more easily by using this computer program. By trial
and error you can enter many combinations of data to study the
corresponding results.

The user INPUTs numerical data for the given circuit, and
an equivalent or resultant circuit design is pri nted on the
screen. All elements of complex numbers are rounded to the
third decimal place.

If you have an RS-232 Interface and a printer, you can alter
the programs to get a printed copy of each problem you enter.
The necessary statements for using the printer are listed in the
programs as REMarks. Simply delete the REM at the beginning
of each statement that has " #1" in it, and delete line 530
FLAG = 1 in Part Two. You may also need to adjust the OPEN
#1 statements in each program for your particular printer
configuration (stop bits and baud rate).

The first program includes the follow ing circuits:
1. Series resistance is the sum of the values of all the

resistors in series . Enter the numerical values of the resistors,
Rl, R2, R3, etc., one at a time, and the total will be calculated.

2. Parallel resistance is the reciprocal of the sum of the
reciprocal values of all the parallel resistors.

191

------ Chapter 5 ------

l~l+l+l+ ...
RT R1 R2 R3

For both the series and the parallel resistance circuits, any
number of resistors may be used. However, in th is program, to
avoid an INPUT error of a very large number, a maximum of 50
resistors is allowed. You may solve problems with more
resistors by solving 50 at a time and combining the solutions.

Linear electrical networks can be represented by equivalent
networks which are more readily analyzed. The next four
sections convert one circuit to an equivalent one for a more
desirable circuit analysis.

3. Converting a resistive T-section to an equivalent
Pi-section, also known as V-Delta conversions. Given elements
R11 R21 and R3 of a resistive T-section, the corresponding
elements of the Pi-section are RAt RBI and RC' They are
calculated using the following formulas.

1 R2
- ~

RA R1R2+R1R3+ R2R3

1 R3

RS R1R2+R1R3+ R2R3

1 R1 - ~

RC R1R2+R1R3+ R2R3

4. Converting a resistive Pi-section to an equivalent
T-section, also known as a Delta-Y conversion. This is just the
converse of the previous calculation (involving more fract ions
because of reciprocals).

5 . Converting a complex admittance Pi-section to an
equivalent complex impedance T-section. This extends the
previous T -Pi or Pi-T conversions to the sinusoidal steady state
frequency domain. The T network is driven by the two
sinusoidal current generators 11 and 12' All voltages, currents,
and admittances are complex numbers.

6. Converting a complex impedance T-section to an
equivalent complex admittance Pi-section. The calculations are
similar to those for the previous conversion.

In each section, the circuit is drawn on the screen with all
parts labeled.

192

-

------ Chapter 5 ------

Part Two of Electrical Engineering Circuit Design consists
of the following circuits for analysis:

1. Symmetrical T-Section:

SIDE 1 SIDE 2

It is possible to represent a reciprocal two-port network by
an equivalent T network. This part of the program is the
calculation of an equivalent symmetrical T network and the
corresponding characteristic impedance from short-circuit and
open-circuit laboratory measurements. The impedance at
either side with the opposite side open circuited is:

The impedance seen at either side with the opposite side
short circuited is:

2 Z2

Zj + Z2
2

In general, these equations involve complex quantities.
\J The user enters Roc Xoc. Rsc. and Xsc. the real and

imaginary parts of the open-circuit and short-circuit
_ impedances. The characteristic impedance Zo for the

symmetrical network is calculated and printed in polar form.
v Then the computed values of 21 /2 and Z2 for the equivalent

T-section are calculated and printed.

193

------ Chapter 5 ------

2. Symmetrical Pi~Section:

SIDE 1 SIDE 2

This section of the program is the design of a symmetrical
resistive pi attenuator. It is used to reduce the power (voltage)
that will be supplied to a given laboratory load or measuring
instrument, and at the same time preserve a matched load
condition. The pi attenuator can be inserted to introduce a fixed
amount of decibel (DB) loss.

The user INPUTs the numerical value for the characteristic
resistance, Ro. This resistance, if connected at either port, will

also be seen at the other port as the same resistance. This
permits the insertion of one or more sections without affecting
the matched load condition.

The user next specifies the required attenuat ion of DB. The
numerical values of Rl and R3 are then calculated and printed.
The formulas are:

Rl- _-"R",0'-n-_
tanh !!.

2

R3 - Ro sinh 8

where 8 is the loss in nepers (1 neper=8.686 decibels).
The user continues to enter different values of DB, and the

corresponding values of R1 and R3 are returned. To end this
process, you must enter 0 for the value of DB. You may then
enter a different value for Ro; then continue or return to the
menu screen.

194

v

v ------ Chapter 5 ------

3. Bridged T attenuatar:

1 2

The loss using the symmetrical bridged T attenuatar may
be adjusted by varying the values of R3 and R4- Two specia l
cases are: when R3"" 0 and R4::: infinity, the input resistance
equals Ra and the attenuation is infinite; and when
R3=infi nity and R4=O, the input resistance will equal Re, but
the loss will be equal to zero. Between these two cases, the
input resistance can be kept at the value of Ra and the loss
adjusted to any desirable value by adjusting R3 and R4 using
these equations:

where VR is the desired ratio of V2/Vl and the characteristic
resistance Ro is specified.

Enter a numerical value for the characteristic resistance,
Ro. Then enter varying values for YR, the voltage ratio . The
corresponding values for R3 and R4 will be calculated and
printed. To end this process, enter - 1. You will then have the
choice of doing another problem of the same type (entering a
different value for Ra) or returning to the menu screen.

195

------ Chapter 5 ------

4. Digital-to-analog conversion:

R R R R R

2R

In an electrical system it may be necessary to feed
information that has been stored digitally into analog
computers or analog readout equipment. This program
involves a six-bit digital-ta-analog converter. The input
voltages are restricted to the binary " 1" state or the binary "0"
state, which may in practice correspond to ten volts and zero
volts. By combining resistors that are in series or parallel, the
output voltage is given by:

111 1 1 1 Vo =-V1 + - V2 +-V3 + - V4+ - VS + - V6
2 4 8 16 32 64

This program determines the actual analog output voltage for a
given binary number stored in the counter. Enter the six input
voltages corresponding to the binary stored in the counter. The
actual output voltage is calculated and printed. You may then
enter another set of input voltages, and the corresponding
output voltage will be determined. This process continues until
you enter a value of -1. The program then returns to the menu
screen.

Program 5-1. Electrical Engineering Circuit Design I

lee CALL CLEAR
lUI CALL CHAR(96, "33i1333FFFF")
12e CALL CHAR(97,"2i17i1DilBBilgeSil6i12")
13i1 PRINT "{ 3 SPACES JELECTRICAL ENGINEERING

tI:; ITAB(7)i"CIRCUIT DESIGN";;;,;,,;,;,;

196

+

)

------ Chapter 5 ------

140 CALL HCHAR(16,11,96,9)
150 CALL HCHAR(16,14,97,3)
160 FOR C~9S TO 121
170 READ C$
lS0 CALL CHAR(C,C$)
190 NEXT C
200 DATA 000300FSFS0S0S0S,3033000F0F0S0a0S,

0S0S0S0S0S0S0S0S,0S0S0SFSFS,0S0S0S0F0
F,000000FFFF0S3S0S,0S0S0SFFFF

210 DATA 0C0603061S60300C,0603061S60300C06,
03061S60301S0S0S,000EllF1Fll10E,003S4
4C7C7443S,0070SSSFSFSS7

220 DATA 000C1SFFFF1S0C,006030FFFF336,071S2
04340S1S3S,E01S04S2S2C1E1Sl,SlSlSlS2S
2041SE,S0S0S34040201S07

239 DATA 971829404380808,E0188482E2818101,0
10101E202041SE,S0S0S04340201S07,00000
01S1S

240 REM OPEN U :"RS232.BA=600"
250 CALL SCREEN(2)
260 PRINT:::::::"1 SERIES RESISTANCE"::"2

PARALLEL RESISTANCE" : :"3 T-PI OR Y-DE
LTA CONVERSI ON"

279 PRINT : "4 PI-T OR DELTA-Y CONVERSION": t
"5 COMPLEX PI TO T"::"6 COMPLEX T TO
PI" : :"? END PROGRAM":::::

2S0 CALL SCREEN(S)
290 CALL KEY(0,K,S)
300 IF (K<49)+(K>55)THEN 290
310 CALL CLEAR
320 ON K-48 GOTO 390,830,1230,1850,2450,306

0,3670
330 READ N
340 FOR I - 1 TO N
350 READ X,Y ,GR
360 CALL HCHAR(X,Y,GR)
370 NEXT I
3S0 RETURN
399 PRINT" ** SERIES RESISTANCE ··"::;"'1

~ 400 REM PRINT .1 .: •• ·** SERIES RESISTANCE
**"1 "

197

------- Chapter 5 -------

410 GOSUB 610
420 PRINT :: "TOTAL R ::z. Rl+R2+R3 ... H: : : "YOU

R PROBLEM:"; I
430 INPUT "HOW MANY RESISTORS? tI: N
44e IF N<l THEN S7e
4se IF N>se THEN sge
46e PRINT
470 RT~e
4Be FOR I=l TO N
4ge INPUT " R" .STR$ (I) ." - ", R
5013 REM PRINT tIl" R"&STR$(t)&M =":R
sle RT=RT+R
S2e NEXT I
530 PRINT :.. RT =" 1 RT; ; I

540 REM PRINT '1::" RT =";RT;II
sse GOSUB 361e
S6e GOTO 43e
S7e PRINT ,"YOU HAVE TO HAVE ONE OR MORE FO

R A DECENT PROBLEM." I I

SBe GOTO 43e
59121 PRINT I "ARE YOU SURE?'" "FOR >5.0 SOLVE I

N STEPS. ti, I

6ee GOTO 43e
610 FOR X=19 TO 23 STEP 4
62e CALL HCHAR(X.9.11e)
63e CALL HCHAR(X.le.96.12)
640 CALL HCHAR(X,12,121,3)
6se CALL HCHAR(X.1B.97.3)
66e NEXT X
67e X=2e
6Be Y=22
6ge GOSUB 790
7ee CALL HCHAR(19.22.9B)
71e CALL HCHAR(23.Y.lel)
72e CALL HCHAR(lB.19.B2)
730 CALL HCHAR(lB.2e.49)
74e CALL HCHAR(X+l.Y+l.B2)
7se CALL HCHAR(X+l.Y+2.se)
76e CALL HCHAR(24.19.B2)
770 CALL HCHAR(24.2e.Sl)
7Be RETURN
790 CALL VCHAR(X.Y.les)

198

-

v ------ Chapter 5 ------

833 CALL VCHAR(X+l,Y,136)
813 CALL VCHAR(X+2,Y,137)
823 RETURN
830 PRINT "** PARALLEL RESISTANCE **"'111' • ..
84113 REM PRINT tllllll"** PARALLEL RESISTAN

CE **"'11
8se GOSUB lege
863 PRINT , •• 1(4 SPACES}1[4 SPACES}l

(4 SPACES}l"1" -- s -- + -- + -- + ... "
873 PRINT· RT[3 SPACES}Rl(3 SPACES}R2

[3 SPACES}R3· ••• ·YOUR PROBLEM.· ••
880 INPUT "HOW MANY RESISTORS? "IN
8ge IF N<l THEN lese
933 IF N>S3 THEN 1373
91e PRINT
923 RTD=3
933 FOR 1=1 TO N
949 INPUT" R"&STR$(r)&" = ":R
953 IF R<>3 THEN 98e
963 PRINT ,·SORRY - ZERO IS NOT ALLOWED""
97e GOTO 943
98e RTD=RTD+l/R
993 REM PRINT H.· R"'STM(I)." =",R
leee NEXT I
Hne PRINT :M RT =";l/RTD:::
1323 REM PRINT '1,." RT =",l / RTD".
le33 GOSUB 3613
1343 GOTO 88e
1050 PRINT : "ONE OR MORE PLEASE." I :

le6e GOTO 88e
1070 PRINT ," REALLY? FOR ~50 RESISTORS SO

LVE IN SEVERAL STEPS,":.
1383 GOTO 88e
13ge FOR X=19 TO 23 STEP 4
llee CALL HCHAR(X,le,lle)
1113 CALL HCHAR(X,11,96,12)
112e CALL HCHAR(X,12,121,3)
113e NEXT X
1143 X=23
11se FOR Y=17 TO 23 STEP 3
1163 GOSUB 7ge

199

------ Chapter 5 ------

1170 NEXT Y
IlB~ DATA 13,19,17,11213,19,20,11213,23,17,11214,

23,2121,11214,19,23,98,23 , 23,11211
119121 DATA 24,16,82,24,17,49,24,19,82,24,2121,

5121,24,22,82,24,23,51,1,1,32
1200 RESTORE 1180
1210 GOSUB 330
1220 RETURN
1230 PRINT "CONVERTING A RESISTIVE

(6 SPACES)T-SECTION TO AN EQUIALENT"
1240 PRINT "PI-SECTION (ALSO KNOWN AS

(3 SPACES)Y-DELTA CONVERSION)" ••••••••
1250 REM PRINT #1 •••• "CONVERTING A RESISTI

VE T-SECTION TO AN EQUIVALENT"
1260 REM PRINT #1. "PI-SECTION (ALSO KNOWN

AS Y- DELTA CONVERSION)" ••••
1270 XO=19
1280 GOSUB 1470
1290 PRINT "YOUR PROBLEM." •••
13121121 INPUT" Rl = ":Rl
131121 INPUT " R2 = ": R2
1320 INPUT .. RJ = ": R3
1330 SUM=Rl+R2+R3
1340 IF SUM<>0 THEN 1370
135121 PRINT ::"SORRY - THE SUM OF THE THREE

VALUES CANNOT BE ZERO." ••
1360 GOTO 1300
1370 RA=R2*R3/SUM
1380 PRINT::" RA ="iRA
1390 RB=Rl*R3/SUM
140i0 PRINT" RB =";RB
1410 RC=Rl*R2/SUM
1420 PRINT .. RC =", RC ••
1433 REM PRINT #1: " Rl =";Rl:" R2 = ";R2:"

R3 = "; R3 : :" RA ="; RA:" RS ="; RB: It RC
="jRC:: :

1440 GOSUB 3610
145121 GOSUB 147121
1460 GOTO 1300
1470 FOR X=XO TO XO+4 STEP 4
1480 CALL HCHAR(X,3,l10)
1490 CALL HCHAR(X,4,96,ll)

200

-

~

v Chapter 5

'-'

~
1500 CALL flCflAR (X, 15 , 108)
1510 CALL flCflAR (X, 20 , 110)
1520 CALL HCHAR(X,21,96,9)
1530 CALL flCflAR (X, 30, 108)
1540 NEXT X
1550 CALL HCHAR(XQ,5,97,3)
1560 CALL HCHAR(XQ,11,97,3)
1570 CALL HCHAR(XO,9,103)
1580 X=-XO+l
1590 Y~9
1600 GOSUB 790
1610 CALL HCHAR!XO+4,9,104l

'-' 1620 CALL HCHAR XO,24,97,3
1630 CALL HCHAR(XO,22,103)
1640 Y .. 22
1650 GOSUB 790

~

1660 CALL flCHAR(XO+4,22,104)
1670 CALL HCHAR(XO,28,103)
1680 Y~28
1690 GOSUB 790
1700 CALL HCHAR(XO+4,28,104)
1710 CALL HCHAR(XO-l,6,82)
1720 CALL HCHAR(XO-l,7,49)
1730 CALL HCHAR(XO-l,12,82)
1740 CALL HCHAR(XO-l,13,50) ,
1750 CALL HCHAR(XO+2,10,82)
1760 CALL HCHAR(XO+2,11,51)

'-' 1770 CALL HCHAR(XO+2,23,82)
1789 CALL HCHAR(XO+2,24,65)
1799 CALL HCHAR(XO-l,25,82)
1899 CALL HCHAR(XO-l,26,66)
1819 CALL HCHAR(XO+2,29,82)
1820 CALL HCHAR{XO+2,30,67)
1839 PRINT ...
1840 RETURN
1850 PRINT 'CONVERTING A RESISTIVE

~ {6 SPACES}PI-SECTION TO AN EQUIVALENT·
1869 PRINT ·T-SECTION (ALSO KNOWN AS

~ {4 SPACES}OELTA-Y CONVERSION)· ••••••••
1879 REM PRINT H::: : "CONVERTING A RESISTI

VE PI-SECTION TO AN EQUIVALENT"
IB80 REM PRINT '1: "T-SECTI ON (ALSO KNOWN A

S OELTA-Y CONVERSION)·::::

201

------- Chapter 5

189~ XO=19
19~~ GOSUB 215~
191~ PRINT "YOUR PROBLEM," •..
192121 INPUT" RA = ":RA
193121 IF RA<>0 THEN 1960
194121 PRINT ; "SORRY , RA CANNOT BE ZERO"::
195~ GOTO 192~
196121 INPUT" RB = ":RB
197121 IF RB<>12l THEN 2030
19S~ PRINT, "SORRY, RB CANNOT BE ZERO""
199~ GOTO 196e
2000 INPUT" RC = ":RC
2ele IF Rc<>e THEN 2e4~
2020 PRINT : "SORRY, RC CANNOT BE ZERO"::
2~3e GOTO 2~~~
2040 SUM=RA*RB+RA*RC+RS*RC
2~5e Rl=SUM/ RA
212160 PRINT ::" Rl = "; Rl
2~7e R2=SUM/ RB
212J8I2J PRINT .. R2 ="; R2
2ege R3=SUM/ RC
2100 PRINT " R3 =";R3::
21H' REM PRINT II::;" RA= ";RA: " RB =";RB:

" Re ="; RC: : :" RI =="; Rl : II R2 = "; R2 : "
RJ = ":R3: ::

212~ GOSUB 361e
213e GOSUB 215~
214~ GOTO 192~
2150 FOR X=XO TO XO+4 STEP 4
216~ CALL HCHAR(X , 3, ll~)
217e CALL HCHAR(X , 4 , 96,9)
2 1 S~ CALL HCHAR(X,13 , 1~S)
21ge CALL HCHAR(X,17,1 1 ~)
2200 CALL HCHAR(X,18,96 , 11)
221~ CALL HCHAR(X , 29 , leS)
222e NEXT X
223~ CALL HCHAR(XO,7 , 97,3)
224~ CALL HCHAR(XO,5 ,le3)
225~ X=XO+l
226e Y=5
227~ GOSUB 79~
228~ CALL HCHAR(XO+4 , 5 , le4)

202

------ Chapter 5 ------

2293 CALL HCHAR(XO,ll,133)
2333 Y=ll
2313 GOSUB 793
2323 CALL HCHAR(XO+4,ll,134)
2333 CALL HCHAR(XO,19,97 , 3)
2343 CALL HCHAR(XO,25 , 97,3)
2353 CALL HCHAR(XO,23,133)
2363 Y~23
2373 GOSUB 793
2383 CALL HCHAR(XO+4,Y,134)
2390 DATA 13,21,6,82,21,7,65,18,8,82,18,9,6

6,21,12,82,21,13,67
2400 DATA IB,2e,82,18,21,49,18,26,82,18,27,

50,21 , 24 , 82,21,25,51 , 1,1,32
2413 RESTORE 2393
2423 GOSUB 333
2433 PRINT : 11
2443 RETURN
2453 PRINT "CONVERTING A COMPLEX{8 SPACES)A

OMITTANCE PI-SECTION TO"
2463 PRINT "AN EQUIVALENT COMPLEX

{7 SPACES}IMPEDANCE T-SECTION"111112::
2470 REM PRINT tIll I I "CONVERTING A COMPLEX

ADMITTANCE PI-SECTION TO"
2483 REM PRINT tl."AN EQUIVALENT COMPLEX I

MPEDANCE T-SECTION IO
I I I I

2493 XO=19
2533 GOSUB 2843
2510 INPUT" AA a ":AA
2520 INPUT "J SA - ",SA
2530 INPUT" AS ~ ",AB
2540 INPUT "J BS .. ": SB
2550 INPUT" AC" ":AC
2560 INPUT "J Be = ":BC
2570 API=AA*AB- BA*SB+AA*AC- BA*BC+AS*AC-BB*S

C
2590 BPI=BA*AB+AA*OB+BA*AC+AA*aC+BB*AC+AS*S

C
2590 D=API*API+BPI*BPI
2600 IF 0<>0 THEN 2640
2613 PRINT • "DENOMINATOR CANNOT = 3 ""
2623 GOSUB 3613

203

------- Chapter 5

2630
2640
2653
2660
2670
2680

2690

2703
2710
2720

2730

2740
2750

2763

2770
2780

GOTO 2500
PRINT:: "GIVEN PI-SECTION: "::
PRINT I' YA =":AA;" + J (";BA;M)"
PRINT II YB =";AB;" + J (";BB;")"
PRINT " YC =";AC;" + J ("rSC;")"
R1-(INT(1000*«AC*API+BC*BPI) / O+.0005) » / 1000
X1=(INT(1000*«BC*API-AC*BPI) / O+.3335)
)) / 1300
PRINT :: "EQUIVALENT T-SECTION:"::
PRINT" Zl =";Rl;" + J (";XI;"')"
R2=(INT(1330*«AA*API+BA*BPI) / O+ .0005)
)) /l000
X2=(INT(1000*«BA*API-AA*BPI) / O+.0005) » / 1000
PRINT It Z2 =";R2;" + J (U;X2;")"
R3=(INT(1000*«AB*API+BB*BPI) / O+.0005) » / 1000
X3=(INT(1000*«BB*API-AB*BPI) / O+.0005) » / 1000
PRINT" Z3 =";R3;" + J {";X3;")":: :
REM PRINT U::: "GIVEN COMPLEX AOMITTA
NCE PI-SECTION:" :: " YA =";AA:" + J ("
rBA;")"

2790 REM PRINT il:" YB =":AB:" + J {";8B;"
}":" YC =";AC: 'I + J ("rBC;") "

2800 REM PRINT #l::: "EQUIVALENT COMPLEX 1M
PEDANCE T-SECTION:"::" Zl =": Rl;" + J
(";XI;")"

28UJ REM PRINT #1:" Z2 =":R2:" + J {";X2;"
)It:" Z3 =";R3:" + J (";X3:")"::::

2820 GOSUB 3610
2830 GOTO 2500
2840 CALL HCHAR(19,5,96,9)
2850 CALL HCHAR(19,8,97,3)
2860 CALL HCHAR(24,5,96,9)
2870 CALL VCHAR(20,3,100,4)
2880 CALL VCHAR(20,15,100,4)
2890 CALL VCHAR(20,19,100,4)
2900 CALL VCHAR(20,31,100,4)
2910 CALL HCHAR(24,20,96,11)
2920 CALL HCHAR(19,22,97,3)

204

J

Chapter 5 -------

293~ CALL HCHAR(19,26,97,3)
294~ DATA 65,21,6,105,22,6,136,23,6,137,21,

12,135,22,12,136,23,12,137,21,25,135,
22,25,136,23,25,137

2953 DATA 19,3,99,19,4,139,19,6,133,23,6,13
3,19,12 ,133,23,1 2,133,19,14,139,19,15
,98,24,3 ,132

2963 DATA 24,4,139,24,14,139,24,15,131,24,6
,134,24,12,134,21,2,113,21,3,114,22,3
,115,22,2,116

2973 DATA 21,14,113,21,15,114,22,15,115,22,
14,116,19,19,99,19,23,112,19,21,139,1
9,25,133,23,25,133

2983 DATA 19,29,139,19,33,111,19,31,98,24,1
9,132,24,21,139,24,25,134,24,29,139,2
4,31,131,21,18,117

2993 DATA 21,19,118,22,19,119,22,18,123,21,
33,117,21,31,118,22,31,119,22,33,123,
22,7,89,22,8,65,18,8

~ 30~~ DATA 89,18,9,66,22,10,89,22,11,67,18,2
2,9~,18,23,49,18,27,90,18,28,50,22,26

~ ,90,22,27,51,1,1,32
3~1~ RESTORE 294~
3~2~ GOSUB 330
3~30 PRINT ","YA=AA + J BA(4 SPACES)Zl=Rl

+ J X1YB=AB + J BB(4 SPACES)Z2=R2 + J
X2"

3~4~ PRINT "YC=AC + J Bcf 4 SPACES)Z3=R3 + J
X3": : :

3050 RETURN
3060 PRINT "CONVERTING A COMPLEX{8 SPACESl!

MPEOANCE T-SECTION TO"
3~70 PRINT "AN EQUIVALENT COMPLEX

(7 SPACES)AOMITTANCE PI-SECTION""""
3~8~ REM PRINT fl,"CONVERTING A COMPLEX 1M

PEDANCE T-SECTION TO"
3~9~ REM PRINT U, "AN EQUIVALENT COMPLEX A

OMITTANCE PI-SECTION",: I:
3l~~ GOSUB 34~0
311~ INPUT" Rl = ":Rl
3120 INPUT " Xl = ":Xl

205

------- Chapter> -------

3130 INPUT .. R2 = ", R2
314£1 INPUT" X2 = ": X2
3150 INPUT " R3 = ": R3
316£1 INPUT" Xl = ":X3
317£1 RT=Rl*R2-X2*X2+Rl*R3-Xl*X3+R2*R3-X2*X3
3180 XT=Rl*X2+R2*Xl+Rl*X3+R3*Xl+R2*X3+R3*X2
319£1 D=RT*RT+XT*XT
3200 IF 0<>0 THEN 3240
3210 PRINT : "SORRY I DENOMINATOR CANNOT

(4 SPACES}EQUAL ZERO. " ::
3220 GOSUB 3610
3230 GOTO 3100
3240 PRINT J: "ELEMENTS OF T-SECTION:" :: " Zl

=":Rl:" + J {";XI ; "}":" Z2 =";R2;" +
J (";X2;")"

325£1 PRINT" Z3 :";R3:" + J (";X3;")": : JJ"E
QUIVALENT PI-SECTION;"

3260 AA=(INT(1000*«R2*RT+X2*XT) / 0+.0005»)
/ 1000

3270 BA=(INT(1000*«X2*RT-R2*XT) / 0+.0005»)
/ 1000

3283 PRINT ;" YA =II;AA;" + J (";BA;")"
3290 AB=(INT(1000*«R3*RT+X3*XT) / 0+.0005»)

/ 1000
3300 BB=(INT(1000*«X3*RT-R3*XT) / 0+.0005»)

/1000
331£1 PRINT" 'iB =";AB;" + J (";BB:")"
3320 AC=(INT(1000*«R1*RT+X1*XT) / 0+.0005»)

/ 1000
3330 BC=(INT(1000*«X1*RT-R1*XT) / 0+.0005»)

/ 1000
334el PRINT It YC =";AC;" + J (";Be;")"::::
3350 REM PRINT 11: IIELEMENTS OF T-SECTION:"

:::" Zl =<=";R2;" + J (";XI;")":" Z2 ="
;R2;" ++ J (";X2 ; ")"

3360 REM PRINT #1:" Z3 =";R3;" + J (":X3: "
)":::"EOUIVALENT PI-SECTION:"::" YA =
";AA;" + J (":BA;")"

3370i REM PRINT il:" YB = ":AB;" + J (":BB;II
)" ; " YC =":AC:" + J { IO;BC:")" : :: :

3380 GOSUB 3610
3390 GOTO 3100

206

\j

J

J

J

I

J

J

j

I

------ Chapter 5 ------

3400
3410
3420
3430
3440
3450
3460
3470
3480

3490

3500

3510

3520

3530

3540

3550

3560
3570
3580

CALL HCHAR(24,4,96,11)
CALL HCHAR(19,6,97,3)
CALL HCHAR(19,10,97,3)
CALL HCHAR(19,21,96,9)
CALL HCHAR(24,21,96,9)
CALL VCHAR(20,19,100,4)
CALL VCHAR(20,31,100,4)
CALL HCHAR(19,24,97,3)
DATA 69,19,3,99,19,4,112,19,5,139,19,9
,1133,19,13,1139,19,14,111,19,15,98,23,
3,H'0,20,9,H'0
DATA 213,15,11313,23,3,11313,23,15,11313,24,3
,1132,24,15,131,21,2,117,21,3,11 8 ,22,3
,119,22 ,2 ,1213
DATA 21,14,117,21,15,118,22,15,119,22,
14,1213,24,5,1139,24,13,139,21,9,135,22
,9,1136,23,9,1137
DATA 24,9,1134,19,19,99,19,213,1139,19,22
,1133,19,28,1133,19,313,1139,19,31,98,24,
19,132,24,20,1139
DATA 24,313,1139,24,31,1131,24,22,1134,24,
28,1134,21,18,113,21,19,114,22,19,115,
22,18,116,21,313,113
DATA 21,31,114,22,31,115.22,30,116.21,
22,105,22,22,106,23,22,1~7,21,28,1~5,

22,28,1136,23,28,107
DATA 20,22,100,20,28,100,18,7,90,18,8,
49,18,11,90,18,12,50,22,10,90,22,11,51,
22,23,89
DATA 22,24,65,18,24,89,18,25,66,22,26,
89,22,27,67,1,1,32
RESTORE 3480
GOSUB 330
PRINT::: "Zl=R1 + J Xl (4 SPACES)YA=AA
+ J BAZ2=R2 + J X2(4 SPACES)YB=AB + J
BB"

3590 PRINT "Z3=R3 + J X3 (4 SPACES)YC=AC + J
Be": ::

3600 RETURN
3610 PRINT : "DO YOU HAVE MORE PROBLEMS

(3 SPACES)OF THIS TYPE? (Yi N)"

207

"-

Chapter 5 '-

v

362~ CALL KEy(~,K , S) \.../
363~ IF K=78 THEN 250
3640 IF K<>89 THEN 3620 '--
3650 CALL CLEAR
366~ RETURN '-
3670 REM CLOSE #l
3680 END '--

Program 5-2. Electrical Engineering Circuit Design 2 '-.-"

110 REM EE CIRCUIT DESIGN PART 2 '-
120 CALL CLEAR
130 CALL CHAR(96, "000000FFFF II

)
'-./

14~ CALL CHAR(97, "2070D08809050602")
150 PRINT "{3 SPACES}ELECTRICAL ENGINEERING v

"
160 CALL CHAR(98,"000000F8F8~80808")

~

170 CALL CHAR(99,"0000000F0F~8~808")
~

18~ CALL CHAR(l~~ , "08~8~8~8~8~8~808")
19~ PRINT : :TAS(7) ~ "CIRCUIT DESIGN": t::: :: : '-.-....
2~~ CALL CHAR(1131, "080808F8F8") ~

210 CALL CHAR(102, "0808080F0F ")
220 CALL CHAR(103,"0~~~~0FFFF~8~8~8 ") '--
230 CALL HCHAR(16,11,96,9)
240 CALL HCHAR(16 , 14,97,3) '--
25~ CALL CHAR (104 , "~8~8~8FFFF")
26~ CALL CHAR(I~5,"~C~6~3~6186~300C") '-'

270 CALL CHAR(l~6, "~6~30618603~~C06") '--28~ CALL CHAR(107,"~30618603~180808")
29~ CALL CHAR(108,"~00EIIFIFI110E")

~

30~ CALL CHAR(110, "007~888F8F887")
310 PRINT TAB(9), "PART TWO":: '-'
32~ CALL CHAR(111, "~61E7CFFFF7CIE~6")
33~ CALL CHAR(117 , "~718204043808~8") '--
34~ CALL CHAR(l18, "E~188482E28181~1")
350 CALL CHAR(119, "~1~101E2020418E") '-.-

360 CALL CHAR(120 , "8080804340201807")
370 CALL CHAR(122,"~808~8FFFF08~8FF") ~

380 CALL CHAR(123,"~~7E~~3C~018")
390 CALL CHAR(147, "0010301010101") ~

40~ CALL CHAR(148, "00384408HJ207C") -
208 '-'

v

...)

)

------- Chapter 5 -------

410 CALL COLOR(15 ,7,1)
420 CALL CHAR(124, "010204081020408")
430 CALL CHAR(125,"2172D48819254682")
440 CALL CHAR(126,"0703050810244484")
450 CALL CHAR(127,"2064D494090D0606")
460 CALL CHAR(128,"0004040400040404")
470 CALL CHAR(l29, "0703061870304C86")
480 CALL CHAR(130,"070305081020408")
490 CALL CHAR(131,"000400FFFF000404")
500 CALL CHAR(132,"000036494936")
510 REM OPEN tl:"RS232.TW .BA=lU21 "
520 FLAG=0
530 REM FLAG=l
540 CALL CLEAR
550 CALL SCREEN(2)
560 PRINT ::::"1 SYMMETRICAL T-SECTION"::"2

SYMMETRICAL PI-SECTION"
570 PRINT, "3 BRIDGED T ATTENUATOR"" "4 DIG

rTAL TO ANALOG"
583 PRINT ::"5 END PROGRAM":::::::::
590 CALL SCREEN(8)
600 CALL KEY(0,K,S)
610 IF K<49 THEN 600
620 IF K>53 THEN 600
630 CALL CLEAR
640 ON K-48 GOTO 653,1593,1993,2560,3063
650 PRINT "CALCULATION OF AN EQUIVALENTSYMM

ETRICAL NETWORK AND THE"
660 PRINT "CORRESPONDING CHARACTERISTIC IMPE

DANCE FROM SHORT-CIRCUIT"
670 PRINT "AND OPEN-CIRCUIT TESTS",,"SYMMET

RrCAL T-SECTION"::::::::::
680 REM PRINT n"" "CALCULATION OF AN EQU

IVALENT"
6913 REM PRINT tl:"SYMMETRlCAL NETWORK AND

THEil
7133 REM PRINT #l:"CORRESPONDING CHARACTER!

STIC"
710 REM PRINT n, "IMPEDANCE FROM SHORT-ClR

CUlT"
720 REM PRINT #l, "AND OPEN-CIRCUIT TESTS"

209

------- Chapter 5 -------

730 REM PRINT #1:: "SYMMETRICAL T-SECTION": v
I:

740 IF FLAG=l THEN 770
750 FOR DELAY=l TO 400
760 NEXT DELAY
77~ GOSUB 126121
78121 PRINT "IMPEDANCE WITH OPPOSITE SIDE OPE

N CIRCUITED:"
790 PRINT :"(3 SPACES)ZOC = ROC + J XOC":"

(7 SPACES)= Zl / 2 + Z2"
800 PRINT :" IMPEDANCE WITH OPPOSITE SIDE SH

ORT CIRCUITED:"
810 PRINT :"(3 SPACES)ZSC = RSC + J XSC"
820 PRINT "(7 SPACES)= ZT +(ZT*Z2) / (ZT+Z2)"
830 PRINT TAB(10), "WHERE ZT=Zl/2"::
840 INPUT It ROC = ": ROC
85121 INPUT" XOC = u:XOC
86121 INPUT n RSC = ":RSC
870 INPUT " XSC = ":XSC
880 A=ROC*(ROC- RSC)-XOC*(XOC-XSC)
890 PRINT : "SYMMETRICAL T EQUIVALENT"
900 B=XOC*(ROC-RSC)+ROC*(XOC-XSC)
910 PRINT "FROM SHORT CIRCUIT AND": "OPEN CI

RCUIT TESTS":::
92121 C=ROC*RSC- XOC*XSC
93121 PRINT "zoe =";ROCi"+ J (";XOC ; ")"
94121 D=ROC·XSC+RSC·XOC
95121 PRINT "zsc =";RSC;"+ J (";XSC:")"
960 ZOM=SQR(SQR(C*C+D*D»
970 IZOM=(INT(1000*(ZOM+.0005») / 1000
980 ZOA=0.5*ATN(D/ C)
990 IZOA=(INT(1000*(ZOA+.0005») / 1000
H"iH21 PRINT :" ZO ="iIZOM;" EXP J (";IZOA;")

"
1010 RO=(INT(1000*(ZOM*COS(ZOA)+.0005») / 10 ~

00
1020 XO=(INT(1000*(ZOM*SIN(ZOA)+ . 0005») / 10

00
11213121 PRINT "{4 SPACES}="iROj"+ J ("iXOj")" v
1040 Z2M=SQR(SQR(A*A+S*S»
1050 Z2A=.5*ATN(B/ A) ~

1060 PRINT :: "EQUIVALENT T-SECTION"::

210

------ Chapter 5 ------

1~7~ R2=Z2M*COS(Z2A)
l~B~ IR2=(INT(1~~~*(R2+.~~~5») / 1~e~
1~9~ X2=Z2M*SIN(Z2A)
11~~ IX2=(INT(leee*(X2+ . ~~~5») /1~~e
111£1 PRINT" Z2 =":IR2:"+ J (":IX2 : ")"
112~ R12=(INT(1~e~*(ROC-R2+ . ~~~5») /1~~~
113~ X12=(INT(1~~~*(XOC-X2+ . ~~~5») /1~~~
114£1 PRINT "Zl / 2 =":R12:"+ J (":X12;")"
115~ REM PRINT U::: "SYMMETRICAL T EQUIVAL

ENT FROM"
1163 REM PRINT #1; "SHORT CIRCUIT AND OPEN

CIRCUIT TESTS"::
117£1 REM PRINT #l:"ZOC =":ROC:"+ J (";XOCi

") "
llBe REM PRINT #l:"ZSC =":RSC:"+ J {":XSC;

") "
1190 REM PRINT #1::" ZO =";IZOM;" EXP J ("

:IZOAi")"
120£1 REM PRINT #1:"{4 SPACES}=":ROi"+ J ("

:XO:")"
1210 REM PRINT n : : ··EQUIVALENT T SECTION:··

........... 122" REM PRINT #1::"Zl / 2 =":R12;"+ J . (II:Xl

J

J

J

2; ") "
1230 REM PRINT il: 11 Z2 =":IR2:"+ J (":IX2

,"}"::::
1240 GOSUB 30B~
1250 GOTO 770
126~ CALL HCHAR(18,6,96,19)
1270 CALL HCHAR(24,6,96,19)
1280 CALL HCHAR(18,9,97,3)
1290 CALL HCHAR(18,18,97,3)
1300 CALL VCHAR(19,15,10e,5)
1310 X=18
1320 Y=15
1330 GOSUB 1440
1340 DATA 18,5,11£1,24,5,11£1,18,25,1£18,24,25

,108,17,9,9£1
135£1 DATA 17,10,49,17,11,47,17,12,50,17,18,

9",17,19,49
1360 DATA 17,2£1,47,17,21,5£1,21,16,9£1,21,17,

50,1,1,32
1370 RESTORE 1340

211

------- Chapter 5 -------

138~ FOR 1=1 TO 15
1393 READ X,Y,G
14~~ CALL HCHAR(X,Y,G)
141~ NEXT I
142~ GOSUB lSl~
143~ RETURN
1443 CALL VCHAR(X+6 ,Y,104)
14S~ CALL VCHAR(X,y ,1~3)
1463 CALL VCHAR(X+l,Y,100,S)
147~ CALL VCHAR(X+2,y, 1~Sl
1483 CALL VCHAR (X+3,Y,106
149~ CALL VCHAR(X+4,y,1~7)
lS~~ RETURN
lSl~ RESTORE lS2~
1523 DATA 2,83,3,73,4,68,5,69,7,147,24,83,2

5,73 ,26,68,27,69,29,148,1,32
lS3~ FOR 1=1 TO 11
lS4~ READ Y,G
lSS~ CALL HCHAR(21,Y,G)
lS6~ NEXT I
lS7~ PRINT ::,
lS8~ RETURN
1593 PRINT "DESIGN OF A SYMMETRICAL": "RESIS

TIVE PI ATTENUATOR":::::::::::
1633 REM PRINT #1:::: "DESIGN OF A SYMMETRI

CAL"
1613 REM PRINT #l:"RESISTIVE PI ATTENUATOR

"
162~ GOSUB 18~~
1633 PRINT : "GIVEN CHARACTERISTIC"
164~ INPUT "RESISTANCE RO = ":RO
16S~ REM PRINT n::: "CHARACTERISTIC RESIST

ANCE :::": RO
166~ PRINT : "INPUT ATTENUATION VALUES

(4 SPACES}TO STOP, ENTER ~":::
1673 INPUT "DB = ":D8
168~ IF DB=~ THEN 178~
169~ TA=DB/8.686
17~~ R3=RO*(EXP(TA)-EXP(-TA»/2
171~ IR3=(INT(1~e~*(R3+.e3~5»)/1~~~
1720 TA2=TA/2
173~ TANHT=(EXP(TA2)-EXP(-TA2»!(EXP(TA2)+E

XP (-TA2»
212

------ Chapter 5 ------

1740 Rl=(INT(1000*(RO/TANHT+.0005»)/1000
1753 PRINT :"Rl =":Rl,"R3 =";IR3:::
1763 REM PRINT #1::"08 =";DB,"RI =":Rl,"R3

="; R3
1770 GOTO 1670
1780 GOSUB 3110
1790 GOTO 1620
1800 CALL HCHAR(18,6,96,19)
1810 CALL HCHAR(24,6,96,19)
1820 CALL HCHAR(18,14,97,3)
1830 X-18
1840 Y=10
1850 GOSUB 1440
1860 Y=20
1870 GOSUB 1440
18Be DATA 18,5,113,18,25,138,24,5,113,24,25

,138,21,11,82,21,12,49
1893 DATA 21,18,82,21,19,49,17,15,82,17,16,

51,1,1,32
1900 RESTORE 1880
1910 FOR 1=1 TO 11
192" READ X,Y,G
1930 CALL HCHAR(X,Y,G)
1940 NEXT I
1950 GOSUB 1510
1960 PRINT "Rl = RO / TANH(N/ 2)"
1970 PRINT "R3 = RO*SINH(N)":"(5 SPACES)WHE

RE N=LOSS IN NEPERS":::
1980 RETURN
1993 PRINT "DESIGN OF SYMMETRICAL": "BRIDGED

T ATTENUATOR"::::::::::::::
2000 REM PRINT U:::: "DESIGN OF SYMMETRICA

L"
2CtH0 REM PRINT # 1: "BRIDGED T ATTENUATOR"::
2020 GOSUB 2260
2030 INPUT "INPUT RESISTANCE RO = ":RO
2040 REM PRINT U::: "INPUT RESISTANCE RO =

";RO: :
2050 PRINT :: "ENTER VARIOUS RATIOS OF": "VR=

V2/Vl: ENTER -1 TO STOP. "::
2060 INPUT "VR = ":VR
2070 IF VR<0 THEN 2240

213

------ Chapter 5 ------

2080 IF VR<>0 THEN 2120
2093 PRINT :"R3 = 3","R4 = "~CHR$(132):::

2H"!J REM PRINT il: "VR =" iVR, "R3 = '"
[8 SPACES)R4 = INFINITY"

2110 GOTO 2060
2123 IF VR<>l THEN 2160
2133 PRINT :"R3 = "iCHR$(132),"R4 = 3";;1

21413 REM PRINT tl:t'VR ="iVR, "R3 ::: INFINITY
R4 = 0 11

2150 GOTO 2060
2160 IF VR<l THEN 2190
2173 PRINT "0<VR<1 PLEASE"::
2180 GOTO 2060
2190 R3=(INT(1000*((RO/ (1 / VR-1»+.0005»)/1

000
2200 R4=(INT(1000*((RO*(1/VR-1»+.0005») / 1

000
2213 PRINT :"R3 =":R3,"R4 =":R4:::
2223 REM PRINT tl:"VR=":VR,"R3 =";R3,"R4

=": R4
2230 GOTO 2060
2240 GOSU8 3110
2250 GOTO 2020
2263 CALL HCHAR(lS,10,96,11)
2270 CALL HCHAR(18 , 6,96,18)
2280 CALL HCHAR(24,6,96,18)
2290 CALL VCHAR(16,9 , 100,2)
2300 CALL VCHAR(16,21,100,2)
2310 CALL HCHAR(15 , 14,97,3)
2323 CALL HCHAR(lB,11 , 97,3)
2330 CALL HCHAR(18 ,1 7,97,3)
2340 X=18
2350 Y=15
2360 GOSUB 1440
2370 DATA 18,5,110,24,5,110,18,24,108,24,24

,138,18,9,134,18,21,134
2380 DATA 15,9,99,15,21,98,16,14,124,15,15,

125,14,16,126,15,16,127
2390 DATA 16,16,128,17,16,128,18,16,131,19,

16,128,22,14 ,1 24,21,15,129
2433 DATA 23,16,133,20,5,147,20,24,148,14,1

4,82,14,15,52,19,11,82

214

I

------ Chapter 5 ------

2410 DATA 19,12,49,19,18,82,19,19,50,21,16,
82,21,17,51,14,24,82

2420 DATA 14,25,49,14,26,61,14,27,82,14 ,28,
50,14,29,61,14,30,82

2430 DATA 14,31,79,21,29,82,21,30,79,18 ,26,
111,24,26,111,18,27,96

2440 DATA 24,27,96,18,28,98,24,28,101,1 , 1,3
2

2450 RESTORE 2370
2460 FOR 1=1 TO 46
2470 READ X,Y,G
2480 CALL HCHAR(X,Y,G)
2490 NEXT I
2500 X=18
2510 Y=28
2520 GOSU8 1460
2530 PRINT ::,"R3 = RO/ «l / VR)-l)"
2540 PRINT "R4=RO*«1/VR)-1)"::,
2550 RETURN
2560 PRINT tiS IX-BIT DIGITAL TO": "ANALOG CON

VERTER" : : , , : , ; : : : : : : :
2570 REM PRINT tl,::: "SIX-BIT DIGITAL TO A

NALOG CONVERTER"" I

2580 GOSUB 2720
2590 PRINT '" "ENTER SIX INPUT VOLTAGES. " ,"

TO STOP, ENTER -1": : : :
2600 F=1
2610 VO=0
2620 FOR J=l TO 6
2630 INPUT II V"&STR$(J)&" = "tV
2640 IF V<0 THEN 540
2650 REM PRINT n,' V"&STR$(J)&" =",v
2660 F=.5*F
2670 VO=VO+F*V
2680 NEXT J
2690 PRINT ,"V OUT =", VO :: ,
2700 REM PRINT #1::" V OUT =";VO:::
2710 GOTO 2600
2720 CALL HCHAR(14,4,96,3)
2730 CALL HCHAR(23,4,96,27)
2740 CALL VCHAR(20 ,3,100, 3)
2750 X=14

215

------ Chapter 5 ------

276e
277e
27Be
27ge
2Bee
2Ble
2B2e
2B3e
2B4e
2Bse
286e
287e
288e
28ge
2gee
291e
292e
293e
294e
29se
296e
297e
298e

29ge

3eee
3ele
3e2e
3e3e
3e4e
3ese
3e6e
3e7e
3eBe
3ege
3lee
3ue

312e
3l3e
314e

216

Y=3
GOSUB 146e
CALL HCHAR(14,3,99)
CALL HCHAR(23,3,le2)
CALL HCHAR(14 , B, 97 ,19)
1=e
FOR Y=7 TO 27 STEP 4
GOSUB 14se
CALL VCHAR(22,Y,lee)
CALL VCHAR(23,Y,104)
CALL HCHAR(2e,Y-1,117)
CALL HCHAR(20,Y,118)
CALL HCHAR(21,Y,119)
CALL HCHAR(21,Y-1 ,120)
CALL HCHAR(13,Y+2,82)
CALL HCHAR{17,Y+l,50)
CALL HCHAR(17,Y+2 , 82)
CALL HCHAR(19 , Y-2,86)
CALL HCHAR(19,Y-1,S4-1)
1=1+1
NEXT Y
CALL HCHhR(14,2B , 96 , 3)
DATA 14,31,108,15,31,43,23,31,108,22,3
1,45,23,27,122,24,27 , 123
DATA 18,30,86,18,31,79,17,4,50,17,5,82
,1,1,32
RESTORE 298e
FOR 1=1 TO U
READ X,Y,G
CALL HCHAR(X,Y,G)
NEXT I
RETURN
REM CLOSE 11
STOP
PRINT : "PRESS <ENTER> TO CONTINUE"
CALL KEy(e,K,S)
IF K<>13 THEN jege
PRINT ::-00 YOU HAVE MORE PROBLEMS
(3 SPhCES}OF THIS TYPE? (Yi N)"
CALL KEY(e,K,S)
IF K=-78 THEN 540
IF K<>B9 THEN 312e

v

v ------ Chapter 5 ------

v
31S~ CALL CLEAR

J 316e RETURN
317e END

v

v

J

String Functions
Usually, the computer expects all information to be numeric.
Certain information, however, is treated as strings, or groups
of characters. You signal the computer that certain information
is a string by enclosing it in quotation marks: PRINT 4 + 4
causes the computer to print 8; PRINT " 4+4" causes the
computer to print 4 +4. You signal the computer to treat the
value of a variable as a string by ending the variable name
with $.

String expressions may contain letters, numbers, and
characters, and may be up to 255 characters long. Longer
strings are truncated on the right.

Strings are combined or concatenated with the ampersand .
To combine string A$, which is " TI·", with string B$, which is
"99/4A" , use the statement PRINT A$&B$.

The string functions that are built into T1 BASIC are very
powerful and useful. Any function that ends in a dollar sign
gives a string as a result. You cannot combine string and
numeric expressions.

ASC
ASC(X$) returns the ASCII character code of the fi rst character
in the string X$. If the string expression is a constant, it must be
contained in quotation marks:

PRINT ASC(" ''')
PRINT ASC(" 6")

This program returns the ASCII code of any character you
enter.

199 REM ASC
119 CALL CLEAR
129 PRINT "WANT TO KNOW THE ASCII CODE?": :
139 INPUT "WHAT CHARACTER? ":C$
140 PRINT "ASCII CODE = ";ASC(C$)::
1Se GOTO 130
169 END

217

------- Chapter 5

CHRS
CHR$(x) returns the character for the ASCII code x. If x is not an
integer, it is rounded to obtain an integer. Try these
commands:

PRINT CHRS(42)

PRINT CHRS(66)

PRINT CHRS(6S+4)

The CALL KEY command returns an ASCII code number
for the key pressed. If you wish to print the key pressed, the
ASCII code first needs to be translated to the character which
corresponds to the number. Here is a program using CHR$.

100 REM CHRS
110 CALL CLEAR
120 PRINT : :"PRESS ANY KEY."
130 CALL KEY(0,K,S)
140 IF S< >l THEN 130
150 PRINT CHRS(K)
160 GOTO 120
170 END

In this next program, you can enter a value and get the
character which corresponds to the number.

100 REM CHR$ 2
110 CALL CLEAR
120 INPUT "ENTER A NUMBER: ":N
130 IF N>=0 THEN 170
149 PRINT :"SORRY, NUMBER MUST BE"
150 PRINT "GREATER THAN ZERO."::
160 GOTO 120
170 IF N<=32767 THEN 210
180 PRINT : "SORRY, NUMBER MUST BE"
190 PRINT "LESS THAN 32767."::
200 GOTO 120
210 PRINT : "CHARACTER = ";CHR$(N)::
220 GOTO 120
230 END

218

------- Chapter 5

STRS
There are times when you need to manipulate numbers as
numeric expressions and as string expressions. For example, if
you want to combine a name and an age, the name is a string
an,d the age is a number. To concatenate the name and age, you
will first need to convert the age number to a string, then
combine the two strings. 5TR$(x) will convert the number x to a
string. U x is an expression, the expression is evaluated first,
then the result is converted to a string. The string will be the
number only, with no leading or trailing spaces.

VAL
VAL(X$) will give the numeric value of the string X$. In this
case X$ must be the ASCII characters for a number or a numeric
expression. U strings contain numbers that you wish to use in
calculations, the strings must first be converted to numbers
with the VAL statement.

Some valid commands are:

PRINT STRS(529)

AS= NS&STR5(N)

MS = STR5ICOSn&" /" &STRS(X)

A=VAL(AS)

PRINT VAL("27"&" .45")

PRINT STR5(VAL(MS))

LEN
LEN(X$) is a string function which gives the length of, or
number of characters in, the string X$. In TI BASIC you may
have a null string ""; the length of a null string is zero .
Leading and trailing blank spaces are counted in the number of
characters for the length.

POS
POS(stringl,string2,n) is the pOSition function. String1 and
string2 are string expressions. The numeric expression n is

219

------ Chapter 5 ------

evaluated and rounded to an integer. pas finds the first
occurrence of string2 within stringl, starting at character
number n. The value returned is the character position of th e
first character of string2 in stringl. If string2 is not found, a
value of zero is returned .

Perhaps the best way to explain this function is with some
examples. Run the following program. P= POS(B$,A$,l) finds
the first occurrence of A$ in B$ starting w ith the first character
of B$, The number P is the position, or the number of
characters in from the first character. p= POS(B$,A$,4) finds
the first occurrence of A$ in 8$, starting at the fourth character
018$,

109 REI! P~S
119 CALL CLEAR
129 PRINT "A$R,"BS":TAB(26);"P·
139 A$="X·
149 B$="BOXES"
159 P=POS(B$,A$,l)
169 PRINT ::"P=POS(B$,A$,l)"
179 PRINT :A$,B$ITAB(26) IP
189 A$="BOB"
199 B$="BOBBY"
299 P=POS(B$,A$,l)
219 PRINT :A$,B$ITAB(26) IP
229 A$=-S-
239 P=POS(B$,A$,l)
249 PRINT :A$,B$ITAB(26) IP
259 PRINT : : "P~POS(B$,A$,4)·
269 P=POS(B$,A$,4)
279 PRINT :A$,B$ITAB(26)IP
289 A$=·X·
299 P=POS(B$,A$,4)
399 PRINT :A$,B$ITAB(26)IP
319 END

SEes
SEG$ (string expression/numeric expressionl,numeric expression2)
is the TI BASIC string segment fu nction, and is comparable to
the LEFf$, M1D$, and RIGHT$ functions in BASIC on some
other microcomputers. The command PRINT SEG$(A$,Nl ,N2)

220

v

------ Chapter 5 ------

'-' will print a segment of string A$ starting with the character in
the N t position, continuing until the segment is N2 characters

__ long.
Here are some examples.

199 REM SEG
ll9 CALL CLEAR
129 A$="BERE IS A MESSAGE."
139 PRINT A$::
149 PRINT :"SEGS(AS,1,4)",TAB(22),SEGS(A$,

1,4)
159 PRINT :"SEG$(A$,3,5) ",TAB(22),SEG$(A$,

3,5)
169 PRINT : "SEGS(A$,12,3)" , TAB(22),SEG$(A$

,12,3)
179 PRINT :"SEG$(A$,12,12) ";TAB(22);SEG$(A

$,12,12)
189 PRINT : "SEG$(A$,29,3)";TAB(22);SEG$(A$

,29,3)
199 PRINT :"SEGS(A$,LEN(A$)-4,5)";TAB(22);

SEGS(A$,LEN(A$)-4,5)
299 END

String Functions In Practice
Following are several programs or partial programs that
illustrate the use of these string functions.

You may want to combine graphics and text on a screen . A
PRINT statement will print a message, but w ill scroll. HCHAR
or VCHAR statements are s lightly slower, but will not scroll the
screen. Here is a subroutine (in lines 280-310) that allows you to
print a message (M$) on a certain row (ROW), starting in
column number COL+ 1.

1BB REM BCHAR MESSAGE
ll9 CALL CLEAR
129 M$="MESSAGE"
139 ROW=lB
149 COL=15
159 GOSOB 289
169 M$="EXAMPLE"
17B ROW=15
189 COL=3

221

------ Chapter 5 ------

199 GOSUB 289
299 M$="HELLO"
219 COL=18
229 GOSUB 289
239 M$="TRY YOUR OWNl"
249 ROW=6
259 COL=4
269 GOSUB 289
279 STOP
289 FOR 1=1 TO LEN(M$)
299 CALL HCHAR(ROW,COL+I,ASC(SEG$(M$,I,l»)
399 NEXT I
319 RETURN
329 END

Many word puzzle games award pOints for using particular
letters in a word. Each letter of the alphabet is given a value,
such as A=15, B=25, (=30, D =21, etc. The point value of the
word is calculated by adding up the individual values of the
letters in the word. For example, the word CAB would be
worth 30 + 15 + 25, for a total of 70.

Here is a program to calculate the value of a word after
you've entered the values for each letter.

Program 5-3. Letter Puzzles

100 REM LETTER PUZZLES
110 DIM V(26)
120 CALL CLEAR
130 PRINT "ENTER THE VALUE FOR EACH

(4 SPACES)LETTER. ""
140 FOR A=65 TO 90
150 PRINT CHR$(A)&" "
160 INPUT V(A-64)
170 NEXT A
180 PRINT '" "NOW ENTER A WORD"
190 INPUT W$
299 T=9
210 FOR 1=1 TO LEN(W$)
229 L$=SEG$(W$,I,l)
230 A-ASC(L$)
249 IF A>64 THEN 270

222

-

v

J

------- Chapter 5

250 PRINT : "PLEASE USE LETTERS ONLY."::
260 GOTO 190
270 IF A>90 THEN 250
280 T=T+V(A-65)
290 NEXT I
3o" PRINT : "TOTAL VALUE OF WORD IS"; T
310 GOTO 180
320 END

Bingo
There is a varia tion on Bingo in which each letter of the
alphabet has a value. You are given a 5x5 square and may
write the word bingo diagonally or in any column . You must
then fill in the rest of the squares to make five five- letter words
that include the letters of birlgo where you placed them. The
object is to find words that use high-value letters; your score is
the total of the five word values.

The computer can be used to find high-scoring words. The
fo llowing program gives high-scoring words for the game. Line
160 is a DATA statement. Change this statement to READ the
pOint values of each letter of the alphabet, in order, for your
particular contest . .

Lines 360-870 are DATA statements that contain five-letter
words. Most contests require you to use a certain dictionary. In
preparing the program for play, you should go through the
d ictionary to find all the five-letter words that qualify, and that
contain the letters B, I, N, G, or 0; then type these words in the
DATA statements. The last word in the list should be ZZZZ.

Waming: The list in this program may not be inclusive.
Also, this list only includes words s tarting with A through H .

When you run the program, you will be asked for a letter.
Type in B and press ENTER. The computer will find all words
which start with B and total the values of the letters. It will
print the first word it comes to, and its score; from that point
on, it will print only words with higher totals than those
already found.

Next, the computer will find all words with the letter B in
the second position, then in the third position, and so forth.

Run the program again and enter I. For each run, the
computer w ill search for a different letter that you INPUT.

The values for each letter of the alphabet are read in as data
in an array L(l). Lines 190-340 perform a loop for each of the

223

------ Chapter 5 ------

five positions in the word. A word is READ in from DATA. If
the letter in the particular position is not equal to the letter you
had requested, then the next word is read. If the letter is the
one being searched for, the total value of the word is calculated
by adding the values for each letter in the word (lines 260-290).
Tis the total. SEG$ finds out the individual letter, then ASC
gets the ASCII value of the letter. Since the ASCII value of A is
65, and each letter has a corresponding ASC II code in order,
the program subtracts 64 from the ASCII value of the letter in
the word. L gives the value of the particular letter. IT is the
high total so far.

Program 5·4. Bingo

133 REM BINGO A-H
113 DIM L(26)
123 FOR I~l TO 26
133 READ N
143 L(I)~N
153 NEXT I
160 DATA 32,17,31,13,14,15,18,33,29,30,11,1

6,19,28,20,12,34,23,26,10,21,22,35,24
,25,27

170 CALL CLEAR
180 INPUT "LETTER ":1\$
193 FOR I~l TO 5
233 PRINT
213 TT~3
223 RESTORE 363
233 READ W$
243 IF W$~"ZZZZZ" THEN 343
253 IF SEG$(W$.I.1)<>A$ THEN 233
263 T~3
273 FOR J~l TO 5
283 T~T+L(ASC(SEG$(W$.J.1»-64)
290 NEXT J
300 IF T<TT THEN 230
313 PRINT T,"(3 SPACESj",W$
323 TT~T
333 GOTO 233
343 NEXT I
35e STOP

224

'--'

v Chapter 5

'-./

~ 360 DATA ABACK,ABAFT,ABASE,ABASH,ABATE,ABBE
Y,ABBOT,ABEAM,ABHOR,ABIDE,ABODE,ABORT

'-' ,ABOUT,ABOVE,ABSTR,ABUSE,ABYSM
370 DATA ABYSS,ACORN,ACRID,ACTOR,ADAGE,ADDN

v L,ADIEU,ADIOS,ADMAN,ADMIN,ADMIT,ADMIX
,ADOBE,ADOPT,ADORE,ADORN,AEGIS

~ 380 DATA AERIE,AFFIX,AFIRE,AFOOT,AGAIN,AGEN
T,AGILE,AGLOW,AGONY,AGORA,AGREE,AISLE

~ ,ALBUM,ALIAS,ALIBI,ALIEN,ALIGN
390 DATA ALIKE,ALIVE,ALLOT,ALLOW,ALLOY,ALOF

~ T,ALOHA,ALONE,ALONG, ALOOF, ALOUD,AMAIN
, ,AMBER,AMBLE,AMEBA,AMEND,AMISS

400 DATA AMITY,AMONG,AMOUR,ANENT,ANGEL,ANGE
~

R, ANGLE, ANGLO, ANGRY, ANGST, ANGUS, ANION
,ANISE, ANKLE, ANNEX, ANNOY, ANNUL

~ 410 DATA ANODE,ANTIC,ANVIL,AORTA,APHID,APHI
S,APORT,APRIL,APRON,ARBOR ,ARDOR ,ARENA

~ ,ARGON,ARGOT,ARGUE,ARISE,ARITH
420 DATA ARMOR,AROMA,ARROW,ARSON,ASCOT,ASHE ,

N,ASIAN,ASIDE,ASPEN,ASPIC,ASSOC,ASTIR

'-'
,ATILT,ATOLL,ATONE,ATTIC, AUDIO

430 DATA AUDIT,AUGER,AUGUR,AUXIN,AVAIL,AVGA
S,AVIAN,AVOID,AXIAL,AXIOM,BABEL,BACON

~ , BADGE, BAGEL, BAGGY, BAIRN,BAIZA
440 , DATA BAIZE, BALKY, BALMY, BALSA, BANAL,BAND

Y, BANJO, BANNS,BANTU,BARGE,BARON,BASAL

'--' ,BASIC, BASIL, BASIN, BASIS, BASSO
450 DATA BASTE,BATCH,BATHE,BATIK,BATON,BATT

'-' Y,BAWDY, BAYOU, BEACH, BEANO, BEARD, BEAST
,BEECH, BEEFY,BEFIT,BEFOG, BEGET

~ 460 DATA BEGUM,BEIGE,BEING,BELAY,BELCH,BELI
E, BELLE, BELLS, BELLY, BELOW, BENCH, BENNY

~ ,BERET, BERRY, BERTH, BERYL, BESET
470 DATA BESOM,BESOT,BETEL,BEVEL,BEZEL,BIBL

v E,BIDDY,BIDET,BIGHT,BIGOT,BILGE,BILLY
,BINGE, BIPED, BIRCH, BIRTH, BISON

v 4B0 DATA BITCH,BLACK,BLADE,BLAIN,BLAME,BLAN
D, BLANK, BLARE, BLASE, BLAST, BLAZE, BLEAK

~ , BLEAR, BLEAT, BLEED, BLEND, BLESS
490 DATA BLIMP,BLIND,BLINK,BLISS,BLITZ,BLOA

~ T, BLOCK, BLOND, BLOOD, BLOOM,BLOWY, BLUES
,BLUET, BLUFF,BLUNT, BLURB, BLURT

~

225

~

Chapter 5 '-'

'-'

500 DATA BLUSH, BOARD, BOAST, BOBBY, BOGEY , BOGU '-'
S, BOLUS, BONER, BONGO, BONNY, BONUS, BONZE
, BOOBY, BOOST, BOOTH, BOOTY, BOQZE ~

5UI DATA BORAX,BORNE,BORON,BOSKY,BOSOM,BOSU
N, BOTCH,BOUGH, BOULE, BOUND, BOURN, BOWEL ~

, BOWER, BOXER, BRACE, BRACT, BRAID
520 DATA BRAIN,BRAKE,BRAND,BRASH,BRASS,BRAV ~

E, BRAVQ, BRAWL, BRAWN, BRAZE, BREAD, BREAK
,BREAM,BREED,BRIAR,BRIBE,BRICK

~

530 DATA BRIDE,BRIEF,BRIER,BRINE,BRING,BRIN
~

K,BRISK,BROAD,BROIL,BROKE,BROOD,BROOK
,BROOM, BROTH, BROWN, BRUIN, BRUIT '-'

540 DATA BRUNT,BRUSH,BRUTE,BUDDY,BUDGE,BUGG
Y, BUGLE, BUILD,BULGE, BULKY, BULLY , BUNCH '-'
,BUNCO, BUNNY,BURGH, BURLY, BURRO

550 DATA BURST,BUSBY,BUTTE,BUTUT,BUXOM,BYLA ~

W, BYWAY, CABAL, CABBY, CABIN,CABLE,CACAO
, CADGE,CAGEY,CAIRN,CAMEO,CANAL '--

560 DATA CANDY,CANNA,CANNY,CANOE,CANON,CANT
0, CARGO, CAROL, CAROM, CAVIL, CELLO, CHAIN '-'

,CHAIR,CHANT,CHAOS,CHIAO,CHICK
570 DATA CHIDE,CHIEF,CHILD,CHILI,CHILL,CHIM ~

E, CHIMP, CHINA, CHINE, CHINK, CHINO, CHIRP
~ ,CHIVE, CHOCK, CHOIR, CHOKE, CHOMP

580 DATA CHOPS,CHORD,CHORE,CHOSE,CHRON,CHUN
~

K,CHURN,CIDER,CIGAR,CINCH,CIRCA,CIVET
,CIVIC,CIVIL,CLAIM,CLANG,CLANK '-'

590 DATA CLEAN,CLICK,CLIFF,CLIMB,CLIME,CLIN
G, CLINK, CLOAK, CLOCK, CLOSE, CLOTH, CLOUD ~

,CLOUT, CLOVE, CLOWN, CLUNG, COACH
600 DATA COAST,COBRA,COCOA,CODEX,COLIC,COLO ~

N,COLOR,COMBO,COMDG,COMDR,COMDT,COMER
, COMET, COMFY, COMIC, COMMA, COMMO '-'

610 DATA CONCH, CONEY, CONGA, CONIC, CONST, CONT
0, CONTG, CONTR, COPRA, CORAL, CORNY, CORPS '-'

620
,COUCH,COUGH,COULD,COUNT,COUPE
DATA COURT,COVEN,COVER,COVET,COVEY,COWE 'oJ

R, COYPU, COZEN, CRANE,CRANK,CRICK,CRIER
,CRIME,CRIMP,CROAK,CROCK,CRONE 'V

630 DATA CRONY,CROOK,CROON,CROSS,CROUP,CROW
D,CROWN,CRUMB,CUBAN,CUBIC,CUBIT,CUPID '-'
,CURIA,CURIO,CYNIC,DAILY,DAIRY

-...J

226 '-'

'-'

------ Chapter 5 ------

780

790

800

810

820

830

840

850

860

870

880

DATA GEODE,GETUP,GHOST,GHOUL,GIANT,GIDD
Y,GIMPY,GIPSY,GIRTH,GIVEN,GIZMO,GLADE
,GLAND,GLANS,GLARE,GLASS,GLAZE
DATA GLEAM,GLEAN,GLEBE,GLIDE,GLINT,GLOA
T,GLOBE,GLOOM,GLORY,GLOSS,GLOVE,GLOZE
,GNARL,GNASH,GNOME,GODLY,GONAD
DATA GOODY,GOOFY,GOOSE,GORGE,GORSE,GOUD
A,GOUGE,GOURD,GRACE,GRADE,GRAFT,GRAIL
,GRAIN ,GRAND, GRANT, GRAPE, GRAPH
DATA GRASP , GRASS,GRATE,GRAVE,GRAVY,GRAZ
E,GREAT,GREBE,GREED,GREEK,GREEN,GREET
,GRIEF,GRILL,GRIME,GRIND,GRIPE
DATA GRIST,GRITS,GROAN,GROAT,GROIN,GROO
M,GROPE,GROSS,GROSZ,GROUP,GROUT,GROVE
,GROWL,GRUEL,GRUFF,GRUNT,GUANO
DATA GUARD,GUAVA,GUESS,GUEST,GUIDE,GUIL
0 , GUILE, GUILT,GUISE, GULCH, GULLY, GUMBO
,GUNNY,GUPPY,GUSHY,GUSTO,GUTTY
DATA GUYOT,GYPSY,HABIT,HAIKU,HAIRY,HAJJ
I,HALLO,HANDY, HAOLE ,HAUNT, HAVEN, HAVOC
,HEDGE,HEIST,HELIX,HELLO,HELOT
DATA HENCE,HENNA,HERON,HINGE,HITCH,HIVE
S,HOARD,HOARY,HOBBY,HOGAN,HOIST,HOKUM
, HOLLO, HOLLY, HOMER,HOMEY, HONEY
DATA HONOR,HOOEY,HORDE,HORSE,HOTEL,HOUN
D,HOURI,HOUSE,HOVEL,HOVER,HUMAN,HUMID
,HUMOR,HUNCH,HURON,HYENA,HYMEN
DATA AWAIT,BEGIN, CARNY , OQCKY,COPSE,CRIS
P,DINER,ENSUE,EVENT,EVOKE,FICHU,FIFTY
,HINDI,HYDRO,ZZZZZ
END

Birthday List
Here is a program that keeps track of birthdays. The list can be
printed either by name, in alphabetical order, or by birthday, in
calendar order.

The DATA statements at the end of the main program
contain the names in alphabetical order by last name (you may
prefer to arrange the data in order by family) . The number
fo llowing the name is the birthdate as a four-digit number. The
first two digits stand for the number of the month , and the last

228

Chapter 5 -------

two digits are the day. If either is unknown, the number should
be entered as 00. For example, a birthday of November 14
would be listed as 1114 - 11th month, 14th day. A
birthday sometime in May would be 0500 - fifth month,
unknown day.

After the names are listed in alphabetical order, there is a
delay while the names are sorted by birthday; then the list is
printed by date with a double space between months.

If you have more than 30 names, increase the parameters in
the DIM statement in line 110. You may also want to change to
a faster sort routine. N$ is the name and B$ is the birthday. M$
is an array that holds the month names. SEG$looks at either
the first two digits or the last two digits of the birthday code.
VAL gives the numerical value of the string number.

How "Birthday List" Works
Lines

110

120-130
140-180
190

200

210
220
230-260
270

280-290

300-350
360-380
390-410
420-550
560-570
580-750

DIMension the name array, the birthday array,
and the month array.
Print title .
READ month names into M$ array.
L is a counter for the number of lines on the
screen.
READ last name LN$, first name FN$, and
birthday B$.
Branch if LN$ is the last item on the data list .
Print the last name and first name on the screen.
Print the day and month of the birthday.
Combine first name and last name as N$ in
array.
Increment the counter in name array and the
counter in number of lines printed on screen.
[f the screen is filled, press any key to continue.
Print the message; wait for key to be pressed.
Clear the screen and print the title.
Birthday sort routine.
Clear the message and initialize the line count.
Print the day, month , and name. Double·space
if the months are different; keep track of the
number of lines printed so the names don' t
scroll off the screen.

229

Chapter 5 -------

760
770-1090

End of main program logic .
Sample DATA. These names and dates are
fictional.

Program 5-5. Birthday List

100 REM BIRTHDAY LIST
110 DIM N$(30),B$(30),M$(12)
120 CALL CLEAR
13121 PRINT TAB(6);"BIRTHDAY LIST"",
140 DATA ???,JAN,FEB,MAR,APR,MAY,JUN,JUL
153 DATA AUG,SEP,OCT,NOV,DEC
160 FOR I~0 TO 12
170 READ M$(I)
18e NEXT I
1913 L:IIl
200 READ LN$,FN$,B$(J)
2113 IF LN$-"ZZ~" THEN 3613
22121 PRINT LN$:", "lFN$:TAB(20):
230 DAY$-SEG$(B$(J),3,2)
243 IF DAY$<>u""" THEN 260
250 DAY$_"?7 11

260 PRINT DAY$," ",M$(VAL(SEG$(B$(J),1,2»)
270 N$(J)-FN$&" "&LN$
280 J~J+l
290 L~L+l
300 IF L<18 THEN 200
31121 PRINT ,'·PRESS ANY KEY TO CONTINUE.":
320 CALL KEY(0,K,S)
330 IF S<l THEN 320
340 CALL CLEAR
350 GOTO 190
360 PRINT : I "PRESS ANY KEY FOR NEXT LIST.",
370 CALL KEY(0,K,S)
380 IF S<l THEN 370
390 CALL CLEAR
400 PRINT TAB(6), "BIRTHDAY LIST" II:
4UI PRINT "--SORTING--";
420 LIM=J-2
430 SW=0
440 FOR K=0 TO LIM

230

v

------- Chapter 5 -------

45~ IF VAL(B$(K»<=VAL(B$(K+l»THEN 540
46~ BB$=B$(K)
470 NN$-N$(K)
480 B$(K)-B$(K+1)
490 N$(K)-N$(K+1)
500 B$ (K+l)-BB$
510 N$(K+l)-NN$
520 SW=l
530 LIM=K
540 NEXT K
55~ IF SW=l THEN 43~
560 CALL HCHAR(24,3,32,28)
57~ L-~

58~ FOR KK=~ TO J-l

~~g ~~~~:~~?~1ff~~~~t~~~kK),1,2»)
61~ IF MON$=MON1$ THEN 64~
62~ PRINT
63~ L=L+l
640 IF DAY$<>1I00" THEN 660
650 DAY$""'''7?"
660 PRINT DAY$," ",MON$,"(3 SPACES)",N$(KK)
67~ MON1$-MON$
68~ L=L+l
69~ IF L<18 THEN 750
70i0i PRINT : "PRESS A KEY TO CONTINUE. ";
710 CALL KEy(~ , K,S)
720 IF S<l THEN 710
73~ CALL CLEAR
740 L-e
750 NEXT KK
76e STOP
770 REM SAMPLE DATA
780 DATA ADAMS,LEWIS,000e
790 DATA BAKER,MELISSA,1112
8ee DATA CHILD,ED,083e
810 DATA DAINES,BILL,~520
82e DATA EVANS,JOHN,0415
83~ DATA EVANS,JIM,100~
840 DATA JONES,DQUG, 1115
850 DATA NELSON,ANDY,05~~
860 DATA NELSON,LENA , 070e

231

'-'

Chapter 5 v

'-'

87~ DATA NELSON,SHEILA , 1115 v
88~ DATA PETERSON, GRANT, 04ae
890 DATA PETERSON, ROGER, 1005 v
900 DATA PETERSON,SHERYL,0618
91~ DATA S, GRANDMA,0B15 v
920 DATA S.GRANDPA.1~17
93~ DATA SMITH,BOBBY,0510 '-'

940 DATA SMITH,CHARLES,0611
95~ DATA SMITH,CHRISTY,1115 '-'

960 DATA SMITH,CHERY ,0BI2J2 '-' 97 0 DATA SMITH,CINDY,041S
980 DATA SMITH, RANDY, 0302 '-'
990 DATA SMITH,RICHARO,0509
1000 DATA W,GRANDMA,1120 '-'
1010 DATA W,GRANDPA,0221
1~20 DATA WHITE,ANGELA,0000 '-'
1030 DATA WHITE,BRYAN,0700
1040 DATA WHITE,DEAN,0104 '-'
1050 DATA WHITE,JENNIE,0200
1060 DATA WHITE,KELLY,1014 '-'

1070 DATA WHITE,RELLE,09 28
1~80 DATA ZZZ,Z,0000 '-'

1090 END
'-'

~

J

-'

'-'

'-'

'-'

'-'

~

'-'

v

232 v

v

v

v

v
u

V

v

u

u

u

v

u
v
u
u

u
v

v

u
u
V

v

I

)

)

)

J

J
)

)

)

------ Chapter 6 ------

Programming
Techniques

if you ask ten different programmers to write a basic home
inventory program, you ' ll get ten different programs. In
computer programming, many different methods accomplish
the same thing. The "correct" method is the one that works
the program that will run without a bug.

The programmer often has to make a choice - one way of
solving a problem may be easier for the user to understand but
will take more memory than another method, while a third
method may execute more efficiently than either of the first
two.

Arrays

Memory locations are like a wall full of post office boxes, each
with its own name. Each address holds a value for a variable
name. For example, suppose we have the beginning of a
program:

100 A=3
110B = 4
120 X=10

The boxes would look like this :

A B x

~

Later in the program you may change the values:

2ooA-7
210B =A+ 2
220X=A+B

235

------ Chapter 6 ------

The values in the boxes change; they become:

A B x

G
Each of these boxes has a name, and each name has only one
box.

Now, just like in the post office, some boxes are bigger than
others.

A B X

C

The C box can be divided up into smaller parts, but they are
still parts of C. In this case, the C box holds an array, and
different values can go into each particular part of C. We
specify each part of C with a subscript, a number in
parentheses. 50 the names of the elements of the array Care C(l),
C(2), and C(3).

A B X

I I

I I
C(l) I

C(2) I C(3)

I :

236

'---

------ Chapter 6 ------

Boxes can be even larger - representing one, two , or three
dimensions in TI BASIC. Here is a chart of D, which has two
dimensions, one with two elements (first subscript), the other
with four (second subscript).

: I I
A B X 0(1,1) : 0(1,2) I 0(1,3) I 0(1,4)

I I

I

__ -l- _ _ _ + ___ L ___

I I : I
C(1) I C(2) I C(3) 0(2,1) : 0(2,2) I 0(2,3) I 0(2,4)

I I
I I I : I

Arrays can make a repetitive computer program more
efficient. If you do a process several times, it may be worth
using a variable with a subscript. Suppose you are describing
three boys. Their names are Richard, Robert, and Randy. We
can say:

NAME$(l) ~ " RICHARO"
NAME$(2) ~ " ROBERT"
NAME$(3)~ "RANOY"

Now we wish to list some things about these people:

AGE(l) ~ l1
AGE(2)-6
AGE(3) ~ 9

COLOR$(l) ~ " BLACK"
COLOR$(2) ~ " BLUE"
COLOR$(3) ~ " RED"

SPORT$(l) ~ " FOOTBALL"
SPORT$(2) ~ " BASEBALL"
SPORT$(3) ~ " BASKETBALL"
You can print a list of the boys by using a single loop and a

variable subscript:

200 FOR J=1 TO 3
210 PRINT NAME$(J) ,AGE(J) ,SPORT$(J)
229 NEXT J

237

------- Chapter 6

If you wish to know about a particular person, print only
his information by searching the arrays for a particu lar
subscript.

399 N=2
319 PRINT NAME$(N),COLOR$(N)

If you have a longer list, you could sort . To find all the boys
with an age of 6, and there are a total n umber (T) of boys:

49B FOR J=1 TO T
41B IF AGE(J) <> 6 THEN 439
428 PRINT NAMES$(J)
438 NEXT J

The com puter will only execute line 420, PRINT NAME$O),
when the value of AGEQ) is 6.

This information about the boys could be in a two
dimensional array rather than in the four one-dimensional
arrays above. Call the main array PERSON$. The data may be
arranged like this:

PERsON$(l , 1) = "RICHARD"
PERsON$(1,2) = "11"
PERsON$(1,3) = "BLACK"
PERsON$(1,4) =' 'FOOTBALL"

PERsON$(2, 1) = "ROBERT"
PERsON$(2,2)= "6"
PERsON$(2,3) = "BLUE"
PERsON$(2,4)="BAsEBALL"

PERsON$(3, 1) = "RANDY"
PERsON$(3,2) = "2"
PERsON$(3,3) = "RED"
PERsON$(3,4) = "BASKETBALL"

n le first subscript tells us which boy's data is held in that
variable, and the second subscript identifies the category of
information. The word or number in quotation marks is the
string placed in each address of our post office boxes.

In TI BASIC, both numeric variables and string variables
may be arrays. You may not use the same variable name for

238

/

I

------ Chapter 6 ------

subscripted and non-subscripted variables. For example, you
may not use A and A(3) in the same program.

If you use a variable name with a subscript without firs t
DIMensioning that variable, the computer automatically
reserves eleven elements for the array. If you need more than
eleven, use a DIM statement to clear enough space:

lOO DIM 0(30)

If your program is running nearly full memory and you do
not need all eleven elements, you can save memory by
DIMensioning the array for fewer elements:

lOO DIM A(6)

If you have a two- or three-dimensional array, you must
specify how many locations you want to reserve in each
dimension.

lOO DIM F(4,5,10)

The DIMension statement must appear before any
reference to the array; it is wise to put all DIMension
statements near the beginning of the program.

The computer automatically starts numbering all subscripts
with zero. In other words, there can be elements such as D(O)
and E(l,O). Since the zero variable counts as one element, a
statement like DIM A(10) reserves eleven subscripted variables,
A(O) through A(10). If you prefer to use only elements
numbered 1 and above, you may use the OPTION BASE
statement:

lOO OPTION BASE I
110 DIM A(lO)

Now there will only be ten variables reserved, A(l) through
A(IO).

Edible Arrays
"Cookie File" illustrates the use of arrays. This program uses a
data structure to keep a file of cookie recipes. You may select a
cookie recipe from the menu screen, then that recipe will be
printed on the screen along with a picture of the cookie type. If

__ I you choose to convert the recipe (double, triple, or halve it, for
example), enter a multiplication factor, and the converted
recipe is printed. Another option of this program is to indicate
on an inventory list which ingredients you have and which you

~ 239

------- Chapter 6

do not have. The computer will then report which cookies can
be made with the ingredients you have.

Line 380 DlMensions ING$(19) for a list of ingredients and
INV$(19,1) for an inventory list. Subscripts start at zero. Lines
390-420 READ, from DATA statements (lines 2260-2300), first
A$, which is a measurement, and then INV$(I,O), which is an
ingredient. ING$(J) is equal to the measurement combined
with the ingredient as one string. This process is repeated for
20 items.

Later, in lines 1390-1470, as each ingredient is listed using
INV$(K,O), the user presses Y or N. The character pressed will
be stored in INV$(K, 1) to make up an inventory list.

In one section of the program, the recipe is listed. Lines
1010-1020 set the amount AMT(J) and the ingredient INGR$(I)
for each item of the recipe. Lines 1220-1240 convert the recipe
by multiplying a factor F by the amount AMT(K) and printing
the corresponding ingredient INGR$(K).

The DATA statement for each cookie is entered in the
following order: title, graphics code, cups of shortening, cups
of sugar, cups of brown sugar, cups of powdered sugar, table
spoons of honey, eggs, teaspoons of vanilla, cups of flour,
teaspoons of baking powder, teaspoons of baking soda,
teaspoons of salt, teaspoons of cinnamon, tablespoons of
cocoa, teaspoons of almond extract, cups of milk, cups of
oatmeal, ounces of chocolate chips, dozens of almonds,
teaspoons of cake decors, cups of cinnamon sugar, and the
cookies' baking temperature. If a recipe doesn ' t use a particular
ingredient, I enter no data at all before the comma:

DATA ALMOND COOKIES,1,2,2""2"4,2"",2,,,,4,,,375

This indicates that almond cookies use graphics style 1, and the
recipe is 2 cups of shortening, 2 cups of sugar, 2 eggs, 4 cups of
flour, 2 tsp. baking powder, 2 tsp. almond extract, and 4 dozen
almonds, and the cookies bake at 375 degrees.

You can put your own recipes in this program by changing
the DATA statements. Other ingredients may be added or
deleted by adjusting the first DATA statements, which create
the ingredient list, and the DIMension statement which creates
the number of ingredients as a parameter in the arrays. You
will also need to change the titles on the menu screen and the
corresponding RESTORE numbers.

240

v

J

J

J

J

J

J

J

J

J

,

------ Chapter 6 ------

This program does not include mixing directions because
with cookies you usually know the procedure and need only
the proportions of ingredients . You could add mixing
instructions by adding some codes in the DATA statements to
correspond to certain print s tatements . An example in this
program is graphics code 2, which includes the instruction
" Roll in powdered sugar."

In case you wish to try some of these recipes, just mix the
ingredients in order, then bake. Some of the specifics are:

Almond cookies: Roll into balls, flatten slightly, place
blanched almond on top; brush with egg if desired .

Ball cookies: Drop cookies onto sheet; then flatten with ice
cube or moist rag; sprinkle colored cake decors on top; bake
just until golden brown around the edges.

Brownies: Melt the cocoa with the shortening first; bake in
square pan.

Butterscotch bars: Melt shortening (or butter) with brown
sugar; cool; then add other ingredients; bake in rectangular
glass baking dish.

Chocolate chip bars: Bake in 9x13 pan.
Chocolate chip cookies: Make as drop cookies.
Chocolate drop cookies: Make as drop cookies, good with

chocolate frosting .
Honey balls: Roll into balls; bake about 25 minutes; roll in

powdered sugar while still warm, then again when cool.
Honey spice cookies: Make as drop cookies.
Mexican wedding cookies: Like honey balls.
Oatmeal chocolate chips: Make as drop cookies.
Oatmeal criSps: Refrigerator cookies; form into long roll;

slice, then bake.
Snickerdoodles: Roll dough into balls, then roll in

cinnamon and sugar mixture before baking.
Toffee bars: Press into 9 x 13 pan or on cookie sheet (about

lh-inch thick).

Program 1>-1 . Cookie File

100 REM COOKIE FILE
110 REM BY REGENA
120 GOSUB 1760
130 GOTO 380
140 CALL HCHAR(22 , 27,137)

241

------- Chapter 6 -------

lS~ CALL HCHAR(22,2B,136 , 2)
16~ CALL HCHAR(22,3~,13B)
17~ CALL HCHAR(21,2B,12B,2)
1B~ RETURN
1913 CALL HCHAR(21,27,124)
2~~ CALL HCHAR(21,2B,126)
21~ CALL HCHAR(22,27 , 12S)
22~ CALL HCHAR(22,2B , 127)
23~ RETURN
24~ CALL HCHAR(22,26,137)
250 CALL HCHAR(22,27,136,2)
26~ CALL HCHAR(22,29 , 13B)
27~ CALL HCHAR(21,27,139)
2B~ CALL HCHAR(21,2B.14~)
29~ RETURN
3ee CALL HCHAR(22,26 , 96 . 4)
310 CALL HCHAR(21,26,103,4)
32e RETURN
33e CALL HCHAR(22,26,129)
34~ CALL HCHAR(22,27,13e.2)
3S~ CALL HCHAR(22,29 , 131)
36e CALL HCHAR(21 , 27,le3 . 2)
37e RETURN
3Be DIM ING$(19),INV$(19.1)
3ge FOR I=~ TO 19
4ee READ A$,INV$(I.e)
41e ING$(I)=A$&INV$(I,e)
42e NEXT I
43e CALL CLEAR
44~ CALL COLOR(2,2.1)
4se CALL COLOR(9 , 7,1)
460 PRINT "CHOOSE: ";:: " 1 NEED TO KNOW WHAT

";"(3 SPACES}CAN BE MADE"
470 PRINT:::"2 WANT TO SEE A";"

(3 SPACES)CERTAIN RECIPE """
4B~ PRINT "3 END PROGRAM":: :
4ge CALL KEY(e , KEY,S)
see IF KEY=49 THEN 13ee
51e IF KEY=51 THEN 247e
52e IF KEy<>se THEN 4ge
S3~ CALL CLEAR
54eJ PRINT "CHOOSE:"::

242

v

------ Chapter 6 ------

550 PRINT "A
IES":"C

560 PRINT "D
ATE CHIP

ALMOND COOKIES","B BALL COOK
BROWNIES"

BUTTERSCOTCH BARS": "E CHOCOL
BARS" z "F CHOCOLATE CHIP COO

KIES"
570 PRINT "G CHOCOLATE DROP COOKIES","H H

ONEY BALLS" : "! HONEY SPICE COOKIES"
580 PRINT"J MEXICAN WEDDING COOKIES", "K

OATMEAL CHOCOLATE CHIPS","L OATMEAL
CRISPS"

590i PRINT "M SNICKERDOODLES": liN SUGAR COO
KIES":"O TOFFEE BARS"

600 CALL KEY(0,KEY,S)
610 IF (KEY<65)+(KEY>79)THEN 600
620 CALL CLEAR
630 ON KEY- 64 GOTO 640,660,680 , 700,720,740 ,

760,780,800,820,840,860,880 , 900,920
640 RESTORE 2310
650 GOTO 930
660 RESTORE 2320
670 GOTO 930
680 RESTORE 2330
690 GOTO 930
700 RESTORE 2340
710 GOTO 930
720 RESTORE 2350
730 GOTO 930
740 RESTORE 2360
750 GOTO 930
760 RESTORE 2370
770 GOTO 930
780 RESTORE 2380
790 GOTO 930
800 RESTORE 2390
810 GOTO 930
820 RESTORE 241210
83~ GOTO 930
840 RESTORE 2410
850 GOTO 930
860 RESTORE 2420
870 GOTO 930
880 RESTORE 2430

243

------- Chapter 6 -------

890 GOTO 933
900 RESTORE 2440
910 GOTO 930
920 RESTORE 2450
930 READ A$,G
940 PRINT A$:::
950 ON G GOSUB 140,190,240,300,330
960 1=0
970 FOR J=0 TO 19
980 READ B$
990 IF 8$="1. THEN Ie'S0
1000 IF B$="0" THEN 1050
1010 AMT(I)=VAL(B$)
1020 INGR$(I)=ING$(J)
1030 PRINT AMT(I);INGR$(I)
1040 1-1+1
1050 NEXT J
1060 READ T
1070 PRINT: "BAKE AT";Ti "DEGREES. II

1080 IF G<>2 THEN 1100
U'I90 PRINT "ROLL IN POWDERED SUGAR."
1100 PRINT: "WANT TO CONVERT RECIPE? (yj N)"
1110 CALL KEY(0,KEY,S)
1120 IF KEY=78 THEN 1270
1130 IF KEY<>89 THEN 1110
1140 PRINT : "MULTIPLY BY WHAT NUMBER"
1150 INPUT "OR DECIMAL FRACTION? ": F
1160 IF F>0 THEN 1190
1170 PRINT : "SORRY , F>0"
1180 GOTO 1140
1190 CALL CLEAR
1200 PRINT F; "TIMES ORIGINAL RECIPE":::
1210 PRINT A$::
1220 FOR K=0 TO 1-1
1230 PRINT F*AMT(K);INGR$(K)
1240 NEXT K
1250 PRINT: "CONVERT AGAIN? (yjN)"
1260 GOTO 1110
1270 PRINT : "PRESS ANY KEY TO CONTINUE."
1280 CALL KEY(0,KEY,S)
1290 IF S=0 THEN 1280 ELSE 430
1300 CALL CLEAR

244

v

-

------ Chapter 6 ------

131121 PRINT "IN THE FOLLOWING LIST,"
132121 PRINT "PRESS ""y"" IF YOU HAVE"
1330 PRINT "THE INGREDIENT."
1340 PRINT "PRESS "liN"" IF YOU DO NOT."
135121 PRINT ;"PRESS IIIIS"" TO START OVER." : ::

: : :
136e CALL SOUND(15e,1397,2)
137e YS=0
138e FOR K=0 TO 19
1390 PRINT" ":INV$(K,0)
14ee CALL KEY(e,KEY,S)
141e IF KEY=83 THEN 13ee
142e IF KEY=78 THEN 145e
1430 IF KEY<>89 THEN 140e
1440 YS=YS+l
145e CALL HCHAR(23,3,KEY)
146e INV$(K,l)=CHR$(KEY)
147e NEXT K
148e c=e
1490 PRINT :: "YOU CAN MAKE:" : :
1500 IF INV$(0,1) = "N" THEN 1530
151e IF INV$(7,1)-"N" THEN 153e
1520 IF YS>4 THEN 1550
1530 PRINT "NOTHING TODAY. ". "YOU NEED MORE

SUPPLIES."
1540 GOTO 1270
155e RESTORE 2310
156e READ A$, G
1570 FOR J=0 TO 19
1580 READ B$
1590 IF B$="" THEN 1620
16ee IF B$="0" THEN 1620
1610 IF INV$(J,l) - "N" THEN 1660
1620 NEXT J
163e CALL SOUND(15e,1397,2)
1640 PRI NT A$
1650 C=C+l
166e READ D$
1670 IF D$="ZZZ" THEN 1720
1680 IF LEN(D$)<6 THEN 1660
1690 M=D$
1700 READ G

245

'-'

Chapter 6 ~

~

1710 GOTO 1570 'V
1720 IF C=0 THEN 1530
1730 PRINT :"GO AHEAD AND BAKEl" ~

1740 GOTO 1270
1750 STOP ~

1760 CALL CLEAR
1770 CALL CHAR(96,"EFFDB7FEDBFFB7FD") '-
1780 CALL COLOR(2,13,13)
1790 CALL CHAR(97, "F6BCE8F0A0C08") '-'

1800 CALL COLOR(9,16,l)
~

1810 PRINT "{4sPACEsl++++++++++","
(4 SPACES}++++++++++"

~

1820 PRINT "{4 SPACES]++COOKIE++","
{4 SPACES}++++++++++" ~

1830 PRINT "{4 SPACES}+++FILE+++","
(4 SPACES)++++++++++ (4 SPACES)+++++ '-
+++++" : : : : :

1840 CALL CHAR(98, "FEFDFBF50FDBAE7F") "-
1850 CALL CHAR(99, "FFFFFFFF00FFFFFF")
1860 CALL CHAR(100, "0103070F003F7FFF") v
1870 CALL VCHAR(12,17 ,98)
1880 CALL VCHAR(13,17,96 ,6) ~

1890 CALL VCHAR(19,17 ,97)
1900 CALL VCHAR(ll,18, 98) ,
1910 CALL VCHAR(12,18,96,6)
1920 CALL VCHAR(18,18,97) ~

1930 CALL VCHAR(10,19,98)
1940 CALL VCHAR(11,19,96,6) ~

1950 CALL VCHAR(17,19,97)
~

1960 CALL CHAR(un, "0eJ7E7E7E7EFFFFFF")
1970 CALL HCHAR(12 ,7,100)
1980 CALL HCHAR(12,8,99,9)
1990 CALL HCHAR(ll,8,100) ~

2000 CALL HCHAR(11,9,99,9)
2010 CALL HCHAR(10,9,100) ~

2020 CALL HCHAR(10,10,99,9)
2030 CALL HCHAR(12,9,101) '-
2040 CALL HCHAR(ll,ll,UJl)
2050 CALL HCHAR(10 , 13 ,101) ~

2060 CALL CHAR(124, "071F3F7F7FFFFFFF")
2070 CALL CHAR(125, "FFFFFr'7F7F3F1F07") ~,

2080 CALL CHAR(126, "E0F8FCFEFEFFFFFF") -
246

~

'-'

I

------ Chapter 6 ------

2090 CALL CHAR(127 ,"PFFFFFFEFEFCFBE")
2100 CALL CHAR(136 ," FFFFFFFFFFFFFFFF)
2110 CALL CHAR(137, "01071F3F7F7FFFFF)
2120 CALL CHAR(13B , "B0E0FBFCFEFUFFF)
2130 CALL CHAR(139, "00000000030F1F7F)
2140 CALL CHhR(140, "00000000C0F0FBFE)
2150 CALL CHAR(103,"0000000000000055)
2160 CALL CHAR(12B, "000000000000003C)
2170 CALL CHAR(129 ,"0F3F7FFFFF")
2180 CALL CHAR(130,"FFFFFFFFFF")
2190 CALL CHAR(131,"F0FCFEFFFF")
2200 CALL COLOR(12 ,1 6 ,l)
2210 CALL COLOR(l3,l l,l)
2220 CALL COLOR(14,12,1)
2230 CALL CHAR(64,"3C4299A1A199423C")
2240 PRINT :
2250 RETURN
226121 DATA "C. ",SHORTENING, "C. " , SUGAR, "C.

01, BROWN SUGAR, lie. ", POWDERED SUGAR, liT
SSP. ", HONEY, " " , EGGS

2270 DATA "TSP . ",VANILLA, lie. ", FLOUR, "TSP.
", BAKING POWDER, "TSP. II, BAKING SODA,

"TSP. ", SALT
2280 DATA "TSP. ", CINNAMON, "TBSP. ", COCOA, "

T$P. ",ALMOND EXTRACT , "C. ",MILK,"C.
",OATMEAL

2290 DATA "OZ. ", CHOCOLATE CHIPS, "DOZ. II I AL
MONDS

230'21 DATA "TSP . ", "CAKE DECORS ", lie. ", "CINN
'-" AMON & SUGAR II

2310 DATA ALMOND COOKIES ,1 ,2,2""2,,4,2,,,
, ,2", ,4, I ,375

2320 DATA BALL COOKIES,5,.5,.33",,1,.5,.75
""""",2,,375

2330 DATA BROWNIES,4,.5,l" " 2,1,.75,.5,,.5
"6"",,,,350

2340 DATA BUTTERSCOTCH BARS,4,.5 " 2,,,2,1,1
.75,2".2 5" """,,375

2350 DATA CHOCOLATE CHIP BARS,4, .5"1,,,1,1
, 1 .75, , .5, . 5 , , , , .5 , ,12, , , , 350

2360 DATA CHOCOLATE CHIP COOKIES,3,.5,.25,.
5",1 , .5,1".5,.5"""6,,,,375

247

------ Chapter 6 ------

237~ DATA CHOCOLATE DROP COOKIES , 3, . 5" 1,,,
1 ,1,1 .67" . 5 ,. 5"6".5 " ,,, , 35121

238121 DATA HON EY BALLS, 2 , .5 , I, , 2 , ,1, 1 ", .25 ,
, , , , , , , , , 3121121

239121 DATA HONEY SPICE COOKIES ,1 ,.5,. 7 5", 4,
,. 5 , 1"" . 5 " "",. , 375

24121121 DATA MEXICAN WEDDING COOKIES , 2,.75 , ., .
67 " , 1 , 1.5" , . 25, 1 " " . 75 , I" ,325

241 121 DATA OATMEAL CHOCOLATE CHIPS , 3 ,1, 1,.5 ,
" 2 , 1 , 2 "1,1", , , 2 , 6 ,, ,,35121

24 2121 DATA OATMEAL CRISPS,1,1,1 , 1",2 ,1 ,1.5 ,
, 1 ,1 "" , 3 " " , 3 5121

243121 DATA SNICKERDOODLES , 1,1,1.5" ,, 2 ,, 2.75
, 3 , , • 5 , , , , , , , , , • 5 , 4 121121

244121 DATA SUGAR COOKIES,S,.67, . 75 ,., ,1, . 5 , 2
,1 . 5 " .25 "" .25" ". ,375

245121 DATA TOFFEE BARS ,4,1"1" "1,2, ••• , ,, ,
, 6 " ,,35121

246e DATA ZZZ
247e CALL CLEAR
248e END

DATA Statements
DATA statements contain numbers or strings or both, and may
be placed anywhere in your program. They are ignored until
the computer comes to a READ statement; then the computer
finds the first DATA statement and READs the appropriate
number of items.

If the computer encounters another READ statement, it
goes to the very next data item, whether it' s in the same DATA
statement or in the next DATA statement, and continues to
READ in order. All items are separated by commas.

lBB REM DATA 1
ll8 FOR 1=1 TO 5
128 READ A,B
139 PRINT ::A:ft+ft ; B; ft=ft;A+B
148 NEXT I
159 DATA 1,2,3,4,19,13,11 , 5,23,45
168 END

248

v ------ Chapter 6 ------

When you RUN this program, the results are:

1+2 = 3
3+4 = 7
10+ 13 = 23
11+5 = 16
23+45 = 68

** DONE **

The first time through the loop, A will be 1 and B will be 2;
the second time, A will be 3 and B will be 4, and so forth . You
can see that a DATA statement is more efficient (as far as
amount of memory used) to get a lot of numbers into the
computer than a number of LET statements. With DATA
statements, you do need to be careful that commas are in the
right places, that the DATA items match the READ statements,
and that there is sufficient data for the number of items in the
READ statements. If READ can't find any more DATA, the
program crashes.

In TI BASIC, strings in DATA statements do not need to be
in quotation marks unless there are leading or trailing spaces or
commas within the string. An example of a DATA statement
using strings is

300 DATA GEORGE,HENRY, 932 EVERGREEN,"PROVO,
UTAH"

Working with RESTORE
One of the most useful commands in working with data is the
RESTORE statement - it makes it much easier to keep track of
where your data lists start. Ordinarily, the computer goes
straight through the DATA statements in order, as needed by
the READ statements. RESTORE, used without any
parameters, will start the data list all over again with the first
DATA statement.

Suppose I want to use the same list of numbers in two
operations. Instead of having identical DATA statements, I
finish the first operation, use RESTORE, and start over on the
data list for the second operation.

100 REM DATA 2
110 FOR I=l TO 5
120 READ A,B

249

------ Chapter 6 ------

138
140
150
160
170
188
198
288
210

PRINT ·A-"+"·S-"="·A+S . , " ,
NEXT 1
DATA 1,2,3,4,10,13,11,5,23,45
RESTORE
FOR 1=1 TO 5
READ A,B
PRINT :A;"*":B;"=";A*B
NEXT 1
END

RESTORE with Parameters
The nicest thing about the RESTORE statement is that you do
not have to RESTORE back to the beginning of the very first
DATA statement in the program; you may RESTORE a certai n
line number. If you use a statement such as RESTORE 380, the
very next READ statement w ill start with the data in line 380.

Take another look at the "Cookie File" program a few
pages back. Lines 2260 to the end contain DATA statements.
Lines 390-420 read A$ and INV$(I, O) 20 times and use the data
in lines 2260-2300. If you want to see a certain cookie recipe,
you make a choice from a menu screen; in lines 630-920 the
program RESTOREs the appropriate DATA statement for the
particular recipe you chose. At the next READ statement, in
line 930, the computer w ill READ w hatever DATA statement
RESTORE specified.

In the ingredient inventory section, line 1550 is RESTORE
2310, so the next READ statement will sta rt at the data in line
2310 and read through all the cookie recipes.

The following program illustrates the use of DATA
statements and READ statements in a high-resolution graphics
display. Lines 170-340 are DATA statements that contain
character definitions. Lines 130-160 READ in the information .
C holds the character number, which is used as a counter in the
FOR-NEXT loop.

The first iteration of the loop reads C$ as
FFFFFFFFFFFFFFFF and defines character number 33 as a
filled-in square. The second iteration defines character 34 to be
a null character. The third iteration defines character 35 to be
0001070F1F3F7F, and so forth to character 140.

These 22 lines replace 107 CALL CHAR statements. This
method uses less memory, but it makes it harder to debug and
keep track of which string goes with which character number.

250

v

Chapter 6 ------

Since many of the defined graphics characters are actually
redefined printable characters, PRINT statements can be used
to draw the graphics (lines 350w 460). Since these symbols and
letters have been redefined , you will see, not symbols and
letters, but the graphics characters which form a bull's head.

Lines 470-500 draw graphics on the screen in the non
PRINTing method. The DATA in lines 510-530 are sets of row,
column, and character numbers for use in the CALL HCHAR
statement.

Program 6-2. Angry Bull

120 CALL CLEAR
130 FOR C=33 TO 140
140 READ C$
150 CALL CHAR(C,C$)
160 NEXT C
17e DATA FFFFFFFFFFFFFFFF"ee01070FIF3F7F7F

,40C0S0000000S0S,00000000003C45S2,000
003040S1020E,7FC

lS0 DATA C0303F0S0402,0000S76S10100S,0000S0
6C12473S04,0004060703030307,00000000S
0C0E0F,E0FFFFFFFFFFFFFF

190 DATA 0102FFFEFFFFFAFC,054S9020C0S,00000
30301110E ,00S0S0000CF3,070F3F2F271D06
02,F0FCFFFFFFFFIF0D

200 DATA 0000Fln~'FFFFFFFFFF, 0FIFFFFFFFFFFFFF
,FCFCFCFCFCFCFCFC,7F7F7F3FIFIF2F2,FFF
FFFFFFCF0C,FCF9FA0D

210 DATA 70S03S44SS102021,0300010204040402 ,
43SC304040S1S2S2,0E166EBF7E,FFFFFFFF0
F0301,FSF0F0E0C0S

220 DATA 0000000106040E0F,202041S3071F7FFF,
00S000S0SCFFFFFF,0000S06A7FFFFFFF, 222
4455EFFFEFFFE

230 DATA 01FD0379S503010D,B4B42424241C0101,
0C083343a39323C,33a3737C3E3EIFIF,3303
101C3E3FFFFF

240 DATA 3S300ES1406,000000B0C020100C,lF1F3
F3F7F7F797,FFFFFFFFFFFCFAFD,FEFFFCFCF
B5BS10B,749C200SASFSFCFC

251

------ Chapter 6 ------

25~ DATA B~4~4~4~2~204~1~~B,lF~F~F~F~7e707E
7,07~3~l,FFFFFF7F,F4E9CBB3~F~7~7~7,17
FFFFF9FDFCFEFE

260 DATA 0F~~~B1BFCFCFCFC,FBCB~7~~609~6,3BD
B9~lB7C94E4e7,FFFFFFFEF~9~9~9,FFFFFF7
F3FIF272,FFFFFFFFFFFCFB

27~ DATA ~3~3~3~301~1~1~l,7F7F7DFBE~FFFFFF,
~7~7e3e1~le1e3e3,FFFFFFCFCFCEFCF1,9~9
~A0A0604~C~9,2~2~202~2~2~202

2B~ DATA FEFCFBF~E~C~C~B1,l~1~2~2e4e43941B,
2~4~4~B~B,7F7F3F3F3F1F1F0F,FCFBF~E~E0

E6FFFF,0~e~lF2~5FB4C7E
29~ DATA 0404B4B4B~C~F3FF,~0~0e~00C02e101,l

2~2~2~2~4~4~B~B,~F~F07e7~7~737C7,FFFF

FFB3B~B~F~FF,E~E~C~Be~~~~3FFF
3~0 DATA 7F7F7F3E1C~~BeF,BeB~e~lB1C1E3F7E,l

010202040808038,FFFF3F3F3F3FIFIF,FEFE
FEFCF0F2FIF,0F0F,FF7F,FFFB

31~ DATA FeE,07B0402~lB~5~3B1,0~E~4eBeB,422
212~Ae6~2~1~l,B6463A01,B0~~0000~3~S0S
~S,~0~~~3FC,4~B

320 DATA 080808101010202,0808040404040404,0
e0000B~4020101,0000070B0A0A04,033342B
00810204,0E70B001020C106

330 DATA B00040201010102,B00102~0B08080C,A0
100F,0001063BC,B0B0407B07,4040B0B0B0B
0B0B,B0B0B0B0BES13E2

340 DATA 0000071B2020404,00C020100~000001
350 PRINT TAB(6),"t' %&'()* +,"
360 PRINT TAB(6),"I-.j 0123456"
370 PRINT TAB(6),"789: ,< =>17"
3B0 PRINT TAB(S), "@ABCDE FGHIJK"
390 PRINT TAB(S),"LIIMNOP(3 SPACEs)aIlS,"
400 PRINT TAB(6),"RSTUlvwxtYz(s"
410 PRINT TAB(B),"\I]6 "_'a"
420 PRINT TAB(9),"1I6 \bed"
430 PRINT TAB(9) , "e 1 fghij"
440 PRINT TAB(9),"kI1mnop"
450 PRINT TAB(10),"qlllr"
460 PRINT TAB(HI):" S tuv":::::
470 FOR 1-1 TO 2S
480 READ X,y,C

252

------ Chapter 6 ------

49~ CALL HCHAR(X,Y,C)
5~~ NEXT I
SlB DATA lS,17,119,lS,18,12e,19,17,121,2e,l

8,122,19,lS,123,2e,19,124,20,20,125,1
9,20,126

520 DATA 18,20,127,17,20,128,17,19,129,18,1
1 , 130,18,10,131,19,11,132,20,11,125,2
0,10,134

530 DATA 19,10,133,20,9,135 , 20,8,136,19,8,1
37,18,8,138,17,8,139,17,9,39,17,10,14
0,1,1,32

54~ GOTO 54~
55~ END

Western States
This drill to review the 11 western states and their capital cities
also shows the use of DATA and RESTORE. A map of the
United States is drawn. One of the western states is outlined,
and you must type in the name of the state. If you type the
state correctly, you are then asked to type in the capital. Names
must be spelJed correctly to be accepted. If you get a state and
the capital correct, it will not appear again; but if you miss
either the state or the capital, the state will appear again later in
the drill. The states appear in a random order.

lines 240-320 define graphics characters using DATA. A
RESTORE statement is not necessary because I want to begin
with the first DATA statements in the program.

Lines 340-410 READ the 11 states and their capitals . As
each state is identified, the S$(R) variable is set to "" so it
won't be chosen again. If the user wants to try the quiz again,
the DATA must be RESTOREd and read in again to fill up the
S$(R) array.

Lines 560-590 randomly choose one of the states. If the
state has already been identified, S$(R) will be "" and another
state will be chosen. Line 590 branches according to which state
is chosen.

Lines 1520-2090 RESTORE the proper data for the state
which was chosen randomly. The program then branches back
to the main procedure at line 600.

line 610 READs N, how many characters must be defined;
lines 620-650 READ the strings to define the graphiCS
characters. Line 660 READs N for the number of characters to

253

------ Chapter 6 ------

be drawn, a nd lines 670-700 outline the state on the map. Line
1270 REA Ds N fo r the number of lines; then li nes 1280-1310
READ the data to erase the state.

Each s tate's DATA statements contain the data separated
by commas in the following order: N, strings fo r defining
graphics ch aracters, N, row, column, and graphics character
number to outline state, N, row, column, graphics character
number, and repetitions to erase the state.

You' ll notice that I don ' t have a DIM statement for S$(R).
That's because TI BASIC automatically DIMensions arrays up
to subscript 10. Since that includes subscript 0, that gives me
enough fo r the eleven states.

Program 6-3. Western States

lee
ne
12e
l3e
14e
lse
16e
l7e
lse
1ge

2ee

21e
22e
23e
24e
2se
26e
27e
2se

2ge

254

REM WESTERN STATES
CALL CLEAR
FOR G~9 TO 12
CALL COLOR(G,1 2 ,1)
NEXT G
CALL COLOR(13,1,12)
CALL COLOR(14,1,12)
CALL COLOR(lS , 2,11)
CALL CHAR(64, "3C4299A1A199423C")
PRINT" *********************··"1"
~TAB(25):"*"
PRINT" * IDENTIFY THE STATES *" I It

:TAB(25}:"·"
PRINT" .**********************"
PRINT :::TAB(7),"WESTERN STATES"
PRINT :::::
FOR G=96 TO 123
READ G$
CALL CHAR(G,G$)
NEXT G

*"

*"

DATA FFFFFFFFFFFFFFFF,3P1FeF37e7e3e3el,
7F3FIF0F,FFFF7F7F3F3F3F3F,FFFFF3C,F0F
eFeEeEececes,eFeFeFeFeF3FeFeF
DATA eFeFe7e7e3e3elel,elele3e3e7e7eFeF,
3F3F3F3FFFFFFFFF,FFFFFFFF7F1F3731,FF3
FeFe3,FFFFFFFFFFFeFeF

J

Chapter 6 -------

300 DATA FBFCFEFE7F3F1F0E,FFFFFFFFFEFCFBF,F
0FBFBFCFCFEFEFF,00B0B0C0C0E0E0F,F0E0C
08, FCFCF8FBF0F0F0F

310 DATA 8080C0C0E0E0F0F,0F1F3F7FFFFFFFFF,0
0000000030F3FFF,0000000000010307 ,E0E0
E0F0F8FCFEFF,000000000080C0E

320 DATA 00E0F0FEFFFFFFFF,0000000000E0FBFE,
E0E0E1E3FFFFFEFC

330 L$=" .. "', .. ,", .. ,', "

340 RESTORE 380
350 FOR G-0 TO 10
360 READ S$(G),C$(G)
370 NEXT G
lee DATA WASHINGTON,OLYMPIA,OREGON,SALEM,CA

LIFORNIA,SACRAMENTO
390 DATA NEVADA, CARSON CITY,IDAHO,BOISE,MON

TANA,HELENA
400 DATA WYOMING,CHEYENNE,UTAH,SALT LAKE CI

TY,ARIZONA,PHOENIX
410 DATA NEW MEXICO, SANTA FE,COLORADO,DENVE

R
420 CALL CLEAR
430 PRINT "ONE OF THE UNITED STATES" :: "WILL

BE OUTLINED.":::"TYPE THE NAME OF TH
ESTATE"

440 PRINT 1 "THEN PRESS <ENTER>. M: ,; "IF THE
STATE IS CORRECT,"

459 PRINT : "TYPE THE CAPITAL CITY" : : "THEN P
RESS <ENTER>."

460 PRINT ::: "NAMES MUST BE SPELLED":: "caRR
ECTLY TO BE ACCEPTED. " : ::TAB(15);"PRE
55 <ENTER>";

470 CALL KEY(0 , K,S)
480 IF K<>13 THEN 470
490 CALL CLEAR
500 PRINT TAB(27):"ts":" i ¥z

{7 SPACEs)u'e":" ";L$~"yx{3 SPACES}'t. r"
: "h"~L$~" 'w vt:" {"

510 PRINT "f":L$~"" 't."nq":"f",L$,""'t."'"
"f" L$ """ " ""f" $ """" " " : : ~ x:;L ; e : 9

" ~ L$ ~ " ' , , , , , "

255

------ Chapter 6 ------

520 PRINT II c":L$;"""n":" g";L$;""'nq":" \..J

j":L$: II' 'e": "(4 SPACES}kj' "1'
.......... ":TAB(l~);"a .. • • ndj p" -

530 PRINT TAB(11); "bdc' ndddm{ 3 SPACES) co": T

540
550
560
570
580
590

600
610
620
630
640
650
660
670
680
690
700
710
720

730
740
750
760
770
780
790
800
810
820
830
840
850
860
870

256

AB(13);"a"{8 SPACES}a''':TAB(14):''b''iTAB
(24). lOb " •• • ••• ,
FOR C=0 TO 10
T=0
RANDOMIZE
R=INT (ll'RND)
IF S$(R)="" THEN 570
ON R+l GOTO 152~,1560,1610,1670,1730,17
90,1840,1890,1940,1990,2050
CALL HCHAR(20,l,96,160)
READ N
FOR 1=128 TO 127+N
READ G$
CALL CHAR(I,G$)
NEXT I
READ N
FOR 1=1 TO N
READ X,Y,G
CALL HCHAR(X,Y,G)
NEXT I
FOR 1=1 TO 7
CALL HCHAR(21,2+I,ASC(SEG$("STATE 1",1,
1»)
NEXT I
CALL HCHAR(21,11,96,lS)
81$=""
CALL SOUND(150,1397,2)
FOR L=l TO 15
CALL KEY(0,K,S)
IF S<1 THEN 780
IF K=13 TH~N 840
CALL HCHAR{21,10+L,K)
Sl$=SI$&CHR$ (K)
NEXT L
CALL SOUND(100,880,2)
IF S$(R)=SI$ THEN 970
CALL SOUND(100,330,2)
CALL SOUND(100,262,2)

~

~

~

v Chapter 6

~

88~ T~T+l
'-- 890 IF T<2 THEN 740

90~ CALL HCHAR(21,11 , 96 , 15)
~

910 FOR L~l TO LEN(S$(R))
92~ CALL HCHAR(21,1~+L , ASC(SEG$(S$(R),L,1))

)
930 NEXT .L
940 GOSUB 1400

- 950 C=C- l
960 GOTO 1270 - 970 GOSUB 1470
98~ FOR I~l TO 9

~ 990 CALL HCHAR(23,2+1, ASC(SEG$ ("CAPITAL 7" ,
1,1)))

~ 1000 NEXT I
1010 T~0 - 1~2~ CALL HCHAR(23,13,96,15) - 1030 81$=""
1040 CALL SOUNO(150,1397 , 2)
1050 FOR L~l TO 15
1060 CALL KEY(0,K,S) - 1070 IF S<l THEN 1060
1080 IF K~13 THEN 1120
1090 CALL HCHAR(23,12+L,K)
1100 Sl$ ~Sl$&CHR$(K) - 1110 NEXT L
1120 CALL SOUNO(100 , 880 , 2)

~ 1130 IF C$(R) ~Sl$ THEN 1250
1140 CALL SOUNO(100,330,2)
1150 CALL SOUNO(100,262,2)
1160 T=T+l

~

1170 IF T<2 THEN 1020

- 1180 CALL HCHAR(23,12,96,lS)
1190 FOR L~l TO LEN(C$(R)) - 1200 CALL HCHAR(23,12+L,ASC(SEG$(C$(R),L,1)

))
~ 1210 NEXT L

1220 GOSUB 1400
1230 C~C-l
1240 GOTO 1270

'-' 1250 GOSUB 1470
1260 S$(R)~""

257

______ Chapter 6 ------

1270 READ N
1280 FOR 1=1 TO N
129~ READ X,Y,G,J
1300 CALL HCHAR(X,Y,G,J)
1310 NEXT I
1320 NEXT C
133~ CALL HCHAR(21,1,96,96)
1340 PRINT "TRY AGAIN? (y i N)",
1350 CALL KEY(0,K,S)
1360 IF K=89 THEN 340
1370 IF K<>78 THEN 1350
1380 CALL CLEAR
1390 STOP
1400 FOR 1=1 TO 11
1410 CALL HCHAR(24,20+I,ASC(SEG$("PRESS ENT

ER",I,l»)
1420 NEXT I
1430 CALL KEY(0,K,S)
1440 IF K<>13 THEN 1430
1450 CALL HCHAR(24,21,96,ll)
1460 RETURN
1470 CALL SOUND(100,262,2)
1480 CALL SOUND(100,330,2)
1490 CALL SOUNO(100,392,2)
1500 CALL SOUND(200,523,2)
1510 RETURN
1520 RESTORE 1530
1530 DATA 3,0101010101010101,FF,00000000E01

00807,5,3,6,128,4,6,128,5,6,129,5,5,1
29 ,4,4,130, 3 ,4,4,96,4

1540 DATA 5,5,96,2,3,6,96,1
1550 GOTO 600
1560 RESTORE 1570
1570 DATA 6,00000000E0100807,00000000000000

FF,0101010101010101,01010101FF,000000
00FF,F0F0F0F0FFF0F0F,9

1580 DATA 4,4,128,4,5,129,4,6,129,5,6,130,6
,6,130,7,6,131,7,5,132,7,4,132,7,3,13
3,5,4,4,96,3

1590 DATA 5,6,96,1,6,6,96,1,7,3,102,1,7,4,9
6,3

1600 GOTO 600

258

~

'-' Chapter 6

-
161~

J
RESTORE 162~

162~ DATA 9,~0~~~~~~FF,~~~0~~~~F~101~l,l~10
1~1~1010101,1008040201,000~0~~~~~804~
2,1008040201010202

163~ DATA ~2~1~1~2~2~1~1~l,F~F~F~F~FFF~F~F,
~lCIFIFDFEFFFFFF,12,7,3,135,7,4,128,7
,5,129,8,5,130,9,5,130

164~ DATA 10,5,131,10,6,132,11,6,131,11,7,1
32,12,7,133,13,7,134,14,7,136,9,7,3,1
02,1,7,4,96,2,8,5

1650 DATA 96,1,9,5,96,1,10,5,96,2,11,6,96,2
,12,7,96,1,13,7,96,1,14,7,107,1

166~ GOTO 6~~
167~ RESTORE 168~
168~ DATA 9,~~~~~~~~lFl~1~l,~~~~0000FF,0000

~
0000F01~101,101~1010101~101,1010101~1
01010F,l109050301

1690 DATA 000000000080402,1~08040201,000000
~

001F10101,lS,7,5,128,7,6,129,7,7,129,
7,8,13e1

1700 DATA 8,8,131,9,8,131,1O,8,131,11,8,132
J ,12,7,133,11,7,134,11,6,135,10,6,134,

10,5,135 - 1710 DATA 9,5,131,8,5,131,6,7,5,96,4,8,5,96
,4,9,5,96,4,1O,5,96,4,11,6,96,3,12,7,

~ 96,1
1720 GOTO 600

J 1730 RESTORE 174~
1740 DATA 8,8181818181818181,8~804040202010

~ 1,1010~8~60202~1~1,834539~101010101,0
1010101010101FF - 1750 DATA 00000000000000FF,80808080808080FF
,808080808080808,10,3,7,128,4,8,129,5 - ,8,130,6,9,131

1760 DATA 7,9,132,7,8,133,7,7,134 , 6,7,135,5
~, ,7,135,4,7,135,5,3,7,96,1,4,7,96,2,5,

~
7,96,2,6,7,96,3

1770 DATA 7,7,96,3
1780 GOTO 6~~
17911 RESTORE 181111
1800 DATA 7,101010101010101,101010101e1010F

,1I00~~00011~~000FF,134538,101008~60202

~1~l,8~8~4~4~2~2~11l1

259
~

v

~

Chapter 6 ~

~

1810 DATA 0101010101010101,10,3,13,128,4,13 '--'
,128,5 , 13,129 , 5 , 12,130 , 5,11,130,5,10,
130,6,9,131 ~

1820 DATA 5,8,132,4,8,133,3,7,134,4,3,7,96,
7,4,8,96,6,5,8,96,6,6,9,96,1 ~

1830 GOTO 600
1840 RESTORE 1850 ~

1850 DATA 8,FF8080808080808,FF,F01010101010
101,101010101010101,10101010101010F,0 -
0000000000000FF

1860 DATA 80808080808080FF,8080808080808080
~

,10,6,10,128,6,11,129,6,12,129,6,13,1
30,7,13,131 -

1870 DATA 8,13,132,8,12,133,8,11,133,8,1O,1 -34,7,10,135,3,6,10,96,4,7,10,96,4,8,10,
96,4 -1880 GOTO 600

1890 RESTORE 1900 '-./

1900 DATA 8,3F2020202020202,FF,808080808080
80FE,0202020202020202,02020202FE,0000 -
0000FF,202020203F

1910 DATA 202020202020202,10,8,8,128,8,9,12 -
9,8,10,130,9,10,131,10,10,131,11,10,1
32,11,9,133 -

1920 DATA 11,8,134,10,8,135,9,8,135,4,8,8,9
6,3,9,8,96,3,1O,8,96,3,11,8,96,3 -

1930 GOTO 600 -1940 RESTORE 1950
1950 DATA 6,000000001F1010F,00000000FF,0000 -0000FC040404,0404040404040404,8080808

0C0E0F8FE -1960 DATA 0101010102020201,9,11,8,128,11,9,
129,11,1O,130,12,10,131,13,1O,131,14, -
10,131,14,8,132

1970 DATA 13,7,133,12,7,133,5,11,B,96,3,12, -
7,96,4,13,7,96,4,14,B,le6,l,14,10,96,1

1980 GOTO 6121121
~

1990 RESTORE 2000
~

2000 DATA 7,0300300001310101,00000000FF,000
00030FF010101,0101010101010101,310101

~

FF,0000003F20E0E0E
'-'

260 .../

v

v

~

~

~

-
'--'

V

------ Chapter 6 ------

2~1~ DATA ~~~~~~~~~~~F~F~F,12,11,1~,128,11,
11,129,11,12,129,11,13,130,12,13,131,
13,13,131,14,13,132

2020 DATA 14,12,133,14,11,134,14,10,131,13,
10,131,12,10,131,5,11,10,96,4,12,10,96,
4,13,HI,96,4

2030 DATA 14,10,96,4,14,11,108,1
2~4~ GOTO 6~~
2~5e RESTORE 2e6e
2~6~ DATA 8 , FF,Fe1~1~1~1~1~1~1,le1e1e1e1~le

1e1,le1e1e1eF,eeeeeee3FF,e2e2e2e2e3,e
2e2e2e2e2e2e2e2
2e7e DATA e3e232e 2e2e2e2e2,12,9,ll,128,9,12

,128,9,13,128,9,14,129,10,14 , 130,11,14,
131,11,13,132

2080 DATA 11,12,132,11,11,132,11,10,133 , 10,
10,134,9,10,135,3,9,10,96,5,10,10,96,
5,11,10,96,5

2ege GOTO 6ee
21ee END

Planning Color Sets

The character numbers are divided into groups of eight
characters each, and each group has a color set number. The
CALL COLOR statement assigns to a certain color set, by
number, its foreground and background colors. Every
character in the same color set will have the same color. Here is
a brief list of characters and sets. (See the Appendix for an
extended list.)

Set ASCII Code. Set ASCII Code.
1 32-39 9 96-103
2 40-47 10 104-111
3 48-55 11 112-119
4 56-63 12 120-127
5 64-71 13 128-135
6 72-79 14 136-143
7 80-87 15 144-151
8 88-95 16 152-159

261

------ Chapter 6 ------

Suppose you want to print the letter R in red. The ASCII
code for R is 82. Looking at the chart above, you can see that
character 82 is in set 7. Use the statement CALL COLOR(7, 9, 1)
to assign a medium red foreground and a transparent
background to set 7. Not only R, but also the other letters in set
7 will be red. Any character in set 7 that is currently on the
screen will change to red when the CALL COLOR statement is
carried out.

Color Sets in New England
In "Western States:' you had to spell the states and capitals
correctly . In this easier program, you are shown a map and a
menu, and only have to recognize the state 's name.

The New England states are drawn on the screen, each in a
different color, and labeled. When you know the state names,
press ENTER and the labels will be cleared. In a random order
the states will be numbered and listed in a menu. Also in a
random order, one state at a time will flash. Press the number
of the correct state name.

After all six states have been named correctly, a multiple
choice quiz of the capital cities is presented (lines 1360-1790).
This program logic could be adapted for other multiple-choice
or matching drills. The six states and six capitals are each in
arrays. In a random order the states are numbered and listed,
and the capitals are listed with the letters a through f. For the
quiz, the student must press the correct letter for each
numbered state.

The map of the New England states was first drawn on
24-by-32 graph paper with each state in a different color. (See
Figure 6-1.) Notice that I adapted all the more-or-Iess straight
boundaries so they could be drawn with solid squares.

Next, the states were drawn in more detail on paper
designed for character definitions. Ideally, each state could be
defined with the characters in a single color set. However,
Maine had so many characters that needed to be defined that
two color sets were necessary. Maine uses characters 97
through 111 and color sets 9 and 10 were assigned a yellow
foreground and transparent background.

Connecticut uses characters 144-148, and the color set is
light red on transparent.

Vermont and New Hampshire have a common border with
defined characters, so they share a color set, set 11, with a

262

------ Chapter 6 ------

,
, , ,
" " , ,
· "
"

" •
, , ,
, , ,

•
•

•
•

" " " 2 : ~ ':! :

W

2

2
o
l:
ti
Ul
">

to

ct.

:r

1Il
o
<>
x

_..., l'L

f
<.I
III
2
2
o
<.I

263

------ Chapter 6 ------

green foreground and red background. New Hampshire has
two more characters that require different colors, so character
152 was defined in set 16 with red on transparent; and
character 40 was defined in set 2 with red on yellow.

Massachusetts has special characters 120-125 defined in set
12 with a magenta foreground and transparent background.
Rhode Island uses two characters in set 14 defined as blue on
transparent. Rhode Island and Massachusetts share one
graphics character, 128, that needed to be magenta and blue.

Arrays are set up so the subscripts each pertain to a
particular state. 5$ is the state name, SS is the color set for the
state, SF is the state's foreground color, and SB is the state's
background color. As a state is chosen in the quiz, the state's
particular color set SS can be changed back and forth from
white to the foreground color SF, causing it to blink. The
exception is New Hampshire, which requires blinking the
background color. Only one of the color sets is blinked for
Maine.

How "New England States" Works
Lines

110-170
180-380
390-450
460-700

710-800
810-860

870-1000
1010-1060

1070-1100

1110-1140

1150-1230

264

Print the title screen.
Define graphics characters and colors.
Clear the screen; print instructions.
Clear the screen; draw New England states with
labels.
After the student presses ENTER, clear labels.
READ arrays for state names, color set numbers,
foreground colors, and background colors.
Print a list of the states in random order.
Randomly choose a state that has not been
previously chosen; if New Hampshire, branch.
Blink the colors while waiting for the student's
answer.
If the answer is incorrect, play "uh-oh" and
wait for another answer.
If answer is correct, return the state to its
original color; play an arpeggio. Set SS$ element
to null so the state will not be chosen again, then
go to another state.

~

~

------ Chapter 6 ------

1240-1270

1280-1350
1360-1380
1390-1440
1450-1530
1540-1620
1630-1790

Print the option to try again and branch
appropriately.
Procedure for New Hampshire .
Begin the drill for capitals.
READ the array of states with capitals.
Print a list of the states in random order.
Print a list of the capitals in random order.
For each state, receive the student's choice of
capital City.

1800-1880 Present the options for the states quiz, the
capitals quiz, or the end of the program; branch
appropriately.

Program 1>-4_ New England States

100
110
120
130

14e

15e
16e
17e
18e
1ge
2e0
210
220

230

240

25e

REM
CALL
CALL

NEW ENGLAND STATES
CHAR(64,"3C4299A1A1994237")
CLEAR

PRINT" **********************'*":"
:TAB(25)~"*"
PRINT" • IDENTIFY THE STATES *":"
:TAB(25)i"·"
PRINT II ***********************',
PRINT ::: TAB(5) i "NEW ENGLAND STATES"
PRINT :::::
FOR G=97 TO 125
READ G$
CALL CHAR(G,G$)
NEXT G

*"

*"

DATA eeee0e000e307878,0ee0eeeeeEIE3FFF,
eee10303e7070F0F , 80CeE0F0F8FCFEFF,0Fl
FlF3F3F7F7FFF
DATA 000103070F0FIF3F,3F3F3F7F7F7FFFFF,
e101030303e303e3,CeF0F8F8F8F8F8FC,FFF
CF08,FFFFFFFFFFFCF88
DATA FEFCF8F0E0Ce8,FFFFFEFCFCFCF8F8,F8F
8FeEeEeCeCe8,FFFFFFFFFFFFFFFFF,FFFFFF
FFFFFFFFFF
DATA FFFEFCFCFCFEFEFE,FCF8F8FeE0C,FEF8F
8F0F0E0E0C,C0C0C0C08080808,0" , FFFFFF
FFFFFFFFFF,00e0eeC0C0C0808

265

------ Chapter 6 ------

260

270

280

290

300
310
320
330
340
350
360
370
380

390
400

410

420

430

440
450
460
470
480
490
500
510

520
530
540
550

266

DATA 0000000000F8FEFE,060303030707FFFE,
FEFCF8F3E0C0B,FFFFFFFFF9F0C
DATA 128,80C0E0F0F0FBFBFC,136,FFFFFFFFF
FFFFFFF,137,FFFB,144,FFFFFFFFFFFFFFFF
DATA 145,FFFF7F3F3F7FF08,146,FFFFFFFFFF
C,147,FFFFFFFF,148,FFFFFE,152,0000000
7DFDFFFFF,40,00000000C0F0FCFE
DATA 153,000000FF,11,!,11,1,4,7,14,1,S,
14,5,1,10,1,7,1
FOR 1=1 TO 11
READ G,G$
CALL CHAR(G,G$)
NEXT I
FOR 1=9 TO 16
READ F,B
CALL COLOR (r,F,B)
NEXT I
A$=CHR$(144)&CHR$(144)&CHR$(144)&CHR$(1
44) &CHR$ (136)
CALL CLEAR
PRINT "LEARN THE NAMES OF THE":: "NEW EN
GLAND STATES."
PRINT :; "THE STATES WILL BE SHOWN.":: lOW
HEN YOU KNOW THE NAMES, "::"PRESS <ENT
ER>. "
PRINT :: "THE NAMES WILL CLEAR."::" AS TH
E STATE BLINKS, PRESS"
PRINT : "THE NUMBER OF THE CORRECT ",: "NA
ME."::::TAB(15);"PRESS <ENTER> .";
CALL KEY(0,K,S)
IF K<>13 THEN 440
CALL CLEAR
CALL SCREEN(8)
CALL COLOR(2,7,ll)
PRINT TAB(22)i"ab":TAB(21)i"Cood"
PRINT TAB(16) i "MAINEeooo"
PRINT TAB(20) i "foooo":TAB(20) i "gooOO":T
AB(19) i "hooooo"
PRINT TAB(18); CHR$ (152) & "ooooooi "
PRINT TAB(14)i"pppquooooooo"
PRINT TAB(7) i "VERMONTpppquoooookj"
PRINT TAB(14) i "pppruooool"

J

)

J

J

)

J

------ Chapter 6 ------

56~ PRINT TAB(l4); "ppsuuoool"
570 PRINT TAB(14):"pp~uuom"
S8~ PRINT TAB(14);"ppuuu(nNEW"
S9~ PRINT TAB(14);"ppuuuu"&CHR$(lS3)&"HAMPS

HI"
6~e CALL HCHAR(23,3e,82)
61e CALL HCHAR(23,31,69)
623 PRINT "MASSACHUSETTSxxxxxxy"
63";' PRINT TAB(14);"xxxxxxz"
64e PRINT TAB(14);M&"xx("
6S0 PRINT" CONNECTICUT"; M&CHR$ (128) &"

66e PRINT TAB(14);CHR$(14S)&CHR$(146)&CHR$(
147)&CHR$(148)&CHR$(137)

67e PRINT TAB(l8);"RHODE ISLA" "
68e CALL HCHAR(22,3~,78)
6ge CALL HCHAR(22,31,68)
7ee PRINT TAB(lS);"PRESS <ENTER>";
71e CALL KEy(e,K,S)
72~ IF K<>13 THEN 71~
73~ CALL HCHAR(S,18,32,S)
74~ CALL HCHAR(11,9,32,7)
7Se CALL HCHAR(lS,23,32,3)
76e CALL HCHAR(16,22,32,l~)
77~ CALL HCHAR(17,3,32,13)
78~ CALL HCHAR(2~,S,32,ll)
790 CALL HCHAR(22,2~,32,12)
8ee CALL HCHAR(24,17,32,13)
81~ RESTORE 82~
820 DATA MAINE,10,11,!,VERMONT,11,4,7,NEW H

AMPSHIRE,11,4,7,MASSACHUSETTS,12,14,1
833 DATA CONNECTICUT,lS,10,1,RHODE ISLAND,l

4,5,1
84e FOR 1=1 TO 6
8Se READ S$(I),SS(I),SF(I),SB(I)
86~ NEXT I
87e FOR C=l TO 6
aBe RANDOMIZE
89~ X- INT(RND*6)+1
9~e IF S$(X)="" THEN 8ge
9l~ SS$ (X)=S$(X)
92e FF(X)=SF(X)

267

------ Chapter 6 ------

93e ss(x)=ss(x)
94e ANS(X)=C
950 CALL HCHAR(2+C,2,48+C)
96e FOR J-l TO LEN(S$(X»
97e CALL HCHAR(2+C,J+3,ASC(SEG$(S$(X),J,1»

)
98e NEXT J
9ge S$ (X)=''''
leee NEXT C
lele FOR C=l TO 6
10212J RANDOMIZE
le3e X=INT(RNO*6)+1
le4e IF SS$(X)="" THEN le3e
leSe CALL SOUNO(lse,1397,4)
le6e IF SS$(X)="NEW HAMPSHIRE" THEN
le7e CALL KEy(e,K,s)
lese CALL COLOR(SS(X) ,16,SS(X»
lege CALL COLOR(SS(X) ,SF(X),SS(X»
llee IF S<l THEN le7e
llle IF K-4S=ANS(X)THEN llse
112e CALL SOUNO(lee,33e,2)
113e CALL SOUNO(lee,262,2)
114e GOTO le7e
llse CALL COLOR(SS(X),SF(X),SS(X»
116e CALL HCHAR(2+ANS(X) , 1,62)
117e CALL SOUNO(lSe,262,1)
llse CALL SOUNO(lSe,33e,1)
11ge CALL SOUNO(lse,392,1)
12ee CALL SOUNo(3ee,S23,1)
121e SS$(X)=""
122e CALL HCHAR(2+ANS(X),1,32)
123e NEXT C
124e PRINT "TRY AGAIN? Y OR N",
12se CALL KEY(e,K,S)
126e IF K=89 THEN 46e
127e IF K=78 THEN 136e ELSE 12se
128e CALL KEY(e,K,S)
12ge CALL COLOR(11,4 ,16)
13BB CALL COLOR(11,4 ,7)
1310 IF 5<1 THEN 1280
1320 IF K-48-ANS(X)THEN 1160
133B CALL SOUNO(10e,33e,2)

268

12se

~

~

~

~

-
~

-
~

~

~

v
v

J

J

J

J

V

J

v

------ Chapter 6 ------

1340 CALL SOUND(100,262,2)
13 50 GOTO 1280
1360 CALL CLEAR
1370 CALL COLOR(2,2,1)
1380 PRINT "NOW MATCH THE CAPITALS.":::
1390 RESTORE 1400
1400 DATA MAINE,AUGUSTA,NEW HAMPSHlRE,CONCO

RD,VERMONT,MONTPELIER
1410 DATA MASSACHUSETTS,BOSTON,CONNECTICUT,

HARTFORD, RHODE ISLAND,PROVIDENCE
1420 FOR 1=1 TO 6
1430 READ S$(I),C$(I)
1440 NEXT I
1450 FOR 1=1 TO 6
1460 RANDOMIZE
1470 X=INT(6*RND)+1
1480 IF S$(X)="" THEN 1470
1490 ANS(I)=X
1500 PRINT I,S$(X)
1510 5$ (x)=''''
1520 NEXT I
1530 PRINT
1540 FOR 1=1 TO 6
1550 RANDOMIZE
1560 X=INT(6*RND)+1
1570 IF ANS(X)=0 THEN 1560
1580 CC(I)=X
1590 PRINT TAB(15),CHR$(64+I)," ",C$(ANS(X)

)
1600 ANS(X)=0
1610 NEXT I
1620 PRINT
1630 FOR 1=1 TO 6
1640 PRINT TAB(6),I
1650 CALL KEY(0,K,S)
1660 CALL HCHAR(23,11,63)
1670 CALL HCHAR(23,ll,32)
1680 IF S<1 THEN 1650
1690 IF (K<65)+(K>70)THEN 1650
1700 CALL HCHAR(23,ll,K)
1710 IF CC(K-64)=I THEN 1750
1720 CALL SOUND(100,330,2)

269

------ Chapter 6 ------

1730 CALL SOUND(100,262,2)
1740 GOTO 1650
1750 CALL SOUND(150,262,2)
1760 CALL SOUND(150,330,2)
1770 CALL SOUND(150,392,2)
1780 CALL SOUNO(150,523,2)
1790 NEXT I
1800 PRINT: "PRESS 1 FOR STATES QUIZ"
1810 PRINT "{6 SPACES}2 FOR CAPITALS QUIZ"
1820 PRINT "(6 SPACES) 3 TO END PROGRAM";
1830 CALL KEY(0,K,S)
1840 IF K~49 THEN 460
1850 IF K~50 THEN 1360
1860 IF K<>51 THEN 1830
1870 CALL CLEAR
1880 END

Touch-typing with Color Sets
"Type-ette" is a series of programs to learn touch-typing using
the computer. Unit 2, presented here, shows how color sets
can be used to make a certain finger appear in red. The whole
hand is drawn in yeUow; then, when a particular letter is being
taught, the finger that should be used to type the letter is
blinked and then shown in red.

The characters used in the little fingers, the thumbs, and
the backs of the hands are contained in two color sets. The little
fingers are not used in this program, so they do not need to be
in a separate color set. The forefingers are defined with
characters 104 and 105 in set 10; the middle fingers are defined
with characters 96 and 97 in set 9; and the ring fingers are
defined with characters 120 and 121 in set 12 (lines 990-1520).

At first , all color sets involving the hands are defined as
yellow on transparent, so the hand is drawn all yellow (lines
1810-1850). When a new letter is introduced, only the color set
of the particular finger involved is changed, so one finger will
blink a few times and then stay red (subroutine, lines 460-500).
After the screen is completed, the color set is returned to
yellow; the next time the hand appears, it will be all yellow
again.

As letters are introduced, they appear as black on yellow.
Since the regular black-on-transparent letters are necessary for

270

v

------ Chapterb ------

drills and instructions, the black-an-yellow letters are defined
in another color set.

The computer can be an excellent instructional aid for
learning how to touch-type. Color graphics and sound help to
maintain the student's interest and give immediate positive
response in an individualized learning situation. A student
who needs extra practice can run the program over and over.

Type-ette, Unit 1 (not in this book), draws the hands on the
screen and teaches the home position. Starting with Unit 2, the
letters are taught gradually and in a sequence, so you can type
more words with each letter learned. E and H are the first new
letters taught, then T and I so many common words may be
typed. After a group of new letters is introduced, there is a drill
of phrases. A phrase is chosen randomly from nine possible
phrases. The student must type five phrases correctly before
the program continues.

Program 1>-5. Type-ette. Unit 2

100 REM TYPE-ETTE UNIT 2
110 GOTO 700
120 PRINT "PRESS <ENTER> TO CONTINUE."
130 CALL KEY(0,KEY , S)
140 IF KEY<>13 THEN 130
150 RETURN
160 CALL HCHAR(X+l,3,120)
170 CALL HCHAR(X+2,3,121)
180 CALL VCHAR(X+3,3,122,2)
190 CALL HCHAR(X,4,120)
200 CALL VCHAR(X+l,4,121,2)
210 CALL VCHAR(X+3,4,152,2)
220 CALL HCHAR(X,5,96)
230 CALL VCHAR(X+l,5,97,2)
240 CALL VCHAR(X+3,5,152,2)
250 CALL HCHAR(X,6,104)
260 CALL VCHAR(X+l,6,105,2)
270 CALL HCHAR(X+3,6,123)
280 CALL HCHAR(X+4,6,124)
290 CALL HCHAR(X+4,7,125)
300 RETURN
310 CALL HCHAR(X+l,30,120)
320 CALL HCHAR(X+2,30,121)

271

------ Chapter 6 ------

333 CALL VCHAR(X+3,33,123,2)
343 CALL HCHAR(X,29,112)
350 CALL VCHAR(X+l,29,113,2)
363 CALL VCHAR(X+3,29,152 , 2)
373 CALL HCHAR(X,28,96)
383 CALL VCHAR(X+1,28,97,2)
393 CALL VCHAR(X+3,28,152,2)
433 CALL HCHAR(X,27,134)
413 CALL VCHAR(X+1,27,105,2)
420 CALL HCHAR(X+3,27,122)
430 CALL HCHAR(X+4,27,126)
440 CALL HCHAR(X+4,26,127)
453 RETURN
463 FOR I~l TO 15
473 CALL COLOR(C,12,1)
483 CALL COLOR(C,7,1)
493 NEXT I
533 RETURN
513 PRINT "(3 SPACES}".R1$
523 PRINT :"(4 SPACES}A S 0 F "'CHR$(152)."

"'CHR$(l52)." J K L ; "'CHR$(159) .. ,
533 RETURN
54" B$=- II

553 FOR y s 5 TO 23
563 CALL KEY(3,K,S)
573 IF S<l THEN 563
580 CALL HCHAR(24,Y,K)
590 B$-B$.CHR$(K)
603 NEXT Y
610 IF POS(B$,B1$,1»0 THEN 650
623 CALL HCHAR(24,5,152,21)
630 CALL SOUND(153,1397,4)
640 GOTO 553
650 RETURN
660 PRINT" ".R1$:,"(3 SPACES}".R1$
670 PRINT :"(4 SPACES)A S 0 F "&CHR$(152)."

"'CHR$(152)." J K L , "'CHR$(159)
680 PRINT: "(3 SPACES) ".R$'" ".CHR$(152).CH

R$(152)
693 RETURN
703 CALL CLEAR
713 CALL CHAR(92,"3C4299A1A199423C")

272

------- Chapter 6 -------

720 CALL CHAR(152, "0")
730 CALL CHAR(153,"FFFFFFFFFFFFFFFF")
740 CALL CHAR(154, "00FFFF0000FFFF")
750 PRINT" ** T Y P E - E T T E **":::TAB(

8):"T Y PIN G"::TAB(13):"ON THE"::
TAB(l0): "TI 99/4A"::::::::: : :::

760 CALL CHAR(155,"000000FFFF")
770 CALL CHAR(156, "FF8F8F8FFFF8F8F8")
780 CALL CHAR(157,"FFFFFFFF")
790 PRINT ,
800 CALL CHAR(158, "F0F0F0F0F0F0F0F")
810 CALL CHAR(159,"FFE7C38181C3E7FF")
820 CALL COLOR(16,2,12)
830 FOR X=13 TO 23
840 CALL HCHAR(X,7,152,18)
850 NEXT X
860 CALL HCHAR(15,7,155,18)
870 CALL HCHAR(13,20,154,4)
880 CALL HCHAR(14,20,154,4)
890 FOR Y=20 TO 23
900 CALL VCHAR(16,Y,153,7)
910 CALL HCHAR(Y-2,8,153,11)
920 NEXT Y
930 CALL HCHAR(22,8,153,11)
940 CALL HCHAR(19,9,156,9}
950 CALL HCHAR(20,9 , 156,9)
960 CALL HCHAR(21 , 10,157,7)
970 T=250
980 CALL SQUNO(T,392,1,330,6,131,9)
990 CALL CHAR(96, "3C7E7E7E7E7E7E7E")
1000 CALL SQUNO(T,330,1,262,6,131,9)
1010 CALL CHAR(97, "7E7E7E7E7E7E7E7E")
1020 CALL SQUNO(T/2,330,0,262,6 , 131,9)
1030 CALL SQUNO(T/2,349 , 1,294,6 , 131 , 9}
1040 CALL SOUNO(T,392,0,330,6 , 131,9)
1050 CALL CHAR(104,"000000003C7E7E7E")
1060 CALL SQUNO(T,349,2,294,7,123,10)
1070 CALL CHAR(105, "7E7E7E7E7E7E7E7E")
1080 CALL SOUND(T,294,2,247,7,123,10)
1090 CALL CHAR(1l2,"000000003C7E7E7E")
1100 CALL SOUNO(T/2,294,2,247,7,123,10)
1110 CALL SOUNO(T/2,330,2,262 , 7,123,10)

273

~

Chapter 6 '-'

~

1120 CALL SQUNO(T,349,2,294,7,123,le)
~

1133 CALL CH~R(113, "7E7E7E7E7E7E7E7E")
1143 CALL SQUNO(T,330,3,196,8,131,11) ~

1153 CALL CH~R(120,"000000003C7E7E7E")
1160 CALL SQUNO(T,262,3,196,8,131,11) ~

1170 CALL CH~R(121,"7E7E7E7E7E7E7E7E")
1180 CALL SQUNO(T/ 2,262,3,196,8,131,11} ~

1190 CALL SOUNO(T/2,294,3,196,8,131,11 }
1200 CALL SOUND(T/ 2,330,3,196,8,131,11) .~

1210 CALL SOUNO(T/ 2,262,3,196,8,131,11)
1220 CALL SQUNO(2*T,294,3,247,8,196,10) ~

1230 CALL CH~R(122, "7F7F7F7F7F7F7F7F")
'-' 1240 CALL CH~R(123, "FEFEFEFEFEFEFEFE")

1250 CALL CH~R(124 ,"FEFEFEFEFFFFFFFF")
~

1260 CALL SOUND(T,392,5,330,10,131,15)
1270 CALL CH~R(125, "1FlF3F3F7EFEFCFC") ~

1280 CALL SQUNO(T,330,5,262,10,131,lS)
1290 CALL CH~R(126,"7F7F7F7FFFFFFFFF ") '-'
1300 CALL SQUNO(T / 2,330,5,262,10,131,lS)
1311' CALL SOUND(T / 2,349,5,294,10,131,15)
1320 CALL SQUNO(T,392,5,33e,10,13131,lS)
1330 CALL CH~R(127,"F8F8FCFC7E7F3F3F") ~

1340 CALL SQUNO(T,349,3,294,B,123,12)
1350 CALL CHAR(144 , "0") '-'
1360 CALL SQUNO(T,294,3,247,8,123,12)
1370 CALL CHAR(128,M"978444444447800") ~

1380 CALL SOUND(T/ 2,294,3,247,8,123,12)
1390 CALL SOUND(T/ 2,330,3,262,8,123,12) ~

1400 CALL SQUNO(T,349,3,294,B,123,12)
1410 CH~R(129,"007C407840407C") '-' CALL
1420 CALL SQUNO(T,330,1,196,7,131,9) v
1430 CALL CHAR(130,"00040404044438")
1440 CALL SQUNO(T,262,1,196,7,131,9) '-1450 CALL CHAR(131,"0044447C444444")
1460 CALL SOUND(T/2,262,1,196,7,131,9) ~

1470 CALL SOUND(T/2,294,l,196,7,131,9)
1480 CALL SOUND(T/ 2,330,1,196,7,131,9) '--
1490 CALL SOUND(T/ 2,262,l,196,7,131,9)
1500 CALL SOUNO(2*T,294,1,196,7,123,9) ~

1510 CALL CHAR(132,"007C407840404")
1520 CALL CHAR(133,"007C101010101") ~

1530 R$-CHR$ (152)
~

274
~

~

------ Chapter 6 -----_

1543
1553
1563
1573
1583
1593
1633
1613
1623
1633
1643
1653
1663
1670
1683
1690
1700
1710
1720
1733
1740

1750
1760
1770
1783
1790
1800
1813
1823
1833
1843
1853
1863
1873

1883
1893
1933
1913
1923
1933

FOR I=l TO 9
R$=R$&" "&CHR$(lS2)
NEXT I
CALL SOUND(1.S*T,294,3)
CALL CLEAR
CALL SCREEN(8)
CALL SOUND(T/ 2,333,3)
CALL SOUND(1.S*T,294,2)
R1$=R$&" "&CHR$(lS2)
CALL SOUND(T/ 2,333,2)
CALL SQUNO(1.S*T,349,1,196,7,123,10)
PRINT" "&.R1$
CALL SOUND(T/ 2,392,l)
CALL SQUNO(1.S*T,349,0,196,7,123,9)
PRINT ,"(3 SPACES)"&R1$
CALL SOUND(T/ 2,392,0)
CALL SQUNO(1.S*T,330,1,196,7,131,9)
PRINT ,"(4 SPACES)"&R$&" "&CHR$(lS9)
CALL SOUND(T / 2,349,l)
CALL SOUijD(1.S*T,333,2,196 7,131 13)
PRINT , "l3 SPACES)"&R$&" "&cHR$(iS2)&C
HR$ (152)
CALL SOUND(T/ 2,349,2)
CALL SQUNO(T,392,2,262,7,165,9)
CALL COLOR(lS,16,7)
CALL SQUNO(T,392,2,262,7,131,9)
PRINT : I I
CALL SQUNO(T,392,2,262,7,165,9)
CALL COLOR(9,12,l)
CALL COLOR(13,12,l)
CALL SQUNO(T,440,2,175,7)
CALL COLOR(11,12,l)
CALL COLOR(12,12,l)
CALL SQUNO(T,392,1,262,6,165,B)
PRINT "(3 SPACES)LEARNING THE KEYBOARD
"
CALL SOUND(T,392,l,262,6,131,8)
PRINT: :TAB(ll); "UNIT 2"
CALL SOUND(T,392,l,262,6,16S,8)
PRINT :::tt
CALL COLOR(13,2,12)
CALL SQUNO(T,330,1,196,7)

275

------ Chapter 6 ------

1943 CALL CHAR (134,"3338131313133833")
1953 CALL SQUNO(T,392,1,165,7)
1963 CALL CHAR(13S,"3348S363S34844")
1970 CALL SQUNO(T,392,1,131,7)
1983 CALL CHAR(lS8,"3333333333333")
1990 CALL SQUNO(T,392,1,165,7)
2333 CALL SOUND(T / 2,349,l,175,7)
2313 CALL SOUND(T/ 2,333,l)
2020 CALL SQUNO(T,294,1,196,7)
2333 CALL SOUND(T/ 2,333,l,131,7)
2343 CALL SOUND(T/ 2,349,l)
2050 CALL SOUNO(1.5*T,294,1,196,7)
2363 CALL SOUND(T/ 2,262,l)
2070 CALL SQUNO(2*T,262,1,196,6,165,8)
2383 CALL CLEAR
2393 CALL SCREEN(4)
2100 PRINT "IN UNIT 1 YOU LEARNED" : "THE ""H

OME KEYS "" . "s : : :
2113 GOSUB 523
2120 PRINT :~MAFTER EACH LETTER YOU TYPE, Y

OUR FINGERS RETURN ""HOME""."
2133 PRINT : "THIS UNIT WILL ADD MORE": "LETT

ERS FOR YOU TO LEARN.":::::
2143 GOSUB 123
2153 FOR GS=l TO 7
2163 CALL CLEAR
2173 ON GS GOSUB 2233,2433 , 2643,2733,2973,3

383,3293
2183 NEXT GS
2193 GOTO 3383
22~"::J PRINT "THE MOST USED LETTER OF" : "THE A

LPHABET IS ""E"" . ":t::TAB(12)i"USE YO
UR LEFT"

2213 PRINT TAB(12),"MIDDLE FINGER."::TAB(12
),"GO UP FROM "&CHR$(128):TAB(12),"TO
STRIKE THE "&CHR$(129):::::::

2223 X=13
2233 GOSUB 163
2243 GOSUB 513
2253 CALL HCHAR(21,ll,128)
2263 CALL HCHAR(19,13,129)
2273 C=9

276

-'

.I

------ Chapter 6 ------

2280 GOSUB 460
2290 GOSUB 120
2300 CALL HCHAR(23,1,32,32)
2310 PRINT "PRACTICE TYPING THIS LINE: ":::
2320 CALL HCHAR(22,1,152,96)
2330 FOR Y=5 TO 17 STEP 4
2343 CALL HCHAR(23,Y,68)
2350 CALL HCHAR(23,Y+1,69)
2360 CALL HCHAR(23,Y+2,68)
2370 CALL HCHAR(23,Y+3,32)
2380 NEXT Y
2390 B1$="DED"
2400 GOSUB 540
2410 CALL COLOR(9 ,12,1)
2420 RETURN
2433 PRINT "LET'S LEARN ""HOI". "::: : "USE YOU

R RIGHT": "POINTER FINGER. to:: s t;:
2440 X=17
2450 GOSUB 310
2460 GOSUB 520
2470 CALL HCHAR(21,19,130)
2480 CALL HCHAR(21,17,131)
2490 C=10
2500 GOSUB 460
2510 PRINT I;: "REMEMBER TO RETURN TO THE" s"

HOME POSITION AFTER","STRIKING ANOTHE
R KEYI"

2520 PRINT 't "TRY TYPING THIS LINE:":, s
2530 CALL HCHAR(22,1,152,96)
2540 FOR Y=5 TO 17 STEP 4
2550 CALL HCHAR(23,Y,74)
2560 CALL HCHAR(23,Y+1,72)
2570 CALL HCHAR(23,Y+2,74)
2580 CALL HCHAR(23,Y+3,32)
2590 NEXT Y
2633 Bl$-"JHJ"
2610 GOSUB 540
2620 CALL COLOR(C,12,1)
2630 RETURN
2640 GOSUB 660
2650 GOSUB 4070
2663 PRINT ::: I "NOW YOU CAN TRY PHRASES."

277

------ Chapter 6 ------

2670 PRINT, "TYPE THE GIVEN PHRASE", "THEN P

2680

2690

2700
2710
2720
2730
2740

2750

2760

2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970

278

RESS ENTER."::::;:::
DATA "A LAD ASKED DAD~", IOHE HAD A FALS
E LEAD" I "SHE HAS A LEAD", "HE HAD ALFA
LFA;","HAL HAD A SALE;"
DATA "SHE HAS LED SALES;", "HE HAS A DE
SKi ", "SHE HAS A LEASE", "ED HAS ADS: " ,
"SEAL A DEAL"
RESTORE 2680
GOSUB 3540
RETURN
PRINT "TIME TO LEARN MOREl ";::
PRINT CHR$(133)," IS THE SECOND MOST U
SED":" LETTER IN TYPING."
PRINT ,TAB(14),"USE YOUR LEFT",TAB(14)
i "POINTER FINGER."
PRINT ,TAB(14) ,"REMEMBER TO",TAB(14),"
REACH UP THEN":TAS(14)j"RETURN TO "&C
HR$(132)&"."",
X=17
GOSUB 160
GOSUB 510
C=10
GOSUB 4070
CALL HCHAR(21,13 , 132j
CALL HCHAR(19,14,133
GOSUB 460
PRINT "TYPE THIS EXERCISE;": t t

CALL HCHAR(22,1,152,96)
FOR Y=5 TO 17 STEP 4
CALL HCHAR(23,Y,70)
CALL HCHAR(23,Y+1,84)
CALL HCHAR(23,Y+2,7e)
CALL HCHAR(23,Y+3,32)
NEXT Y
Bl$=lIFTF"
GOSUB 540
CALL COLOR(C,12,1)
RETURN
PRINT "THE PERIOD USED AT THE"::"END 0
F A SENTENCE IS"

v ------- Chapter I> -------

2983 PRINT ,·PRESSED WITH THE",,"RIGHT RING
FINGER ...

299a PRINT sl::"PRACTICE THIS LINE:":::::::
3333 CALL HCHAR(22,1,152,96)
3313 FOR Y=5 TO 19 STEP 2
3323 CALL HCHAR(23,Y,76)
3333 CALL HCHAR(23,Y+1,46)
3343 NEXT Y
3353 B1$="L.L."
3363 GOSUB 543
3373 RETURN
3383 PRINT CHR$ (134);" IS ANOTHER VOWEL TO

LEARN.": : "USE YOUR RIGHT": "MIDDLE FIN
GER. "

3'1'913 PRINT :"STRIKE H&CHR$(134)&" THEN":"RE
TURN TO "&CHR$(135),::::::

3133 X=13
3113 GOSUB 313
3123 C=9
3133 GOSUB 463
3143 GOSUB 513
3153 GOSUB 4363
3163 CALL HCHAR(19,23,134)
31713 PRINT :: "TYPE THIS EXERCISE:":::
31813 CALL HCHAR(22,1,152,96)
3193 FOR Y=5 TO 17 STEP 4
3233 CALL HCHAR(23,Y,75)
3213 CALL HCHAR(23,Y+1,73)
3223 CALL HCHAR(23,Y+2,75)
3233 CALL HCHAR(23,Y+3,32)
3240 NEXT Y
32513 Bl$="KIK"
3263 GOSUB 543
3273 CALL COLOR(C,12,1)
3283 RETURN
3293 GOSUB 663
3333 GOSUB 4343
331'11 PRINT:::: "PRACTICE THESE NEW LETTERS"

:"BY TYPING THESE SENTENCES.":::,:::,
332121 DATA "JED IS AT THE FIELD.", "HE IS AT

THE LAKE.", "SAL DID TAKE THE TEST."

279

Chapter 6 -------

3333 DATA "HIS AIDES HAD THE LIST.",IISHE FI
LED THE LIST . ", "HE FLIES A JET."

3340 DATA "IT IS THE LAST TEST.","! HIT IT
FAST.", "'HIS IS THE LAST SET,"

335a RESTORE 332a
336a GOSUB 354a
337a RETURN
338a CALL CLEAR
3390 PRINT "REMEMBER,":: "TO LEARN TOUCH TYP

ING -": ,: "DO NOT LOOK AT YOUR FINGERS
"

340121 PRINT : "MEMORIZE THE KEY POSITIONS . ": :
"'RETURN TO THE HOME POSITION AFTER ST
RIKING EACH KEY . "

341121 PRINT : "PRACTICEll": : : ::
342a GOSUB 12a
343a CALL CLEAR
344a PRINT "THIS COMPLETES UNIT 2 . ": : : , "CHO

OSE:"::"1 REVIEW ""E"""::"2 REVIEW

345121 PRINT :"3 REVIEW PHRASES FOR E,H"::"4
REVIEW ""T"""::NS REVIEW"" . """

346121 PRINT : "6 REVIEW" "I""" t : "7 REVIEW S
ENTENCES"::"8 END PROGRAM"

347a CALL KEy(a,KEY,S)
34Ba IF (KEY<49)+(KEY>56)=-1 THEN 3470
349a CALL CLEAR
35aa ON KEY-4B GOSUB 22aa , 243a,264a,274a , 29

7a,3a8a,329a,352a
3510 GOTO 3430
3520 GOSUB 38 90
3530 STOP
354a FOR 1=1 TO 9
3550 READ M(I)
3560 NEXT I
3570 RANDOMIZE
358121 FOR 1=1 TO 5
359a J=INT(9*RND)+1
3600 IF M (J)="" THEN 3590
36UJ B$='I"
3620 CALL HCHAR(20,1,152,128)

280

-

~
Chapter 6

~

363a FOR K=l TO LEN(A$(J»
364a CALL HCHAR(21,K+2 , ASC(SEG$(A$(J),K,l»

)
365a NEXT K
3660 CALL SOUNO(150,1397,4) - 3670 FOR L=l TO 28
368a CALL KEY(e,KEY,S)
3690 IF S<l THEN 368a
37aa IF KEY=13 THEN 3740
3710 CALL HCHAR(22,L+2,KEY)
372a B$=B$&CHR$(KEY)
3730 NEXT L
374a IF B$=A$(J)THEN 38a0
375a I=-I-l
376a CALL SOUNO(8a0,-8,a,l10,4)
377a FOR OELAY-1 TO 500
3780 NEXT DELAY
3790 GOTO 3860
3800 CALL SOUNO(100,392,2)
3810 CALL SOUNO(100,494,2)
382a CALL SOUNO(100,587,2)
383a CALL SOUNO(100,494,2)
3840 CALL SOUNO(100,392,2)
3850 A$(J)_-IO - 3860 NEXT I

- 3870 GOSUB 3890
3880 RETURN
3890 CALL SOUNO(T/ 2,330,3,262,8,165,10)
3900 CALL SOUNO(T / 2,349,3,294,8,147,10)
3910 CALL SOUNO(T,392,2,330,7,131,10)
3920 CALL SOUNO(T/2,349,2,294,7,175,10)
3930 CALL SOUNO(T/ 2,330,l,262,6)
3940 CALL SQUNO(1 . S*T,294,0,247,6,196,8)
3950 CALL SOUNO(T/ 2,262,l)
3960 CALL SOUNO(2*T,262,0,131,10)
3970 CALL SQUNO(2*T,294,0,196,8)
3980 CALL SOUNO(2*T,330,0,131,8)

--' 3990 CALL SOUNO(T,349,0,196,8)
4000 CALL SOUNO(T, 247,1) - 4010 CALL SOUNO(4*T,262,1,165,6,131,8)
4020 CALL SOUNO(l,9999,30)

~ 4030 RETURN

~

281
~

'-

------- Chapter 6 -------

4040 CALL HCHAR(23,24,46)
4050 CALL HCHAR(19,20,73)
4060 CALL HCHAR(19,14,84)
4070 CALL HCHAR(21,17,72l
4080 CALL HCHAR(19,10,69)
4090 RETURN
4100 END

Timing

Although the TI-99/4A does not have a realtime clock built in

'.

and accessible by BASIC, there are ways you can simulate time '-'
delays and timing devices. One method of delaying is to use an
empty FOR-NEXT loop - one with no statements between "'-/
FOR and NEXL

l00 FOR DELAY=l TO l00
11 0 NEXT DELAY

The above delay takes about one second. FOR DELAY:::: 1 TO
1000 takes about 3.8 seconds . The time w ill vary, depending on
how fu ll memory is when your program runs. You can use a
stopwatch to determine what the limit o n your delay loop
should be.

The CALL SOUND Clock
A more accurate way to denote a certain length of time is to use
multiple CALL SOUND statements, in which you can specify
an exact number of milliseconds for a sound . As you know, a
CALL SOUND statement does not usually delay a program.
The computer goes on and executes more statements, and the
sound has no effect on program speed - with one exception.
Until one CALL SOUND has finished, the next one cannot
begin. So if your program has one CALL SOUND, a second
CALL SOUND, or a repetition of the first one in a loop, will
cause the program to wait for exactly as long as you specify.

If you prefer not to hear anyth ing during the delay, use a
frequency out of hearing range and a loudness factor of 30.

l00 CALL SOOND(l000,44000,30)
110 PRINT I

282

------ Chapter 6 ------

129 I=I+1
13B GOTO 1BB

Since 1000 milliseconds equals one second, this program
segment increments every second.

The CALL KEY Clock
Another way to simulate a time clock w hile someone is
interacting with the computer is to put a counter in the CALL
KEY loop. In the game " Find Home" in Chapter 3, the score is
incremented in the CALL KEY loop and PRINTed at the end of
the game. The faster you play and get to the home base, the
fewer times the CALL KEY loop will occur, and the lower the
score will be.

Here is a routine you can use if you want the time printed
as the game is going. In this program segment, the time prints
until you press a key:

199 CALL CLEAR
11B T=B
12B CALL KEY(B,K,S)
13B FOR 1=1 TO LEN(STR$(T»
140 CALL BCHAR(24,27+I,ASC(SEG$(STR$(T) ,I,

1»)
150 NEXT I

v 160 T=T+1
170 IF S<l THEN 12B

'-' 189 END

The disadvantage of this method is that the more statements
you have within the CALL KEY loop, the less responsive user
interaction will be, as the user presses a key and nothing
happens for a while .

Timing the Touch Typist
This program was designed as a practice unit for beginning
typing students who have learned all the positions of the
letters. Each drill consists of ten sentences, and each sentence
requires 25 keystrokes. After each sentence the student types,
his or her approximate rate in words per minute is calculated
and displayed. The rate is calculated from the number of
strokes the student typed divided by five strokes per word.

283

------ Chapter 6 ------

After ten sentences, the overall words· per-minute rate for all
ten sentences is calculated and displayed.

The sentences for the drill are chosen randomly from a list
of over 40 sentences, and a student can perform the drill four
times before repeating a sentence.

The sentences are read in as the A$ array. For each
sentence chosen in the drill, a random number H is selected
and A$(H) is printed. After the sentence has been used, A$(H)
is set equal to the null string, I"' , so it cannot be used again. If
the student wishes to continue after the fourth drill, the
sentences are RESTOREd and READ into the A$ array before
the next drill.

After a sentence is displayed, the student types in the
sentence. Each letter the student types is accepted using a
CALL KEY loop. INPUT would be faster for the student and
easier for the programmer, but I did not use it because the
screen would scroll, the student could enter too many strokes
and cause a program-ending error or change the graphics
sequence, and there would be no way to time the process.

Lines 1640-1710 receive the student's typing. The student is
allowed to type 27 strokes maximum. II is the timer that
increments within the loop. If the student presses ENTER, the
program branches out of the loop; otherwise, the character
pressed is printed and placed in the B array.

The timer value, 1I, is a function of both the amount of
actual time a student uses and the number of strokes. It varies
directly with the length of time, but does not increment as
quickly if a key is pressed.

Testing for the Realtime Value
To discover the relation between the II value and the actual
word-per-minute rate, a plot of time and number of strokes
was made; then an equation could be derived. First, a constant
time of four seconds was selected; then a specific number of
strokes was entered and the timer value printed. For graphing
purposes, 0, 5, 10, 15, 20, and 25 strokes were entered during
the constant four seconds. These numbers of strokes
correspond to 0,15,30, 45,60, and 75 words per minute. The
timer values were consistent for numerous trials, and the
points plotted on the graph were in a straight line. Constant
times of three seconds and five seconds were also tried, and
resulted in parallel lines on the graph.

284

v

~

'-

~

'-'

~

v

------ Chapter 6 ------

Since the general equation for a line is y = niX +b,

II = _ 28 x + 7R = _ 28 x + 78. -,-------<1---,,- * 60 seconds
25 25 4 seconds 1 minute

where m is minutes . Solving for m,

1 28
m~ 1170 (l/+ 25 x)

The typing definition of words per minute is

WPM = number of strokes/S strokes per word
number of minutes

So, substituting m and simplifying,

WPM = 234 x words per minute
II+l.12x

The equation will change if the size of the program is
altered because, in general, the program runs more slowly with
fuller memory.

In this program, the process of using a timer in the CALL
KEY loop, printing the character of the key pressed, and
keeping track of the key pressed increases the response time.
With faster typists, the spaces and double letters are not as
easily detected. However, if you type evenly the response of
the keys is better, and this program can handle speeds of about
88 WPM accurate typing. Since this program was designed as a
drill for students, it should be adequate for beginning typists'
speeds.

How "Type-ette Timer" Works
Lines

110

120
130-200

210-250

DIMension the A$ array for 46 sentences and the
B array to receive the 27 character numbers the
student types.
Branch past the subroutine.
Subroutine to print message and wait for
student to press ENTER.
Clear the screen; print the title.

285

Chapter 6 '-'

~

260-310 Define the graphics characters . '--'
320-1000 While music plays, define the graphics

characters and colors and draw the title screen. ~

1010-1150 While music plays, READ the sentences into the
A$array.

1160-1240 READ more sentences into the array.
1250 If the student has previously done the drill, skip ~

the instructions.
1260-1320 Print the instruction screen. ~

1330 Initialize the number of times the drill has been
performed. -

1340-1470 Draw the graphics for the drill.
1480-1520 Initialize the variables. R is the number of -

correctly typed sentences; W is the number of
~

incorrectly typed sentences; CO is a coordinate
marker for the birds that appear as a sentence is -typed correctly; TOT is the total timer value; TLL
is the total number of strokes typed. ~

1530 Randomize the selection of sentences.
1540 Perform the drill for ten sentences. ~

1550-1560 Initialize B$ as the student's typing and II as the
timer. ~

1570-1580 Randomly choose one of the sentences.
1590 Clear the background for sentences. ~

1600-1630 Print the sentence and beep the beginning tone.
1640-1710 Print what the student types while incrementing ~

the timer. (1650-1670 comprise the "waiting
~

loop" while the student has not pressed a key.)
1720 Beep the ending tone .

~

1730-1750 Combine the characters the student typed to
form sentence B$. ~

1760-1860 If the sentence was incorrect, sound "uh-oh"
and print the number of wrong sentences so far. ~

1870-1890 If the sentence was correct, playa tune.
1900-1920 Draw a bird. '--
1930-1990 Print the number of correct sentences.
2000-2110 Calculate and print words per minute. -
2120 Set A$ to null so the sentence won't be used

again.
2130-2150 Delay slightly before the next problem.
2160 Clear the last sentence typed. ~

~

286 ~

'-'

-

------- Chapter 6 -------

2170-2230 Print the overall average words per minute and
playa tune .

2240-2320 Print the option to try again; branch
appropriately depending on the answer and the
number of times the drill has been performed;
end.

Program 6~6, Type-ette Timer

lee REM TYPE-ETTE TIMER
lIe DIM A$(46),B(27)
l2e GOTO 2le
13e M$=npRESS <ENTER> TO CONTINUE."
140 FOR J=l TO 26
lSe CALL HCHAR(24,2+J,ASC(SEG$(M$,J,l»)
16e NEXT J
170 CALL KEY(e,K,S)
180 IF K<>13 THEN 17e
1ge CALL HCHAR(24,3,32,27)
200 RETURN
21e CALL CLEAR
22e CALL SCREEN(8)
23e CALL COLOR(le,lS,l)
24e CALL COLOR(11,lS,6)
250 PRINT "(3 SPACES)" TYPE-ETTE TIMER ""

26e FOR J=l TO 9
27e READ C,C$
280 CALL CHAR(C,C$)
2ge NEXT J
300 DATA 92,3C4299AIA19942JC,10S,e103070FIF

3F7FFF , 106,0080C0E0F0FBFCFE,120,FFFFF
FFFFFFFFFFF,121

310 DATA 7F7F7F7F3F3F3FIF,122,lF0FeFe7e703e
l,123,7F3FIF0701,124,FFFFFFFFFF7F0F,l
36,FFFFFFFFFFFFFFFF

32e CALL COLOR(12,12,l)
330 T=400
34e CALL SOUND(T,S23,2,131,8)
3Se CALL CHAR(96, "FFFFFFFFFFFFFFFF")
360 CALL CHAR(97, "FF7F3FIF0F0703el")

287

Chapter 6
~

--'

370 CALL SOUND(T / 2,659,2)
~

380 CALL COLOR(9,6,ll
390 CALL SOUND(T/ 2,523,2)

~

400 CALL CHAR(98, "FFFEFCF8F0E0C08")
410 CALL SOUND(T,392,l) ~

420 PRINT TAB(8):"""""""'":TAB(B):"" v
430 CALL SOUND(T,392,0)
440 CALL CHAR(104,"FFFFFFFFFFFFFFFF") ~

450 CALL CHAR(112,"00000000000C3EFF")
460 CALL SQUNO(T,523,2,131,8)
470 PRINT TAB(8),"'ppppppppppp'"
480 CALL SOUND(T/ 2,659,2) ~

490 CALL CHAR(115,"FF7F3F1F0F070301")
500 CALL SOUND(T/ 2,523,2) ~

510 CALL CHAR(116, "FFFEFCF8F0E0C08")
520 CALL SOUND(T,392,2) ~

530 PRINT TAB(8), "ashhhhhhhhh~b": TAB(9), "as
hhhhhhh~b"

~

540 CALL SOUND(T,784,l)
550 PRINT TAB(l0), "ashhhhh~b":TAB(l1), "ashh

htb" ~

560 CALL CHAR(99, "0103070FIF3F7FFF")
570 CALL SOUND(T/ 2,698,l,131,7) ~

580 CALL CHAR(100, "80C0E0F0F8FCFEFF")
590 CALL SOUND(T/2,659,l,131,7) ~

600 PRINT TAB(12}:"ashtb"
610 CALL SOUND(T/ 2,587,l) J

620 PRINT TAB(13):"'h'"
630 CALL SOUND(T/2 ,523,l) '-'

640 PRINT TAB(13);u .. h
650 CALL SOUND(T/ 2,494,2,131,7)
660 PRINT TAB(12};"c'h'd" v
670 CALL SQUNO(T/ 2,523,2,131,7)
680 PRINT TAB(ll); .. c h d"

~

690 CALL SOUND(T / 2,494,2)
700 PRINT TAB(10);"c 'h' .. 'd" ~

710 CALL SOUND(T/ 2,523,2)
720 PRINT TAB(9); .. c h 'd" ~

730 CALL SOUND(T / 2,587,2)
740 CALL CHAR(113, "0103070FlF3F7FFF") ~

750 CALL SOUND(T /2 ,523,2)
~

288

'-'

v ------- Chapter 6 -------

760 PRINT TAB(8);"c~""h""'d"
770 CALL SOUNO(T/ 2,494,2)
780 CALL CHAR(114, "80C0E0F0F8FCFEFF")
790 CALL SOUNO(T/ 2,440,2)
833 PRINT TAB(8)~""""h""""
810 CALL SOUNO(T/ 2,392,2,196,3)
823 PRINT TAS(S); H 'qhr' "
830 CALL SOUNO(T / 2,175,3)
843 PRINT TAB(B)i" qhhhr "
850 CALL SOUNO(T/ 2,165,3)
860 CALL SOUNO(T/ 2,147,3)
870 CALL SOUNO(T,523,2,131,3)
880 PRINT "
890 CALL SOUNO(T / 2,659,2)
900 CALL SOUNO(T / 2,523,2)
910 CALL SOUNO(T,392,0)
920 CALL CHAR(128, "0F070301406F7F43")
930 CALL SOUNO(T,392,2)
940 CALL CHAR(129, "80C0C0E0E6FFFEE")
953 CALL SQUNO(T,659,2,262,6)
960 CALL COLOR(13,5,1)
970 CALL SOUNO(T/ 2,784,2)
980 CALL COLOR(14,10,1)
990 CALL SOUNO(T/ 2,659,2)
1000 CALL SOUNO(T,523,2)
1010 DATA 659,185,1 MADE CAGES FOR MY PETS.

,523,185,GREG BOUGHT A LARGE GONG. ,SS
7,196,SHE KEPT A SAFE DISTANCE.

1323 DATA 494,196,TOM HAS SENT THE PACKAGE.
,523,131,THEY MAY STOP THEIR WORK.,44
0,131,CHERY HELPED WITH DISHES.

1333 DATA 494,147,ANDY GAVE MY BAND A HAND.
,392,147,LET RANDY SORT THE CARDS.,44
0,147,PUT A PURE GOLD ONE HERE.

1343 DATA 370,147,TRY TO TYPE A THIRD CARD.
,392,196,1 WANT TO WIN A SURPRISE . ,44
0,196,SHE HAS MORE TO DO THERE.

1353 DATA 494,196,HE SAID WE RENT A CAMPER.
,523,196,THEY ARE AT THE TENT NOW. ,58
7,196,1 HOPE THE TAX IS FOR US.

1060 DATA 659,196,WE KNOW WE HAVE TO DO IT.

289

------- Chapter 6 -------

,740,37a,DO NOT PHOTO THOSE OBOE8.,78
4,392,THIS IS FUN TO TYPE THEM.

1370 DATA SS0,ISS,YOU COULD COUNT YOUR OWN.
,784,185,SHE GAVE HIM A FINE WAGE. , 74
0,147,SOME OF US HAVE TO DO IT.

1080 DATA 659,147,HAVE THE BOY DO THE WORK.
,587,220,HE CAN DO A JOB THE BEST. , 52
3,220,EIGHT OF US ARE HERE NOW.

1090 DATA 494,147,YOUR COWS CAN HELP DO IT.
,440,147,1 BOUGHT THE BOX OF CANS.,39
2 , 196,THEY SHOULD READ MY LIST.

1100 DATA 44000,44000,LET ME GET SEVEN OF T
HEM.

1110 RESTORE 1010
1120 FOR 1=0 TO 27
1130 READ F1,F2,A$(I)
1140 CALL SOUND(200,F1,2,F2,6)
1150 NEXT I
1160 FOR 1=28 TO 45
1170 READ A$(I)
1180 NEXT I
1190 DATA YOUR BABY IS AWAKE AGAIN.,CHECK T

HE PAPER FOR DIRT.,THE QUICK QUIZ WAS
TODAY.

1200 DATA FOUR OF THE MEN ARE HERE.,BRING C
ARDS TO THE TABLE.,TRY NOT TO BALK AT
THESE.

1210 DATA SHE MUST TRY TO WORK NOW.,I THINK
IT IS WISE TO DO./EACH OF US HAD FIV
E JARS.

1220 DATA TRY TO GET SEVEN OF THEM. , THEIR C
AR IS AT THE FARM.,WE HAVE TO WORK TW
o DAYS.

1230 DATA SHE SAID THEY STRUCK OIL.,I WANT
TO GO LATER TODAY.,TRY TO REACH THESE
GOALS.

1240 DATA JANE HAS TO SPEAK AT ONE. ,THEY PR
OVED THE THEORIES.,SHE SAID SHE HAS A
LEASE.

1250 IF TEST>4 THEN 1330
1260 CALL CLEAR

290

~.

------- Chapter 6 -------

1270 CALL SCREEN(2)
1280 PRINT "YOU WILL SEE A SENTENCE": "ON TH

E SCREEN. "I z "TYPE AND ENTER IT. HI: "YO

U WILL BE TOLD YOUR"
1290 PRINT "WORDS PER MINUTE (WPM)" I "FOR TH

AT SENTENCE":" (25 STROKES = 5 WORDS)
."sl"AFTER TEN SENTENCES YOUR"

1300 PRINT "FINAL SCORE AND TOTAL WPM
(3 SPACESJARE SHOWN, "11'"

1310 CALL SCREEN(12)
1320 GOSUB 133
1333 TEST=1
1343 CALL CLEAR
1353 CALL SCREEN(8)
1360 PRINT TAB(7),"ij",TAB(6),"ihhj":TAB(5)

;"i.hhhhj"zTAB(S)i" :TAB(5):II "
1370 PRINT TAB(S): xx IO :TAB(18):"RIGHT:"
1380 PRINT TAB(S);" xx "jTAB(18);"WRONG: ..
1390 PRINT TAB(5):" xx ";TAB(18)i·'WPM:"11

I:::::::
1433 CALL HCHAR(1,29,120,4)
1413 CALL HCHAR(2,29,121)
1423 CALL HCHAR(2,33,123,3)
1433 CALL HCHAR(3,29,122)
1440 CAL.L HCHAR(3,33,120,3)
1450 CALL HCHAR(4,30,123)
1460 CALL HCHAR(4,31,124)
1473 CALL HCHAR(4,32,123)
1483 R=0
1490 W=0
1533 CO=-l
1510 TOT=0
1523 TLL=0
1530 RANDOMIZE
1540 FOR 1=1 TO 10
1550 B$=''''
1560 II=0
1570 H=INT(46*RND)
1580 IF A$(H)="" THEN 1573
1590 CALL HCHAR(18,1,136,128)
1633 FOR J=1 TO 25

291

------ Chapter 6 ------

1610 CALL HCHAR(19,3+J,ASC(SEG$(A$(H),J,l»
)

1623 NEXT J
1633 CALL SOUND(133,1397,2)
1643 FOR KK-l TO 27
1650 CALL KEY(3,K,S)
1663 II-II+l
1673 IF 5<1 THEN 1653
1683 IF K=13 THEN 1723
1693 CALL HCHAR(20,KK+3,K)
1703 B(KK)=K
1710 NEXT KK
1720 CALL SOUND(133,262,2)
1730 FOR Kl-1 TO KK-l
1743 B$-B$&CHR$(B(Kl»
1753 NEXT Kl
1763 IF B$-A$(H)THEN 1870
1770 CALL SOUND(100,392,2)
1780 CALL SOUND(100,330,2)
1790 W-W+l
1800 IF W<10 THEN 1850
1810 CALL HCHAR(13,27,49)
1820 CALL HCHAR(13,28,48)
1830 CALL HCHAR(12,28,48)
1843 GOTO 2000
1850 CALL HCHAR(13,28,W+48)
1863 GOTO 2003
1870 FOR Fl=523 TO 723 STEP 20
1880 CALL SOUND(50,Fl,2)
1890 NEXT Fl
1900 CO=CO+3
1910 CALL HCHAR(5,CO,128)
1920 CALL HCHAR(5,CO+l,129)
1930 R=R+l
1940 IF R<10 THEN 1990
1950 CALL HCHAR(12,27,49)
1960 CALL HCHAR(12,28,48)
1970 CALL HCHAR(13,28,48)
1983 GOTO 2333
1990 CALL HCHAR(12,28,R+48)
2003 LL=LEN(B$)
2010 TLL=TLL+LL

292

J

J

J

------ Chapter 6 ------

2~2~ TOT=TOT+II
2~3~ WPM=INT«(234*LL) / (II+1.12*LL»+.5)
2~4~ WPM$=STR$(WPM)
2~50 CALL HCHAR(14,27,32,3)
2~6~ WC-26
2070 IF WPM >=10 THEN 2090
2080 WC=27
2090 FOR KK-1 TO LEN(WPM$)
21~~ CALL HCHAR(14,KK+WC,ASC(SEG$(WPM$,KK,l

»)
211~ NEXT KK
2120 M(H)=""
2130 FOR 0=1 TO 200
2140 NEXT 0
2150 NEXT I
2160 CALL HCHAR(19,l,136,64)
2170 PRINT "TOTAL AVERAGE WPM =",INT«(234*

TLL) / (TOT+1.12*TLL»+.5)
2180 RESTORE 2190
2190 DATA 587 , 784 , 988,1175,1041,988,880,784

,740,659,784,740,880,784,740,659,659,
587,523,494,587,523,494,440,392

2200 FOR 1=1 TO 25
2210 READ F1
2220 CALL SOUNO(20~,F1,2)
2230 NEXT I
224~ PRINT : "WANT TO TRY AGAIN? (Yi N)"
225~ CALL KEy(~,K,S)
2260 IF K=78 THEN 2 31~
227~ I F K<>89 THEN 225~
228~ TEST=TEST+l
229~ CALL CLEAR
23~~ IF TEST>4 THEN 111~ ELSE 134~

2310 CALL CLEAR
232~ END

293

------ Chapter 6 ------

Sorting
One of the functions of a computer is to organize data. There
are many sort routines to take your raw data and arrange it in
ascending or descending order. The Birthday List program
illustrates sorting by date, and the Name and Address File
program illustrates sorting names alphabetically. Here are four
BASIC algorithms for sorting.

In the first sort program, lines 110·170 find and print 50
random numbers to sort, and lines 500 to the end print out the
sorted numbers. To use names or strings, put a dollar sign after
each variable name that contains an item to be sorted. To make
the program sort in descending rather than ascending order,
change the less than «) and greater than (» signs.

Sort 1 is the bubble, or simple interchange, sorLIt's better
for lists that are not much out of order or that haven't very
many items. The program compares each number to the next
number and exchanges numbers where necessary. If even one
switch has been made during a pass through all the numbers,
the loop of comparisons starts over. The number of passes
through the loop depends on how many items were out of
order.

Program 1>-7. Sort I: Bubble Sort

100 REM SORT 1
110 DIM A(50)
120 FOR I=l TO 50
130 RANDOMIZE
140 A(I)=INT(RND*100+1)
150 PRINT A(I),
160 NEXT I
170 PRINT ::
200 LIM=49
210 SW=0
220 FOR I=l TO LIM
230 IF A(I)<=A(I+1)THEN 290
240 M=A(I)
250 A(I)=A(I+l)
260 A(I+i)=M
27e SW=l
280 LIM=I

294

~

v

'-'

v ,
'-'

.-'

'-'

'-

~

'-'

'-'

'-'

v

'--

v

'-'

v

v

------ Chapterb ------

v
V 290 NEXT I

300 IF SW-1 THEN 210
V 500 FOR 1=1 TO 50

510 PRINT A(I);
V 520 NEXT I

J

J

J

J

J

J

v

530 END

The shell sort is considerably faster than the bubble sort,
because the number of comparisons that need to be made is
reduced. In general, for a random order of 50 numbers, the
she ll sort is about two or three times as fast as the bubble sort.

In an array of N numbers, first determine B so that 28

< N < 2 B+'. Then initialize B to 28-1, The loop varies counter 1
from 1 to N-B. First, check if A(I)= < A(l +8). If so, increment 1
and continue comparisons. If not, exchange A(l) and A(l + B)
and change the subscript.

When I reaches the value of N, reduce B by a factor of 2 and
start the loop again . When 8=0, the sort is complete.

Program 6-8. Sort 2: Shell Sort

100 REM SORT 2
110 DIM A(50)
120 FOR 1=1 TO 50
130 RANDOMIZE
140 A(I)=INT(RND*100+1)
150 PRINT A(I),
160 NEXT I
170 PRINT ••
200 B-1
210 B~2*B
220 IF B<=50 THEN 210
230 B=INT(B /2)
240 IF B=0 THEN 500
250 FOR 1=1 TO 50-B
260 C=I
27e D==C+B
280 IF A(C)<=A(D)THEN 340
290 AA-A(C)
300 A(C)-A(D)
310 A(D)-AA
320 C=C-B

295

------ Chapter 6 ------

333 IF C>3 THEN 273
343 NEXT I
353 GOTO 233
533 FOR 1=1 TO 53
513 PRINT A(I),
523 NEXT I
533 END

The third is also faster than the first sort if the numbers are
quite out of order. The program goes through all the numbers
and places the lowest value in the first spot of the array. The
loop keeps finding the smallest of the numbers remaining and '-"
places it in order.

Program 1>-9. Sort 3: Minimum Search

133 REM SORT 3
113 DIM A(53)
123 N=53
133 FOR 1""1 TO N
143 RANDOMIZE
153 A(I)=INT(RND'133+1)
163 PRINT A(I);
173 NEXT I
183 PRINT ::
233 M=A(1)
213 IM=l
223 FOR 1=2 TO N
233 IF A(I)<M THEN 263
243 M=A(I)
253 1M""'I
263 NEXT I
273 AA=A(N)
283 A(N)=A(IM)
293 A(IM)=AA
333 N=N-l
313 IF N>l THEN 233
533 FOR 1=1 TO 53
513 PRINT A(I);
523 NEXT I
533 END

296

v

I

------ Chapter 6 ------

In th is fourth sort, each pass through the numbers finds both
the minimum and maximum numbers and places them at the
end pOints.

Program 6-10. Sort 4: Minimum and MaxJmum

100 REM SORT 4
110 DIM A(50)
120 N-50
130 FOR 1-1 TO 50
140 RANDOMIZE
150 A(I)-INT(RND*100+1)
160 PRINT A(I),
170 NEXT I
180 PRINT II

200 S-l
210 MN-A(S)
220 IMIN-S
230 MX-MN
240 lMAX-S
250 FOR I-S TO N
260 IF A(I)<-MX THEN 290
270 MX-A(I)
280 lMAX=I
290 I F A(I»-MN THEN 320
300 MN-A(I)
310 IMIN-I
320 NEXT I
330 IF IMIN<>N THEN 350
340 IMIN-IMAX
350 AA-A(N)
3611 A(N) - A(IMAX)
370 A(IMAX)-AA
3811 N-N-l
3911 AA-A(S)
41111 A(S)-A(IMIN)
4111 A(IMIN)=AA
4211 S-S+l
430 IF N>S THEN 210
500 FOR 1-1 TO 50
51(11 PRINT A(t):
5211 NEXT I
5311 END

297

------- Chapter 6

Conserving Memory

If you are used to working with programs on large mainframe
computers, one of your biggest challenges with a
microcom puter may be to stay within the avail able memory.
However, as you work with your computer you' ll soon be able
to judge about how much programming the 16K RAM can
handle without memory problems. (Note: The TI-99/4A
console has 256 fewer bytes available than the TI-99/4 console .)

Keep in mind that there are trade-affs in progra mming.
You may have to sacrifice clear documentation, easy-te-read
lines, ideal graphics, or even speed and efficiency in order to
gain e nough memory to RUN. Here are a few hin ts to help you
reduce memory requirements in your programs.

Specify One OPEN File
If the disk system is plugged into the computer, memory is
reduced by 534 bytes, plus 518 bytes for each OPEN file . In TI
BASIC the number of files open is preset to 3, so 2088 bytes of
RAM are used . By specifying only one OPEN file, you use the
least amount of memory you can and still have the disk system
connected.

When you firs t sit down at your computer, use this
procedure:

1. From the title screen, press any key to begin.
2. Press lfor TI BASIC.
3. Enter CALL FILES(l)
4. EnterNEW
5. Proceed as usual.

All of the programs in this book will work with the disk
system connected; however, several of the programs requ ire
the CALL FILES(l) procedure.

Remove or Shorten REM Statements
Deleting REMs is the easiest and perhaps the first step to
reduce program size. While you are developing your program,
REMs help you keep track of different sections or procedures.
However, each REM uses one byte per character, plus the line
number.

While you are developing programs, avoid having
COSUB, GOTO, THEN, and ELSE commands branch to the
line number of a REM; go to the next statement number

298

v

J

i

I

J

------ Chapter 6 ------

instead. Later, if you delete the REM statement, you won't
have to worry about changing aU references to that line
number .

Combine PRINT Statements
One PRINT statement for each line of print on the screen is
easy to read and understand in the program listing, but each
line number uses more memory . One statement can be 112
characters long, so you can use colons and spaces to combine
several lines into one longer one to save memory.

In this example, line 500 does exactly the same thing as
lines 100-230.

1BB PRINT "HELLO"
119 PRINT
12B PRINT
13B PRINT
14B PRINT "CHOOSE:"
15B PRINT
16B PRINT "I COLORFUL DEMONSTRATION t1"
18B PRINT "2 GAME TWO"
199 PRINT "3 OPTION THREE"
2BB PRINT
219 PRINT "4 END PROGRAM"
22B PRINT
23B PRINT
599 PRINT ·HELLO" : ::"CHOOSE:" : :"l COLORFUL

DEMONSTRATION '1":"2 GAME TWO· :
"3 OPTION THREE": :" 4 END PROGRAM" :: :

Plan Your DIMensions
When you use a subscripted variable you haven ' t already
DIM ed, Tl BASIC automatically reserves space for eleven
elements in each dimension used - up to E(lO, 10, 10), when
subscripts start with zero. When you RUN the program, even if
you don't fill those extra elements, eight bytes per subscript are
reserved for numeric expressions.

If you really are using ten or eleven subscripts, a DIM
statement wouldn't save you any memory, since the statement
itself takes up several bytes. However, if you are dose to full
memory and you need only six elements, a DIM statement like

299

------ Chapter 6 ------

120 DIM E(5) will save 40 bytes - eight per numeric element.
For numbers higher than 10, DIM only the number of

elements you need. Don't arbitrarily choose a nice round
number such as 50 when you really need only 43.

String variable elements don ' t require as much reserved
memory - the subscripted string element is null until it is
actually filled. When you use a DIM statement for a string, the
process uses eight bytes plus twice the value of each subscript.

Also remember that subscripts start with zero unless you
use OPTION BASE 1, which starts subscripts with one.

Trim Your Variables
Limit the number of different variable names used, and use
short variable names. While you aTe developing a program,
you may use meaningful variable names, such as NAME$,
ADDRESS$, SCORE, DELAY, and COUNTER. However, if
you need to conserve memory, you may have to sacrifice clarity
to be able to RUN your program. Longer names take up more
memory each time they are used than shorter names.

One programming trick is to use the same short variable
name for each independent loop counter, rather than use
several different names, such as FOR MONTH"" 1 TO 12, FOR
DELAY ~1 TO 500, or FOR CHARAcrER~% TO 120. For each
loop you could useFORC~ l TO 12, FORC~l TO 500, and
FOR C ~ 96 TO 120, etc.

Use Subroutines for Repetitious Code
Take a look at your listing and note any repetitious code or
sequences of similar statements. Sometimes a FOR-NEXT loop
will be more efficient than a sequence. A GOSUB can be used
for program segments that are used more than once. You may
have a procedure that is used in several different places - write
the coding once, then every time you need the procedure use a
GOSUB. The same subroutine can be used for different
purposes when you " prime" the program before using
GOSUB by assigning new values to the variables the
subroutine uses .

Use DATA and READ
Using DATA statements may increase typing errors because of
all the numbers and commas involved, and the program logic
may be harder to follow, but a DATA routine can save a lot of

300

v

v

v

------ Chapter 6 ------

memory by READing values for variables instead of using
endless LET statements. Usually, if you have more than eight
statements in a row that are doing the same process, using a
DATA routine instead would save memory.

Combine Data Where Vou Can
Rather than working with 20 different last names and their
corresponding first names, combine the names into one
variable: N$(I) - LAST$&", " &FIRST$. Consider whether the
data might best be kept a number or a string if you have a
choice. In a report program for attendance at nine monthly
meetings, the numbers could be READ as DATA:
0,0,3,1,0,0,2,0,1,0,0,1. Stored that way, each digit takes up
three bytes of memory. I also decided I wanted to use a symbol
other than zero for a person who joined the group late .

The numbers can be READ as individual strings, and in the
DATA statement the zeros can be deleted:

500 DATA SMITH,jIM,- ,,3, 1" ,2" 1,,, 1
Another way to arrange this data is to put the zeros back in,
READ all the numbers and symbols as one string, and then use
a few lines of logic to separate each month 's digit:

500 DATA SMITH.)IM,-03100201001

To work with each digit, use the SEG$ statement:

Draw Efficiently

299 READ L$,F$,A$
219 FOR M=1 TO 12
229 B$=SEG$(A$,M,1)

299 NEXT M

Check your graphics statements to make sure you are drawing
your picture in the best time sequence and in an efficient
manner. Make good use of the repetition factor in CALL
HCHAR and CALL VCHAR statements . Sometimes you can
use fewer statements by using the repetition factor and then
erasing part of the design.

For example, to print REGENA vertically, I can use five
statements for the six letters:

301

------ Chapter 6 ------

100 CALL HCHAR(15,25,82)
110 CALL VCHAR(16,25,69,3)
120 CALL VCHAR(17,25,71)
130 CALL VCHAR(19,25,78)
140 CALL VCHAR(20,25,65)

Keep in mind that the repetitions will continue to the next line
if you want them to. Here are three ways to clear a rectangle of
the screen; the third method uses the least memory.

500 CALL HCHAR{lS,1,32,32)
510 CALL HCHAR(16,1,32,32)
520 CALL HCHAR(17,1,32,32)
530 CALL HCHAR(18,1,32,32)
540 CALL BCHAR(19,1,32,32)
550 CALL HCHAR(20,1,32,32)

or
500 FOR R=15 TO 20
510 CALL HCHAR(R,1,32,32)
520 NEXT R

or
500 CALL HCHAR(15,1,32,192)

Plan Your Logic Carefully
Be careful of overusing GOTO statements. Structured
programming experts never use a GOTO. H yau plan the
sequence of your program, you should be able to rearrange
your program lines so that the program executes in sequence
rather than jumping all over and back again. Use the RES
command if you need more line numbers between statements .
Your program will also be much more understandable if you do
not GOTO often.

Check your IF-THEN-ELSE statements. Perhaps an IF
THEN-ELSE can be used instead of an IF-THEN and a COTO .
Remember the power of the ON-GOTO and ON-COSUS
statements. You may be able to reduce many lines of IF-THEN
logic if you can get a numeric expression to relate to
consecutive integer conditions for the ON-GOTO or ON
GOSUB.

One problem with ON-GOTO statements is that if ON tries
to evaluate an expression with a value less than 1 or greater

302

v

oJ

v

v

------ Chapter 6 ------

than the number of line numbers after GOTO, the program will
crash. Unfortunately, true expressions return a value of - 1 and
false ones a value of 0, both out of the allowable range for ON.

In order to replace IF-THENs with ON-GOTOs, you can
use the negative of an expression: -(N = N) has a value of 1. This
short program contains a safe ON-GOTO statement:

109 INPUT H
119 ON 1-(8(9)-2*(H=0) GOTO 129,149,169
129 PRINT "POSITIVE NUMBER . "
130 GOTO 100
149 PRINT "NEGATIVE NUMBER."
159 GOTO 109
169 PRINT "ZERO."
170 GOTO 190

The 1 at the beginning of the statement acts like an ELSE
statement. No matter what value the other two expressions
return, the ON will have somewhere to branch - in this case,
line 120. There is no value of H that w ill crash the program.
Notice that because true statements return a negative value,
the subtractions in line 110 actually add if the expression that
fo llows is true.

Scrutinize the Program Listing
Even if you have a knack for keeping track of things in
your program, it is a good idea to take a final look at the listing.
Sometimes in the process of editing you miss statements that
should have been deleted. Perhaps there are statements that
the program never branches to.

Check all GOTO statements and other branching
statements to make sure they don ' t just branch to another
GOTO statement, such as IF S = 10, THEN 500 ELSE 600, when
line 600 says GOTO 1000.

As you look at the listing, you may notice patterns or
repetitious code that you overlooked previously. Review the
built-in functions of Tl BASIC, because a single function may
be able to replace several lines of IF-THEN logic.

If It StlU Won't Fit
If all else fails, write another program. Change your approach
entirely, or write a series of programs. The 16K RAM is a good

303

------- Chapter 6

size for one learning unit in educational programs. Rather than
worry about fitting an entire educational program into 16K, it
works better to plan the programs in logical teaching units,
without sacrificing graphics or sound or color because of
memory limitations.

For example, the touch typing programs started out as one
idea, but developed into seven units - seven programs.
Another example is the geography programs to learn the
states. The ideal program would have aliSO states and be able
to blink one state at a time. With high resolution graphics that
wasn't possible, so the programs were divided up into the
regions of the United States. "Western States" (Program 6-3) is
one unit .

File Processing
You can use either a cassette recorder or a disk system for file
processing with your computer, and store programs or data on
cassettes or diskettes. For cassette files you may use either one
or two cassettes and the dual cassette cable . The remote switch
capabilities are necessary for file processing.

In general, if you have a program that processes stored
information, your program will require an OPEN statement to
alert the computer which device and what type of data file you
are using. Then you may INPUT to read data or PRINT to save
data. The program should also include a CLOSE statement.

Keeping Data on Cassette
Here is a program that illustrates the use of a cassette to store
information in a name and address file. The first menu screen
gives the following options:

1 Load data
2 Add data
3 Edit data
4 Print list
5 Save list
6 End program

The first time you use the program, you would press 2 for
"Add data. " You may then enter names, addresses, and
phone numbers. There is also a field for a code. You can set up
the code however you wish. For example, you may want three

304

v

-

J

J

------ Chapter 6 ------

characters in the code - the first character for the number of
children, the second character for which club the person
belongs to, and the third character for Y if you received a
Christmas card last year and N if you didn't. Bob's code may
then be 4JY for "four children:' "jogging club," and "yes."
Jim's code may be 3CN for " three children," "computer
club," and " no."

This code section is qUite versatile. If you are keeping a
separate cassette list for computer owners, the codes could be
TJ. TRS, APPLE, VIC, and ATARJ - or you might want to use
numbers such as 1 for TI, 2 for TRS, 3 for Apple, etc. You may
wish to use codes to determine which region of the country the
person lives in. Or you may wish to use codes to tell you which
people in your advertising Jist have purchased items from you
and which have not .

U you need to change the information, choose the "Edit"
option. The program will prompt you so that you can change
any part of the information or delete a name from the list.

Before too long, you will want to save the list. The program
will first alphabetize the list by name. The computer will
prompt you for the procedure to save the list on cassette.

Option 4 is to print the list; you may print the list either on
the screen or with a printer. H you use a printer, you will need
to enter your printer configuration, such as RS232. TW .BA = 110
or whatever your usual configuration is.

With the print option you may also choose whether to print
the whole list or just the people who fit a certain code. If you
want to select by code, you enter the code. Using the above
example of codes, suppose I'm planning a party for all my close
friends who like to jog with their four children. I would enter
the code 4JY, and the computer would print a list of all the
people who have a code of 4JY.

If you are printing on the screen, the names will scroll. To
stop the scrolling at any pOint, just press any key. To continue
the list, press any key.

After you have saved your data once, the next time you fun
the program you can select the first option, "Load data," to
read in previously stored information.

305

------- Chapter 6

How "Name and Address File" Works
Lines

100-140
150

160-230

240-710

720-800

810-1150

1160-2110

2120
2130-2450

2460-2600
2610
2620-2690
2700-2760

Print the title.
DIM variables for 25 names, addresses, phone
numbers, and codes.
Print the main options and branch
appropriately.
Subroutine to alphabetize the list by name. If the
list has been alphabetized, FLAG = 1.
Procedure for reading in data. Line 730 O PENs
device #1, the cassette CSl , for input with
interna l and fixed format for a length of 128.
First the number of names (N) is read in, then all
the information.
Procedure for adding data. As soon as you add a
name, FLAG = 2, because the names may be out
of alphabetical order. The last name and first
name are combined for N$(n). The street
address, city, state, and zip code are combined
for A$(Il).
Procedure to edi t information . pas and SEG$
are used to work with p arts of the name and the
address.
Before the list is printed, it is alphabetized.
Procedure to print the list. If all the names are to
be printed, the code is ZZZZ and the code is not
checked. Otherwise, the codes are compared
before printing.
Procedure to print the lis t using the printer.
Before the list is saved, it is alphabetized.
Procedure to save the information on cassette.
Procedure if the user selects the "End program"
option. The user is first reminded to save the
information. End.

Program 6-11. Name and Address File (Cassette)

100 REM NAME' ADDRESS FILE
110 CALL CLEAR
120 PRINT "NAME AND ADDRESS FILE"
130 CALL CHAR(64,"3C4299AIA1994237")

306

v

,

J

J

J

-
J

~

~

--'

I

v

------ Chapter 6 ------

140
150
160
170

PRINT ::::::
DIM N$(25),A$(25),P$(25),C$(25)
GOTO 189
CALL CLEAR

180 PRINT "PRESS:":: H 1 LOAD DATA"::" 2 A
DD DATA"::" 3 EDIT DATA"

190 PRINT :" 4 PRINT LIST"::" 5 SAVE LIST

299
219
229

": : N 6 END PROGRAM"
CALL KEY(0,K,S)
IF (K<49)+(K>54)THEN 299
CALL CLEAR

239 ON K-4B GOTO 723,8113,11713,2123,26113,273
9

249 PRINT" "--ALPHABETIZING NAME5--"
250 IF FLAG=l THEN 799
269 NN-N
270 5=1
289 MN$=N$ (5)
299 IMIN=5
300 MX$-MN$
319 IMAX- 5
329 FOR 1=5 TO NN
339 IF N$(I)<=MX$ THEN 369
349 MX$-N$(I)
350 IMAX-I
369 IF N$(I»=MN$ THEN 399
379 MN$=N$(I)
380 IMIN=I
390 NEXT I
400 IF IMIN<>NN THEN 4213
410 IMIN-IMAX
429 AA$-N$(NN)
439 N$(NN)-N$(IMAX)
440 N$ (IMAX)=AA$
459 AA$=A$ (NN)
469 A$(NN)-A$(IMAX)
479 A$(IMAX)=AA$
480 AA$=P$(NN)
490 P$(NN)=P$(IMAX)
599 P$(IMAX)-AA$
519 AA$=C$(NN)
520 C$(NN)-C$(IMAX)

307

------- Chapter 6 -------

530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830

840
850
860
870
880
890
900
910
920

308

C$(IMAX)=AA$
NN=NN-l
AA$-N$(S)
N$(S)=N$(IMIN)
N$(IMIN)=AA$
AA$=A$(S)
A$(S)=A$(IMIN)
A$(IMIN)-AA$
AA$=P$(S)
p$(S)=P$(IMIN)
P$(IMIN)-AA$
AA$=C$(S)
C$(S)=C$(IMIN)
C$(IMIN)=AA$
5=5+1
IF NN>S THEN 280
FLAG""l
CALL CLEAR
RETURN
PRINT "READING IN DATA"::
OPEN '1:"CS1",INPUT , INTERNAL, FIXED 128
INPUT U:N
FOR 1=1 TO N
INPUT 11:N$(I),A$(I),P$(I) ,C$(I)
NEXT I
CLOSE U
FLAG=l
GOTO 170
PRINT "ADDING DATA"
IF N<25 THEN 860
PRINT "SORRY, THIS PROGRAM IS FOR ": "UP
TO 25 NAMES, AND YOU HAVEENTERED YOUR
QUOTA.Mltt·PRESS ANY KEY."
CALL KEY(0,K,S)
IF 5=1 THEN 170 ELSE 840
FLAG=2
PRINT : "ENTER 'E I TO EXIT" t ,
INPUT "LAST NAME: ":LN$
IF LN$="E" THEN 170
INPUT "FIRST NAME: ":FN$
IF FN$="E" THEN 170
PRINT :"STREET ADDRESS:"

.~

v ------- Chapter 6 -------

930 INPUT AA$
940 IF AA$="E" THEN 170
95" INPUT "CITY, "tce$
960 IF CC$="E" THEN 170
970 INPUT "STATE: ": 5$
980 IF S$="E" THEN 170
990 INPUT "ZIP CODE: u:Z$
1000 IF Z$="E" THEN 170
una INPUT "PHONE: "1 PP$
1020 IF PP$="E" THEN 170
1030 INPUT "CODE' ",Cl$
UJ40 IF Cl$=-"E" THEN 170
1050 PRINT ,"IS THE ABOVE INFORMATION", "COR

RECT? (yi N)"
1060 CALL KEY(0,K,S}
1070 IF K=89 THEN 1090
1080 IF K=78 THEN 810 ELSE 1060
1090 N=lj+l
1100 N$ {N}=LN$&", "&FN$
1110 A$(N)=AA$&" / "&CC$&", "&5$&" "&Z$
1120 P$(N}=PP$
1130 C$ (N}=Cl$
1140 CALL CLEAR
1150 GOTO 810
1160 CALL CLEAR
1170 PRINT "EDIT DATA"
1180 PRINT ::"PRESS:" ; :" 1 DELETE A NAME";

II 2 CHANGE NAME"
119" PRINT" 3 CHANGE ADDRESS";" 4 CHANGE

PHONE";" 5 CHANGE CODE";" 6 RETURN
TO MAIN MENU"

1200 CALL KEY(0,K,S)
1210 IF (K<49}+(K>54}THEN 1200
1220 IF K=54 THEN 170
1230 ED=K-48
1240 PRINT
1250 INPUT "LAST NAME? "'LN$
1260 INPUT "FIRST NAME? ":FN$
1270 PRINT
1280 EDN$=LN$&" , u&FN$
1290 FOR 1-1 TO N
1300 IF N$(I}=EDN$ THEN 1370

309

------ Chapter 6 ------

1313
1323
1333

1343
1353
1363
1373
1383
1393
1433
1413
1423
1433
1443
1453
1463

1473
1483
1493
1500
1510
1520
1530
1540
1550
1563
1570
1583
1590
1600
1610
1620
1630
1643
1650
1660
1673
1680
1690
1700

310

NEXT I
PRINT : "SORRY, THAT NAME NOT FOUND . "
PRINT :"PRESS: 1 EDIT":TAB(9);1I2 PRIN
T LIST":TAS(9);"3 GO TO MAIN MENU"
CALL KEY(0,K,S)
IF (K<49)+(K>51)THEN 1340
ON K-4B GOTO 1163,2120,173
PRINT N$(I)
P=POS(A$(I)," / ",l)
AA$=SEG$(A$(I),l,P-1)
PRINT AA$
A2$=SEG$(A$(I),P+1,LEN(A$(I»)
PRINT A2$
PRINT P$(I)
PRINT C$ (I) : :
ON ED GOTO 1463,1580,1693,1910,1960
PRINT "PRESS 'D I TO DELETE NAME":"
(6 SPACES) '1' TO RETURN TO MENU"
CALL KEY(0,K,S)
IF K=49 THEN 170
IF K<>6B THEN 1473
FOR J=I TO N-1
N$(J)=N$(J+l)
A$ (J)=A$ (J+l)
P$ (J)=p$ (J+l)
C$(J)=C$(J+1)
NEXT J
N=N-1
GOTO 1163
P=POS(N$ (I),",· ,1)
L$-SEG$(N$(I),l,P-1)
F$=SEG$(N$(I),P+1,LEN(N$(I»)
INPUT "LAST NAME : u: LN$
IF LN$="" THEN 1640
L$=LN$
INPUT "FIRST NAME: ":FN$
IF FN$="" THEN 167e
F$=FI;iI$
N$(I)=L$&", "&F$
FLAG=2
PRINT : "PRESS <ENTER> IF DATA IS OK"::
PRINT AA$: "STREET ADDRESS: "

v

------- Chapter 6 -------

1713 INPUT AA1$
1720 IF AAlS="" THEN 174"
1733 AA$-AA1$
1743 PRINT ' A2$
1753 INPUT "CITY' ", CC$
1760 P=POS(A2$,",",1)
1773 MN$-SEG$(A2$,1,P-1)
1783 MX$-SEG$(A2$, P+2,LEN(A2$))
1790 IF CC$="" THEN 1810
1833 MN$-CC$
1813 INPUT "STATE' ",S$
1820 P=POS(MX$," ",1)
1833 PS$-SEG$(MX$,1,P-1)
1843 PZ$-SEG$(MX$,P+2,LEN(MX$))
1853 IF S$-"" THEN 1873
1863 PS$-S$
1870 INPUT "ZIP CODE: " : Z$
1883 IF Z$-"" THEN 1933
1893 PZ$-Z$
1900 A$(r)=AA$&" / "&MN$&", "&PS$&" "&PZ$
19113 PRINT :"PRESS <ENTER> IF DATA IS OK"
1923 PRINT P$(I)
1933 INPUT "PHONE NUMBER, " , PP$
1943 IF pp$-"" THEN 1963
1953 P$(I)-PP$
196" PRINT ; "PRESS <ENTER> IF DATA IS OK"
1973 PRINT C$(I)
1983 INPUT "CODE' ",C1$
1990 IF ClS= THEN 2010
2333 C$(I)-C1$
2313 CALL CLEAR
2323 PRINT N$(I)
2330 P-POS(M (I), " / ",1)
2343 PRINT SEG$(A$(I),1,P-1)
2353 PRINT SEG$(A$(I),P+1,LEN(A$(I)))
2363 PRINT ,P$(I)
2370 PRINT ,C$(I)
2080 PRINT: MINFORMATION CORRECT? (Y i N) II

2090 CALL KEY(0,K,S)
2100 IF K-B9 THEN 173
2113 IF K-78 THEN 1583 ELSE 2390
2120 GOSUB 240

311

------- Chapter 6 -------

2131a PRINT "PRESS: ":;11 1 PRINT COMPLETE L
1ST":: I. 2 SELECT BY CODE"

2140 CALL KEY(0,K,S)
2150 IF (K<49)+(K>50)THEN 2140
2160 IF K=50 THEN 2190
2170 CODE$="ZZZZ"
2180 GOTO 2210
2190 PRINT:: "ENTER DESIRED CODE"
2200 INPUT CODE$
2210 CALL CLEAR
2220 PRINT "PRESS: "; :" 1 PRINT LIST ON se

REEN"::" 2 PRINT LIST ON PRINTER"
2230 CALL KEY(0,K,S)
2240 IF K=50 THEN 2460
2250 IF K<>49 THEN 2230
2260 CALL CLEAR
2270 PRINT "PRESS ANY KEY TO PAUSE:": "PRESS

ANY KEY TO RESUME.":::
2280 FOR 1=1 TO N
2290 IF CODE$="ZZZZ" THEN 2310
2300 IF CODE$<>C$(I)THEN 2410
2310 PRINT N$ (I)
2320 P=POS(A$(I),"j",1)
2330 PRINT SEG$(A$(I),1,P-1)
2340 PRINT SEG$(A$(I),P+1,LEN(A$(I»)
2350 PRINT :P$(I)
2360 PRINT :C$(I):::
2370 CALL KEY(0,K,S)
2380 IF S=0 THEN 2410
2390 CALL KEY(0,K,S)
2400 IF 5<>1 THEN 2390
2410 NEXT I
2420 PRINT "END OF LIST.": "PRESS ANY KEY."
2430 CALL KEY(0,K,S)
2449 IF 5<>1 THEN 2430
2450 GOTO 170
2460 PRINT : I "PLEASE LIST PRINTER": "CONFIGU

RATION. "
2470 INPUT CONS
2480 OPEN '3:CON$
2490 FOR 1=1 TO N
2500 IF CODE$="ZZZZ" THEN 2520

312

v Chapter 6 -------

2510 IF CODE$<>C$(I)THEN 2580
2520 PRINT .3:N$(I)
2530 P-POS(A$(I),"'",l)
2540 PRINT i3:SEG$(A$(I),l,P-1)
2550 PRINT .3:SEG$(A$(I),P+1,LEN(A$(I)))
2560 PRINT .3: : P$(I)
2570 PRINT i3:.C$(I):::
2580 NEXT I
2590 CLOSE .3
2600 GOTO 170
2610 GOSUB 240
262" PRINT "SAVING DATA"::
2633 OPEN 12: "eSl" , OUTPUT, INTERNAL, FIXED 12

8
2640 PRINT t2.N
2650 FOR 1=1 TO N
2660 PRINT i2 : N$(I),A$(I),P$(I),C$(I)
2670 NEXT I
2680 CLOSE '2
2690 GOTO 170
2790 PRINT "IF YOU END PROGRAM YOU LOSE":: M

ALL DATA."
2710 PRINT ::"PRESS:" ::" 1 SAVE DATA"::"

2 END PROGRAM"
2720 CALL KEY(0 , K,S)
2730 IF (K<49)+(K>50)THEN 2720
2740 CALL CLEAR
2750 IF K-49 THEN 2610
2760 END

Using a Printer

One of the first peripherals you may want to add is a printer.
Texas Instruments sells a 3O~column thermal printer that
attaches to the side of the computer. To use any other kind of
printer, such as a dot-matrix or letter quality printer, you will
need the RS-232 Interface. This is a serial interface that makes
printers compatible with the computer. If you use the
Peripheral Expansion Box method for accessories, you will
need the RS-232 card to use a printer.

Perhaps one of the main uses of a printer is to get a listing
of your program. The manual that comes with the RS-232

313

Chapter 6 -------

discusses your printer configuration, which you need to specify
in order to use your printer. To list a whole program on the
printer, here are some sample configurations:

LIST " RS232.TW.BA - llO" (teletype)
LIST " RS232.BA-600" (T1825 or Tl840

printer)
LIST " RS232.BA - 9600.DA - 8" (Epson MX 80)
To list only certain program lines on your printer, use a

colon and the range of line numbers:
LIST "RS232.TW.BA - llO":250-350

Using OPEN with Your Printer
You use the same printer configuration when you use your
printer during the run of a program. As with disk drives and
cassette recorders, you will need an OPEN statement to open a
certain device number; then you can PRINT to that device. For
example:

199 OPEN '1,"RS232.BA=699"
119 PRINT '1,TAB(14) ,"TITLE OF REPORT"

A plain PRINT statement will print to the screen, and PRINT
with a number will print to the device that it has been assigned
to. You may number your devices as you wish, and you may
have several devices open at once. This program will print
HELLO on the screen, speak the word, and then print HELLO
on the printer.

199 OPEN '1,"RS232.BA=699"
119 OPEN .2:"SPEECH",OUTPUT
129 PRINT "HELLO"
139 PRINT 'l,"HELLO"
149 PRINT .2,"HELLO·
159 CLOSE tl
169 CLOSE .2
179 END

You should always CLOSE the device when you have
finished using it, or at the end of the program.

314

v

v

------ Chapter 6 ------

Getting a Hard Copy
Suppose you were in the market for a house and had to borrow
money. For various amounts of money borrowed, and different
percentage rates, th is program calculates what the monthly
payment would be over various time spans. Before you trj this
program, be sure to put the appropriate printer configura tion
in line 110.

Program 6-12. Monthly Payments

100 REM MONTHLY PAYMENTS
110 OPEN n, "RS232. BA=600"
120 PRINT f1 , TAB(2S),"MONTHLY PAYMENTS"
130 FOR AMT=40000 TO 80000 STEP 5000
143 PRINT 'l :: "AMOUNT BORROWED, $" : AMT
150 PRINT 'l , ,"YEARS!8 SPACES)10l

!7 SPACES)11l!7 SPACES)12l!7 SPACES)13l
!7 SPACES)14l!7 SPACES)lSl"

160 PRINT . 1:"-----!8 SPACES)---!7 SPACES)
--!7 SPACES)---!7 SPACES)---!7 SPACES)-
--(7 SPACES}--- " I I

170 FOR YRS=10 TO 30 STEP 5
180 PRINT ' l:YRS,
190 T=2
200 FOR 1=10 TO 15
210 II=I / 1200
220 N=YRS*12
230 F=!l+II)'N
240 M=AMT*(II*F / (F-l»
250 M=(INT(100*(M+.005») / 100
260 M$=STR$ (M)
27" P~POS(M$,".",l)
283 IF P<>3 THEN 310
290 M$:::IM$&" .00"
3e0 GOTO 330
310 IF LEN(M$)-P=2 THEN 330
32" M$:::zM$" "0"
33e IF LEN(M$)=7 THEN 350
340 T=T+l
350 T=T+9
360 PRINT f1:TAB(T),M$,

315

'J

Chapter 6 v

J

37e IF LEN(M$)=6 THEN 3ge J
380 T=T+l
390 NEXT I J
400 PRINT n
410 NEXT YRS J

420 PRINT tlttt
430 NEXT AMT v
440 CLOSE U
450 END '--'

.J

'--'

'-'

v
J

J

v
.J

v

v

V

J

J

.J

v
V

J

v

316 J

V

v
u
u
U
u
u
u
U

u
u
u
u
u
u
U
v
u
u
u
U
v
V
u
u
v
u
u
u

v

v
v

------ Chapter 7 ------

A Dozen
More

Programs
Division

Usually you can use a calculator to check students ' homework
that involves calculations . However, if the problem is division,
the calculator will return an answer with the decimal
equivalent of the remainder. This program asks the s tudent to
enter the d ividend and the divisor and will give the answer as a
quotient with a remainder . Notice how the INT function is
used. All the calculating is done in lines 240 and 250.

Program 7-1. Division with Remainder

110 REM DIVISION WITH REMAINDER
128 CALL CHAR(37,"S8482828202840S")
130 CALL CHAR(3S, "00000800088888FF")
140 CALL CLEAR
159 PRINT "DIVISION WITH REMAINDER"SIII
160 PRINT TAB(10), "OUOTIENT"
170 PRINT TAB(9),"&&&&&&&&&&"
180 PRINT II DIVISOR'DIVIDEND I

.:: I I

190 INPUT "DIVIDENDs "sO
200 INPUT "DIVISOR: "I I
210 IF 1<>0 THEN 240
220 PRINT ,"SORRY, DIVISOR CANNOT" 0"11
238 GOTO 288
248 O~INT(D/ I)
250 R:D-O*I
260 PRINT :"OUOTIENT =";0," R";R
270 PRINT ","PRESS 1 FOR ANOTHER PROBLEM"
280 PRINT TAB (7) , "2 TO END PROGRAM·
290 CALL KEY(0,K,S)
3S0 IF K:49 THEN 148

319

------- Chapter 7 -------

310 IF K<>50 THEN 290
320 CALL CLEAR
330 END

Equivalent Fractions
This program can quickly find the unknown in problems such
as 1/2 = ?/8. The fractions are of the form:

A C -=-
B D

The student first presses the letter for the unknown, then
enters values for the other three numbers. The equivalent
fractions will be printed.

Program 7-2. Equivalent Fractions

100 REM
110 REM

CES

EQUIVALENT FRACTIONS
ANSWERS ROUNDED TO TWO DECIMAL PLA

120 CALL CLEAR
130 PRINT TAS(10),"A(5 SPACES)C"
140 PRINT TAS(10),"- ~ "
150 PRINT TAS(10),"S(5 SPACES)D"",
160 PRINT "WHICH IS THE UNKNOWN?"
170 PRINT "CHOOSE A, a, C, OR D.":::
180 CALL KEY(0,K,S)
190 IF (K<65)+(K>68)THEN 180
200 ON K-64 GOTO 210,260,310,360
2 U' INPUT "ENTER B = "I B
220 INPUT "ENTER C ~ "Ie
230 INPUT "ENTER D ... HzD
240 A=INT(100*(S*C/D+.005»/100
250 GOTO 400
260 INPUT "ENTER A = ": A
270 INPUT "ENTER C ... ",e
280 INPUT "ENTER D = ",0
290 S=INT(100*(A*D/C+.00S»/100
300 GOTO 400
310 INPUT "ENTER A = ":A
320 INPUT "ENTER B = ",a
330 INPUT "ENTER D = ": D

320

v

\J

oJ

,

,

Chapter 7 -------

340 C=INT(100*(A*D/B+.005»/100
350 GOTO 400
3613 INPUT "ENTER A := .. , A
370 INPUT "ENTER B := II: B
380 INPUT "ENTER C := "Ie
390 D-INT(100*(B*C/ A+.005» ! 100
400 CALL CLEAR
410 PRINT TAB(7),A,C
420 PRINT TAB(7),"----- = -----"
430 PRINT TAB(7),B,D
4413 PRINT ", "PRESS 1 FOR ANOTHER PROBLEM"
450 PRINT TAB(7),"2 TO END PROGRAM"
460 CALL KEY(0,K,S)
470 IF K=49 THEN 120
480 IF K<>50 THEN 460
490 CALL CLEAR
500 END

SimpUfying Fractions
Enter a numerator, then a denominator . The computer
simplifies or reduces the fraction to its lowest terms, or tells if it
cannot be simplified. This algorithm first checks which is
larger, the numerator or the denominator; the first factor to be
checked is the smaller number. If either the numerator or the
denominator is an odd number, then even factors will be
eliminated by choosing a step size of -2 in the checking loop.

Although students usually reduce fractions starting with
the smallest factors, the computer starts with the largest
possible factor and decreases fo r each check.

Program 7·3. SimpUfylng Fractions

100 REM SIMPLIFYING FRACT IONS
H0 CALL CLEAR
12" PRINT 11** SIMPLIFYING FRACTIONS **",: :;
130 INPUT "NUMERATOR ={3 SPACES} "zN
140 INPUT "DENOMINATOR = ": D
150 IF D>N THEN 180
160 LIM=D
179 GOTO 199

321

------- Chapter 7 -------

180 LIM=N
190 S=-2
200 IF D/ 2<>INT(D/ 2)THEN 220
210 IF N/ 2=INT(N/ 2)THEN 230
220 S=-1
230 FOR C=LIM TO 2 STEP S
240 A=N/ C
250 IF A<>INT(A)THEN 280
260 S=D/C
270 IF S=INT(S)THEN 310
280 NEXT C
290 PRINT : :N:" / "rD r " CANNOT BE SIMPLIFIED"
300 GOTO 320
310 PRINT : N;" / "; D; " = " ; A;" / ";B
320 PRINT : : , "PRESS 1 FOR ANOTHER PROBLEM"
330 PRINT TAs(7) , "2 TO STOP PROGRAM"
340 CALL KEY(0,K,S)
350 IF K=49 THEN 110
360 IF K<>50 THEN 340
370 CALL CLEAR
380 END

J

Multiplying Fractions J

This program multiplies from two to nine fractions. First press J

the total number of fractions, then enter each numerator and
denominator . The program multiplies the fractions and J

simplifies the final answer.
If you have more than nine fraction s, either change this __

program to allow more fractions or run the program in steps.

Program 7-4. Multiplying Fractions

100 REM MULTIPLYING FRACTIONS
110 CALL CLEAR
120 PRINT " •• MULTIPLYING FRACTIONS •• " ;; I'
130 PRINT "HOW MANY FRACTIONS?": : :
143 CALL KEY(0,K,S)
150 IF (K<50)+(K>57)THEN 140
160 CALL HCHAR(21,23, K)
170 C=K-4B

322

)

J

)

------ Chapter 7 -----_

180 NT=l
190 OT=l
200 FOR 1=1 TO C
210 PRINT "FRACTION"· I
220 INPUT "(4 SPACES!NUMERATOR =(3 SPACES)"

• N(I)
230 NT=NT*N(I)
240 INPUT "(4 SPACES)OENOMINATOR = ".0(1)
250 IF 0(1)<>0 THEN 280
260 PRINT ,"DENOMINATOR CANNOT BE ZERO."I'
270 GOTO 240
280 OT=OT*O(I)
290 NEXT I
312";' PRINT ::: MULTIPLY **"::
310 FOR 1=1 TO C
320 PRINT STR$(N(I»," / ",STR$(O(I»
330 NEXT I
343 PRINT tI _______________ *

350 FOR 1=1 TO C
360 A=NT/ O(I)
370 IF A<>INT(A)THEN 420
380 B=OT/ O(I)
390 IF B<>INT(S)THEN 420
400 NT=A
410 OT=B
420 NEXT I
430 SW=0
440 FOR 1=1 TO C-1
450 IF 0(I)<=0(I+1)THEN 500
460 00=0(1)
470 0(1)-0(1+1)
480 0(1+1)=00
490 SW=l
500 NEXT I
510 IF SW=l THEN 430
520 L-O(C)
530 FOR I=L TO 2 STEP -1
540 A=NT/ I
550 IF A<>INT(A)THEN 580
560 B=OT/I
570 IF B=INT(B)THEN 610
580 NEXT I

323

------ Chapter 7 ------

590 A~NT
600 B~DT
610 IF A>~B THEN 640
620 PRINT .. STR$(A)," / ",STR$(B)
630 GOTO 700
640 W~INT(A/B)
650 R=A-W*S
660 IF R<>0 THEN 690
670 PRINT W
6a0 GOTO 700
690 PRINT W,"{3 SPACES)",STR$(R)," / ",STR$(B

)
700 PRINT t t t "PRESS 1 FOR ANOTHER PROBLEM"
710 PRINT TAB(7),"2 TO END PROGRAM",
720 CALL KEY{0,K,S)
730 IF K~49 THEN 110
740 IF K<>50 THEN 720
750 CALL CLEAR
760 END

Dividing Fractions
This program divides one fraction by another fraction . The
numerators and de nominators of each fraction are e ntered, and
the final answer is printed in simplified form .

Program 7·5. Dividing Fractions

100 REM DIVID ING FRACTIONS
110 CALL CLEAR
120 PRINT "THE FIRST FRACTION IS"
130 PRINT "DIVIDED BY THE"
140 PRINT "SECOND FRACTION."
150 PRINT ::TAB(10), "Nl / Dl"
160 PRINT TAS(9):"-------"
170 PRINT TAB(10), "N2 /D 2", ::
IS0 INPUT "ENTER Nl ~ ":Nl
190 INPUT "ENTER D1 = ": Dl
200 IF Dl<>0 THEN 230
210 PRINT : "DENOMINATOR CANNOT BE ZERO." • •
22eJ GOTO 199
230 PRINT

324

------ Chapter 7 ------

240 INPUT "ENTER N2 = ":N2
250 INPUT "ENTER 02 = ":02
260 IF 02<>0 THEN 290
273 PRINT: "DENOMINATOR CANNOT BE ZERO . "::
280 GOTO 250
290 NT=Nl*D2
300 DT=Dl*N2
310 PRINT ••• STR$(Nl)," / ",STR$(Dl)
320 PRINT It _______________ "

330 PRINT STR$lN2)," / ",STR$(D2)
34121 PRINT ::: "EQUALS": :
350 IF NT<DT THEN 380
360 L=DT
370 GOTO 390
380 L=NT
390 FOR I=L TO 2 STEP -1
400 A=NT/ I
410 IF A<>INT(A)THEN 440
420 B=DT/ I
430 IF B=INT(B)THEN 470
440 NEXT I
450 A-NT
460 B=DT
470 IF A>=B THEN 500
480 PRINT .. STR$lA);" / ", STR$ (B)
490 GOTO 590
500 IF B<>l THEN 530
513 PRINT :: A
520 GOTO 590
530 C=INT(A/ B)
540 R=A-C*B
550 IF R=0 THEN 580
560 PRINT c~" ";STR$(Rh" / ";STR$(B)
570 GOTO 590
580 PRINT C
590 PRINT :::"PRESS 1 FOR ANOTHER PROBLEM"
600 PRINT TAB(71 , "2 TO END PROGRAM",
610 CALL KEY(0,K,S)
620 IF K=49 THEN 110
630 IF K<>50 THEN 610
640 CALL CLEAR
650 END

325

------- Chapter 7

Adding Fractions
This program has two main options, adding fractions with like
denominators, such as Yt2 + o/t2 + ~b or adding fractions with
unlike denominators, such as 1,4 + % +~. The program will add
up to nine fractions w ith like denominators or up to five
fractions w ith unlike denominators, which is usually sufficient
for fifth - and six-grade mathematics s tu dents.

If the option of like denominators is chosen, first press the
total number of fract ions to be added. Then enter the
de nominator, followed by the numerators .

If the option of unl ike denominato rs is chosen, press from
two to five for the number of fractions. The numerator and
then the denominator are entered for each fraction .

The fractions are added, the problem is rewritten, and then
the answer is printed in simplified terms .

Program 7-6. Adding Fractions

100 REM ADDING FRACTIONS
110 CALL CLEAR
120 PRINT ""*"* ADDING FRACTIONS "**11
130 PRINT ;: :"CHOOSE:"
140 PRINT , "1 LIKE DENOMINATORS"
150 PRINT: "2 UNLIKE DENOMINATORS" 1

: :
160 CALL KEY(0,K,S)
170 IF K;50 THEN 3B0
lB0 IF K< >49 THEN 160
190 CALL CLEAR
200 CH;l
210 PRINT "ADDING FRACTIONS WITH!!
220 PRINT "LIKE DENOMINATORS"
230 PRINT ::"HOW MANY FRACTIONS?"
240 CALL KEY(0,K,S)
250 IF (K<50)+(K>57)THEN 240
260 CALL HCHAR(23,23,K)
27121 C=K-48
2B0 PRINT , ,"WHAT IS THE DENOMINATOR

7 "
290 INPUT DT
300 PRINT :: "ENTER THE NUMERATORS It: 1

326

,

v

------ Chapter 7 ------

31~ NT~~
32~ FOR I~l TO C
33~ INPUT N(I)
34~ NT~NT+N(I)
35~ O(I)=OT
36~ NEXT I
37~ GOTO 69~
38~ CALL CLEAR
390 PRINT "ADDING UP TO FIVE"
41210 PRINT "FRACTIONS WHICH MAY HAVE"
41~ PRINT "UNLIKE OENOMINATORS"
42121 PRINT :: "HOW MANY FRACTIONS?"::
43~ CALL KEy(~,K,S)
44~ IF (K<5a)+(K>53)THEN 43~
45~ CALL HCHAR(22,23,K)
46~ C=K-48
47~ NT=a
48a OT=l
49~ FOR 1=1 TO C
50121 PRINT "FRACTION":!
51~ INPUT "(3 SPACES}NUMERATOR =

(3 SPACES}"IN(I)
52a INPUT "(3 SPACES)OENOMINATOR = "

,0(1)
53a IF O(I)<>a THEN 56~
543 PRINT :"OENOMINATOR CANNOT BE ZER

0" I :

sse GOTO 52a
56~ IF I~l THEN 6~~
57a FOR J=l TO 1-1
58a IF O(I)=O(J)THEN 620
590 NEXT J
600 F=O(I)
61a GOTO 63a
62a F=l
630 OT~OT*F
64'1J NEXT I
650 FOR 1""'1 TO C
660 F=OT/ O(I)
67a NT=NT+N(I)*F
680 NEXT I
690 CALL CLEAR

327

Chapter 7 -------

700 PRINT ".* ADDING FRACTIONS *.":: ,
710 FOR 1=1 TO C
720 PRINT STR$ (N(I))," I ", STR$ (0(1))
730 NEXT I
74e PRINT "-------------- - .. ::
750 IF OT>NT THEN 780
760 L~DT
770 GOTO 790
780 L=NT
790 ST=-2
800 IF OT/2<>INT(OT/2)THEN 820
810 IF NT / 2=INT(NT/ 2)THEN 830
820 ST=-l
830 FOR I=L TO 2 STEP ST
840 A=NT/ I
850 IF A<>INT(A)THEN 880
860 B=OT/ I
870 IF B=INT(B)THEN 910
880 NEXT I
890 A~NT
900 B=OT
910 PRINT STR$(A) ," I ",STR$(B)
920 IF A<B THEN 990
930 W=INT(A/ B)
940 R=A-W*B
950 IF R<>0 THEN 980
960 PRINT "OR": W
970 GOTO 990
980 PRINT :"OR ";W;" n;STR$(R)i" j llj

STR$(B)
990 PRINT ,,"PRESS 1 FOR ANOTHER PRO

BLEM"
1000 PRINT TAB(7), "2 TO ENO PROGRAM"
1010 CALL KEY(0,K,S)
1020 IF K=49 THEN 110
1030 IF K<>50 THEN 1010
1040 CALL CLEAR
1050 ENO

328

v

.../

J

------ Chapter 7 ------

Solving Simultaneous Equations
This program presents a basic algorithm for solving up to nine
simultaneous equations using the matrix inversion technique.
A 9~by-9 system of equations, which may take hours to
calculate by hand, can be solved in less than a minute with this
program.

Table 7-1 shows a system of three equations with three
unknowns.

Table 7-1. Three Simultaneous Equations

coefficients

I A I

Xl +X2 +X 3 = 12

2Xt+x2 +3x3 = 25

Xl +3X2 +2x3 =25

In Matrix Form

unknowns constant vector

• IX I

Solution Vector

Xl =3

x2=4

x3=5

I B I

First. enter the degree of the matrix, or the number of
equations and unknowns. Next, enter the coefficients row by
row with the corresponding B elements. In Table 7-1, the value
of N would be entered as 3 for three equations with three
unknowns. In order, the following numbers are entered:

329

------ Chapter 7 ------

A (I , I) ~ 1
A(I, 2) ~ 1

A(I, 3) ~ 1
8(1) ~ 12

A(2,1) ~ 2
A(2, 2) ~ 1

A(2, 3) ~ 3
8(2) ~25

A(3, 1) ~ 1
A(3, 2) ~ 3

A(3, 3) ~ 2
8(3) ~ 25

The solution vector is then printed.

Program 7-7. Solving Simultaneous Equations

100 REM SIMULTANEOUS EQUATIONS
110 CALL CLEAR
120 PRINT "SOLVING SIMULTANEOUS"
130 PRINT "EQUATIONS BY THE"
140 PRINT "MATRIX INVERSION TECHNIQUE"
150 PRINT, ,"SOLVE [A][X] = [S]"
16el PRINT ! "ENTER DEGREE OF THE MATRIX"
170 PRINT "OR NUMBER OF EQUATIONS""
180 INPUT "N ~ ",N
190 IF N<10 THEN 220
200 PRINT : tiN MUST BE < 1'1'11::
210 GOTO 100
220 IF N>l THEN 250
230 PRINT :'I<N<10(3 SPACES)TRY AGAIN""
240 GOTO 180
250 PRINT ,,"THE COEFFICIENTS OF x"
260 PRINT "ARE THE • A I MATRIX."
270 PRINT : "INPUT THE VALUES ROW BY ROW:"
2Be PRINT ,"A(l,1l,A(I,2),A(l,3), ••• "
290 PRINT "A(2,1),A(2,2),A(2,3), ... "
303 PRINT ".":".":"."
310 PRINT "A(N,1),A(N,2), .• "A(N,N)":::
320 FOR I~l TO N
330 FOR J~l TO N

330

v

v

~

'-' Chapter 7

'--'

340 INPUT "A("'STR$(I)'","'STR$(J)'") m II :A
'-' (I,J)

'-' 350 W(I,J)=A(I,J)
360 NEXT J

'-' 370 PRINT
380 INPUT "B("'STR$(I)'") = ":B(r)

J 390 PRINT : :
400 NEXT I , 410 PRINT :: IO--SOLVING--"::
420 REM INVERT MATRIX A

~ 430 FOR C=l TO N
440 IF W(C,C)<>0 THEN 460

~ 450 GOSUB 710
460 W(C,C)=l / W(C,C)

~ 470 FOR 0=1 TO N
480 IF (0-C)=0 THEN 540
490 W(O,C)=W(O,C)*W(C,C)
500 FOR E=l TO N
510 IF (E-C)=0 THEN 530
520 W(O,E)=W(O,E)-W(O,C)*W(C,E)
530 NEXT E
540 NEXT 0
550 FOR E=l TO N

~ 560 IF (E-C)=0 THEN 580
570 W(C,E)=-W(C,C)*W(C,E)

..I 580 NEXT E
590 NEXT C

'--' 600 PRINT ,,"SOLUTION VECTOR X: " : :
610 FOR 1=1 TO N
620 X(I)=0 ..., 630 FOR J=l TO N
640 X(1) =X(1)+W(I,J) *B(J)
650 NEXT J
660 PRINT ,·X("'STR$(I)'") = ":x(t)

~ 670 NEXT I
680 PRINT : :

~ 690 GOTO 870
700 REM SUB TO SWITCH ROWS

~ 710 FOR F=C+l TO N
720 IF W(F,C)=0 THEN 820

~ 730 FOR E=l TO N
740 OW=W(C,E)

'--'
331

'J

------ Chapter 7 ------

7S~ W(C,E)=W(F,E)
76~ W(F,E)=DW
77~ NEXT E
78~ DB=B(C)
79~ B(C)=B(F)
8~~ B(F)=DB
81~ GOTO 86~
82~ NEXT F
83121 PRINT "SORRY I DETERMINANT=I2I."
84~ PRINT "NO UNIQUE SOLUTION,"
8S~ GOTO 87~
86~ RETURN
87~ PRINT ,"PRESS 1 FOR ANOTHER PROBLEM"
88~ PRINT TAB(7), "2 TO END PROGRAM"
89~ CALL KEy(~,K,S)
9~~ IF K=49 THEN ll~
91~ IF K<>S~ THEN 89~
92121 CALL CLEAR
93~ END

Earning Money
The idea for this program came from the type of problem found
in high school mathematics competency tests. The program
creates story problems. Twelve different names and six
different jobs are READ in as DATA. For each problem the
program picks a name at random, chooses the appropriate
pronoun in the following statement, and picks a job at random
for some wordings . All the numbers chosen are random within
certain limits.

These problems are multiplication problems - an hourly
wage times the number of hours, or an amount earned per
week times a number of weeks.

Program 7-8. Math Competency: Earning Money

l~~ CALL CLEAR
lUI PRINT TAB(6):"MATH COMPETENCY"
12~ PRINT:: ,TAB(7), "EARNING MONEY"
13~ PRINT ", ••
14~ DIM N$(S),J$(S),T$(S)

332

v

------ Chapter 7 ------

lse FOR I=e TO s
160 READ N$(I),J$(I),T$(I)
17e NEXT I
180 DATA SAM, DOING ODD JOBS,JOHN,JOE,MOWING

LAWNS,ANDY,BOB,TENDING CHILDREN, MARK
,ANN

~ 190 DATA RUNNING ERRANDS,LENA,SUE,DOING HOU
SEWORK,AURA,KAY,DELIVERING ADS, DAWN

'-' 2ee GOTO 37e
2le PRINT :TAB(lS),"PRESS <ENTER>",
220 CALL KEY(0,K,S)
23e IF K<>13 THEN 22e
24eJ RETURN
250 CALL SOUNO(10e,330,2)
260 CALL SOUNO(150,262,2)
270 RETURN
2B0 CALL SOUNO(100,262,2)
290 CALL SOUNO(10e,330,2)
30e CALL SOUNO(100,392,2)
310 CALL SOUNO(200,523,2)
320 RETURN
330 p=10e+2s*INT(RNO*10)
340 P$~STR$ (p)
350 p$~"$"'SEG$(P$,l,LEN(P$)-2)'''''''SEG$(P$

,LEN(P$)-1,2)
360 RETURN
370 CALL CLEAR
38e RANOOMIZE
390 N=INT(RNO*6)
400 H~8+INT(RNO*11)
410 GOSUB 330
420 PRINT N$ (N);" WORKS"; H; "HOURS PER WEEK.

"
430 IF N<3 THEN 460
440 PRINT I "SHE EARNS It;

4Se GOTO 47e
460 PRINT s "HE EARNS ":
4 70 PRINT P$;" PER HOUR. M

48e IF N<3 THEN S10
4ge PRINT ,"HOW MUCH DOES SHE EARN"
see GOTO S2e
5H~ PRINT I "HOW MUCH DOES HE EARN"

333

------ Chapter 7 ------

520 PRINT I" IN A WEEK?" I :

530 INPUT "$":0
540 01~P*H/100
550 IF ABS(O-Ol».001 THEN 610
560 GOSUB 280
570 PRINT" "TRY AGAIN? (y i N)"
580 CALL KEY(0,K,S)
590 IF K=89 THEN 370
600 IF K=78 THEN 680 ELSE 580
610 GOSUB 250
620 PRINT : "MULTIPLY"; Hi "HOURS BY ": P$: : lOPE

R HOUR,"
630 P=H*P
640 GOSUB 340
6513 PRINT : "THE ANSWER IS ";P$
660 GOSUB 210
670 GOTO 370
680 CALL CLEAR
690 RANOOMIZE
700 N=INT(RNO*6)
710 H=INT(RNO'11)+8
720 GOSUB 330
73" PRINT N$(N);" EARNS ";P$;" PER HOUR."
740 IF N<3 THEN 770
750 PRINT :"SHE WORKS";
760 GOTO 780
770 PRINT : "HE WORKS" i
780 PRINT H; "HOURS PER WEEK."
790 IF N<3 THEN 820
800 PRINT ,"HOW MUCH WILL SHE EARN IN"
810 GOTO 830
820 PRINT : "HOW MUCH WILL HE EARN IN"
830 W=INT(RNO*19)+2
840 PRINT :W; "WEEKS?"::
850 INPUT "$":0
860 01=P*H'w/ 100
870 IF ABS(O-Ol».001 THEN 930
880 GOSUB 280
893 PRINT ,: "TRY AGAIN? (YiN) "
900 CALL KEY(0,K,S)
910 IF K=89 THEN 680
920 IF K=78 THEN 1030 ELSE 900

334

------ Chapter 7 ------

93~ GOSUB 25~
940 PRINT ; "MULTIPLY"; H; "HOURS BY"
950 PRINT :p$;" PER HOUR."
960 PRINT : "THEN MULTIPLY BY"; Wi "WEEKS. "
970 PRINT : "THE ANSWER IS "
980 P=H'*P*W
990 GOSUB 340
1000 PRINT P$:::
1010 GOSUB 210
1~20 GOTO 680
1030 CALL CLEAR
1040 J=INT(RNO*6)
1050 T=INT(RNO*6)
1060 GOSUB 330
1070 W=INT(RNO*S)+2
H'80 PRINT T$(T);" EARNED n;ps;" LAST WEEK"
1090 PRINT :J$(J),","
1100 IF T<3 THEN 1130
1110 PRINT : "IF SHE EARNED THIS AMOUNT"
1120 GOTO 1140
1130 PRINT! "IF HE EARNED THIS AMOUNT"
1140 PRINT : "EVERY WEEK, WHAT WOULO THE"
1150 PRINT; "TOTAL INCOME BE FOR"
1160 PRINT :W: "WEEKS?"::
1170 INPUT "$":0
1180 01=p*w/ 100
1190 IF ABS(O-Ol»,001 THEN 1250
1200 GOSUB 280
1210 PRINT ,,"TRY AGAIN? (YiN)",
1220 CALL KEY(0,K,S)
1230 IF K=S9 THEN 1030
1240 IF K=78 THEN 1330 ELSE 1220
1250 GOSUB 250
12613 PRINT : "MULTIPLY "; P$;" PER WEEK"
1270 PRINT : "BY": Wi "WEEKS. "
128~ p=p'W
1290 GOSUB 340
1300 PRINT : "THE ANSWER IS ", p$"
1310 GOSUB 210
132~ GOTO 1~30
1330 CALL CLEAR
1340 ENO

335

------- Chapter 7

Buying Items
In this math competency program, a list of items is printed with
their costs, which are random numbers within certain limits.
One question is how much it would cost to buy everything on
the list. The second question, in multiple-choice form, is which
items could be purchased by a person who has a certain
amount of money.

The DATA statements consist of names and items with a
minimum and maximum cost. The subroutine in lines 460-540
converts the number to a string so that items may be printed
properly in dollars and cents. Lines 1160-1300 randomly choose
the multiple choice items and place the correct answer as one of
the choices.

Program 7-9. Math Competency: Buying Items

lee CALL CLEAR
ne PRINT TAB(6); "MATH COMPETENCY"
l2e CALL CHAR(136, "e8Me2FFe2e4e8")
l3e PRINT" :TAB(7): "BUYING ITEMS"
l4e CALL COLOR(14,9,16)
150 PRINT:: 1 t 1

l6e DIM I$(3,5),I(3,5,2),N$(6),J(5),H$(3),S
$(4)

l7e FOR C=l TO 6
l8e READ N$(C)
1ge NEXT C
2ee FOR A=l TO 3
2le FOR C= l TO 5
22e READ I$(A,C),I(A,C,l),I(A,C,2)
23e NEXT C
24e NEXT A
250 DATA ANGIE,CINDY, CHERY, RICKY, BOBBY, RAND

Y,PENCIL,8,15
260 DATA ERASER,2,10,NOTEBOOK,35,99,RULER,2

9,49
270 DATA PAPER,59,90,DOLL,249,599,BALL,49,8

9,TRUCK,10f2J,15f2J
28e DATA GAME,27e,5ee,MODEL,300,70e,CANDY,2

a,5f2J
2ge DATA MEAT,123 , 425,FRUIT,24,5e,CHIPS,lee

,257,BREAD,lee,179

336

------ Chapter 7 ---__ _

300 H$ (1)="PENCIL AND ERASER"
310 H$(2)="BALL AND TRUCK"
320 H$(3)="CANDY AND FRUIT"
330 GOTO 550
340 PRINT TAB(15); "PRESS <ENTER>";
350 CALL KEY(0,K,S)
360 IF K<>13 THEN 350
370 RETURN
380 CALL SOUND(100,330,2)
390 CALL SOUND(150,262 , 2)
400 RETURN
410 CALL SOUND(100 , 262,2)
420 CALL SOUND(100,330,2)
430 CALL SOUND(100,392,2)
440 CALL SOUND(200,523,2)
450 RETURN
460 P$=STR$(P)
470 IF LEN(P$»l THEN 490
480 P$="0"&P$
490 IF LEN(P$»2 THEN 510
53113 P$=-" "&:P$
510 PR$=SEG$(P$,LEN(P$)-l,2)
520 PL$-SEG$(P$,l,LEN(P$)-2)
530 p$:"$"&PL$&"."&PR$
540 RETURN
550 RANDOMIZE
560 A-INT(RND*3+1)
570 TP=0
580 CALL CLEAR
59(:11 PRINT "GIVEN THIS PRICE LIST:""
600 FOR C=l TO 5
610 O=I(A , C,2)-I(A, C,l)
620 P=I(A,C,l)+INT(RNO*O+l)
630 GOSUB 460
640 TP=TP+P
650 PRINT TAB(6);I$(A,C);TAB(15);P$
660 NEXT C
670 R=INT(RND*13+4)
680 CALL COLOR(13,R,R)
690 CALL HCHAR(18,6,128,18)
700 CALL VCHAR(19,6,128,5)
710 CALL VCHAR(19,23,128,5)

337

------ Chapter 7 ------

720 CALL HCHAR(24,6,128,18)
730 F=INT(RNO*2+1)
740 IF F=2 THEN 790
750 PRINT :: "HOW MUCH WILL IT COST"
760 PRINT "TO BUY ALL THE ITEMS"
770 PRINT "ON THE LIST?"
780 GOTO 830
790 N=INT(RNO*6+1)
800 PRINT: :N$ (N)," WANTS TO BUY"
BU' PRINT "EVERYTHING ON THE LIST."
820 PRINT "WHAT WILL THE TOTAL COST
830 INPUT "$":X
840 IF ABS(X-TP / 100)<.001 THEN 920
850 GOSUB 380
860 PRINT :" ADD ALL FIVE NUMBERS."
870 P=TP
880 GOSUB 460
890 PRINT "THE TOTAL IS ": P$: ! :

900 GOSUB 340
910 GOTO 550
920 GOSUB 410
930 CALL HCHAR(20,1,32,128)
940 IF F=2 THEN 970
950 PRINT "IF YOU COULO ONLY SPENO"
960 GOTO 980

BE?"

970 PRINT "IF U;N$(N);" COULD ONLY SPEND"
980 IF A<>l THEN 1010
990 M=INT(RNO*5+25)
1000 GOTO 1050
1010 IF A<>2 THEN 1040
1020 M=INT(RNO*36+239)
1030 GOTO 1050
1040 M=INT(RNO*18+100)
1050 P=M
1060 GOSUB 460
1070 PRINT p$,", WHICH OF THESE PAIRS"
1080 PRINT "OF ITEMS COULO "
1090 IF F<>~ THEN 1120
1100 PRINT YOU BUY?"::
1110 GOTO 1160
1120 IF N>3 THEN 1150
1130 PRINT "SHE BUY]"::

338

J

...J

-.../

~

'-./

J

~

J

...

v

------ Chapter 7 ------

1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430

1440
1450
1460

GOTO 1160
PRI NT "HE BUY? II : :

R~INT(RNO'4+l)
FOR V=1 TO 4
IF V~R THEN 1280
X~INT(RNO*2+4)
S$(V)=I$(A,X)
X=INT(RNO*3+l)
S$(V)=S$(V)&" ANO "&I$(A,X)
IF V=1 THEN 1290
FOR Vl=1 TO V-I
IF S$(Vl)=S$(V)THEN 1190
NEXT VI
GOTO 1290
S$(V)~H$(A)
PRINT TAB(3),CHR$(64+V)," "&S$(V)
NEXT V
CALL SOUND(150 t 1397,2)
CALL KEY(",K,SJ
IF (K<65)+(K>68)THEN 1320
CALL HCHAR(K-45,4,42)
IF K<>64+R THEN 1410
GOSUB 410
PRINT : "TRY AGAIN? (y i N)",
CALL KEY(0,K,S)
IF K~89 THEN 550
IF K~78 THEN 1450 ELSE 1380
GOSUB 380
CALL HCHAR(19+R,3,136)
PRINT z"THE TOTAL OF THE TWO ITEMS
ST BE LESS THAN ":P$
GOTO 1370
CALL CLEAR
END

MU

339

------ Chapter 7

Musical Bugle
This is a typing drill for someone who has already learned the
correct fingering for all the letters on the keyboard. This driU
makes it fun to practice typing. As random letters appear in the
bugle, type the letters. The faster the letters are pressed, the
faster the music goes - and it should be a familiar tune if the
letters are typed correctly and fast enough. The letters to be
typed are chosen randomly in lines 640~650, and the notes are
played by REA Ding the frequencies from DATA statements in
lines 680-690.

Program 7-10. Typing Drill: Musical Bugle

110 REM MUSICAL BUGLE
120 CALL CLEAR
130 FOR C=2 TO 8
140 CALL COLOR(C,2,12)
150 NEXT C
16" CALL CHAR{95, ",,")
170 RESTORE 180
180 DATA FEF8F0E0C0808, 7 F1F0F07030101
190 DATA 00010103070F1F7F,008080C0E0F0F8FE
200 DATA FFFEFEFCF8F0E08,FF7F7F3F1F0F0701
210 DATA 0103070F1F3F7FFF,FF7F3F1F0F070301
220 DATA 0707070707070707,000000FC78787878
230 CALL COLOR(12,12,1)
240 CALL COLOR(13,12,1)
250 FOR C=123 TO 132
260 READ C$
270 CALL CHAR(C,C$)
280 NEXT C
290 CALL HCHAR(23,3,95 ,28)
300 PRINT " TYPE THE LETTERS AS THEY •
310 PRINT "-APPEAR IN THE HORN . -.
320 PRINT "-IF YOU-TYPE EVENLY YOU II

339 PRINT "-SHOULD-RECOGNIZE THE TUNE ...
340 CALL HCHAR(24 ,),95,28) - -
350 PRINT I:::: :::::::: :
360 CALL HCHAR(17 , 7 , 131)
370 CALL HCHAR(17,8,95,19)
380 CALL HCHAR(16,26,125)

340

'-

'--' Chapter 7

-
--' 390 CALL HCHAR(18,26,124)

400 CALL HCHAR(15,27,129)
41B CALL VCHAR(16,27,95,3)
420 CALL HCHAR(19,27,130)
43B CALL HCHAR(14,28,129)
440 CALL VCHAR(lS,28,95,S)
45B CALL HCHAR(20,28,13B)
460 CALL HCHAR(18,11,123)
470 CALL VCHAR(18,10,95,3)
480 CALL HCHAR(21,lB,12B)

~ 49B CALL HCHAR(2B,11,126)
5B0 CALL HCHAR(21 , 11,95,11)

~

510 CALL HCHAR(21,22,127)

- 52B CALL HCHAR(2B , 21,125)
530 CALL VCHAR(18,22,95,3)
540 CALL HCHAR(18,21,124)
550 CALL HCHAR(16,15,132,3)
560 RESTORE 570
570 DATA 466,370,415,37O,311,370,277

~ 580 DATA 370,466,370,415,370,311,370
590 DATA 277,370,466,370,415,37O,311
600 DATA 37B,277~370~233,~70,208,370
61B CALL SOUNO(l B,l 97,4
62B FOR C=l TO 28
630 RAN~OMIZE - 64B L=INT(RNO*26+65)

~
65B CALL HCHAR(19,16,L)
66B CALL KEY(B,K,S)

~ 67B IF K<>L THEN 660
68B READ N
690 CALL SOUNO(-425B,N,1)
7BB CALL HCHAR(19,16,95)
7lB NEXT C
720 FOR C=l TO 3

~ 73B L=INT(RNO*26+65)
740 CALL HCHAR(19,16,L)
75B CALL KEY(0,K,S)
760 IF K<>L THEN 750

~ 770 CALL SOUNO(-3BB,185,1)
780 CALL HCHAR(19,16,95)

~ 79B NEXT C
800 CALL HCHAR(19,16,32) ,

'--' 341

'-'

------ Chapter 7 ------

810 FOR C=l TO l6
820 CALL HCHAR(24,2+C,ASC(SEG$("TRY AGAIN?

(Y/ N)",C,l») -
830 NEXT C
840 CALL KEY(0,K,S)
850 IF K=78 THEN 890
860 IF K<>89 THEN 840
870 CALL HCHAR(24,3,32,l6)
880 GOTO 560
890 CALL CLEAR
900 END

Type Invaders
Here is another typing drill for a student who has learned
where all the letters are, but just needs to practice typing faster.
This program is a game, like many invader-type games. A letter
appears in the sky and starts descending. The sooner you type
it, the higher your score will be. If the letter blinks and comes
down ten steps without being typed correctly, the score is
decreased by five.

At random times a spaceship with a three-letter word
appears. If the word is typed correctly, there is a bonus of ten
points.

The running score is shown at the bottom of the screen.
After ten spaceships the game is over, and the final score and
high score are shown.

Program 7-11. TypIng Drill: Type Invaders

ll0 REM TYPE INVADERS
1 2" CALL CLEAR
l30 DIM SS$ (14)
l40 PRINT "ALIEN LETTERS WILL APPEAR"
l50 PRINT: "FROM SPACE_ YOU NEED TO"
l60 PRINT : "PREVENT THEM FROM ENTERING"
l70 PRINT: "EARTH'S ATMOSPHERE BY"
l80 PRINT : "TYPING THE LETTER AS SOON"
190 PRINT : "AS POSSIBLE."
2ee PRINT ::"ONCE IN A WHILE A SPACESHIP"
2113 PRINT : "WILL APPEAR. TYPE THE WORD"

342

'-

'-'

IJ

'-'

'-'

\..-

V

------- Chapter 7 -------

220
230
240
250
260
270
280

290

300
310
320
330
340
350
360
370

380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600

PRINT : "CORRECTLY FOR 10 POINTS."
CALL CHAR(123, "101054565EDEFEFF ")
CALL COLOR(12,3,1)
CALL CHAR(128, "1122448811224488")
CALL COLOR(13,12,5)
CALL CHAR(136, "081C7F1C3C6642")
DATA 030F3F3F3F3F0F03,00000000030F3FFF,
000000FFFFFFFFFF,00000000C0F0FCFF
DATA C0F0FCFCFCFCF0C ,FFFCF0C,FFFFFFFFFF
,FF3F0F03,FFFFFFFFFFFFFFFF
FOR C=144 TO 152
READ C$
CALL CHAR(C,C$)
NEXT C
FOR C=0 TO 14
READ SS$(C)
NEXT C
DATA THE,HIS,ITS,SHE,HER,AND,QUR,FEW,RU
N,TIE,RED,TWQ,YOU,ONE,TEN
CALL COLOR(15 , 16 ,1)
CALL COLOR(16,16,1)
PRINT ::: IIpRESS ENTER TO START." ~
CALL KEY(0,K,S)
IF K<>13 THEN 410
CALL CLEAR
CALL SCREEN(14)
CALL HCHAR(22,1,123,32)
FOR C=2 TO 8
CALL COLOR(C,2,16)
NEXT C
CALL HCHAR(19,15,128,3)
CALL HCHAR(20,14,128,S)
CALL HCHAR(21,13,128,7)
PRINT "SCORE: "~sc;
FOR A=1 TO 10
FOR A1=1 TO INT(8*RND+1)
RANDOMIZE
L=INT(RNO*26)+65
DX=1-INT(3*RND)
ROW=2
T=10
COL=INT(9*RND)+11

343

Chapter 7 v

v

6le CALL HCHAR(ROW,COL,L)
~

62e CALL SOUNO(lSe,1397,4)
63e CALL KEY(0i,K,S) ~

64e IF K=L THEN 73e
6Se T=-T-l '-./

66e CALL HCHAR(ROW,COL,32)
67e ROW=ROW+1 ~

68e COL-COL+OX
6ge IF T<>0i THEN 61e v
7ee CALL SOUNO(leee,-4,2)
7le SC=SC-5 ~

72e GOTO 8Se
73e CALL SOUNO(leee,-7,2) -
74e CALL SCREEN(16)
7Se CALL HCHAR(2e,16,K) ~

76e CALL SCREEN(le)
77e CALL HCHAR(ROW,COL,136) ~

78e CALL SCREEN(12)
~ 7ge CALL SCREEN(14)

8ee FOR C=l TO le ,
~

8le CALL COLOR(14,16,7)
82e CALL COLOR(14,7,16) ~

83e NEXT C
84e SC=SC+T J
8Se CALL HCHAR(ROW,COL,32)
86e GOSUB l37e
87e CALL HCHAR(2e,16,128)
88e NEXT Al -'
8ge R=INT(6*RNO)+2
gee CL=INT(22*RNO)+3 v

9le CALL HCHAR(R,CL,152,3)
92e CALL HCHAR(R,CL-l,144) -
93e CALL HCHAR(R-l,CL,14S)

-./ 94e CALL HCHAR(R-l,CL+l,146)
9Se CALL HCHAR{R-l,CL+2,147) v
96e CALL HCHAR(R,CL+3,148)
97e CALL HCHAR(R+l,CL+2,149) '-'
98e CALL HCHAR(R+l,CL+l,lSe)
9ge CALL HCHAR(R+l,CL,151) -leee RANDOMIZE
lele W=INT(lS*RNO) ~

le2e W$=SS$(W) -
344 ~

------- Chapter 7 -------

le3e FOR C=l TO 3
le4e CALL HCHAR(R,CL-l+C,ASC(SEG$(W$,C,l»)
lese NEXT C
le6e CALL SOUND(2ee,-l,2)
le7e FOR C=l TO 3
lese CALL KEY(e,K,S)
lege IF S<l THEN lese
llee CALL HCHAR{R+3,CL-l+C,K)
ll1e B(C)=K
112e NEXT C
113e CALL SOUND(lee,sse,2)
l14e CALL SCREEN(12)
llse FOR C~l TO 3
l16e B$~B$'CHR$(B(C»
117e NEXT C
llse CALL SCREEN(14)
l1ge IF B$~W$ THEN l2ge
l2ee CALL SOUND(lee,392,2)
l2le CALL SOUND(lee,262,2)
1220 B$=""
123e GOSUB l37e
l24e FOR C=R-l TO R+3
1250 CALL HCHAR(C,CL-l,32,S)
126e NEXT C
l27e NEXT A
12se GOTO l42e
l2ge CALL SOUND(leee,-7,2)
l3ee CALL HCHAR(R,CL,136,3)
131e FOR C~l TO le
132e CALL COLOR(14,16,7)
133e CALL COLOR(14,7,16)
134e NEXT C
13se SC~SC+le
136e GOTO l22e
l37e SC$=STR$(SC)'" ..
13se FOR C=l TO LEN(SC$)
13ge CALL HCHAR(24,le+c,ASC(SEG$(SC$,C,l»)
14ee NEXT C
l4le RETURN
l42e CALL CLEAR
l43e CALL SCREEN(S)
144e FOR C=2 TO S

345

------ Chapter 7 ------

14se CALL COLOR(C,2,l)
146e NEXT C
1473 PRINT "YOUR SCORE: ": SC
14se IF HS>SC THEN lsee
14ge HS=SC
lsee PRINT: " "HIGH SCORE: ",HS
iSle PRINT ::,,"TRY AGAIN? (y i N)"""
lS2e se=e
lS3e CALL KEy(e,K,S)
lS4e IF K=S9 THEN 43e
1550 IF K<>78 THEN 1533
lS6e END

Car Cost Comparison
This program is an example of how any financial decision
might be made easier with the computer . The program makes a
cost comparison between two cars. Firs t, enter the EPA
com parative mileage for each car, such as 17 mpg and 26 mpg.
Next, enter the cost of gasoline, between .50 and 2.00 per
gallon . Finally, enter the approximate number of miles driven
per year, such as 15000. The screen dears and the information
is itemized for the two cars, with the total annual cost
difference. You may try again with a different cost for gas,
perhaps, or change the miles driven - and practically instantly
you can analyze the results.

Program 7-12_ Car Cost ComparIson

lee REM CAR COST COMPARISON
lle CALL CHAR (lei , "e7eE1E3FFFFFe6e6")
12e CALL CHAR(le2,"FFeSeSFFFFFF")
13e CALL CHAR(le3,"ce6e6eFFFFFF1S1S")
14e CALL CHAR(le4, "e7eE1E3FFFFFe6e6")
lse CALL CHAR(leS,"FFeSeSFFFFFF")
16e CALL CHAR(le6,"ce6e6eFFFFFF1S1S")
17~ CALL COLOR(9,7,1)
lse CALL COLOR(le,6,l)
19~ CALL CLEAR
200 PRINT "COMPARISON OF TWO CARS"::"
21113 INPUT "CAR A--GAS MILEAGE, MPG: lilA

I

V

J

------- Chapter 7 -------

220 IF (A>=1)+(A<=50)=-2 THEN 250
230 PRINT : "SORRY, 1 <MPG<50" : 1

240 GOTO 210
250 PRINT
26121 INPUT "CAR B--GAS MILEAGE, MPG : ":B
270 IF (B>=1)+(B<=50)=-2 THEN 300
28121 PRINT ,"SORRY, 1<MPG<50i" : :
290 GOTO 260
300 PRINT ,,"ENTER COST OF GAS IN DOLLARS"
310 PRINT ."(SUCH AS 1.18)""
320 INPUT "GAS PRICE = $".c
330 IF (C>=.5)+(C<=2)=-2 THEN 370
34121 PRINT : "GAS PRICE SHOULD BE BETWEEN"
353 PRINT 1" . 50 AND 2.0121"::
360 GOTO 320
37e PRINT:: MHOW MANY MILES DO YOU DRIVE"::
38121 INPUT "PER YEAR? ": M
390 IF (M>0)+(M<100000)=-2 THEN 420
400 PRINT ,"ASSUME 0 <MILES< 100000", ,
410 GOTO 370
420 CALL CLEAR
43121 PRINT "GAS PRI CE 1 $" i C
44121 PRINT :"ANALYSIS IS FOR"
45121 PRINT Hi "MILES PER YEAR . "
460 PRINT ::TAB(5):"hij",TAB(19),"efg"
47121 PRINT t

N {3 SPACES}";A;"MPG","
{3 SPACES}";B;"MPG"

480 AI=(INT(100*(M*C/ A+ . 005») / 100
490 BI=(INT(100*(M*C/ B+.005») / 100
50121 PRINT t : "COST FOR GAS:"
510 PRINT , "(3 SPACES)$",AI,"{3 SPACES)$",B

I
520 PRINT ••• "COST DIFFERENCE = $",ABS(AI-B

I)
'-' 530 PRINT • • , "TRY AGAIN? (Y/ N) ",

540 CALL KEY(0,K,S)
~ 550 IF K=89 THEN 190

560 IF K<>78 THEN 540
'-' 570 CALL CLEAR

580 END

347

J

Appendix '-'

'--'

Characters: J

Code Numbers and Sets
~I

>J

Code' Character Code # Character ~

Set ' 1 Set IS)
32 (space) 64 @
33 ! 65 A '--'
34 66 B
3S , 67 C ~,

36 $ 68 0
37 % 69 E J
38 & 70 F
39 71 G '-'

Set 12 5et l6
40 72 H)
41 73 I
42 • 74 J J
43 + 75 K
44 76 L J
45 77 M
46 78 N

.J
47 79 0

Set 13 Set IJ7 ~

48 0 BO P
49 1 81 Q J_
50 2 82 R
51 3 83 5 J
52 4 84 T
53 5 85 U

'--' 54 6 86 V
55 7 87 W J

Set 14 SeilS
56 8 88 X J
57 9 89 Y
58 90 Z J
59 91 [
60 < 92 ,

J 61 - 93 I
62 > 94 " 63 ? 95 '-'

v

348 J

"-'

-.)

-.) Appendix

-.)

v COOe # Character Code #
Set", Set 113·

-.) % 128
97 A 129

v 98 " 130
99 c 131

-.) 100 0 132
101 E 133

v 102 F 134
103 G 135

v Seino Set 114
104 H 136

v 105 I 137
106 J 138

-.) 107 K 139
108 L 140

-.) 109 M 141
110 N 142

v 111 0 143
Set 111 Set 115

V 112 p 144
113 Q 145

V 11' R 146
115 5 147

v 116 T 148
117 u 149

-.) 118 V 150
119 w 151

v Set 112 Set 116
120 X 152

v 121 y 153
122 z 154

v 123 { 155
12.

, 156 ,
v 125 } 157

126 ~ 158
-.) 127 DEL 159

v
....) *There are no standard characters for sets 13 through 16. This

has no effect on your ability to define them and use them in
~ CALL HCHAR and CALL VCHAR statements, but it is very

difficult to use them in PRINT statements.
'-'

v 349

V

Index
A

ABS 187-88
"Adding Fractions" 325~27
algebra 190-91
AND 151-52
"Angry Bull" 251-53
arrays 35,23,5..39 (program listing 237-38)
arrow keys 21-24 (pi 21, 23-24)
ASC 217 (pi)
ASCII character code 217-18, 261-62 (pi 217-218)
ATN 188 (pi)

B

BAD ARGUMENT message 190
BASIC 5,15
"B;ngo" 223-28
"B;rthday Ust" 228-32
branch;ng 34-35,147-52 (pi 147-51)
"Bubble Sort" 294-95
" Buy;ng Items" 335-38

C

CALL CHAR 40-41, 66-69
CALL CLEAR 16, 40-41
CALL COLOR 60-63, 65, 102, 261-62 (pi 62-63) .
CALL HCHAR 55-56,101,301-2 (pi 302)
CALL KEY 33-34, 282-85 (pi 33-34, 283)
CALL SCREEN 19
CALL SOUND

choreography 101-2,111
music 69-70, 72-74
noises 119-23
hnting dev;ces 282-83 (pi)

CALL VCHAR 55,101,301-2 (PI 302)
"Car Cost Comparison" 345-46
Case, upper and lower 4
cassette recorder 3, 7-8, 304-5 (pl304)

350

v

v

v

v

v

character code 39, 261-62
characters

definer 41-42

Index

designing 39-40,49-58 (pi 40-41, 52-54)
displaying 55-56
(see also graphics, screen format)

choreography 5, 101-2 (see also music, graphics)
CHR$ 218 (pi)
circuit design (see electrical engineering)
CLEAR

in editing 23
to stop program 18, 20

colors 4, 58-60,65,136 (p159-60; see also CALL COLOR, color
sets)

color sets 54-55, 261-62
"Color Combinations" 60-62
"Colors" 136-39
command 16
"Cookie File" 239-48
"Coordinate Geometry" 166-83
corrections (see CALL CLEAR, ERASE, errors, function keys,

RES)
COS 188, 190
crashing 32
cursor 15

o
DATA 3G-31, 40-41, 64-65, 102, 300-301 (PI 31, 102)

and READ 248-49 (pi 248)
and RESTORE 249-50 (pi)

DEF 36, 190 (pi)
"Defining Characters" 41-46
DEL key 22-23
"Dice Throw" 164-66
DIM 35, 239, 299-300
disk drive 7, 9-11
DISPLAY 55-56
"Dividing Fractions" 323-24
division 318
"Division with Remainder" 318-19

351

Index

E
editing 6, 20-25 (see also arrow keys, ERASE, errors, function

keys)
editor/assembler 11
electrical engineering 191-96 (pi 52-54)
"Electrical Engineering Circuit Design 1" 196-208
"Electrical Engineering Circuit Design 2" 208-17
END 18
ENTER key 15
equation calculator 4
equations 328-29
"Equivalent Fractions" 319-20
ERASE 23
erasing the screen (see CALL CLEAR, ERASE)
ERROR IN DATA statement 8
errors 21-23
EXP 189
Extended BASIC 9, 127

F

"Find Home" 123-27
fractions 319-21, 323, 325
FOR-NEXT 29-30 (see also loops)
function keys 4,17,21-23
functions, mathematical

algebra 190-91
division 318
equations 328-29
fractions 319-21, 323, 325
geometry 166-67

functions, string 217-23 (p1217-22)
functions, user-defined 190-91 (PI 190)

G
geometry 166-67
"German" 139-44
GOSUB 161-67, 300 (pi 163-64)
"GOSUB Demonstration" 161-63
GOTO 18-19, 147, 163, 302-3 (PI 19, 303; see also branching,

loops)

352

Index

v

v graph paper 49-51, 110-11, 117-18
graphics 4-5, 49-56, 250-51, 301-2 (pi 302; see also choreography)

H

hard copy (see printer)
hardware 9
" Hey, Diddle, Diddle" 107-10
"Homework Helper" 153·60
" Horse" 56-58
housekeeping commands 19-20

I
IF-THEN 9,32-33,148-49, 302-3 (pi 148, 303)
INPUT 31-32 (pi 32)
INS key 22-23
INT318

K

keyboard 4, 15
" Kinder Art" 63-69

L
language 5, 139 (see also speech synthesizer, spelling)
" Language Demonstration" 128-29
LEN 219
LET 27-28 (pi 27)
"Letter Puzzles" 222-23
line number 15-17
LISTl9-20
LOG 189
logical OR, AND 151-52
Logo 11
loops 149-50 (PI)

and arrays 237 (PI)
and choreography 101-2 (PI 102)
and sound UO-23 (pi)
and timing 282-83 (pi)
counter 150 (pi)
FOR-NEXT 29-30

353

Index

GOT018
two-player games 28 (p129)

lowercase 4

M

machine language 11
mass storage (see cassette recorder, disk drive)
" Math Competency: Earning Money" 331-34
mathematics (see functions, mathematical)
memory

conse.-ving 101-2, 298-304 (pi 299, 301-3)
RAM 4, 298

memory expansion 11
menus 33-34 (pi 34)
microprocessor 5
"Minimum and Maximum" 297
"Minimum Search" 296
modem 10
modules 6
money 331
"Monthly Payments" 315-16
monitor 11
" Multiplying Fractions" 321-23
music 5, 69-75, 83-85

pitch 72-73 (pi 72)
tempo 70 (pi)
teaching 83-85
translating 73-74
(see also sound, choreography)

"Music Steps and Chords" 85-100
"Musical Bugle" 339-41
"Musical Tempo Demonstration" 70-71

N
"Name and Address File" 304-13
"Name the Note" 75-83
NEW 19
"New England States" 262-70
NEXT 29-30 (see also loops)
NO DATA FOUND statement 8
noises 119-23

354

J

J

J

J

v

v

v

v

v

v

V

J

v

V

J

J

J

v

J

J

beeps 119 (pi)
bomb 122 (pI)

Index

busy signal 119 (pi 119-20)
doorbell 121 (pi)
interrupting 120-21 (pi)
sirens 119 (pi 119, 121)
using noise generator 121-23 (P1121-22)
with music 123 (PI)

NUM key 16-17
numbering, line 6-7,16-17
numeric operations 25-26 (see also functions, mathematical)

o
"Oh, Susanna" 102-7
OLDCSI8
ON 34-35, ISO-51, 302-3 (pi 150-51, 303)
OPEN

with printer 314 (pI)
with speech 128 (pi)

OR 151-52

p

Peripheral Expansion Box 9
peripherals 7-11
POS 219-20 (pi 220)
PRINT 17,55-56,128,299 (pI17, 299)
PRINT A$&B$ 217
printer 10,313-15 (pi 314)
program 16
punctuation

with PRINT 17 (PI)
with speech synthesizer 129 (pi 129-30)

Q

quotation marks 17

R
RAM 4, 298

V RANDOMIZE 37-38, (pi 37)
READ 30-31, 300-301 (PI 31)

v 355

Index

and DATA 248-49 (PI 248)
and RESTORE 249-50 (pi)

REM 18, 298-99
RES 7, 24·25 (pi 24)
RESTORE 64, 249·51 (pi 249·50)
RND 37-38 (pi 37)
RS-232 interface 9-10
RUN 19

S
screen

color 19
eraSing 16
format 38, 49 (illustration 50)

SEG$ 220-21 (pi 221)
SGN189
"Shell Sort" 295-96
"Simplifying Fractions" 320-21
SIN 189-90
software 7
"Solving Simultaneous Equations" 329-31
sorting 294-97
sound (see noise, music, choreography, speech synthesizer)
Speech Editor 9, 127
speech synthesizer 5,8-9,64, 127-33

inflections 130 (pi 130)
modules 5,127
speech separators 129-30 (pi)
varying 131·33 (pi)
with non-readers 136

spelling 133
"Spelling Practice" 134·36
sprites 9
SQR 189
STOP 18
STR$ 219
strings 6

in defining characters 40
recognizing, in an array 65
string functions 217-23 (pi 217-22)

subroutine 161-64, 166, 300

356

v

v

v

v

subscript 35, 239
symbols 17

T
TAN 189-90

Index

Tenninal Emulator II 9-10, 64, 127
THEN (see IF-THEN)
title screen 15
TI-99/4A

changes 3
comparison with TI-99/4: 4
features 4-7

TI BASIC 5, 15
TI Disk Controller 9-10
TI Extended BASIC 9, 127
TI Logo 11
TI memory expansion 11
TI Speech Editor 9, 127
TI Speech Synthesizer 5, 8-9 (see also speech synthesizer)
TI Temlinai Emulator II 9-10, 64, 127
timing 282-85 (PI 282-83)
TRACE 7
"Type-ette" 270-82
"Type-ette Timer" 283-93
"Typing Drill: Type Invaders" 341-45
typing 270-93, 341--45

U

UCSD Pascal 11
uppercase 4

V
VAL 219
variables 26

arrays 35,235-39 (PI 235, 237-38)
assigning values to 27-28 (PI 27)
function 36-37 (pI)
in FOR-NEXT loops 29-30 (PI)
naming 6, 26-27
numeric 26

357

w

Index

string 26
trimming, to conserve memory 300
where to initialize 28

"We Wish You a Merry Christmas" 110-18
"Western States" 253-61

X

XBASIC (see TI Extended BASIC)

358

v
u

v

v

'-"

u

'-'
'J

V

V

'-"

V

v

'-'
V

'-'
'-'

V

'J

V

V

V

'-/
•

V

V

V

V

u

If you've enjoyed the orticles in this book. you'll find the
some style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!

Far Fastest Service,
Call Our TolI·Free US O rd er Line

800-334-0868
In NC call 919·275·9809

COMPUTE!
P.o. Box 5406
Greensboro. NC 27403

My Computer Is:
O PEl D Apple D Atari o VIC D Ofhef __ O Don'fyet hove one".

o 520.00 One Year US Subscription
0 $36.00 Two Year US Subscription o $54.00 Three Year US Subscription
Subscription rotes outside the US:
o $25.00 Canada
0 538.00 Europe. Australia, New Zealand/Air Delivery o $48.00 Middle East, North Africa, Centrol Americo/Air Mail
0 568.00 Elsewhere/Air Mail
0 $25.00 International Surface Mail (lengthy, unreliable delivery)

Nome

Address

City State lip

Country
Payment must be in US Funds drawn on a US Bonk; International Money
Order, or charge card.
o Payment Enclosed o MasterCard
Acef. No.

D VlSA
o American Express

Expires I

COMPUTE! Books
PO Box5406 Greensbofo. NC27403

Ask your re tailer for these COMPUTE! Books. If he or she
has sold out. order directly from COMPUTE!

Quonllty

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868
In Me call 919·275·9809

" ... "'le.
The Beginner's Guide 10 Buying A Personal
Computer $ 3.95"

COMPUTers First Book 01 Atori $12.95'

Inside Alari DOS $19.95"

COMPUTE!'s First Book of PET/C8M $12.95"

Programming the PET/CBM $24.95'"

Every Kid's First Book of Robots and
Computers $ 4.95"

COMPUTErs Second Book of Alori $12.95"

COMPUTHs First Book olVtC $12.95"

COMPUTers First Book of Alori Graphics $12.95"

Mopping the Alari $14.95'

Home Energy Appllcotions On Your
Personal Computer $14.95"
Machine languoge fOf Beginners $12.95'

• Add 52 \.hiPPIng ond I'IOndhng Ou!~de USOCId S.l 0" mo,1 $2
SUffoce mo,'

•• Add 51 st1 ippong ana harding OJIS>Oe US odd $4 0" moo! $2
wrloce motl

••• Add $3 StlJpptng and noodhng OutllOe US ockl 59 0" moo!. S3
S\JI1oce mo,1

Please add shipping and handling lor each bOok
ordered.

Tatai enclosed or to be charged.

All orders musl be prepaid (money order, check. or charge) . All
payments must be in US funds. NC residents add 4% soles fax.

Total

o Payment enclosed Please charge my: 0 VISA 0 MasterCard
o American Express Acc t. No. Expires I

Name

Address

City State Zip

Country
AJIow 4· 5 weeks lor delivery

J

J

V

