

fa-wS

Safe}

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation ofanypartof this work beyond that permitted by Sec
tions 107 and 108 of the United StatesCopyright Actwithout the permission of the
copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-41-8 «

10 987654321

COMPUTE! Publications, Inc., Post Office Box5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC PublishingCompanies and is not associatedwith any
manufacturer of personal computers. TI-99/4A is a trademark of Texas Instruments. ^

e^7\

4&V8

f^«J

Foreword VI1

Chapter 1: Introduction 1
Why Extended BASIC? 4
Expansion Possibilities 5
Peripheral Expansion System 6
Memory Expansion 6
RS232 Interface Card 6

Disk Controller Card 7

Getting Help 9

Chapter 2: Extended BASIC Techniques 11
Multiple Statement Lines 13
The IF-THEN Statement 16

Subprograms 19
More Subprograms 21
Screen Formatting 23
Error Trapping 27
Program Design 29

Chapter 3: File Management 33
Fields, Records, and Files 35
Program Files 36
Data Files 37

Storage Devices 39
Sequential File Examples 40
Relative File Examples 45
Indexed File Examples 49
Backup Considerations 53
Hex Dump Utility 54

Chapter 4: Electronic Spreadsheets 59
What Is a Spreadsheet? 61
Spreadsheets and the TI 63
The Tiny Plan Family Tree 63
Getting Started 65
Tiny Plan Basics 66
Operating Tiny Plan 69
Using Memory Expansion 75

ui

Sample Models 76 «^
How It Works 78

Chapter 5: Computer Graphics 97
Bar Charts 100
System Requirements 100
Bar Charts General Operation 103
Data Management 103
Data Management: Enter Data 104
Data Management: Change Data 105
Data Management: Save Data 106
Display Data 107
Chart Titles 107
Chart Type 108
X and Y Axis Scales 110
Scale Options Ill
Bar Chart Examples 112
Display Data Summary 112
Print Bar Charts 114

How It Works 114

Chapter 6: Electronic Card File 131
Description 134
System Requirements 135
Tape Card File 135
Disk Card File 139
Just for Practice 144
How It Works 145

Chapter 7: Appointment Calendar 165
Appointment Calendar 167
System Requirements 168
Setting Up the Calendar 168
Operating the Appointment Calendar 170
Review Appointments 171
Selecting Dates 172
Adding and Changing Appointments 173 «^
Restrictions 175
Summary of Operation 175 cb^
How It Works 175

IV

IP?™-"*

r

(_

|=» Chapter 8: Putting It All Together 187
Description 189
DSK1.LOAD [',','.] 190
System Menu 191
System Catalog 192
Error Handling 192

Index 197

liS&l

Vs^l

&.

^1

f^i

L%

f5

wsa*

OBI

t

Before computers found their way into the home, most of
them were management tools in business. The business com
puter was, and still is, used to organize and analyze. A home
computer like the TI-99/4A can be used for much the same
thing. This book can help you turn your TI computer into a
home management system.

COMPUTEl's Guide to Extended BASIC Home Applications
on the TI-99/4A contains a series of useful home applications
that will turn your computer into an efficient management
tool. The programs in this book will help you organize your
files, as well as analyze your finances, helping you make
decisions about your money. These programs will do many of
the repetitious tasks that people hate to do, but computers do
so well.

But this book is more than just a series of home applica
tions. You'll also learn how to use your TI-99/4A to get more
from your Extended BASIC cartridge. Whether you're an
experienced programmer, or just beginning, you'll find this
book full of powerful techniques that you can use in your own
programming. Each chapter is designed to make these tech
niques accessible to any TI-99/4A computer user. If you're
only interested in using the programs, for instance, just type
them in and follow the clear and simple directions. If you
want to learn more about Extended BASIC, however, you'll
appreciate the program explanations. There are even a number
of subprograms that can be easily added to your own
programs.

You'll use this book not just once, when you type in the
home application programs, but again and again, as you
explore the expanded capabilities of your computer. As with
all COMPUTE! books, the programs are ready to type in and
enjoy.

Vll

f^»>

ji-

he story of home computers is a familiar one. Micro
computers emerged from the engineering laboratories
in January 1975. That was when the magazine Popu

lar Electronics featured the Altair computer. The computer was
a kit with a whopping 256 bytes (yes, bytes) of memory stan
dard. Programs were entered through toggle switches on the
computer's front panel. All programming was done in machine
language.

Though the computers of that day seem almost laughable,
the contributions made by those technology pioneers were and
are still significant. An entire microcomputer industry was
born. The market suddenly appeared enormous and poten
tially profitable. Large companies such as Tandy and Texas
Instruments announced their own products. Computers in the
home became a reality. Consumers no longer needed a solder
ing iron for a debugging tool.

Brands of computers can be purchased for under $100.
Most households can afford a home computer. These low
prices indicate the tremendous progress that has been made in
microelectronics. Literally millions of low-cost home com
puters have been sold.

When home computers were a rarity, friends and relatives
expressed amazement at the whole idea. They consistently
asked the question "What do you do with it?" The pioneering
programmer-technicians were proud of their accomplishments.
That one question, though, always evoked a blush and a
somewhat incomprehensible response.

Today, the amazement is gone. Personal computers
permeate our offices, schools, and neighborhoods. Office work
and computers go hand in hand, and it doesn't require a great
deal of imagination to see the benefits of computers in
schools. But consider computers at home. Has that nagging
question "What do you do with it?" ever been answered
satisfactorily? The question doesn't seem to cause much
embarrassment now, but it doesn't mean we've answered it.

This book is dedicated to all of you who have a TI-99/4A

Introduction

and would like to put it to practical use around the home. The ^
purpose of this book is twofold.

First, this book will guide you through a quick review of
TI's Extended BASIC programming language. You will learn
the tips and techniques that you will need to do your own
programming.

Second, this book will provide you with many practical
programs that you can actually put to use.

Chapters 2 and 3 contain many small programs and
examples that illustrate various programming techniques.
Chapters 4-8 each describe a specific application program.
These programs build on the techniques described in Chapters
2 and 3. Yes, the program listings look quite long. But the
time that you spend typing in the programs will be well worth
it. These are programs that you can really use.

Why Extended BASIC?
Extended BASIC is an advanced programming language. It
comes in a command module that plugs right into your TI-99/4A.
You do not have to send your computer back to the factory to
install Extended BASIC. So you can obtain this language
whenever your budget or inclination permits.

All of the programs in this book are written in Extended
BASIC. Why use another programming language? Although it
is limited in some respects, why isn't TI BASIC good enough?

Let's look at a few of the features of Extended BASIC.
Then you can decide for yourself.

Multiple statements per line. Extended BASIC allows
you to put more than one statement on a line. This conserves
memory and helps programs run a little faster.

Improved IF-THEN statements. In TI BASIC, a line
number must follow a THEN or ELSE clause. In Extended
BASIC, you can put one or more statements after the THEN or
ELSE clauses. Programs are much easier to read because there
are fewer line number references to sort out. You can also
combine tests with the AND, OR, and NOT relational
operators. "^

Subprograms. You can write your own general-purpose
subprograms. (Some subprograms such as COLOR or SCREEN "^
are built into the 99/4A.) You can use your homemade sub
programs over and over again for different applications. ""^

Introduction

era Screen formatting. Extended BASIC has a set of com
mands for displaying and accepting either strings or numbers
from any location on the screen. These commands are
extremely useful for any kind of data entry application.

Error trapping. Extended BASIC programs can tell when
a program or data input error has occurred. Rather than auto
matically letting the TI stop your program, you can design
corrective steps.

Access to machine resources. The 99/4A uses some
rather clever hardware. Besides the sound generator, Extended
BASIC can make the Speech Synthesizer talk. Extended BASIC
can also define and manipulate movable graphics blocks, com
monly called sprites.

This gives you an idea of what you can expect from
Extended BASIC. Extended BASIC uses the same extensive
file-handling commands that TI BASIC does. All of these fea
tures result in a well-designed language that compares favor
ably to any commercially available BASIC.

Now, if you would really like an idea of what Extended
BASIC can do, try Program 1-1. Are you suitably impressed
by this little six-line program? It defines 26 sprites with a ran
dom color and random initial velocity. As you can imagine,
sprites are very handy for game programs. Sprites also find
their way into application programs. The "Appointment Cal
endar" program uses sprites.

Program 1-1. Extended BASIC Demonstration
100 REM EXTENDED BASIC DEMO

110 DISPLAY AT(12,6)ERASE ALL:MC O M P U T E I"
120 FOR 1=1 TO 26 :: CHARNO=64+I

130 CALL SPRITE(#I,CHARNO,3+13*RND,89,113,(10*RND+
1)+20*(.5>RND),(10*RND+1)+20*(.5>RND))

140 NEXT I

150 GOTO 150

Expansion Possibilities
A 99/4A console, Extended BASIC, and a cassette tape

w recorder form the nucleus of a very capable system. Many
1 practical and entertaining programs can be written and used
jm with just this equipment. In fact, most of the programs in this

book are designed for just that configuration. There comes a
pi time, however, when every computer owner would like to

5

Introduction

expand the system. Hardware expansion opens up new soft- «^
ware capabilities. —'

Peripheral Expansion System
One way of expanding your 99/4A centers on the Peripheral
Expansion System (PES) from Texas Instruments. The PES
consists of an expansion box and various printed circuit boards
or cards which plug into it. The expansion box is almost lit
erally an empty box. It does contain a power supply for the
optional cards. It also has sockets (the motherboard) for the
cards. A long, slightly unwieldy cable connects the expansion
box to the connector on the right side of the 99/4A. By itself,
the expansion box adds absolutely no new capabilities to your
TI. The chief virtue of the expansion box is that it is unbeliev
ably solid. If you have little children, you need not worry
about damage to the expansion box or its contents.

The cards that plug in the expansion box are what give us
additional capabilities. We'll discuss the memory expansion,
RS232, and disk controller cards. These can all be utilized by
Extended BASIC.

Memory Expansion
The memory expansion card is advertised as a 32K memory
card. The TI already has 16K. Usually, adding 32K to 16K
would give 48K of memory for Extended BASIC. This is not
exactly the case here. The 32K card is really divided into a
24K section and an 8K section. The 8K section is for machine
language subroutines. Extended BASIC itself cannot use that
area of memory. Furthermore, Extended BASIC partitions the
remaining memory into a 24K section and a 16K section. The
program and numeric variables stay in the 24K section and
string variables are confined to the 16K section.

These divisions cannot be altered. They are due to the
hardware design of the TI. So keep in mind that your program
and numeric variables must stay under a 24K limit. Unless you
are working with very large numeric arrays, you will probably
find that there is ample memory available.

RS232 Interface Card "^
Adding a printer to your TI opens up many possibilities. You
can obtain program listings, print reports, and even do word _ '
processing. The RS232 card provides the electronics that are
needed for the TI to send the proper signals to the printer. J

CEffifl

fPEF

Introduction

ra RS232 is actually the name of an industry communica-
L tions standard. The RS232 standard describes the electrical sig

nals between two pieces of equipment. Since RS232 is an
industry standard, you should have little trouble in obtaining
and connecting a printer.

The RS232 card actually contains provisions for the
connection of two RS232 devices. You can hook up a printer
and a plotter or a printer and a modem (a device for transmit
ting and receiving signals over the telephone).

In addition, the RS232 card has what is called a parallel
port. This is another way of connecting the TI to an external
device. A parallel port transmits and receives data eight bits at
a time. The RS232 port is a serial port and works with a
stream of data one bit at a time. The parallel port, on the sur
face, appears to have the advantage of speed. However,
mechanical devices such as printers operate at speeds much
slower than the computer. So the potential speed advantage
may not be realized.

There is an industry-wide informal standard for parallel
port connections. However, there is the possibility of running
across some variations. If you are planning on using a printer
with a parallel connection, make sure that it is guaranteed as
TI compatible.

So, one RS232 card gives you two RS232 serial ports and
one parallel port. This should suffice for most applications. If
not, a second RS232 Interface Card can be put in the expan
sion box. The second card requires a few simple hardware
jumper changes. This is so the computer will recognize it as
RS232 card number two. (In the past, TI was happy to make
these changes; but now it would be wise to see if the service is
still available before making any purchases.)

Disk Controller Card
The Disk Controller contains the electronics that are necessary
for the storing and retrieving of data with a disk system. If
you are not familiar with disks, you can think of them as a
cross between a record and a tape. The diskette is the storage

r® medium. It is round and enclosed in a nonremovable square
jacket. The diskette rotates, like a record, in the disk drive.

f*1 Like a tape, data is stored as magnetic impulses. These mag
netic impulses are placed on the diskette by a read-write head

f"" which comes in contact with the diskette. The read-write head

B573

Introduction 3

moves, as does a tone arm, so that it can access different por
tions of the diskette.

There are single-sided and double-sided disk drives and
diskettes. As the name implies, single-sided drives and media
can store data on only one side of a diskette. There is enough
room for about 90,000 characters of data. Double-sided drives
and media store data on both sides of a diskette. Double-sided

diskettes can handle about 180,000 characters of data. How
ever, TI has sold only single-sided drives. Double-sided drives
must be purchased from various other sources.

The expansion box will accommodate only one disk drive.
It is possible to add two additional drives, but these extra
drives must have their own power supply and cabinet.

A vital piece of software is supplied with the disk control
ler. The software is the Disk Manager Command Module.
With it, you can see what files are stored on a particular
diskette, copy files, rename files, delete files, and format
diskettes (get them ready for recording).

The Disk Manager Command Module also contains a set
of very extensive test programs so you can test diskettes to
make sure that they are good. Disk Manager 2 (sold after
January 1983) provides the software for double-sided drives.
(Disk Manager 1 can read and write double-sided diskettes,
but because of a software problem, cannot format them.)

An operating system is a set of programs (software) that
almost always comes with disk systems. Operating systems
handle all of the minute programming details of the equip
ment connected to a computer. This is so you don't have to
worry about such things every time you write your own pro
grams. Operating systems work as traffic cops. They make
sure that all parts of the computer work together smoothly.

Many operating systems come on diskette. The software is
loaded into the computer's memory when the computer is
turned on. Such operating systems take up space on both the
diskette and the computer's memory. The TI's disk operating
system is actually stored permanently in Read Only Memory
(ROM) chips on the disk controller card. This software handles
disk-related tasks. Most of the operating system is stored
permanently in the 99/4A console itself. Very little memory «
space is consumed by the operating system. A total of about
4.5K of the 16K section of memory is used for various pur- .
poses. Less than IK of the available space per disk drive is '

8

Introduction

used by the operating system. And this space we would gladly
give up! This is where the TI keeps a list of the files on each
diskette. This list or directory is pretty important for proper
disk operation.

Getting Help
When you opened your computer for the first time, you prob
ably came across several manuals. These are well written and
contain a lot of useful information. If you have a question, you
can often find the answer in these manuals.

Consider joining the International 99/4 Users-Group. It is
an independent organization specializing in TI hardware and
software. It also maintains an extensive library of programs
contributed by people like you. Its address is:

International 99/4 Users-Group, Inc.
P.O. Box 67

Bethany, OK 73008

Best of all, join your local TI users group. If you haven't
heard about it, call TI. They will tell you if there is one near
you. You will find that local groups have a lot to offer. They
sponsor guest speakers, they arrange group purchases of
equipment and supplies, and they have classes for all levels of
users. They enjoy sharing and exchanging ideas.

3

pPB)

xtended BASIC is a complete programming language
in a command module. It is very similar to TI BASIC
in many ways. Some of the features present in both

languages are:
• 15-character variable names,

• 13- to 14-digit calculation accuracy,
• strings up to 255 characters,
• built-in subprograms for sound, color, and custom character

definition, and

• a complete file management system.
So virtually everything that you've learned about TI

BASIC still applies to Extended BASIC. Extended BASIC is a
new language which builds on TI BASIC. Extended BASIC
does introduce several new programming concepts. These are
explained in a 224-page manual that comes with the com
mand module. The manual gives the complete format or syn
tax of each Extended BASIC command. In addition, the
manual presents many examples. The Extended BASIC man
ual is a reference manual: It is where you should turn when
you have questions about specific features of the language.

This chapter will not be a rewrite of the manual. Rather, it
will go over the high points of Extended BASIC and discuss
some tips and techniques. Some examples and short programs
will be presented that will help you with your programming.

Since most of the examples here are short, you might like
to try them as you come to them in the text. This will give
you a better understanding of the examples. It will also give
you a better feel for Extended BASIC.

Multiple Statement Lines
One big difference between TI BASIC and Extended BASIC is
the structure of the program lines. You can spot this right
away. At a glance, a TI BASIC program has the appearance of

13

Extended BASIC Techniques

many short lines. TI BASIC allows only one program state- «^
ment per line, and it requires that a statement line number fol
low the THEN and ELSE clauses of an IF statement. Extended
BASIC takes a completely different approach. It allows more
than one statement per line, and permits statements other
than a line number after the THEN and ELSE clauses.

Let's see a few examples. The TI's random number gen
erator generates numbers in the range from zero to one. This
range can be divided into the following four quartiles:
0.00 <= N < 0.25
0.25 <= N < 0.5
0.50 <= N < 0.75

0.75 <= N

N stands for the random number. Programs 2-1, 2-2, and
2-3 will generate random numbers. Then the programs will
determine to which quartile each number belongs. Counters
will keep track of the number of random numbers that fall
into each quartile. Each program will do this 500 times. You
can expect to see the numbers more or less evenly distributed.

Program 2-1 shows the TI BASIC version of the program.
Program 2-2 is the same program except that it is written in
Extended BASIC. What are the differences? Most obviously,
the Extended BASIC version is shorter—12 lines versus 21
lines. Look at line 120 in Program 2-2. Four variables, Ql
through Q4, are initialized to zero all in the same statement.
This takes four lines with TI BASIC. Another striking dif
ference can be seen in lines 150-170 of Program 2-2. Here,
the counters are incremented right after the THEN clause.
After incrementing the counters, control is transferred to the
NEXT I statement by means of a GOTO. TI BASIC requires
several more statements to do the same thing.

You may be wondering how the IF statement works. The
statement or statements following the THEN clause are exe
cuted only when the condition is true. For example, consider
line 150 of Program 2-2. There are two statements following
the THEN clause:

Q1 =Q1 +1:: GOTO 190 ^
Both of these statements will be executed when N is less than ^
.25.

Please note that Extended BASIC uses a double colon as ^
the statement separator. Many other versions of BASIC use a

14

F5PI

Extended BASIC Techniques

single colon for the same purpose. Be very careful when you
are typing in your programs. This is especially true when you
are translating programs into Extended BASIC.

Does the Extended BASIC program have any other bene
fits besides requiring fewer lines and therefore less memory?
Well, a strong case can be made that the Extended BASIC is
much easier to understand. There are fewer line number ref
erences and transfers of control. You can read the program
from the beginning to the end without tracing through as
many THENs and GOTOs.

Program 2-1. TI Random Number Quartile
100 REM TI BASIC RANDOM NUMBER QUARTILE COUNTER
110 RANDOMIZE

120 Q1=0

130 Q2=0

140 Q3=0
150 Q4=0

160 FOR 1=1 TO 500

170 N=RND

180 IF N<.25 THEN 270

190 IF N<.50 THEN 250

200 IF N<.75 THEN 230

210 Q4=Q4+1

220 GOTO 280

230 Q3=Q3+1

240 GOTO 280

250 Q2=Q2+1

260 GOTO 280

270 Q1=Q1+1

280 NEXT I

290 PRINT Q1;Q2;Q3;Q4
300 END

Program 2-2. Extended BASIC Random Number
Quartile Counter

100 REM EXTENDED BASIC RANDOM NUMBER QUARTILE COUN
TER

110 RANDOMIZE

120 Q1,Q2,Q3,Q4=0
130 FOR 1=1 TO 500

140 N=RND

150 IF N<.25 THEN Q1=Q1+1 :: GOTO 190
160 IF N<.5 THEN Q2=Q2+1 :: GOTO 190
170 IF N<.75 THEN Q3=Q3+1 :: GOTO 190

15

Extended BASIC Techniques

180 Q4=Q4+1

190 NEXT I

200 PRINT Q1;Q2;Q3;Q4
210 END

Program 2-3 ♦ Another Extended BASIC Random
Number Quartile Counter
100 REM ANOTHER EXTENDED BASIC RANDOM NUMBER QUART

ILE COUNTER

110 RANDOMIZE

120 01,02,03,04=0
130 FOR 1=1 TO 500

140 N=RND

150 IF N<.25 THEN Q1=Q1+1 ELSE IF N<.5 THEN Q2=Q2+

1 ELSE IF N<.75 THEN Q3=Q3+1 ELSE Q4=Q4+1

160 NEXT I

170 PRINT Q1?Q2;Q3;Q4
180 END

The IF-THEN Statement
Since the IF-THEN statement is used so often, it deserves spe
cial emphasis. The form of the IF-THEN statement that is used
most often in this book is:

IF relational expression THEN statement 1 ELSE statement 2

Refer to the Extended BASIC manual for a complete
description of what is meant by a relational expression. In gen
eral, it is where a comparison is performed. Statement 1 is
executed if the condition is true. Otherwise, statement 2, if
present, is executed.

Statement 1 and statement 2 can consist of one or more
statements. Even another IF statement will work. Look at Pro
gram 2-3. The number testing is done on one line—150. It is a
series of IFs within IFs or, as they say in the business, nested
IFs. What do you think of nested IFs? They did make the pro
gram shorter. Do you think it is easier or more difficult to
read?

Another aspect of the IF-THEN statement is that tests or _.
comparisons can be combined with the relational operators '
AND and OR. The following program fragment shows how a =r,
number can be checked against a lower and upper limit. '
100 INPUT N «|
110 IF N<0 OR N>10 THEN 100

{savm!':!

16

{SW

Extended BASIC Techniques

f" Line 110 contains two comparisons. If either one or both are
true, the program will go back to line 100. Thus, this program
fragment will accept numbers in the range from 0 through 10
inclusive.

When using the AND relational operator, all comparisons
must be true in order for the expression to be true. Consider
this statement:

100 IF ENERGY=0 AND SHIELDS=0 AND DAMAGE = 100
THEN PRINT "KAPUT!"

Each of the three conditions must be met before the message
is printed.

More complex conditions can be tested by combining
AND and OR operators.

100 IF DISTANCE<20 AND (VELOCITY>=40 OR FUEL=0)
THEN PRINT "CRASHED"

This example shows how parentheses can help straighten
things out. First, the tests on VELOCITY and FUEL are done.
If VELOCITY is greater than or equal to 40 or FUEL equals 0,
then the part within the parentheses is true. But in order for
the message to be printed, not only must the part in paren
theses be true, but DISTANCE must be less than 20 as well.

Let's look at just this one statement as it might appear in
TI BASIC.

100 IF DISTANCE> = 20 THEN 130
110 IF VELOCITY>=40 THEN 140
120IFFUEL=0THEN140

130 REM condition not met
140 PRINT "CRASHED"

Again, this points out that Extended BASIC programs can
be written with more clarity.

Now it's time for a little fun. Look at Program 2-4. It is
called "Diplomatic Hi-Lo." The program is a variation on the
familiar number guessing game. What's the variation? Well,
sometimes the computer will lie or give misleading informa-

P* tion. Sometimes it will even change the number in the middle
of the game. Like a good diplomat, you've got a bit of nego-

"•• tiating ahead of you.
When you start the program, it will ask you for a truth

f^" percentage. This represents the percent of time that your TI
will be honest. The screen will go dark when you type in this

17

Extended BASIC Techniques

number. This way, nobody can see what you're typing. You ^
wouldn't try this game on unsuspecting folks, would you? It is
surprising how difficult the game is even at an 85 or 90 per
cent truth level. By the way, the computer will never lie if and
when you do guess the number.

On the practical side, the program illustrates the points
covered so far. It uses multiple statement lines and various
forms of the IF statement. The program is short enough for
you to experiment with if you like.

Look at line 220 of Program 2-4. Note: The colons in the
PRINT statements are used for skipping lines. They are not
statement separators. Thus, : : (note the space in between)
means skip two lines. Typing :: (no space between the colons)
will cause a syntax error.

Program 2-4. Diplomatic Hi-Lo
100 REM DIPLOMATIC HI-LO
110 RANDOMIZE

120 CALL CLEAR

130 PRINT "DIPLOMATIC HI-LO": :"CAN YOU OUTSMART M
E?"

140 PRINT :: PRINT :: PRINT

150 PRINT "WHAT IS THE TRUTH PERCENTAGE"
160 PRINT :"ENTER A NUMBER FROM 0 TO 100"
170 PRINT

180 FOR 1=1 TO 900 :: NEXT I
190 CALL SCREEN(2):: INPUT TRUTH :: CALL CLEAR ::

CALL SCREEN(8)
200 IF TRUTH<0 OR TRUTH>100 THEN 120
210 TRUTHPCT=1-(TRUTH/100)
220 PRINT "I HAVE A NUMBER": :"IT IS BETWEEN 1 AND

100": :"CAN YOU GUESS WHAT IT IS?"
230 REM GENERATE A NEW NUMBER
240 TRIES=0 :: NUMB=INT(100*RND+1): : PRINT
250 REM ACCEPT AND COMPARE GUESS
260 PRINT

270 INPUT "YOUR GUESS: ":GUESS
280 TRIES=TRIES+1

290 IF GUESS>NUMB THEN IF RND>TRUTHPCT THEN PRINT «=,
" TOO HIGH" ELSE PRINT " TOO LOW" - I

300 IF GUESS<NUMB THEN IF RND>+TRUTHPCT THEN PRINT
" TOO LOW" ELSE PRINT " TOO HIGH" "*]

310 IF GUESS=NUMB THEN PRINT :"THAT'S RIGHTl": "IT
TOOK";TRIES;"TRIES" :: GOTO 36 0 CSrhI

18

Extended BASIC Techniques

320 IF TRIES>5 AND RND>0.7 THEN PRINT " COME ONI
THE NUMBER ISM7lNT(100*RND+l)

330 IF TRIES>10 AND RND>0.6 THEN BIAS=INT(10*RND+1
+(20*(RND>0.5))):: PRINT " THE NUMBER IS NEAR
"?MIN(NUMB+BIAS,100)

340 IF TRIES>15 AND RND>.95 THEN PRINT " I NOW HA
VE A NEW NUMBER1" :: NUMB=INT(100*RND+1)

350 GOTO 250

360 PRINT :"PLAY AGAIN (Y OR N)"?:: INPUT R$
370 IF R$="Y" THEN 230
380 CALL CLEAR t: PRINT "THANK YOU"
390 END

Subprograms
The 99/4A contains several built-in subprograms. Some of the
more familiar ones are COLOR, SCREEN, and SOUND. These
subprograms are used with a CALL statement. The CALL
statement requires one or more parameters:

100 CALL SOUND(1000,440,2)

In this case, the SOUND subprogram is given three
parameters. Subprograms use the parameters in various ways.
The three parameters above control the duration (1000 milli
seconds), frequency (440 hertz), and volume (2) of a tone. The
designers of the TI determined the way that SOUND would
interpret the parameters.

The 99/4A does have its own set of built-in subprograms.
They perform often-needed tasks related to controlling system
features.

In the course of doing your own programming, you have
probably found yourself writing some of the same code over
and over again. Extended BASIC provides a very nice capabil
ity. You can write your own subprograms. And these sub
programs can be written in Extended BASIC; you do not have
to resort to machine language.

Subprograms form a special part of your program.
Extended BASIC insists that all subprograms be placed at the

P3 end of the main program. Generally, subprograms will be
written using high line numbers—25000 and above, for exam-

f™1 pie. When the program is finished, the resequence command
RES can tidy up the line number gaps.

F™ You can build your own library of subprograms. If you
wish, you can type the subprograms into each program as you

19
JiQ9)

Extended BASIC Techniques

need them. On the other hand, disk users can save each sub
program in MERGE format so that subprograms can be
merged right in with the other program lines. This method
requires a bit of planning as to the use of line numbers. Be
careful that subprograms use line numbers that are not already
used by the main program. Also, make sure that the line num
bers are such that the subprogram will be added at the end of
the main program.

Program 2-5 is an example of a main program and a sub
program. The main program dimensions three arrays. The
arrays are assigned arbitrary values. The contents of all three
arrays are then printed. Next a CALL is done to the sub
program ARRAYINIT. This should alter the contents of array
B. The three arrays are printed again. Indeed, array B was
changed while arrays A and C were not.

Notice the relationship between the CALL statement and
the SUB statement.

CALL ARRAYINIT(B(),5,0)
SUB ARRAYINIT(ARRAY(),DIMENSION,VALUE)

SUB defines the subprogram. The name of the sub
program is ARRAYINIT. It has three parameters since there
are three items in the list following the subprogram name. The
first parameter is a one-dimensional array. This is indicated by
the name of the array and a left and right parentheses pair—
ARRAY(). The next two parameters are numeric variables.

The CALL statement must agree with the subprogram
definition in terms of the number and types of parameters.
Notice that the names of the parameters don't match. They do
not have to. Values are transferred according to a parameter's
position in the parameter list. Here is how the values are
transferred:

BO to ARRAY()
5 to DIMENSION
0 to VALUE

How do values get back to the main program? The
correspondence rules are the same. Notice that ARRAY "1
appears in an assignment statement. VALUE is moved to ele
ments of ARRAY. In the example, array B matches ARRAY. "1
So, changes made to ARRAY actually show up in array B. This
is borne out when we print array B after the CALL statement. "^

You will notice that the variable I is used in both the

20

Extended BASIC Techniques

p» main program and the subprogram. Believe it or not, these are
really two separate variables. This is because any variables
used in a subprogram are local variables. The subprogram
knows about them, but the main program does not. Local
variables are initialized to zero when a subprogram is first
called. Thereafter, local variables retain their values even if the
subprogram is called repeatedly.

Like most things, local variables have advantages and dis
advantages. On the plus side, a subprogram cannot alter any
variables in the main program even if they happen to have the
same name. On the minus side, if you want a subprogram to
alter such variables, they will have to be passed through the
subprogram as parameters. This requires a bit of forethought
and effort. However, the protection that is achieved from local
variables far outweighs this minor disadvantage.

Program 2*5. Array Initialization Subprogram
100 REM ARRAY INITIALIZATION SUBPROGRAM
110 CALL CLEAR

120 DIM A(5),B(5),C(5)
130 FOR 1=1 TO 5 :: A(I),B(I),C(I)=I :: NEXT I
140 PRINT "BEFOREH

150 FOR 1=1 TO 5 :: PRINT A(I);B(I);C(I):t NEXT I
160 CALL ARRAYINIT(B(),5,0)
170 PRINT "AFTER"

180 FOR 1=1 TO 5 :: PRINT A(I)?B(I)?C(I):: NEXT I
190 END

200 SUB ARRAYINIT(ARRAY(),DIMENSION,VALUE)
210 FOR 1=1 TO DIMENSION

220 ARRAY(I)=VALUE
230 NEXT I

240 SUBEND

More Subprograms
Two other sample subprograms are included below. Each of
the samples includes a main routine for testing purposes. If
you would like to include these subprograms in your own pro

pyl grams, use the lines beginning with SUB and ending with
SUBEND.

nm Program 2-6 illustrates how a string array is passed to a
subprogram. Numeric arrays are handled the same as string

mm arrays. The subprogram sorts the elements in the array in
ascending order. A very simple, but slow, bubble sort

21

Extended BASIC Techniques

algorithm is used. Therefore, the subprogram is best suited for ^
alphabetizing short lists.

Program 2-7 shows a very interesting get key sub
program. Many programs require at times a single keystroke
reply. This can, for example, be a Y or N to signal if the player
wants another game or not. Program 2-7 displays a message
on row 20 of the screen. Next, a beep is sounded. TI's KEY
subprogram checks for a pressed key. If a key is not pressed
within a certain interval, the beep is sounded again.

Notice that there are two CALL KEY statements. The first
calls key unit 3. This puts the keyboard in an uppercase only
mode. So even if the ALPHA LOCK key is released, only
uppercase characters can be typed. The call to key unit 5 puts
the keyboard back into a full upper- and lowercase mode.

In general, these sample subprograms show how sub
programs will be used in this book. There are some additional
details, such as passing multidimensional arrays and call by
value, which will not be covered. Consult the Extended BASIC
manual.

Program 2-6. String Sort Subprogram
100 REM STRING SORT SUBPROGRAM
110 DIM NAMES?(5)
120 FOR 1=1 TO 5

130 INPUT "ENTER A NAME ":NAME$(D
140 NEXT I

150 CALL CLEAR

160 PRINT "*** BEFORE ***"

170 FOR 1=1 TO 5 :: PRINT NAME$(I):: NEXT I
180 CALL SORT(NAME$(),5)
190 PRINT "*** AFTER ***"

200 FOR 1=1 TO 5 :: PRINT NAME$(l):: NEXT I
210 END

220 SUB SORT(LIST$(),N)
230 EXCHANGE=0

240 FOR 1=1 TO N-l

250 IF LIST$(I)<=LIST$(I+1)THEN 300
260 T$=LIST$(l)
270 LIST$(I)=LIST$(I+1) H
280 LIST$(I+1)=T$
290 EXCHANGE=1 —n

300 NEXT I !
310 IF EXCHANGEO0 THEN 230

320 SUBEND . I

22

PS9

fipflJBSi

Extended BASIC Techniques

Program 2-7. Get Key Subprogram
100 REM GET KEY SUBPROGRAM
110 CALL CLEAR

120 CALL GETKEY(R,"PRESS ANY KEY")
130 IF R<>13 THEN DISPLAY AT(1,1):CHR$(R):: GOTO 1

20

140 END

150 SUB GETKEY(R,MSG$)
160 DISPLAY AT(20,1):MSG$
170 CALL SOUND(200,262,0):: K=0
180 CALL KEY(3,R,S):: IF S<>1 THEN K=K+1 :: IF K<2

50 THEN 180 ELSE 170

190 CALL KEY(5,R1,S):: DISPLAY AT(20,1):" "
200 SUBEND

Screen Formatting
Some of the most notable features of Extended BASIC are its
screen formatting capabilities. 99/4A screen formatting is
implemented with the DISPLAY and ACCEPT statements.
These two statements have a broad application. They are ideal
for any program that uses the video display for
communicating.

You can think of the DISPLAY and ACCEPT statements
as fancy versions of the PRINT and INPUT statements respec
tively. Unlike the PRINT and INPUT statements, DISPLAY
and ACCEPT will not perform file input and output. Instead,
DISPLAY and ACCEPT are specifically designed for the video
display and keyboard.

The DISPLAY statement will print information at any
location on the screen. Locations are identified by their row
and column numbers. Since there are 24 rows, the row num
bers range from 1 to 24. Column numbers range from 1 to 28.
Row 1, column 1 is at the upper left corner of the screen.

More than one item may be displayed on any given line.
DISPLAY has an option (the SIZE parameter) which can limit
the number of characters shown. This prevents the DISPLAY
from wiping out information that may already be on a line.

To get decimal points to line up nicely, employ the
PRINT USING option. The PRINT USING option can ref
erence the line number of an IMAGE statement. Or a format
string may be included in the USING option itself. (For more
information about PRINT USING and IMAGE statements,

23

CMS

Extended BASIC Techniques T

refer to the manual that came with the cartridge, TI Extended =^
BASIC, pages 97-100 and 150.)

Information may be read from any screen location by
means of the ACCEPT statement. ACCEPT follows the same
row and column addressing scheme as does DISPLAY.
ACCEPT can also limit the number of characters typed in. The
SIZE parameter performs this function.

The ACCEPT statement has an option called VALIDATE.
VALIDATE performs editing tasks as the input field is typed
in. You can specify a list of allowable characters. VALIDATE
checks each key, as it is typed, to make sure that the character
is valid. If not, VALIDATE will not accept the character. A
tone will sound to alert the operator that an invalid key has
been pressed. Imagine the programming that this saves.

Now let's see some of the screen formatting statements in
action. Programs 2-8 and 2-9 represent two versions of a
checkbook program. The processing is the same in each pro
gram. Program 2-8 uses conventional PRINT and INPUT
statements. Program 2-9 shows what DISPLAY and ACCEPT
can do.

The checkbook program is a simple one that helps you
with checkbook arithmetic. As such, the program only does
subtraction. Here is how it works. First, you type in the begin
ning balance. Then the program takes you through a series of
steps. Type in a check amount. A new balance will be shown.
Type in a negative number for deposits. Type in zero when
you are finished.

When you run these two programs, you will notice some
difference in how the screen is formatted. Program 2-8 scrolls
the screen up every time it comes to a PRINT or INPUT state
ment. This is visually distracting even for this little program.
DISPLAY and ACCEPT eliminate the scrolling. Program 2-9
has a cleaner overall operation. Now, try this. Type in some
garbage, such as #$G!J, when you're supposed to type in a
check amount. What does Program 2-8 do? How about Pro
gram 2-9? We used the VALIDATE option in Program 2-9,
which will not accept such input. •*»

Program 2-8. Checkbook Adder with PRINT and «,
TXTPT TT I

f£m*l

INPUT

100 REM CHECK BOOK V7ITH PRINT AND INPUT

110 CALL CLEAR :: PRINT "BEGINNING BALANCE"

120 INPUT BALANCE

24

WW

l«twj

fssa

Extended BASIC Techniques

130 CALL CLEAR

140 INPUT "CHECK AMOUNT ":CHECK

150 IF CHECK=0 THEN 190

160 BALANCE=BALANCE-CHECK

170 PRINT :"NEW BALANCE ";BALANCE
180 PRINT :: GOTO 140

190 END

Program 2-9. Checkbook Adder with DISPLAY and
ACCEPT
100 REM CHECK BOOK WITH DISPLAY AND ACCEPT
110 DISPLAY AT(12,1)ERASE ALL:"BEGINNING BALANCE"
120 ACCEPT AT(14f1)VALIDATE(NUMERIC)BEEP:BALANCE
130 DISPLAY AT(12fl):"CHECK AMOUNT"
140 ACCEPT AT(14,1)VALIDATE(NUMERIC)BEEP:CHECK
150 IF CHECK=0 THEN 200

160 BALANCE=BALANCE-CHECK

170 DISPLAY AT(23f1):"NEW BALANCE"
180 DISPLAY AT(23,14):BALANCE
190 GOTO 130

200 END

There are additional features of the ACCEPT and
DISPLAY. Data that may already be on the screen can be
reused by the ACCEPT statement. You do not necessarily
have to retype the data when the same data is repeated. Try
out the short program shown below.

100 DATES = "00/00/00" :: CALL CLEAR
110 DISPLAY AT(2,1) SIZE(8):DATE$
120 ACCEPT AT(2,1) SIZE(-8) VALIDATE(DIGIT,"/

")BEEP:DATE$
130 DISPLAY AT(4,1):"EXPENSE AMOUNT"
140 ACCEPT AT(6,1)VALIDATE(NUMERIC):AMT
150 GOTO 110

This program fragment shows how you can reuse the
value of DATE$. Line 110 displays the contents of DATE$.
Line 120 reads DATE$ back in again. When you run the pro
gram, you'll notice that DATE$ is not erased from the screen.
You could just hit ENTER. Whatever eight-character field was
at row 2, column 1 was assigned to DATE$. This works
because we specified a negative number in the ACCEPT's
SIZE parameter. The negative sign tells ACCEPT not to erase
the place on the screen before reading in another value.

25

Extended BASIC Techniques

CSpffcJ

J

Rather, ACCEPT reads what's there already unless, of course, «
you type in something different.

This is a very handy feature. You will often need to type
in lots of data. Some information changes less frequently than
the rest. Suppose you're entering expenses: Type in an
expense date first, then the category, and then the amount.
Generally, you'll have more than one expense per date. Why
type the date over each time? Why introduce the risk of data
entry errors? When designing your own programs, consider
the techniques that have just been illustrated.

Many times when you're displaying numeric values, it's
necessary to define the number of digits before or after the
decimal point. Figures dealing with money should have two
digits after the decimal point. In other situations, the number
of digits just depends on the particular computations.

The USING option can be included in DISPLAY state
ments. Although the USING option is most frequently used
with numeric variables, it can also be used with character
strings. In the latter case, it just limits the number of charac
ters that will be shown much as the SIZE option does.

Program 2-10 is a miles per gallon calculation program. It
shows the computed results two ways. First, it shows the
miles per gallon without a USING statement. Then it displays
the miles per gallon with a USING statement. The particular
format used is ##.##. This means that there can be a maxi
mum of two digits before the decimal point and two digits
after the decimal point. Experiment with this format. See what
effects it has. You will notice that fractional numbers are
rounded rather than simply truncated.

Program 2*10. Miles Per Gallon
100 REM MILES PER GALLON
110 DISPLAY AT(2,1)ERASE ALL:"BEGINNING MILE READI

NG"

120 ACCEPT AT(4,1)VALIDATE(NUMERIC)BEEP:BEGINMILES
130 DISPLAY AT(2,1):"MILE READING"
140 ACCEPT AT(4,1)VALIDATE(NUMERIC)BEEP:ENDMILES
150 IF ENDMILES=0 THEN 250 «^|
160 DISPLAY AT(6,1):"GALLONS USED"
170 ACCEPT AT(8,1)VALIDATE(NUMERIC)BEEP:GALLONS
180 DISTANCE=ENDMILES-BEGINMILES

190 MPG=DISTANCE/GALLONS
200 BEGINMILES=ENDMILES

210 DISPLAY AT(15,1):"MPG"

-^

26

CSSl

MH8SI

J3HSJ

Extended BASIC Techniques

220 DISPLAY AT(17,1):MPG
230 DISPLAY AT(19,1):USING "##.##":MPG
240 GOTO 130

250 END

Error Trapping
Extended BASIC provides three statements that are used for
intercepting various conditions that may arise when a program
is running:
• ON BREAK,

• ON WARNING, and

• ON ERROR.

Look at your keyboard for a minute. The CLEAR key is
right next to the ERASE key. The ERASE key is handy for
erasing a field from the screen prior to keying in the new
information. Have you ever hit the CLEAR key by mistake?
(To press the CLEAR key, you must hold down the FCTN key
and the 4 key at the same time.) CLEAR interrupts and halts a
BASIC program. This is nice for debugging purposes, but a
real inconvenience when you're running an application.

Try the following small program:

100 GOTO 100

Of course, this program does nothing except run in circles.
After you tire of watching the program, press CLEAR (FCTN-
4). The program stops, as you would expect.

Now, try this variation:

100 ON BREAK NEXT

110 GOTO 110

Start up the program. Press CLEAR (FCTN-4). Nothing hap
pens. The CLEAR key has been disabled. There are only two
ways of stopping the program now. You can press QUIT
(FCTN-=) or turn the power off. In either case, the program
will be lost.

The CLEAR key can be enabled at a strategic point in the
program. Try this:

100 ON BREAK NEXT

110 COUNT=COUNT+l

120 IF COUNT=200 THEN ON BREAK STOP

130 GOTO 110

27

Extended BASIC Techniques

This program cannot be stopped until its critical process- «
ing is finished. Once that is done, the program will let itself be
interrupted. The ON BREAK STOP enables the CLEAR key
again.

Most of the programs in this book use the ON BREAK
NEXT statement at the beginning of the program. The main
reason for this is to make sure the program keeps running
even if CLEAR is pushed. These programs also give you a way
of returning to Extended BASIC short of pulling the plug.

In the section on screen formatting, we looked at the
VALIDATE option of the ACCEPT statement. VALIDATE
checks characters as they are typed in. Here is another
experiment.

100 CALL CLEAR
110 ACCEPT AT(12,1)VALIDATE(NUMERIC):NUMB
120 DISPLAY AT(14,1):NUMB
130 GOTO 110

When you run this program, you will not be able to key
in nonnumeric characters. Try just hitting ENTER. A warning
message indicating an input error appears on the screen. Type
123.45.67. It is obvious that this is not a valid number because
it has two decimal points. However, this type of error is not
caught by VALIDATE. Instead, the TI displays a warning mes
sage. This message indicates that a string-number mismatch
has occurred. In the case of either of these errors, your pro
gram keeps running and you can type in the number again.
However, the warning messages have probably made a mess
of your nicely formatted screen.

Here is a way around this.

100 CALL CLEAR
110 ON WARNING NEXT
120 ACCEPT AT(12,1)VALIDATE(NUMERIC):NUMB
130 DISPLAY AT(14,1):NUMB
140 GOTO 120

Run this program. Type ENTER, and then try typing
123.45.67. The warning messages are gone. The cursor stays =}
right at the input field. The input is not accepted until a valid
number is typed. "^

Try entering this number—123.E7. Notice that the
VALIDATE(NUMERIC) will accept scientific notation. •»

There are two other variations of the ON WARNING

fwKI

Extended BASIC Techniques

^ statement. ON WARNING PRINT will cause the warning
messages to be printed as they normally are. ON WARNING
STOP will make the program stop when a warning condition
arises.

Sometimes serious errors can crop up when a program is
running. An example of this is giving the VAL function a non-
numeric argument. Extended BASIC stops the program when
errors occur. There is a way to prevent Extended BASIC from
stopping the program when such an error occurs.
ON ERROR line number

When an error occurs, control will be passed to the given
line number. The program can analyze the error with the
CALL ERR subprogram. Where possible, corrective action can
be taken.

The error-handling subroutine must issue a RETURN in
order for the program to resume. After an error is detected,
Extended BASIC defaults to ON ERROR STOP. If you want
the program to continue intercepting errors, another ON
ERROR statement must be executed.

ON BREAK and ON WARNING can improve the opera
tion of a program. They eliminate the effects of common
warning conditions, and they make a program easier to use
because the program becomes very forgiving of common data
entry problems. If you want to add ON BREAK and ON
WARNING to a program it is best to add them after you are
completely satisfied that the program is working as it should.
ON BREAK and ON WARNING remove valuable debugging
capabilities and information.

Even though ON BREAK and ON WARNING appear in
the program listings in this book, it is best to enter them only
after you are sure the program runs properly.

Program Design
When you're designing a program, the first thing you must
decide is what specific results you're aiming for. The result of
a program is its output. The outputs may be a printed report, a

ps display screen, or even a file on cassette tape. Every output
has some particular arrangement of data.

om By analyzing the output, a program design can be devel-
L oped. If a program achieves the desired output, the program
pw works. The desired output is your objective when you design

29

L

Extended BASIC Techniques **\

a program. If the design of the program achieves these objec
tives, you know the design is correct. Once the actual program ^
does what you aimed for, you know it's finished.

You may be wondering about input to the program. Well,
input comes about as a natural result of the design. Only
when you know what the program must do, will you know
what inputs are necessary.

This way of thinking is not so far-fetched. Consider the
task of building a house. What style of house do we want?
Will it be a split-level or a colonial? Will it have an attached
garage? Once these overall decisions are made, the architect
can concentrate on the finer details such as the number of
rooms, the layout of the kitchen, and so on. Eventually a point
is reached when the lumber and nails can be ordered.

Imagine building a house without a plan. One day a truck
shows up with a pile of lumber and a tin of nails. The carpen
ters begin their work and complete the house. Will anyone be
pleased with the results? Since the desired results were not
established beforehand, how will anyone know whether the
builders built what was desired?

A floor plan or blueprint documents the internal structure
of the house. A flowchart does the same thing for programs.
Both types of documents are prepared as part of the design
process.

Figure 2-1 shows a sample flowchart. Each box on the
chart represents a group of related program statements. The
statements are related in that they are working together to
perform one particular function. In practice, the statements
may actually be a subroutine or a subprogram.

The flowchart in Figure 2-1 is typical of the programs in
this book. The program begins by dimensioning arrays and
intializing variables. Many programs are menu-driven. This
means that the program gives the user a choice of functions
that can be performed. A box on the chart shows the menu
display.

The person using the program can choose any one of the
functions from the menu screen. Thus, several boxes are
shown below the menu box. These boxes represent the various ^
functions. Some of these functions may be very simple and
self-contained. Other functions, however, may be more in- ""j
volved. Perhaps they require subfunctions. If so, the
subfunctions are shown as a box or boxes below the function. CB*J

30

Extended BASIC Techniques

So the flowchart performs a function similar to the floor
plan: The floor plan shows the interior architecture of a house,
and the flowchart shows the interior architecture of a program.
Neither the floor plan nor the flowchart shows every little
detail.

Since menu screens are used so often, a sample menu
subprogram has been included below (Program 2-11). The
menu subprogram is a very general one. The title of the menu
and the list and number of functions are passed as parameters.
The menu program gives you back a function code. The func
tion code is the number of the selection that was chosen. The
function code will be set to zero if the operator typed ENTER
instead of a selection number.

Figure 2-1. Sample Program Flowchart

Main Program

Menu

Function 1 Function 2

Subfuncrion 1-1 Subfunction 1-2

Function 3

Program 2-11. Menu Subprograms
100 REM MENU SUBPROGRAM
110 DIM SELECT?(5)
120 DATA 3

130 DATA "FUNCTION 1"f"FUNCTION 2","FUNCTION 3"
140 RESTORE 120

150 READ N :: FOR 1=1 TO N :: READ SELECT$(l):: NE
XT I

160 CALL MENU("MAIN MENU",SELECT$(),N,FUNC)
170 IF FUNC=0 THEN 190 ELSE IF FUNC=1 THEN GOSUB 2

00

31

Extended BASIC Techniques -«|

I

180 GOTO 140

190 END '
200 REM SUB FUNCTION

210 DATA 2
220 DATA "SUB FUNCTION 1","SUB FUNCTION 2"
230 RESTORE 210
240 READ N :: FOR 1=1 TO N :: READ SELECT$(l):: NE

XT I

250 CALL MENU("SUB FUNCTION MENU",SELECT?(),N,FUNC
)

260 RETURN

270 SUB MENU(TITLE?,CHOICE?(),N,FUNC)
280 C=(28-LEN(TITLE$))/2
290 DISPLAY AT(1,C)ERASE ALL:TITLE?
300 DISPLAY AT(4,1): "DO YOU V7ANT: "
310 R=6 :: FOR 1=1 TO N
320 DISPLAY AT(R,1):CH0ICE?(I):: R=R+2
330 NEXT I

340 R=R+1

350 DISPLAY AT(R,1)BEEP:"TYPE YOUR SELECTION -> "
360 CALL KEY(0,R2,S):: IF S<>1 THEN 360
370 IF R2=13 THEN FUNC=0 :: GOTO 400
380 IF R2<49 OR R2>48+N THEN 350
390 FUNC=R2-48 :: DISPLAY AT(R,24)SIZE(1):CHR?(R2)
400 SUBEND

32

%mvtm

F^£\

ile Management applications can be developed for a
system that consists of the 99/4A console, a TV or
video monitor, and a tape recorder for program stor

age. Such applications accept input from the keyboard, do
some calculations, and then display the results. The gas mile
age program in the last chapter is a good example.

However, the more useful home applications take advan
tage of the computer's ability to store data and subsequently
retrieve it. In this way, the tedious task of typing in data every
time it is needed is avoided. Moreover, a permanent record of
important information can be retained.

The 99/4A can use a variety of hardware devices for data
storage. A cassette recorder or disk drive is the device most
commonly used for data storage. In addition, a printed report
can also be thought of as a storage medium. The main limita
tion of a printed report is that the computer cannot automati
cally read a report—at least not yet. So a printed report works
in only one direction. It is a write only storage medium.

This chapter will look at ways that you can use Extended
BASIC and the 99/4A for data storage and retrieval, or data
management for short. The data management capabilities of TI
BASIC and Extended BASIC are almost identical. Extended
BASIC adds only a few new statements to the 99/4A's file
management repertoire. So the basis of what is covered in this
chapter can be found in the TI BASIC manual.

Fields, Records, and Files
Before discussing the details, let's briefly define these three
important terms.

Field. A field is an item of data which cannot be further

subdivided. In a program, a field will consist of a numeric or
string variable. Examples of fields are expense category and
expense amount. Sometimes the term data element is used in
place of field.

Record. A record is a group of related fields. Generally, a
record is created by a PRINT statement. An INPUT statement
reads the record. A record may also be viewed as that unit of

35

DEH

File Management

information transferred from or to the computer with an out- «
put or input operation. —

File. A file is a collection of records. Typically, a file is
stored on an external device such as a disk. Before any records
can be read from or written to the file, the file must be opened
with an OPEN statement. This establishes the software
connection between the program and the device. Similarly, a
file must be closed when the program is finished with it. The
CLOSE statement does this. It breaks the connection between
the device and the program.

Program Files
The simplest kinds of files on the TI are program files. A pro
gram file is created with a SAVE statement:

SAVE CS1
or

SAVE DSK1.PROGRAM

The SAVE command writes a copy of the program to the
specified output device. The program remains intact in mem
ory. The 99/4A takes care of opening and closing the output
device.

The OLD command reads a program from the specified
device into the console's memory. The program is then set to
run. Again, there is no need for an OPEN or CLOSE
statement.

Program files are stored in a special format that makes
sense only to the 99/4A. It is difficult to print program files.

The LIST command converts a program back into a for
mat that is easily understood. The LIST command can be used
as a way of sending the program to an external device:
LIST "RS232.BA=1200"

LIST "CS1"
LIST "DSK1.PGMLIST"

The first LIST sends the program to the RS232 device. If
there is a printer attached to the RS232 device, the program in
memory will be printed. The second and third LISTs make a _
permanent copy of the program on magnetic media. In all
three cases, the program has been converted to ASCII «
(DISPLAY) format. This is the form of the program that is eas- - '
ily understood by people. «

Why LIST (rather than SAVE) a program on tape or

[Srcnil

File Management

diskette? A LISTed program file can be mainpulated as though
it were an ordinary data file. For example, a LISTed program
can be accessed by a word processing program such as
Tl-Writer. Thus, a program listing can be included as part of a
document.

The RUN statement can also be used with program files.
Extended BASIC allows a program to be RUN from another
program. This is very handy when working with programs
that will not fit in memory all at once. Unfortunately, one pro
gram's variables cannot easily be passed to another program.
The variables must be passed by means of a data file.

Here is an example of this.

100 REM PROGRAM-A

110 PRINT "IN PROGRAM-A"
120 RUN "DSK1.PROGRAM-B"

100 REM PROGRAM-B

110 PRINT "IN PROGRAM-B"
120 RUN "DSK1.PROGRAM-C"

110REMPROGRAM-C
110 PRINT "IN PROGRAM-C"
120 RUN "DSK1.PROGRAM-A"

There are three programs—PROGRAM-A, PROGRAM-B,
and PROGRAM-C. Save each of them separately on disk.
Then run PROGRAM-A. It will start up PROGRAM-B which
will start up PROGRAM-C which will start up PROGRAM-A.
This will continue until you stop it with a FCTN-4 (CLEAR) or
FCTN-= (QUIT).

You can, under program control, run a program from tape
as well.

100 RUN "CS1"

When line 100 is executed in a program, the familiar tape
load instructions will appear on the screen. Position the tape
to the program that you want. Then follow the rest of the
instructions.

Data Files

The 99/4A's built-in data management software will work
with a variety of devices. The data management facilities also
offer several different ways of organizing files and records. All
these features add up to a very flexible data management system.

37

ISSB

File Management "1

You can set up data files for practically any kind of home —
application. —

One disadvantage, though, of such flexibility is that there
are so many options that it is difficult to know where to begin.
The rest of this section will be devoted to several aspects of
data management and will present programs that illustrate file
management techniques.

The OPEN statement in a TI BASIC or Extended BASIC
program establishes a link between a program and a file.
Many of the characteristics of the file are specified by means
of the OPEN statement.

File organization. TI files may be either SEQUENTIAL or
RELATIVE. Records in a sequential file are always accessed
one after another; therefore, they must be read in order. If you
are interested only in the twenty-first record, you still must
read records 1-20 first. Records in a relative file may be
accessed directly. If you want the twenty-first record, you can
retrieve it alone. There is no need to read through preceding
records.

File type. Records may be stored in a file that is either in
binary or ASCII format. An INTERNAL file is one in which all
the records are in binary format. Since the records are in
binary format, they are readily understood by the computer.
Thus, INTERNAL files may be processed a little more quickly.
A DISPLAY file is a file that contains records that are in ASCII
format. This is the format that is readable by people.
DISPLAY format files are suitable for printing or for being dis
played on a TV.

Open mode. There are four ways of treating a file.
• INPUT. If it is necessary only to read records from a file, the

file should be open with INPUT. This tells the computer that
the file will not be changed.

• OUTPUT. An OUTPUT file is used to write records. There
will be no reading or changing of records. Generally, a file is
opened as OUTPUT when it is first created.

• APPEND. Opening a file as APPEND allows you to add
records at the end of an existing file. Records at the front of •=]
the file cannot be accessed in any way in the APPEND
mode. ""j

• UPDATE. In the UPDATE mode, records can be read,
changed, and written. The type of file processing intended ^
will determine the open mode that should be used.

38

File Management

gm Record type. If all the records in a file are the same
length, the file is said to consist of FIXED length records. On
the other hand, the records may be of different lengths. The
file then consists of VARIABLE length records.

Variable length records generally use storage space more
efficiently. Only the exact amount of storage needed is used.
Sometimes fixed length records are padded with extra
characters, thereby taking up some additional storage space.
However, relative files must contain fixed length records.

Storage Devices
These are the different options that can be specified for a file
in the OPEN statement. Not all devices will work with all the
open options.

Disk. All of the options can be used with the disk system.
The choice of options really depends on the design of any
given application. If you are writing files that will be used by
another program, you must write the file in a format that the
program will accept. For example, the Editor/Assembler
expects records in DISPLAY (ASCII) format in either fixed or
variable length.

Cassette. Cassette files have a narrower range of available
options. Cassette files must be SEQUENTIAL. They can be
opened for either INPUT or OUTPUT. The record length must
be FIXED. Furthermore, there are only three choices for the
record length. The record length must be 64, 128, or 192.

RS232. The only restriction for files using the RS232 inter
face is that they must be SEQUENTIAL. All the other
options are available. Remember though, the device that you
connect to the RS232 interface may impose some additional
restrictions. For example, a printer should be opened with a
file type of DISPLAY in the OUTPUT mode. Since each
printed line may contain a different number of characters,
printers usually accept variable length records.

The OPEN statement serves another important purpose in
addition to establishing the file characteristics. The OPEN

p, statement defines the file number and filename. The file is
made known to the program by its file number, a number

p, from 1 to 255. The PRINT, INPUT, and CLOSE statements all
refer to the file by file number rather than filename. This has a

pn very important benefit. Suppose a program's function is to
print a report. Say the output file is assigned file number 10.

|!,4KI

39

Urnfitl

File Management

Later on, only the OPEN statement needs to be changed in ^
order that file number 10 be written to a disk. No other line of „J
the program will require change. The program can write to
different output devices just by changing the OPEN statement.

The filename actually consists of the device name, which
may or may not be followed by the name of the file. All
devices have a Tl-assigned device name such as CS1 or DSK1.
Only disk files have the name of the file after the
device name—DSK1.PAYROLL, for example. Cassette and
RS232 files simply use the device name.

Sequential File Examples
Sequential files are perfectly suited for processing lists of
information. A list is first made by adding items one at a time
to the end of the list. Later on, it may be alphabetized or some
items may be changed. In any case, the entire list is processed
from the beginning to the end. Agood example is a name and
address list. It contains entries for relatives and friends. Each
entry will have the person's name, address, and perhaps
birthday.

Programs 3-1 and 3-2 show how the 99/4A can be used
for maintaining a computerized name and address list. Pro
gram 3-1 builds the name and address file. The program is a
data entry program. It is designed so that it can be used to
help you convert your manual records to computer records.
After you have built the initial computer file, you will no
longer need Program 3-1. However, people have been known
to change their addresses from time to time. You would cer
tainly like to keep your name and address list up-to-date. Pro
gram 3-2 is an update program that can be used for correcting
entries. It can also add new entries to the file.

These two programs treat the name and address list as a
SEQUENTIAL file. The file is stored in INTERNAL format.
Each record is organized as follows:
Item Maximum Length
Record Number 9
Name 26
Address Line 1 26 . 1
Address Line 2 26 B
Address Line 3 26
Birthday 9

122

40

fir^l

File Management

_ Included in each of the field lengths is the one-byte
L length code that TI adds for INTERNAL format files. For

example, the maximum length of a name is 25 characters. The
SIZE option on the ACCEPT statement establishes this limit.
Then, one byte is added for the length code. Thus, the name
field can actually be up to 26 characters long.

Programs 3-1 and 3-2 use cassette storage. This forces us
to use FIXED length records. The record length of 128 is speci
fied in the OPEN statements. That is the best fit that can be
obtained given a maximum record length of 122. The file
management system will add a minimum of six pad charac
ters. This is done in order to bring the actual record length to
128.

What happens if you don't type in all of these items?
Suppose you leave out two address lines and a birthday for a
particular person. Yes, the actual data will be less than 128
characters. The 99/4A will automatically make up the dif
ference by adding pad characters so that the record length
comes up to 128.

If Programs 3-1 and 3-2 had been written for disk opera
tion, we could have used VARIABLE length records. In that
case, there would be no padding of the records. The actual
record lengths would be used. The space used on a diskette,
then, would be strictly that required by the data.

Program 3-1 builds the initial name and address file. At
the beginning of the program, an OPEN statement establishes
file number 1 as an output file. The individual data items are
read from the screen. Then they are written to the output file
with a PRINT # statement:

PRINT #1 :
RECNO;NAME#;ADDRl$;ADDR2$;ADDR3$;BIRTH$

This single PRINT # statement writes 128 characters of
data to the cassette output device.

This process of reading from the screen and writing to
tape continues until the file has been built. Notice that the last
record written is a special one:

P"8 99999;"ZZZ";"ZZZ";//ZZZ";//ZZZ";"ZZZ"
pm This record is a marker. It marks the end of the file. There

are no more records after this one.
pm When using this program, type in the information for

41

File Management
feEfT'yJ

each field. Once you've finished one complete entry, the pro-
gram will recycle and you can enter another name. When you TJ
come to the end of your list and have no more names to enter,
simply type END instead of a name and press RETURN.

Program 3-2 is a little more involved. It begins by reading
each record from the file. The information is displayed on the
screen. You have the option of changing, deleting, or keeping
the information. If you decide to keep the record, the fields are
stored in arrays. Then the next record is read. This record-by-
record process continues until the entire file has been read.
Note the check for the end-of-file marker.

At this point, you have the option of adding more entries
to the file. If you choose to do so, the information will be read
from the screen and also stored in the arrays in memory.

When you are all finished, the arrays will be written back
to tape. This gives you an updated version of the name and
address file.

Program 3-2 uses file number 1 as both an input and an
output file. This is accomplished by first using file number 1
as an input file. The file is opened, the records are read, and
then the file is closed. File number 1 can only be used as an
output file after it is finished being used as an input file.
Notice how Program 3-2 reads an input record:

INPUT #1:R,NAME$;ADDR1$;ADDR2$;ADDR3$;BIRTH$

The six variables are read in with the INPUT # statement.
The variable list corresponds with the number and type of
variables that were used in the PRINT # statement that cre
ated the file. This is necessary in order for the program to
work properly. Different variable names can be used in the
INPUT # statement, but the variable types must agree.

These two programs cover the fundamentals of sequential
file processing. You can use these programs as the starting
point for your own name and address system. Maybe these
programs are fine the way they are. Perhaps you would like to
try your hand at manipulating the name and address file. Here
are some ideas. Can you write a program that will alphabetize
the names? What do you think about printing mailing labels ""J
from the files? Do you have a need for expanding the record
to include wedding anniversary dates, for example? ^

42 "1

i

(:Si!WI

f^l

File Management

Program 3-1. Build Name List
100 REM BUILD NAME LIST

110 RECNO=0

120 CALL CLEAR

130 OPEN #1:"CS1",OUTPUT,INTERNAL,FIXED 128
140 DISPLAY AT(1,8)ERASE ALL:"BUILD NAME LIST"
150 DISPLAY AT(3,1):"NAME":">"
160 DISPLAY AT(7,1):"ADDRESS": ">":">": ">"
170 DISPLAY AT(13,1):"BIRTHDAY":">"
180 DISPLAY AT(20,1):"RECORD NUMBER"
190 DISPLAY AT(22,1):"O.K. (Y OR N)?"
200 ACCEPT AT(4,4)SIZE(-25)BEEP:NAME$:: IF NAME$=

"" THEN 200

210 IF NAME$="END" OR NAME$="end" THEN 340
220 ACCEPT AT(8,4)SIZE(-25)BEEP:ADDR1$
230 ACCEPT AT(9,4)SIZE(-25)BEEP:ADDR2$
240 ACCEPT AT(10,4)SIZE(-25)BEEP:ADDR3$
250 ACCEPT AT(14,4)SIZE(-8)BEEP:BIRTH$
260 DISPLAY AT(20,15):RECNO
270 ACCEPT AT(22,16)SIZE(1)VALIDATE("YN")BEEP:R$:

: IF R$="" THEN 270
280 IF R$="N" THEN 200
290 DISPLAY AT(24,1)BEEP:"WORKING ..."
300 PRINT #1:RECN0;NAME$;ADDR1$?ADDR2$;ADDR3$;BIRT

H$
310 RECNO=RECNO+l

320 DISPLAY AT(24,1):" "
330 GOTO 200

340 PRINT #1:99999;"ZZZ";"ZZZ";"ZZZ";"ZZZ";"ZZZ"
350 CALL CLEAR :: CLOSE #1 :: CALL CLEAR

360 END

Program 3-2. Update Name List
100 REM UPDATE NAME LIST

110 MAXN=50 :: RECNO,P=0
120 DIM NAMES$(50),ADDRS$(50,2),BDAYS$(50)
130 CALL CLEAR :: PRINT "** INSERT INPUT TAPE **"
140 OPEN #1:"CS1",INPUT ,INTERNAL,FIXED 128
150 DISPLAY AT(1,7)ERASE ALL:"UPDATE NAME LIST"
160 DISPLAY AT(3,1):"NAME":">"
170 DISPLAY AT(6,1):"ADDRESS": ">":">": ">"
180 DISPLAY AT(11,1):"BIRTHDAY":">"
190 DISPLAY AT(15,1):"PRESS:"
200 DISPLAY AT(17,2):"C - CHANGE ENTRY"
210 DISPLAY AT(18,2):"D - DELETE ENTRY"
220 DISPLAY AT(19,2):"K - KEEP ENTRY"
230 DISPLAY AT(22,l):"RECORD NUMBER"

43

File Management ="]

240 REM LOAD ARRAY

250 DISPLAY AT(22,15):RECNO ™\
260 DISPLAY AT(24,1)BEEP:"WORKING ..."
270 INPUT #1:R,NAME$,ADDR1$,ADDR2$,ADDR3$,BIRTH$
280 DISPLAY AT(24,1):" "
290 IF R=99999 THEN 440

300 REM DISPLAY RECORD

310 DISPLAY AT(4,4):NAME$
320 DISPLAY AT(7,4):ADDR1$
330 DISPLAY AT(8,4):ADDR2$
340 DISPLAY AT(9,4):ADDR3$
350 DISPLAY AT(12,4):BIRTH$
360 RECNO=RECNO+l

370 PEM GET UPDATE OPTION

380 ACCEPT AT(15,8)SIZE(1)VALIDATE("CDK")BEEP:R$
390 IF R$="" THEN 380
400 IF R$="D" THEN 240
410 IF R$="C" THEN GOSUB 780 :: GOTO 370
420 GOSUB 690

430 GOTO 240

440 REM END OF INPUT - ASK FOR ADDS

450 DISPLAY AT(4,4):" " :: DISPLAY AT(7,4):" " ::
DISPLAY AT(8,4)

460 DISPLAY AT(9,4)
470 FOR 1=15 TO 24

I

480 DISPLAY AT(15,1):"ADD RECORDS (Y OR N)?"
490 ACCEPT AT(15,23)SIZE(1)VALIDATE("YN")BEEP:R$:

: IF R$="" THEN 490
500 IF R$="N" THEN 580
510 PEM ADD RECORDS

520 DISPLAY AT(22,1):"O.K. (Y OR N)?"
530 GOSUB 780 :: IF NAME$="END" OR NAME$="end" THE

N 580

540 ACCEPT AT(22,16)SIZE(1)VALIDATE("YN")BEEP:R$:
: IF R$="" THEN 540

550 IF R$="N" THEN 530
560 GOSUB 690 1STORE ENTRIES

570 GOTO 510

580 REM V7RITE TO TAPE

590 CALL CLEAR :: PRINT "** REMOVE INPUT TAPE **"
:: CLOSE #1

600 CALL CLEAR :: PRINT "** INSERT OUTPUT TAPE **"
:: OPEN #1: "CSl" ,OUTPUT, INTERNAL, FIXED 128 ~"J

610 DISPLAY AT(12,1)ERASE ALL:"WRITING RECORD "
620 FOR 1=0 TO P-l «|
630 DISPLAY AT(12,16):I
640 PRINT #1:I;NAMES$(I);ADDRS$(I,0);ADDRS$(I,1)?A

DDRS$(I,2);BDAYS$(I) I

44

" :: DISPLAY AT(12,4):" "
DISPLAY AT(I,1):" " :: NEXT

fcsm

File Management

650 NEXT I

660 PRINT #1:99999;"ZZZ";"ZZZ";"ZZZ";"ZZZ";"ZZZ"
670 CLOSE #1 :: CALL CLEAR

680 END

690 REM STORE ENTRIES

700 IF P>MAXN THEN DISPLAY AT(24,1):"TABLE FULL"
: GOTO 770

710 NAMES$(P)=NAME$
720 ADDRS$(P,0)=ADDR1$
730 ADDRS$(P,1)=ADDR2$
740 ADDRS$(P,2)=ADDR3$
750 BDAYS$(P)=BIRTH$
760 P=P+1

770 RETURN

780 REM READ SCREEN

790 ACCEPT AT(4,4)SIZE(-25)BEEP:NAME$:: IF NAME$=
"" THEN 790

800 IF NAME$="FND" OR NAME$="end" THEN 850
810 ACCEPT AT(7,4)SIZE(-25)BEEP:ADDP1$
820 ACCEPT AT(8,4)SIZE(-25)BEEP:ADDR2$
830 ACCEPT AT(9,4)SIZE(-25)BEEP:ADDR3$
840 ACCEPT AT(12,4)SIZE(-8)BEEP:BIRTH$
850 RETURN

Relative File Examples
The RELATIVE type of file organization will only work with
a disk system. Each record in a RELATIVE file must be of
FIXED length. Records in the file are accessed by record
number. The record number may range from 0 to 32767.
Thus, there can be a maximum of 32768 records in a
RELATIVE file.

The OPEN statement for a relative file will specify
RELATIVE as the file organization. The REC clause of the
INPUT # and PRINT # statements specifies the number of
the record to be accessed. The REC clause may contain an
arithmetic expression. Therefore, it is possible to compute a
record number according to some formula. The desired
record will then be read or written. Sometimes the phrase
random access is used to describe this method of input and
output. This is because the records can be accessed in any,
hence random, order.

Even though the OPEN statement says RELATIVE,
records may also be accessed sequentially. When the file is
opened, the record number is set to zero. An INPUT # or
PRINT # without a REC clause will access the record and

45

File Management =^]

then increment the record number. Thus, you can treat a
RELATIVE file as though it were a sequential file.

You can modify the name and address list programs so
that they will work with RELATIVE files. Program 3-3 uses
the name and address cassette file as input. The program
writes the records to a RELATIVE file called NAMEADDR.

The PRINT # statement uses the REC clause. The data
records are written beginning with record number one. The
program adds one to the record number after each PRINT #.
Notice that the record number is also included in the PRINT
statement as part of the data. This is just good practice. It
gives us a way of double-checking INPUT # statements. To
make sure the proper record was read, compare the record's
record number to the record number in the REC clause.

Program 3-3 treats record zero differently. The program
puts the actual number of records in the file in record zero.
This is a good technique. You can test a computed record
number against the number of records that you know are in
the file. If the computer record number is larger, that may
indicate a problem with the calculation.

Program 3-4 shows how to update the information in the
file NAMEADDR. The program begins by reading record
zero and obtaining the number of records in the file. Next,
the program begins the update cycle. The program asks for a
record number. The record number is tested to see if it is
within the proper limits. If it is, the record is retrieved and
displayed. You can either change it or leave it the way it is.
The process continues until you type Q, indicating that you
are ready to quit.

Program 3-4 does not have a delete function. If you want
to remove a name from the list, just blank it out with the
ERASE key and use the change function. The particular
record will still be on the file. It can, however, be used for
another name.

Look at the way records are added to the file. First, one
must be added to the number of records on the file. This
updated count will be used in the REC clause of a PRINT #
statement. Thus, the new record is placed at the end of the
file.

When the update process is finished, record zero must be ""!
rewritten to the file because records may have been added.
The record counter must agree with the number of records *"]

46 H

FPC3

File Management

on the file. Otherwise, the check on the record number may
f"3 prevent us from retrieving the new records.

RELATIVE files have several advantages. As Program 3-4
shows, you need to retrieve only those records that must be
updated. You do not have to look at each record on the file,
as you did in Program 3-2. If you have a disk system and
have tried this program, you probably noticed how quickly
records can be retrieved and updated. This is another
characteristic of RELATIVE files.

There is a disadvantage, too. Suppose you had 100 entries
on file. How could you ever remember which record number
was associated with what person? Periodically, you would
need to print a list of names and record numbers.

Program 3-3. Load Relative File
100 REM LOAD RELATIVE FILE
110 RECN0=1

120 CALL CLEAR

130 OPEN #1:"CS1",INPUT ,INTERNAL,FIXED 128
140 OPEN #2:"DSKl.NAMEADDR",RELATIVE,OUTPUT,INTERN

AL,FIXED 128
150 DISPLAY AT(12,1)ERASE ALL:"RECORD NUMBER "
160 INPUT #1:R,NAME$,ADDR1$,ADDR2$,ADDR3$,BIRTH$
170 IF R=99999 THEN 220

180 DISPLAY AT(12,15):RECNO
190 PRINT #2,REC RECNO:RECNO;NAME$rADDRl$;ADDR2$;A

DDR3$;BIRTH$
200 RECNO=RECNO+l

210 GOTO 160

220 PRINT #2,REC 0:0;STR$(RECNO-1);" ";" ";" ";" "
230 CALL CLEAR

240 CLOSE #2

250 CLOSE #1

260 CALL CLEAR

270 END

Program 3*4. Update Relative File
100 REM UPDATE RELATIVE FILE

110 CALL CLEAR :: ON WARNING NEXT

120 OPEN #1:"DSKl.NAMEADDR",RELATIVE,INTERNAL,UPDA
TE,FIXED 128

mm 130 INPUT #1,REC 0:R,N$,T1$,T2$,T3$,T4$
140 MAXREC=VAL(N$)

mm 150 DISPLAY AT(1,7)ERASE ALL:"UPDATE NAME LIST"
160 DISPLAY AT(3,1):"NAME":">"

47

<WjSJ

File Management ^

170 DISPLAY AT(6,1):"ADDRESS": ">":">": ">"
180 DISPLAY AT(11,1):"BIRTHDAY":">" H
190 DISPLAY AT(15,1):"PRESS:"
200 DISPLAY AT(17,2):"A - ADD ENTRY"
210 DISPLAY AT(18,2):"C - CHANGE ENTRY"
220 DISPLAY AT(19,2):"K - KEEP ENTRY"
230 DISPLAY AT(20,2):"Q - QUIT"
240 DISPLAY AT(22,1):"RECORD NUMBER"
250 REM INPUT A RECORD
260 ACCEPT AT(22,15)VALIDATE(DIGIT)SIZE(5)BEEP:REC

NO

270 IF RECN0<1 OR RECNO>MAXREC THEN 260
280 INPUT #1,REC RECNO:R,NAME$,ADDRl$,ADDR2$,ADDR3

$,BIRTH?
290 REM DISPLAY RECORD

300 DISPLAY AT(4,4):NAME$
310 DISPLAY AT(7,4):ADDRl?
320 DISPLAY AT(8,4):ADDR2?
330 DISPLAY AT(9,4):ADDR3?
340 DISPLAY AT(12,4):BIRTH?
350 REM GET UPDATE OPTION

360 ACCEPT AT(15,8)SIZE(1)VALIDATE("ACKQ")BEEP:R?
370 IF R?="" THEN 360
380 IF R?="A" THEN GOSUB 470 :: GOTO 350
390 IF R?="C" THEN GOSUB 570 :: GOSUB 540 :: GOTO

250

400 IF R?="K" THEN 250
410 IF R?="Q" THEN 420
420 REM CLOSE FILES

430 PRINT #1,REC 0:0;STR?(MAXREC);" ";" ";" ";" "
440 CLOSE #1
450 CALL CLEAR

460 END

470 REM ADD A RECORD

480 GOSUB 570 IREAD SCREEN

490 MAXREC=MAXREC+1

500 RECNO=MAXREC

510 DISPLAY AT(22,15):RECNO
520 GOSUB 540 IPRINT RECORD

530 RETURN

540 REM PRINT A RECORD

550 PRINT #1,REC RECNO:RECNO;NAME?;ADDRl?;ADDR2?;A
DDR3?;BIRTH?

560 RETURN "=5
570 REM READ SCREEN

580 ACCEPT AT(4,4)SIZE(-25)BEEP:NAME? :: IF NAME?= «
"" THEN 580 ••'

590 IF NAME?="END" OR NAME?="end" THEN 640
600 ACCEPT AT(7,4)SIZE(-25)BEEP:ADDR1? 1

48
K-uWA

File Management

610 ACCEPT AT(8,4)SIZE(-25)BEEP:ADDR2?
f* 620 ACCEPT AT(9,4)SIZE(-25)BEEP:ADDR3?

630 ACCEPT AT(12,4)SIZE(-8)BEEP:BIRTH?
640 RETURN

Indexed File Examples
In the last section, it was pointed out that RELATIVE files
could be a little inconvenient to use. Before a particular
name and address can be accessed, it is necessary to know
the proper record number. Needless to say, nobody will
even attempt to memorize record numbers. It is best to keep
a printout of the file handy.

With a little additional effort, this problem can be over
come. The computer will keep track of the record numbers
for all the individuals on file. Essentially, the computer will
be maintaining an index. So, if you supply the name of a
person, the computer will be able to look up the appropriate
record number. Then it can retrieve the record you want.

This type of file is called an indexed file. The 99/4A does
not have an INDEXED option for the file organization.
Instead, a SEQUENTIAL file for the index and a RELATIVE
file for the data will be used.

Program 3-5 shows the index file load program for the
name and address information. Two arrays are defined in
the program. NAMEINDEX$ contains a list of all the names
on file. RECNOINDEX contains the record number asso
ciated with each name. As each record is written to the
RELATIVE file, an entry is recorded in NAMEINDEX$ and
RECNOINDEX.

After the RELATIVE file NAMEADDR has been built, the
index file XNAMEADDR is written. The first record contains
a count of the number of records in the index file. The
succeeding records contain a name and a record number. For
every record on the RELATIVE file, there will be one record
in the index file. This is critical. If you cannot find a name in
the index, you will not be able to find a record number.
Thus, you have to assume that the record is simply not

f" present on the RELATIVE file.
Program 3-6 shows the indexed file update program. This

«•» program works almost identically to the RELATIVE file
update program. However, Program 3-6 asks for a name

w» instead of a record number. You can still change information
and add new records.

f^Sffll
49

r^fgj

MB

File Management «j

t

One of the first things that Program 3-6 does is to read
the index file XNAMEADDR. The names and record num- ^
bers are stored in the arrays NAMEINDEX$ and
RECNOINDEX. These arrays are referenced in several dif
ferent situations.

When you're retrieving a record, NAMEINDEX$ is
searched. If the name is found, then its corresponding record
number is used. If the name is not in NAMEINDEX$, the
program will ask you to retype the name for which you are
looking. The name you type in must match character for
character one of the entries in NAMEINDEX$. So be careful
of punctuation and spaces—they count, too.

Before a record is added, NAMEINDEX$ is searched
again. This time, if the name is found, there is an error. An
attempt has been made to add a duplicate record. Program
3-6 won't let you put the same person in the file more than
once. The program will ask you to retype the name.

NAMEINDEX$ and RECNOINDEX$ are updated when
ever a record is added or changed. When records are added,
the new names and record numbers are stored in the arrays.
The same thing is done when a record is changed. You're
right; a change will not affect the record number. The name
may change, so NAMEINDEX$ is updated. Just to be sure,
RECNOINDEX is also updated.

When the update cycle is complete, the arrays
NAMEINDEX$ and RECNOINDEX are written back to disk.
The file XNAMEADDR is written again. It reflects new
records and name changes. It remains synchronized with the
RELATIVE file NAMEADDR.

A combination of SEQUENTIAL and RELATIVE files
gives us an INDEXED type of file organization. Indexed files
are easier to work with from the point of view of the person
using the program. The requirement for learning or looking
up record numbers is gone. The computer does this by
means of an index file.

Program 3*5. Load Indexed File «i
100 REM LOAD INDEXED FILE

110 DIM NAMEINDEX?(100),RECNOINDEX(100) «i
120 RECNO=l]
130 CALL CLEAR —

140 OPEN #1:MCS1M,INPUT ,INTERNAL,FIXED 128 !

50 T

W30

w«o File Management

150 OPEN #2:"DSKl.NAMEADDR",RELATIVE,OUTPUT,INTERN
P AL,FIXED 128

160 DISPLAY AT(12,1)ERASE ALL:"RECORD NUMBER "
170 INPUT #1:R,NAME?,ADDR1?,ADDR2?,ADDR3?,BIRTH?
180 IF R=99999 THEN 250

190 DISPLAY AT(12,15):RECNO
200 PRINT #2,REC RECNO:RECNO;NAME??ADDRl?;ADDR2?;A

DDR3??BIRTH?
210 NAMEINDEX?(RECNO)=NAME?
220 RECNOINDEX(RECNO)=RECNO
230 RECNO=RECNO+l

240 GOTO 170

250 PRINT #2,REC 0:0;STR?(RECNO-1);" ";" ";" ";" "
260 CALL CLEAR

270 CLOSE #2

280 CLOSE #1

290 CALL CLEAR

300 OPEN #3:"DSKl.XNAMEADDR",SEQUENTIAL,OUTPUT,INT
ERNAL,VARIABLE

310 PRINT #3:RECNO-l

320 FOR 1=1 TO RECNO-1

330 PRINT #3:NAMEINDEX?(I);RECNOINDEX(I)
340 NEXT I

350 CLOSE #3

360 END

Program 3-6. Update Indexed File
100 REM UPDATE INDEXED FILE

110 CALL CLEAR :: ON WARNING NEXT

120 DIM NAMEINDEX?(100),RECNOINDEX(100)
130 OPEN #1:"DSK1.XNAMEADDR",SEQUENTIAL,INPUT ,INT

ERNAL,VARIABLE
140 INPUT #1:MAXREC

150 FOR 1=1 TO MAXREC

160 INPUT #1:NAMEINDEX?(I),RECNOINDEX(I)
170 NEXT I

180 CLOSE #1

190 OPEN #1:"DSKl.NAMEADDR",RELATIVE,INTERNAL,UPDA
TE,FIXED 128

200 INPUT #1,REC 0:R,N?,T1?,T2?,T3?,T4?
210 MAXREC=VAL(N?)
220 DISPLAY AT(1,7)ERASE ALL:"UPDATE NAME LIST"

wm 230 DISPLAY AT(3,1):"NAME":">"
240 DISPLAY AT(6,1) :"ADDRESS".»>".«»>"s •• >»

vm 250 DISPLAY AT(11,1):"BIRTHDAY":">"
260 DISPLAY AT(15,1):"PRESS:"
270 DISPLAY AT(17,2):"A - ADD ENTRY"

f" 280 DISPLAY AT(18,2):"C - CHANGE ENTRY"

j-.^SJ
51

File Management «**

. J

290 DISPLAY AT(19,2):"K - KEEP ENTRY"
300 DISPLAY AT(20,2):"Q - QUIT" <=»]
310 DISPLAY AT(22,1):"WHAT NAME ?":">"
320 REM INPUT A RECORD

330 ACCEPT AT(23,4)SIZE(-25)BEEP:NAME? :: IF NAME?
="" THEN 330

340 GOSUB 810 IGET THE RECORD NUMBER

350 IF RECN0<1 OR RECNO>MAXREC THEN 330
360 INPUT #1,REC RECNO:R,NAME?,ADDRl?,ADDR2?,ADDR3

?,BIRTH?
370 REM DISPLAY RECORD

380 DISPLAY AT(4,4):NAME?
390 DISPLAY AT(7,4):ADDR1?
400 DISPLAY AT(8,4):ADDR2?
410 DISPLAY AT(9,4):ADDR3?
420 DISPLAY AT(12,4):BIRTH?
430 REM GET UPDATE OPTION

440 ACCEPT AT(15,8)SIZE(1)VALIDATE("ACKQ")BEEP:R?
450 IF R?="" THEN 440
460 IF R?="A" THEN GOSUB 610 :: GOTO 430
470 IF R?="C" THEN GOSUB 720 :: GOSUB 670 :: GOTO

320

480 IF R?="K" THEN 320
490 IF R?="Q" THEN 500
500 REM CLOSE FILES

510 PRINT #1,REC 0:0;STR?(MAXREC);" ";" ";" ";" M
520 CLOSE #1

530 OPEN #1:"DSKl.XNAMEADDR",SEQUENTIAL,OUTPUT,INT
ERNAL,VARIABLE

540 PRINT #1:MAXREC

550 FOR 1=1 TO MAXREC

560 PRINT #1:NAMEINDEX?(I);RECNOINDEX(I)
570 NEXT I

580 CLOSE #1

590 CALL CLEAR

600 END

610 REM ADD A RECORD

620 GOSUB 720 1READ SCREEN

630 MAXREC=MAXREC+1

640 RECNO=MAXREC

650 GOSUB 670 IPRINT RECORD

660 RETURN

670 REM PRINT A RECORD

680 NAMEINDEX? (RECNO)=NAME? "=^
690 RECNOINDEX(RECNO)=RECNO
700 PRINT #1,REC RECNO:RECNO;NAME?;ADDRl?;ADDR2?;A m

DDR3?;BIRTH? '
710 RETURN

720 REM READ SCREEN **]

52 H

f^PF

t

File Management

730 ACCEPT AT(4,4)SIZE(-25)BEEP:NAME? :: IF NAME?=
"" THEN 730

740 IF NAME?="END" OR NAME?="end" THEN 800
750 IF R?="A" THEN GOSUB 810 :: IF RECNOO-1 THEN

730

760 ACCEPT AT(7,4)SIZE(-25)BEEP:ADDR1?
770 ACCEPT AT(8,4)SIZE(-25)BEEP:ADDR2?
780 ACCEPT AT(9,4)SIZE(-25)BEEP:ADDR3?
790 ACCEPT AT(12,4)SIZE(-8)BEEP:BIRTH?
800 RETURN

810 REM SEARCH NAMEINDEX? FOR NAME?
820 RECNO=-l

830 FOR 1=1 TO MAXREC

840 IF NAMEINDEX?(I)=NAME? THEN RECNO=RECNOINDEX(I
):: GOTO 860

850 NEXT I

860 RETURN

Backup Considerations
Whenever important information is stored on the computer,
you need to know what would happen if the information
were lost. Is there a way of recovering it? Imagine that you
lost the computer file of birthdays. Probably this information
is written down somewhere. Maybe you'll just need to type
in the dates again. What if you threw away our birthday list
since you knew it was automated? You may be in for a bit of
embarrassment as birthdays go by that you should have
remembered. Can you get away with blaming it on the
computer?

So be prudent. Have some backup procedures ready. The
TI hardware is very reliable. But things can happen. Your
tape recorder may decide to dine on your most important
tape, rendering it a twisted useless mess. Maybe someone
decided to reformat the diskette that contained your record
of tax deductions.

Backup procedures do not have to be complicated. Per
haps a periodic printout of important data will do. If so, plan
on doing this every now and then.

If you have a tape system, you can write a simple backup
program. Read the data into an array in memory. Then write
the array to tape. If you have two tape recorders, you can
read a record from CS1 and then write it to CS2. Thus, you
can dispense with memory arrays.

53

File Management

There are several backup procedures that will work with a _
disk system. The File Manager command module can make - J
copies of individual files or the entire diskette. You can write
your own copy programs also.

Program 3-7 shows how to back up the RELATIVE name
and address file to tape. Only the data records are written—
record zero is not. The format of the tape is such that it will
work with either of the load programs, Program 3-3 or 3-5.
Note that the indexed file load program automatically builds
the index file XNAMEADDR. Therefore, you do not need a
separate backup procedure for it.

Regardless of what approach you take, be sure that the
backup copy of your data is stored in a safe place. Usually it
is a good idea to store the backup copy away from your
computer room.

Program 3*7. Backup Relative File
100 REM BACKUP RELATIVE FILE

110 CALL CLEAR

120 OPEN #1:"DSKl.NAMEADDR",RELATIVE,INPUT ,INTERN
AL,FIXED 128

130 INPUT #1,REC 0:R,N?,T1?,T2?,T3?,T4?
140 MAXREC=VAL(N?)
150 OPEN #2:"CS1",OUTPUT,INTERNAL,FIXED 128
160 DISPLAY AT(12,1)ERASE ALL:"RECORD NUMBER"
170 FOR 1=1 TO MAXREC

180 DISPLAY AT(12,15):I
190 INPUT #1,REC I:RECNO,NAME?,ADDRl?,ADDR2?,ADDR3

?,BIRTH?
200 PRINT #2:RECNO;NAME?;ADDRl?;ADDR2?;ADDR3?;BIRT

H?
210 NEXT I

220 PRINT #2:99999;"ZZZ";"ZZZ"?"ZZZ";"ZZZ";"ZZZ"
230 CLOSE #1

240 CLOSE #2

250 CALL CLEAR

260 END

Hex Dump Utility "^]
Occasionally, when you are working with data files, you
would like to know how the 99/4A is storing your data. The ""j
hex dump, Program 3-8, lets you look inside your file and
see the data as the TI sees it. This can be very useful for ™|
debugging programs.

54

Jr'i'SKJ

MB

Ifiimi

pPi3

File Management

Program 3-8 can print the contents of most data files
regardless of their formats (it will not print the contents of a
program file). The data is displayed in both ASCII and hexa
decimal form. Here is how COMPUTE! would be displayed.

COMPUTE!

44455542

3 FDO 5 4 5 1

Three lines are printed. The top line shows the ASCII
representation of the data. The second and third lines show
the hexadecimal representations of the ASCII characters.
Interpret the three lines as columns. For example, C is hexa
decimal 43, O is hexadecimal 4F, and so on.

The display lines can contain up to 25 characters. If a
record is longer than 25 characters, as many display lines as
necessary will be printed. Similarly, if a record is snorter
than 25 characters, only a partial line will be printed.

When you start up the hex dump program, it will ask you
for a filename. Type in the complete name of the file such as
DSKl.NAMEADDR or CS1. Then, supply the proper file
characteristics. There are four possible combinations of
DISPLAY, INTERNAL, FIXED, and VARIABLE. Then type in
the record length. All of these characteristics will be com
pared with the characteristics of the tape or disk file. If there
is a match, the program will continue. Otherwise, you will
be asked to type in the file characteristics again.

Beginning with the first record on the file, record zero, the
records will be read, converted to ASCII and hexadecimal,
and printed. After each 25-character segment has been
printed, a short beep will sound. You have a second or so to
press any key. If you do, the program will pause. The print
ing will not resume until you press another key. While the
program is in the pause state, the screen color will be
switched to white.

There are some variations in the display, depending on
the file characteristics. The record number is shown for

FIXED length records. VARIABLE length records, on the
other hand, are printed continuously. There is no
distinguishing one record from another. Records in
INTERNAL format have a one-byte length field preceding
each data field. The byte length indicates the number of
characters in the data field. Numeric fields will always have

55

File Management

a length of eight. DISPLAY format records do not have this
length byte.

Program 3-8 uses the EOF function for detecting end of
file. Unfortunately, EOF does not work with cassette files.
Therefore, there is no way to tell when a cassette file has
reached the end. An I/O error usually results as the program
tries to read past the end of the file. The ON ERROR state
ment in the program will detect this condition. The first
screen will be displayed again. You can obtain a hex dump
of another file at this point.

Try the hex dump program on a few small files. This will
help you become familiar with the program. You will also
learn a lot about how the TI stores information.

Program 3*8. Hex Dump Program
100 REM HEX DUMP PROGRAM

110 ON WARNING NEXT
120 MAXCHARS=25

130 RECLEN=128

140 BYTECOUNT=256

150 RECNO=0

160 CALL CLEAR

170 FILE$="" :: FTYPE=4 :: RECLEN=80
180 DISPLAY AT(1,11):"HEX DUMP"
190 DISPLAY AT(4,1):"DEVICE.FILENAME"
200 DISPLAY AT(9,1):"FILE TYPE"
210 DISPLAY AT(11,2):"1 DISPLAY, FIXED"
220 DISPLAY AT(12,2):"2 DISPLAY, VARIABLE"
230 DISPLAY AT(13,2):"3 INTERNAL, FIXED"
240 DISPLAY AT(14,2):"4 INTERNAL, VARIABLE"
250 DISPLAY AT(17,1):"RECORD LENGTH"
260 DISPLAY AT(6,1):FILE$
270 DISPLAY AT(9,12)SIZE(1):STR$(FTYPE)
280 DISPLAY AT(17,15)SIZE(3):STR$(RECLEN)
290 ACCEPT AT(6,1)SIZE(-28)BEEP:FILE$:: IF FILE$=

"" THEN 290

300 ACCEPT AT(9,12)SIZE(1)VALIDATE("1234")BEEP:FTY
PE

310 ACCEPT AT(17,15)SIZE(-3)VALIDATE(DIGIT):RECLEN
320 REM OPEN FILE TO BE DUMPED

330 ON ERROR 430

340 ON FTYPE GOTO 350,370,390,410
350 OPEN #2:FILE$,INPUT ,DISPLAY ,FIXED RECLEN
360 GOTO 470

370 OPEN #2:FILE$,INPUT ,DISPLAY ,VARIABLE RECLEN "^

56

J

n

kwiA

File Management

380 GOTO 470

390 OPEN #2:FILES,INPUT ,INTERNAL,FIXED RECLEN
400 GOTO 470

410 OPEN #2:FILE?,INPUT ,INTERNAL,VARIABLE RECLEN
420 GOTO 470

430 REM ERROR ROUTINE

440 CALL CLEAR

450 DISPLAY AT(24,1)BEEP:"*** I/O ERROR - RETRY **
*»

460 RETURN 180

470 REM OPEN O.K.

480 CALL CLEAR

490 IF EOF(2)THEN 850
500 IF FTYPE=3 OR FTYPE=4 THEN INPUT #2:RCDS,
510 IF FTYPE=1 OR FTYPE=2 THEN LINPUT #2:RCD$
520 STRLEN=LEN(RCD$)
530 IF FTYPE=2 OR FTYPE=4 THEN 600

540 BYTECOUNT=BYTECOUNT+STRLEN

550 IF BYTECOUNT<RECLEN THEN 600

560 IF CHARCOUNT>0 THEN GOSUB 880 IPRINT REMAINDER

570 BYTECOUNT=STRLEN

580 PRINT :"RECORD ";RECNO :: PRINT

590 RECNO=RECNO+l

600 IF STRLEN<>0 THEN 670

610 LINEl$=LINEl$Sc". "
620 LINE2$=LINE2$&"0"
630 LINE3$=LINE3$&"0"
640 CHARCOUNT=CHARCOUNT+l : : BYTECOUNT=BYTECOUNT+l

650 IF CHARCOUNT>=MAXCHARS THEN GOSUB 880 IPRINT D

UMP LINE

660 GOTO 490

670 IF FTYPE=1 OR FTYPE=2 THEN 750

680 BYTE$=CHR$(STRLEN)
690 CALL TOHEX(BYTE$,CHAR$())
700 LINE1$=LINE1$&CHAR$(1)
710 LINE2$=LINE2$&CHAR$(2)
720 LINE3$=LINE3$&CHAR$(3)
730 CHARCOUNT=CHARCOUNT+l :: BYTECOUNT=BYTECOUNT+l

740 IF CHARCOUNT>=MAXCHARS THEN GOSUB 880 IPRINT D

UMP LINE

750 FOR P=l TO STRLEN

760 BYTE$=SEG$(RCD$,P,1)
770 CALL TOHEX(BYTE$,CHAR$())
780 LINEl$=LINEl$&CHAR$(l)
790 LINE2$=LINE2$&CHAR$(2)
800 LINE3$=LINE3$&CHAR$(3)
810 CHARCOUNT=CHARCOUNT+l

820 IF CHARCOUNT>=MAXCHARS THEN GOSUB 880 IPRINT D

UMP LINE

57

File Management

830 NEXT P _
C25P1

840 GOTO 490 . I
850 IF CHARCOUNT>0 THEN GOSUB 880 I PRINT REMAINDE

R

860 CLOSE #2

870 END

880 REM PRINT DUMP LINE

890 PRINT LINE1$:LINE2$:LINE3$
900 PRINT

910 LINE1$,LINE2$,LINE3$="" :: CHARCOUNT=0
920 CALL PAUSE(25)
930 RETURN

940 SUB TOHEX(BYTE$,CHAR$())
950 DIM HEXCHAR$(15)
960 IF HEXCHAR$(1)<>"" THEN 990
970 FOR 1=0 TO 9 :: HEXCHAR?(I)=CHR$(48+1):: NEXT

I

980 FOR 1=10 TO 15 :: HEXCHAR$(I)=CHR$(55+1):: NEX
T I

990 CHAR$(1)=BYTE$
1000 IF BYTE$<CHR$(21)OR BYTE$>CHR$(126)THEN CHAR?

(1)="."
1010 IF BYTE$<>"" THEN T=ASC(BYTE$)ELSE T=0
1020 CHAR$(2)=HEXCHAR$((T AND 240)/16)
1030 CHAR$(3)=HEXCHAR$(T AND 15)
1040 SUBEND

1050 SUB PAUSE(DELAY)
1060 CALL SOUND(50,440,0)
1070 FOR 1=1 TO DELAY

1080 CALL KEY(0,R,S):: IF S=l THEN 1110
1090 NEXT I

1100 GOTO 1140

1110 CALL SCREEN(16)
1120 CALL KEY(0,R,S):: IF S<>1 THEN 1120
1130 CALL SCREEN(8)
1140 SUBEND

n

*

CSS!

58 . .1

f-jPR

SiH

ow does your household manage its tax planning?
Is April 14 always a day of surprises when you
find out what you owe Uncle Sam? If taxes are not

a particular problem, what about day-to-day financial
planning? Do you have specific savings or investment goals?
Do you plan and budget for major purchases?

No matter how cleverly programmed it is, your TI cannot
do your financial planning for you by itself. However, there
are programs which can make the job of analysis much easier.
Such programs are called electronic spreadsheets, or just
spreadsheets for short.

If mathematics or arithmetic is a stumbling block, a
spreadsheet program may be the answer for you. The
spreadsheet will remove the tedious error-prone calculator
work from your analysis. The spreadsheet program will do
calculations rapidly and accurately. It will give you more time
to plan and to evaluate different contingencies.

The spreadsheet program is a calculation tool. Like any
other tool, it must work in conjunction with other tools. For
example, if you want to fasten two boards together, you
subconsciously realize that a hammer alone just won't do. You
fetch the nails as well. So it is with a spreadsheet program.
The spreadsheet program is a tool, but it requires something
else that is very important—your good judgment.

This point cannot be stressed too much. Given the proper
mix of data and human judgment, the spreadsheet program
can do wonders. But without enough of either, the results may
be disappointing at best.

What Is a Spreadsheet?
Visualize a large piece of paper containing rows and columns
of numbers. Suppose also that there is a set of written rules or
formulas. The formulas tell in precise detail how the numbers
are to be calculated. Imagine that there is an accountant with

61

dSa

Electronic Spreadsheets
JGSSS

an eyeshade who is sitting at a desk calculating away. g^
After some time, the accountant brings you the results. *

You look at them, think about them, and maybe confer with
others. You hate to ask, but you would really like to see what
the results would be under different conditions. So you call
the accountant over and point out which numbers should be
changed. The accountant goes back to work. The calculator
grinds away some more. Eventually, he delivers another set of
answers.

This scenario describes spreadsheet analysis before the
age of microcomputers. The spreadsheet is the paper with the
rows and columns of numbers. The formulas tell what is to be
done with the numbers. To emphasize the point again, notice
that human judgment is an important ingredient as well.

Technology has advanced rapidly. Spreadsheet analyses
can now be done on a home computer. The computer can
replace the pencil, paper, and calculator. Spreadsheet pro
grams will store rows and columns of numbers as well as for
mulas in memory. When told to do so, the computer will do
the calculations quickly and accurately. And it will do them
over and over again.

What about the accountant? The accountant is still hard at
work. The accountant is busy with more complex tasks and
analyses. There is no doubt that our accountant is using a
spreadsheet program on the job also.

The term model will often be used here to refer to a
spreadsheet. This is because the spreadsheet can be thought of
as a model of some situation—financial or otherwise.
Spreadsheets are abstract models. They use the language of
mathematics to describe reality.

Let's take a look at an example of a spreadsheet analysis.
Imagine you are putting aside a little bit of money each pay
day toward a college fund. The amount set aside is a percent
age of your take-home pay minus expenses. The boss has
suggested that you can expect a raise very shortly. You are
also considering taking a new position. The new job will pay
more, but will mean more expense since it requires more „_
entertaining and the like. What effect will there be on the col- '
lege fund?

Figure 4-1 shows how this information would be arrayed '
on a spreadsheet. If you keep good records, the figures for
take-home pay and expenses should be accurate. The figures

62

Ml}

Electronic Spreadsheets

for expenses associated with the new job, though, are
estimates.

The result of the calculations shows that the college fund
does not see any benefit from the new job. What if your new
job expense figures are incorrect? With an electronic
spreadsheet, you can easily try different numbers and
recalculate.

This is a very simple example. It does point out, though,
how the spreadsheet can be a helpful tool around the home.

Spreadsheets and the TI
There are several ways for you to use spreadsheet programs
on your TI-99/4A. You might wish to purchase a commer
cially available product. Texas Instruments offers Microsoft
Corporation's MultiPlan product. This is the same MultiPlan
that is available on many business microcomputers such as the
IBM PC. MultiPlan is an advanced spreadsheet product that
offers many features. However, MultiPlan requires a fully
expanded TI.

You will need:

• a 32K memory expansion,
• a disk controller unit, and

• a disk drive (preferably two).
An RS232 interface and printer are optional. If you have a full
TI system and you need a spreadsheet program, you should
seriously consider MultiPlan.

What do you do if you don't have all of the required
hardware? This chapter describes two spreadsheet programs
that have been designed with your needs in mind. The pro
grams are called "Tiny Plan" and "Tiny Plan 2." The names
are similar because the programs themselves are similar.

Figure 4-2 outlines the hardware requirements for Tiny
Plan and Tiny Plan 2; both will run on a TI with the Extended
BASIC cartridge.

The Tiny Plan Family Tree
What are the differences between Tiny Plan and Tiny Plan 2?
Figure 4-3 summarizes the important features of these two
spreadsheet programs.

Tiny Plan is just about the simplest spreadsheet program
available for the 99/4A. Tiny Plan will accommodate a larger
model than will Tiny Plan 2. Tiny Plan is well-suited for most
household spreadsheet analyses.

63

Electronic Spreadsheets

Tiny Plan 2 incorporates several convenience features. It
will print selected rows and columns of the spreadsheet. It will
also pass results to other programs which will, in turn, plot
the results. Of course, these extra features extract a price. Tiny
Plan 2 cannot handle spreadsheets as large as Tiny Plan. And
Tiny Plan 2 requires additional hardware for some of the extra
features.

An important design feature of these two programs is that
they are compatible. Tiny Plan and Tiny Plan 2 define
spreadsheets in exactly the same way. In addition, the calcula
tion features of the two are identical. So, you don't have to
make an either-or choice. It is possible to run the same
spreadsheet with either program (keeping in mind the size
restrictions, of course). Whenever you need to, you can cap
italize on the special features of each. But since the data files
created and saved are not compatible, it is not possible to load
data created by Tiny Plan and use it with Tiny Plan 2 and vice
versa. If you wish to use both programs with the same
information, you will have to enter the data twice.

Notice that both programs will make use of the 32K
memory expansion board. This allows you to run much larger
spreadsheets.

Figure 4*1. Sample Spreadsheet Analysis

Present Raise New

Job Job
Take-home 2000 2200 2400
Expenses 1500 1500 1700
Left 500 700 700
College % 10 10 10

College $ 50 70 70

Figure 4'2. Tiny Plan and Tiny Plan 2
System Requirements

Tiny Plan
Required:

• TI-99/4A console
• Extended BASIC 1
• Cassette tape recorder

Optional: ^
• 32K memory expansion

64 '

csra

Electronic Spreadsheets

Tiny Plan 2
Required:

• TI-99/4A console
• Extended BASIC

• Cassette tape recorder
Optional:

• 32K memory expansion
• Disk drive

• Disk controller

• RS232 interface
• Printer

Figure 4-3. Tiny Plan—Tiny Plan 2 Comparison

Number of rows

Tiny Plan
26

Tiny Plan 2
11

Number of columns 16 11

Row labels Yes Yes

Column labels Yes Yes

Row totals Automatic Automatic

Column totals Automatic Automatic

Calculations

%-,%D %-,%D
Save/load data
Save/load models
Print results

Yes

Yes

No

Yes

Yes

Yes

Plot results No Yes

Getting Started
The sections that follow will describe how to use the
spreadsheet programs. Unless stated otherwise, the instruc
tions refer to both Tiny Plan and Tiny Plan 2.

You are eager to begin a spreadsheet analysis. Do you
turn on the TI, load the program tape, and have a go at it?
Nope. The first step is an old-fashioned pencil and paper step.
This first step involves creating a written sketch of the model
or spreadsheet. Look back at Figure 4-1. It represents a model
of a hypothetical college fund.

65

Electronic Spreadsheets

What were the steps? First, three situations were defined: «
—the present job, '
—the anticipated raise, and
—the new job.

The three situations became column headings of a chart. Next,
the common aspects of these three situations were listed:

—take-home pay,
—expenses,
—amount left,
—percent allocated to the college fund, and
—dollars allocated to the college fund.

These five items were listed as row headings of a chart.
Thus, the first step involves sketching a chart. You must

decide what goes in the columns and what goes in the rows.
The next step is to fill in any numbers that do not need

calculations. In this case the take-home pay in each of the
three cases may be estimated. Similarly, an educated guess of
expenses can be entered. The only other numbers known are
the college fund allocation percentage.

For the numbers that must be calculated, the money left
after expenses and the amount for the college fund, the com
puter must be told exactly how to perform the calculations.
The calculation rules would say:

—subtract the expenses from the take-home pay, giving
the amount left

—multiply the amount left by the college fund percent
age, giving the amount of the college fund.
That completes the model for the college fund. Let's review
what we did:

—sketched a chart and assigned column and row names,
—filled in numbers that were known or could be

estimated, and
—determined the calculation rules for the numbers that

the computer would compute.
Follow these three steps when you develop your own

models. It doesn't take very long, and it will become second
nature to you after a while.

Tiny Plan Basics
Once the paper and pencil work is done, it is time to start ^
thinking about using the spreadsheet programs. Below is a dis
cussion describing the transformation of the paper and pencil "^

66

*B5!)

psu Electronic Spreadsheets
Js*™3

pa model into something that Tiny Plan understands.
*- Refer to Figure 4-4 which shows an empty Tiny Plan

spreadsheet. This represents everything described about Tiny
Plan up to this point—nothing. Tiny Plan starts out with rows
and columns of zeros.

Notice, too, that column and row names are present. The
columns are called CO, CI, C2, and so on. Similarly, RO, Rl,
and R2 are the names of the rows. If you like, use these
names.

Tiny Plan certainly understands them. However, things
would be a bit clearer if the names used were more descrip
tive. For example, the columns might be called

—Present job,
—Raise, and
—New job.
This way, the column names would match the pencil and

paper model exactly. The same could be done with the row
names.

The rows and columns are numbered beginning with
zero. Do not be concerned with this too much. Just about all
of the time, you will be using the row and column names and
not the numbers. The print and plot options of Tiny Plan 2
represent the only instances where the numbers are necessary.
Keep Figure 4-4 handy for future reference.

A spreadsheet full of zeros does not interest us a great
deal (unless it is our tax bill). Once the desired row and col
umn names are established, the proper places for the numbers
can easily be located. Using the example again, the number
2000 goes in the Present Job column in the Take-Home Pay
row.

The last step in the model definition process is describing
the calculation rules to Tiny Plan. At this point, you will be
programming the spreadsheet. Tiny Plan can remember a
whole series of calculations. It can do the entire series at the
push of a button. Each calculation in the series is called a step.

There are two calculation steps in the college fund model.
™ The first is the subtraction of expenses from take-home pay.

The second is the percentage calculation.
pa, Tiny Plan's calculation methods have a few important fea

tures. The calculations are done on entire columns of numbers
•no or on entire rows of numbers. For example, two columns of
l numbers could be added together and the sum placed in a

r 67

Electronic Spreadsheets H

third column. Every number in the column participates in the «
calculation. Row and column calculation steps can be mixed in —
a calculation series. However, a row and column cannot be
mixed in the same step.

Look at the example again. In this case, the calculations
involve rows of numbers. When the expenses are subtracted
from the take-home pay, three subtractions actually take place:
2000 - 1500,
2200 - 1500, and
2400 - 1700.

Can you begin to see the advantages of Tiny Plan?
Visualize a model with 10 rows and columns and about 15 or
so calculation steps. Would you like to do that by hand? Of
course not. But your TI can handle such a spreadsheet at the
push of a button.

There are many times when you'll want to add up all the
numbers in a column or all the numbers in a row. This
calculation turns out to be very common. As a timesaver, Tiny
Plan has built these calculations in. Whenever a series of
calculations is completed, Tiny Plan automatically computes
the row and column sums. You don't even have to push a
button.

The row sums are stored in the rightmost column. The
column sums are stored in the bottommost row. In other
words, Tiny Plan has reserved one row and one column for
itself.

So the process of putting the model in Tiny Plan follows
the pencil and paper approach very closely. You do not have
to do anything on paper that is wasted. By the same token,
when you get to the computer stage, there will be no extra
steps that get in your way.

Figure 4'4. An Empty Tiny Plan Spreadsheet

0 1 2

CO CI C2
0 R0 .00 .00 .00 =i
1 Rl .00 .00 .00 J
2 R2 .00 .00 .00 a*

68

fiwFsl Electronic Spreadsheets

t

p, Operating Tiny Plan
*- Tiny Plan and Tiny Plan 2 are menu-driven programs. When

you are operating Tiny Plan, it will display a list of possible
selections. These selections represent the functions that can be
performed from a particular point in the spreadsheet analysis.
You may choose any one of the selections with a single key
stroke: Press the number of the selection that you want. Tiny
Plan will take over from there.

Many of the functions have, in turn, subfunctions. The
subfunctions will be displayed on another menu screen. So
you have another choice to make. Thus, Tiny Plan uses a
multilevel menu system.

Suppose you do not choose any of the selections. If you
just press ENTER, the prior menu screen will be displayed.
This is a very convenient feature. Suppose a particular func
tion was invoked by mistake. There is an easy way to escape.

When Tiny Plan is first started up, there will be a slight
pause. The following message will be displayed:
"Initializing Tiny Plan"
"Just a moment..."

Tiny Plan is getting things ready for you. It is building an
empty spreadsheet. The row and column names are being set
to the R and C names. All of the numbers are being set to
zero. This takes a little time.

After a few seconds, the main menu screen will be dis
played. This is the focal point of Tiny Plan. All of the major
functions are invoked from the main menu screen:

1 Define the model,
2 Run the model,
3 Load model and data,
4 Save model and data, and
5 Leave Tiny Plan.

What happens if ENTER is pressed from the main menu
screen? There is no prior menu screen that can be displayed.
Instead, Tiny Plan will reinitialize the spreadsheet.

pw This feature can be both convenient and troublesome.
When you are finished with one spreadsheet, you can proceed

fm to the next very easily. Just press ENTER from the main menu.
After a few seconds, you will get an empty spreadsheet again.

wi On the other hand, if ENTER is accidentally pressed, any
work in progress will be lost. Needless to say, you need to be

fm extra careful.
1 69

Electronic Spreadsheets

Define the Model. Tiny Plan model definition follows the «
pencil and paper methods. The model definition screen offers —
three selections:

1 Give row names,
2 Give column names, and
3 State calculation rules.

Whichever selection you choose, another screen will be pre
sented. This screen will ask for additional details.

The assignment of row and column names is very similar.
Tiny Plan will show you the current name of each row and
column. Assuming the spreadsheet is empty, you will see
names such as RO and CO. If you want to use the name
shown, hit ENTER. If another name is more appropriate, type
in the new name and then hit ENTER. When you are finished
assigning names, type "END" or "end".

Row and column names may be up to ten characters long.
Do not use the same name twice. This is as confusing to Tiny
Plan as it is to you. If there were two rows called Take-Home,
which one would you use? Tiny Plan will let you use two
Take-Home's. However, only the first occurrence of Take-
Home will be used in any calculations.

Do not assign every row and column a name unless it is
necessary. Tiny Plan already uses most of the TI's available
16K memory. If every possible row and column is assigned a
ten-character name, there is a risk of not having enough mem
ory left for Tiny Plan.

The calculation rules are entered one step at a time. The
first step is step zero, followed by step one and so on.

Each calculation step has five parts:
1 the type of calculation (row or column),
2 the first row/column name,
3 the calculation symbol or operator,
4 the second row/column name, and
5 the answer row/column name.

As you type this information, Tiny Plan will do certain
checks. Tiny Plan will make sure that it can find each of the -=]
row and column names. For example, suppose we specify XYZ
as a row name that will be used in a multiplication step. XYZ -*=i
should have been previously defined as a row name. If it was
not, Tiny Plan will not let it be used in a calculation step. «=j

70

G531

d*1

F!$$53

psi

Electronic Spreadsheets

Be careful when selecting row and column names. Lower
case letters can be used, but the row and column names must
be typed in exactly the same way that they were originally
defined. "Take-Home" is not the same as "TAKE HOME,"
"take home," "Take-home," or "Take home."

Tiny Plan also checks the operator. The operator must
represent a mathematical operation that Tiny Plan knows how
to do. Figure 4-5 shows the calculations that Tiny Plan knows.
There are several percentage operators in addition to the stan
dard arithmetic operators.

When you enter percentages, enter them as whole num
bers, not as fractions. For example, ten percent would be typed
as 10, not .10. Similarly, twelve and one half percent would
be 12.5, not .125.

Tiny Plan will also calculate results this way. The %D
operator yields a percentage as a result. Tiny Plan will auto
matically convert the result. Five percent will be displayed as
5 instead of .05.

Notice that Figure 4-5 also shows the order of the
operands. This is important for all of the calculations except
addition and multiplication. Suppose you were entering a
division step for a column. The first column name would be
the dividend and the second the divisor. This follows from
Figure 4-5 which says the first column is divided by the
second.

Tiny Plan remembers each calculation step as you enter it.
However, the calculations are not done right away. They are
just entered, checked, and stored. This makes sense when you
consider that so far no data has been entered.

The three steps of assigning row names, assigning column
names, and stating the calculation rules complete the model
definition phase. The spreadsheet is beginning to take shape.
At this point, you can go back and double-check your work.
It's a good idea to make sure the row and column names are
correct and that the calculations will do what you want.

Run the Model. This is the spreadsheet function that you
will probably use most often. Tiny Plan 2 offers four
selections:

1 Review or change data,
2 Do the calculations,
3 Print the results, and
4 Save data for plotting.

71

Electronic Spreadsheets ^

Selections 3 and 4 are not available in Tiny Plan. How- «
ever, selections 1 and 2 are identical in the two programs. J

Notice that the change data and calculate operations both
come under the Run the Model function. This particular
grouping is designed to make Tiny Plan easy to use. You may
decide to change some numbers, do the calculations again,
and then examine the new results. Spreadsheets are ideal for
these kinds of "what if" applications. And Tiny Plan enables
you to do this with a minimum of keystrokes.

There are too many numbers for Tiny Plan to show on
the screen at one time. When you choose selection 1, you will
see only a portion of the numbers. The portion that you can
see is what will fit in Tiny Plan's display window. If that was
all you could ever see, there would be some problems.

Fortunately, you can move the display window around.
By doing this, you can eventually examine every number in
the spreadsheet. When you are in the mode to Review or
change data, selection 1, certain keys are active. They control
the movement of the display window.
E move the display window up N lines
X move the display window down N lines
S move the display window to the left one column
D move the display window to the right one column

Figure 4-5. Tiny Plan Operators

+ Add the 1st row/column to the 2nd row/column
— Subtract the 2nd row/column from the 1st row/

column

* Multiply the 1st row/column by the 2nd row/
column

/ Divide the 1st row/column by the 2nd row/column
% Compute a percentage of the 1st row/column. The

percentage is in the 2nd row/column.
%+ Increase the 1st row/column by a percentage. The

percentage is in the 2nd row/column.
%— Decrease the 1st row/column by a percentage. The ^)

percentage is in the 2nd row/column.
%D Compute the percent difference between the 2nd ^

row/column and the 1st row/column. Use the 1st
row/column as the base. ^j

72

Electronic Spreadsheets

_

pa C open the left column for change
Q exit the display/change mode

Moving the display window around is a slow operation
on the TI. The keyboard will not be active until the display
operation is finished. Listen for a beep. When it sounds, the
keyboard is ready for your next command.

Normally, two columns of numbers are displayed. Eight
digits of the number are shown—six digits before the decimal
place and two after it. If a number is greater than 999,999.99,
it cannot fit in the display format. In such a case, asterisks will
be shown. Even so, the full accuracy of the TI will be retained.

Keys E and X move the display window up and down N
lines at a time. Right now, N is set for 11 lines. You can alter
this by changing the variable NL at the very beginning of the
program.

The C key opens up the left column of numbers so that
you can change them. Before you do this, position the display
window so that the desired numbers show up in the left col
umn. You might find the FCTN ERASE key handy here. You
can completely erase a number from the screen. This gives
you a clear space to type in a new number.

Once you are in the mode to change data and have
positioned the numbers to be changed in the left column,
move the cursor over the number to be changed using the
FCTN and the arrow keys. Make the necessary change and
press ENTER. Continue until you have made all the necessary
changes in the data. Once all the changes have been made to
the rows and columns displayed, move the cursor down until
it disappears. You have now left the change data mode.

Press the Q key when you are finished examining and
changing data. The Run menu will show up again.

Selection 2 does all of the calculations that you previously
entered. They are done step by step. A message on line 24
tells you what step Tiny Plan is currently working on. You
will find that the calculations are done pretty quickly.

When all the calculations are done, line 24 will show,

"Row and column totals".

pn Tiny Plan is computing the sums. There is a healthy
pause at this point. Notice that selection 2 did not require any

pw» additional information. All the calculations were literally done
at the push of a button.

73

RPB

Electronic Spreadsheets

Don't forget that the calculation rules are still in Tiny
Plan's memory. You can cycle back and change some numbers -J
and recalculate again. You have to supply the calculation rules
only once.

You can use selection 3 if you are using Tiny Plan 2 and
have a printer. As with the display mode, only a portion of
the spreadsheet can be printed at a time. Tiny Plan asks you
to define the print window by supplying the starting and end
ing column and row numbers. Tiny Plan also asks you how
you want the numbers printed and how many spaces should
be printed between columns. The print mode is fairly flexible.
Make sure the printer OPEN statement is appropriate for your
printer.

Tiny Plan 2 will also save data for subsequent plotting. It
will save the numbers from two rows or from two columns.
The numbers are written to an output file as X,Y pairs. (X
represents the horizontal axis and Y the vertical.) Tiny Plan
will ask you which row/column number should be used for X
and which for Y. The file that is created this way can be used
by the bar graph program in the next chapter.

This completes the Run mode. There are many functions
available to you. The best way to learn them is to try them
out.

Load and Save. After you've developed a model, you will
probably find a need for it again. Selections 3 and 4 of the
main menu invoke the load and save facilities of Tiny Plan.
You may use either a cassette recorder or a disk drive as the
storage device.

The save function stores all of the information about your
model definition. In addition, all of the numbers in the
spreadsheet are stored. Tiny Plan saves:

—the row and column names,
—the calculation rules, and
—the contents of the spreadsheet.

The load function does just the reverse. It reads all the
above information from tape or disk. It then places the infor
mation in the spreadsheet. Thus, the spreadsheet looks just ^j
like it did when you saved it.

Here are a few suggestions for using the load and save ^
functions. Suppose you want to save only the model definition
and not the data. Well, after you finish defining the row and ^

74

C5SI

fSB

Electronic Spreadsheets

column names and the calculation rules, go back to the main
menu and use the save function. Yes, the spreadsheet will be
saved too. But the numbers are all zero. In effect, you've man
aged to save just the model definition. So you can use it with
a fresh set of data whenever you want.

What if, on the other hand, you are doing a monthly
analysis of some sort. You would like to save the data instead
of keying it in again every time. The save and load functions
handle this nicely. Return to the main menu after you've en
tered the new month's data, but before doing any calculations.
Use the save function. Tiny Plan will store the model defi
nition and data. Since you have not done any calculations yet,
none of the computed numbers will be stored. So you have
the model definition and original data safely stored.

There is one little restriction, however. The data files cre
ated by Tiny Plan and Tiny Plan 2 will not work with each
other. This is because the model sizes are quite different. You
cannot save a spreadsheet with Tiny Plan and load it with
Tiny Plan 2.

Leave Tiny Plan. When you are all finished with your
spreadsheet analysis, you can use selection 5 on the main
menu. Tiny Plan will clear the screen and put you back in
BASIC mode.

There is no way that Tiny Plan can be resumed except by
typing RUN. When this is done, you will start over again with
an empty spreadsheet.

Using Memory Expansion
Additional memory will allow you to use larger spreadsheets.
However, this is not an automatic process. Some program
changes will be required.

At the beginning of the program, there is a DIM state
ment for:

—MODEL,
—ROW$, and
—COL$.

These are arrays which contain the spreadsheet and row
and column names. Adjust the dimensions of these arrays
according to the number of rows and columns that you want.
Note that MODEL is a two-dimensional array. The first
dimension holds the rows and the second the columns.

75

Electronic Spreadsheets

The variables MAXCOL and MAXROW should be set so
that they match the dimensions of MODEL. MAXCOL and
MAXROW are very important to the proper operation of Tiny
Plan.

You may also increase the number of calculation steps
that Tiny Plan can handle. Find the DIM statement for the
array CALC. Its dimensions will probably be 15 by 4. Increase
the first dimension only. Increasing the second dimension will
have no effect other than wasting memory. The variable
MAXCALC should also be set to match the first dimension of
MODEL.

These changes are not difficult. You can make them and
try out Tiny Plan. Use the SIZE command to get an idea of
how much memory is being used.

There are, however, additional changes that will be
required. These changes are more difficult. Locate the save
and load subroutines. They are marked with REM statements.
These subroutines should be modified so they PRINT and
INPUT the entire contents of ROW$, COL$, CALC, and
MODEL.

These subroutines are written so that they pack as much
data in a single record as possible. This improves saving and
loading times especially with tape storage. The precise
modifications will vary, depending on how you redimension
the arrays.

Compare these same subroutines in Tiny Plan and Tiny
Plan 2. Since Tiny Plan's arrays are larger, its save and load
subroutines are a little different. This should give you some
clues on how you might proceed.

Sample Models
How will you use Tiny Plan around the home? Here are three
samples which you can use as is or which you can modify for
your own needs. The samples are:

—Investment analysis (Figure 4-6),
—Electricity usage (Figure 4-7), and
—Budget projections (Figure 4-8).

The referenced figures show the row and column names
and the calculation rules.

Asterisks indicate the location of numbers that you should
fill in. All the other numbers are computed.

76

i

G33*l

fPUJ

pwi

fSKBl

jJHBI

]W@I

Electronic Spreadsheets

The investment analysis model is a simple means of track
ing the various savings instruments. Each instrument may
have a different yield and a different initial investment.

There are two assumptions in this model. First, that the
yield stays the same over the course of a few years. Second,
that there are no withdrawals or additional deposits. Of
course, if these assumptions do not hold, the actual results will
differ from the predicted results.

The electricity usage model will help you analyze your
monthly electric bill. It stores the monthly kilowatt hours used
over the course of several years. It computes the month-to-
month percent difference. You should be better able to watch
your consumption. You will also be able to see if there is any
effect due to home improvements such as caulking or adding
insulation.

The budget model is the most complicated. It employs
both row and column calculations. The model shows salary
and major expense categories. A different inflation rate may be
assigned to each entry. The total expenses are computed.
Finally, the expenses are subtracted from the income to get the
amount left, or disposable income.

You may want to tailor this model to your own circum
stances a bit. Perhaps there is more than one source of
income. Perhaps you would prefer a different set of expense
categories. You may enter monthly or annual figures as you
please. Try to make your expense figures as accurate as pos
sible. You may want to keep detailed records of expenses for
several months.

These are just some ideas. They are typical of the things
that Tiny Plan can do. Try them out.

Figure 4'6. Sample—Investment Analysis
Principal Yield 1983 1984

CD

All Savers

Passbook

Calculation Rules

Step
0

1

2

Type
Column
Column

Column

Yield

1985

Calculation Answer

Principal %+ Yield 1983
1983 %+ Yield 1984
1984 % + Yield 1985

77

Electronic Spreadsheets

Figure 4-7. Sample—Electricity Usage
Jan Feb Mar Apr

1980 kwh ***

1981 kwh ***
*** *** ***

1981 %
1982 kwh ***

*** *** ***

1982 %
1983 kwh *** ***

*** ***

1983 %
1984 kwh *** ***

*** ***

1984 %

Calculation Rules

Step Type
0 Row 1980

1 Row 1981

2 Row 1982

3 Row 1983

Calculation Answer
kwh %D 1981 kwh 1981 %
kwh $D 1982 kwh 1982 %
kwh %D 1983 kwh 1983 %
kwh %D 1984 kwh 1984 %

How It Works
Tiny Plan and Tiny Plan 2 are very similar programs. In fact,
Tiny Plan is just a smaller version of Tiny Plan 2.

The structure chart for Tiny Plan 2 is shown in Figure 4-9.
The labels in the structure chart boxes generally correspond to
REM statements that mark the beginning of a subroutine. The
main program dimensions the arrays and initializes a few vari
ables. The main menu displays the available selections. The
main menu also invokes the proper subroutine to process the
function selected. Notice that the Define and Run model func
tions themselves invoke other functions. Tiny Plan is struc
tured in a similar manner. The Print Results and Save Data for
Plotting subroutines are omitted. This frees up some memory
for additional data storage.

Figure 4-10 lists the major variables used by Tiny Plan
and Tiny Plan 2. An explanation of each of the subprograms is
shown in Figure 4-11.

78

S7\

1
1

1
1

F
ig

ur
e

4
-9

.
T

in
y

P
la

n
2

P
ro

gr
am

St
ru

ct
ur

e

M
a
in

P
ro

gr
am

M
e
n

u

D
e
fi

n
e

th
e

M
o

d
e
l

L
o

a
cI

S
a
v

e
R

u
n

th
e

M
o

d
e
l

E
x

it

R
o

w

N
a
m

e
s

C
o

lu
m

n

N
a
m

e
s

C
a
lc

u
la

ti
o

n
R

u
le

s

D
is

pl
ay

an
d

C
ha

ng
e

D
at

a
D

o
th

e

C
a
lc

u
la

ti
o

n
s

P
ri

n
t

th
e

R
e
su

lt
s

S
a
v

e
D

a
ta

fo
r

P
lo

tt
in

g

ST o C
f

o s o (Z
>

•-
I

ft
) G
-

(Z
)

r
h

e
n

Electronic Spreadsheets

Figure 4*8. Sample—Budget Projections

Salary
Food

Mortgage
Utilities
Auto

Clothes
Other

Total expense
Amount Left

Note: "Infl" stands for inflation rate

1983

1983 Infll984

1984 Infll985

Calculation Rules

Step
0

1

2

3

4

5

6

7

8

Type Calculation Answer
Column 1983 %+ 1983 Infl 1984
Column 1984 %+ 1984 Infl 1985
Row Food + Total expense Total expense

Mortgage + Total expense Total expense
Utilities + Total expense Total expense
Auto + Total expense Total expense
Clothes + Total expense Total expense
Other + Total expense Total expense
Salary — Total expense Amount left

Row

Row

Row

Row

Row

Row

Figure 4'10. Tiny Plan and Tiny Plan 2 Variables

MODEL(n,n)

MAXROW

MAXCOL

80

This two-dimensional array contains the data
for the model. You may enlarge the dimen
sions of the array if you are using the 32K
memory expansion.
The maximum number of rows in the model.

MAXROW must be set so that it matches the

first dimension of the array MODEL.
The maximum number of columns in the

model. MAXCOL must be set so that it
matches the second dimension of the array
MODEL.

"I

I

UJJM

Electronic Spreadsheets

ROW$(«) This string array contains the row names. The
dimension of ROW$ must match the first
dimension of the array MODEL.

COL$(rc) This string array contains the column names.
The dimension of COL$ must match the sec
ond dimension of the array MODEL.

CAL(n,n) This array contains the calculation rules. Set
the first dimension of CALC to the number of
calculation rules that can be stored. The sec
ond dimension of CALC contains, in subscripts
zero through four:

—the type of calculation (row or column),
—a pointer to the first operand,
—a pointer to the operator,
—a pointer to the second operand, and
—a pointer to the result.

MAXCALC The maximum number of calculation rules.

MAXCALC must match the first dimension of
the array CALC.

NL NL governs the display of the model. Set NL
to the number of rows that you want dis
played at a time. A larger number lets you see
more of the model at once. However, scrolling
the display takes longer.

Figure 4-11. Tiny Plan and Tiny Plan 2 Subprograms

OPENI Selects and opens an input device.
OPENO Selects and opens an output device.
MENU Displays the main menu and obtains the desired

selection.

Program 4-1. Tiny Plan
REM TINY PLAN

ON BREAK NEXT :: ON WARNING NEXT

NL=11 :: MAXROW=20 :: MAXCOL=15 :: MAXCALC=15

DIM MODEL(20,15),ROW$(20),COL$(15)
DIM OPLIST$(8),CHOICE$(10),CALC(15,4)
GOSUB 280 UNITIALIZE

REM MAIN MENU

DATA 5," 1 Define the model"

100

110
fMSI 120

130

ITCPPl 140

150

I.

160

170

piw

81

fl|!!SB!|

Electronic Spreadsheets

180 DATA
ti

2

190 DATA
•i 3

200 DATA
ii 4

210 DATA
it 5

82

Run the model"

Load model&data"

Save model&data"

Leave Tiny Plan"
220 RESTORE 170 :: READ N :: FOR 1=1 TO N :: READ

CH0ICE$(I):: NEXT I
230 CALL MENU("Tiny Plan 2"/CH0ICE$(),NfFCODE)
240 IF FCODE=0 THEN 150

250 IF FCODE=5 THEN 270

260 ON FCODE G0SUB 380,1400,2140,2240 :: GOTO 220
270 CALL CLEAR :: END

280 REM INITIALIZE

290 DISPLAY AT(12,1)ERASE ALL:"Initializing Tiny P
Ian": :"Just a moment ..."

300 DATA 8,+,-,*,/,%,%+,%-,%D
310 RESTORE 300 :: READ N0PR :: FOR 1=1 TO NOPR ::

READ OPLIST$(I):: NEXT I
320 FOR 1=0 TO MAXROW-1 :: ROW$(I)="R"&STR$(I):: N

EXT I

330 FOR 1=0 TO MAXCOL-1 :: COL$(I)="C"&STR$(I):: N
EXT I

340 ROW$(MAXROW)="COL TOTAL" :: COL$ (MAXCOL) = "ROW
TOTAL"

350 FOR 1=0 TO MAXROW : : FOR J=0 TO MAXCOL : : MODE
L(I,J)=0 :: NEXT J :: NEXT I

360 FOR 1=0 TO MAXCALC :: FOR J=0 TO 4 :: CALC(I,J
)=0 :: NEXT J :: NEXT I

370 RETURN

380 REM DEFINE MODEL

390 DATA 3," 1 Give row names"
400 DATA "2 Give column names"

410 DATA " 3 State calculation rules"
420 RESTORE 390 :: READ N :: FOR 1=1 TO N :: READ

CHOICE$(I):: NEXT I
430 CALL MENU("Define the mode1",CHOICE$(),N,FCODE

)
440 IF FCODE=0 THEN 460

450 ON FCODE GOSUB 470,580,690 :: GOTO 420
460 RETURN

470 REM ROW NAME

480 DISPLAY AT(1,8)ERASE ALL:"Give Row Names"
490 GOSUB 1160

500 FOR 1=0 TO MAXROW-1

510 DISPLAY AT(3,1):"Row ";I;" of "?MAXROW
520 DISPLAY AT(8,3)SIZE(10):ROW$(I)
530 GOSUB 1210 IREAD SCREEN "^
540 IF NM$="END" OR NM$="end" THEN 570
550 ROW$(l)=NM$ «=*
560 NEXT I

fitful

"1

GSl

Electronic Spreadsheets
pUSl

pan 570 RETURN
580 REM COL NAME

590 DISPLAY AT(1,6)ERASE ALL:"Give Column Names"
600 GOSUB 1160

610 FOR 1=0 TO MAXCOL-1

620 DISPLAY AT(3,1):"Column "?I;" of ";MAXCOL
630 DISPLAY AT(8,3)SIZE(10):COL$(I)
640 GOSUB 1210 IREAD SCREEN

650 IF NM$="END" OR NM$="end" THEN 680
660 COL$(l)=NM$
670 NEXT I

680 RETURN

690 REM CALCULATION RULES

700 DISPLAY AT(1,2)ERASE ALL:"State Calculation Ru
les"

710 DISPLAY AT(7,1):"Row(R) or Col(C) or Quit(Q)?"
720 DISPLAY AT(8,3):"->"
730 DISPLAY AT(10,1):"1st row/column name"
740 DISPLAY AT(11,3):"->"
750 DISPLAY AT(13,1):"Calculation:"
760 DISPLAY AT(14,3):"->"
770 DISPLAY AT(16,1):"2nd row/column name"
780 DISPLAY AT(17,3):"->"
790 DISPLAY AT(19,1):"Answer row/column name"
800 DISPLAY AT(20,3):"->"
810 DISPLAY AT(23,1):"Calculations can be:"
820 DISPLAY AT(24,1):"+ - * / % %+ %- %D"
830 FOR K=0 TO MAXCALC

840 DISPLAY AT(4,1):"Step ";K;" of ";MAXCALC
850 IF CALC(K,0)=2 THEN 900
860 T$="R" :: Tl$=ROW$(CALC(K,1)):: T2$=OPLIST$(CA

LC(K,2))
870 T3$=ROW$(CALC(K,3)):: T4$=ROW$(CALC(K,4))
880 GOTO 910

890 T$="C" :: Tl$=COL$(CALC(K,1)):: T2$=OPLIST$(CA
LC(K,2))

900 T3$=COL$(CALC(K,3)):: T4$=C0L$(CALC(K,4))
910 DISPLAY AT(8,5)SIZE(1):T$
920 DISPLAY AT(11,5)SIZE(10):T1$
930 DISPLAY AT(14,5)SIZE(2):T2$
940 DISPLAY AT(17,5)SIZE(10):T3$
950 DISPLAY AT(20,5)SIZE(10):T4$

pin 960 ACCEPT AT (8,5)SIZE(-1)VALIDATE("RCQ")BEEP:T$:
: IF T$="" THEN 960 ELSE IF T$="Q" THEN 1140

970 IF T$="R" THEN CALC(K,0)=1 ELSE CALC(K,0)=2
mn 980 ACCEPT AT(11,5)SIZE(-10)BEEP:NM$:: IF NM$=""

THEN 980

W* 990 IF T$="R" THEN GOSUB 1250 ELSE GOSUB 1300
1000 IF N=-l THEN 980

l^-^Hj^

83

Electronic Spreadsheets ^

1010 CALC(K,1)=N «
1020 ACCEPT AT(14,5)SIZE(-2)VALIDATE("+-*/%D")BEEP -J

:NM$:: IF NM$="" THEN 1020
1030 GOSUB 1350 :: IF N=-l THEN 1020

1040 CALC(K,2)=N
1050 ACCEPT AT(17,5)SIZE(-10)BEEP:NM$:: IF NM$=""

THEN 1050

1060 IF T$="R" THEN GOSUB 1250 ELSE GOSUB 1300
1070 IF N=-l THEN 1050

1080 CALC(K,3)=N
1090 ACCEPT AT(20,5)SIZE(-10)BEEP:NM$:: IF NM$=""

THEN 1090

1100 IF T$="R" THEN GOSUB 1250 ELSE GOSUB 1300
1110 IF N=-l THEN 1090

1120 CALC(K,4)=N
1130 NEXT K :: GOTO 1150

1140 FOR J=0 TO 4 :: CALC(K,J)=0 :: NEXT J
1150 RETURN

1160 REM SHOW NAME SCREEN

1170 DISPLAY AT(5,1):"What name do you want?":"Typ
e 'END' when done."

1180 DISPLAY AT(8,1):"->{10 SPACES}<-"
1190 DISPLAY AT(23,1):"Hit ENTER to use":"the info

rmation shown."

1200 RETURN

1210 REM READ NAME SCREEN

1220 ACCEPT AT(8,3)SIZE(-10)BEEP:NM$:: IF NM$=""
THEN 1220

1230 IF NM$="END" OR NM$="end" THEN 1240
1240 RETURN

1250 REM ROW #

1260 FOR 1=0 TO MAXROW-1

1270 IF NM$=ROW$(l)THEN N=I :: GOTO 1290
1280 NEXT I :: N=-l

1290 RETURN

1300 REM COL #

1310 FOR 1=0 TO MAXCOL-1

1320 IF NM$=COL$(l)THEN N=I :: GOTO 1340
1330 NEXT I :: N=-l

1340 RETURN

1350 REM OPERATOR #
1360 FOR 1=1 TO NOPR

1370 IF NM$=OPLIST$(l)THEN N=I :: GOTO 1390
1380 NEXT I :: N=-l I

1390 RETURN

1400 REM RUN MODEL "^
1410 DATA 2," 1 Review or change data"
1420 DATA " 2 Do the calculations" «|
1430 RESTORE 1410 :: READ N :: FOR 1=1 TO N :: REA J

D CHOICE$(l):: NEXT I «_,

84 -J

{MB

Electronic Spreadsheets

1440 CALL MENU("Run the Model",CHOICE$(),N,FCODE)
1450 IF FCODE=0 THEN 1470
1460 ON FCODE GOSUB 1480,1820 :: GOTO 1430
1470 RETURN

1480 REM DISPLAY & CHANGE

1490 DISPLAY AT(1,4)ERASE ALL:"Review or Change Da
ta"

1500 IMAGE "######.## ######.##••

1510 DISPLAY AT(22,1):"S,D Scroll columns"
1520 DISPLAY AT(23,1):"E,X Scroll rows"
1530 DISPLAY AT(24,1):"C{4 SPACES}Change data

{5 SPACES}Q Quit"
1540 RWB,CW=0
1550 REM WINDOW

1560 RW=RWB :: CT=CW+1 :: IF CT>MAXCOL THEN CT=1

1570 DISPLAY AT(3,9)SIZE(9):COL$(CW)
1580 DISPLAY AT(3,20)SIZE(9):COL$(CT)
1590 FOR 1=5 TO 5+NL-l

1600 DISPLAY AT(I,l)SIZE(7):ROW$(RW)
1610 DISPLAY AT(I,9):USING 1500:MODEL(RW,CW),MODEL

(RW,CT)
1620 RW=RW+1 :: IF RW>MAXROW THEN 1640

1630 NEXT I

1640 FOR K=I+1 TO 19 :: DISPLAY AT(K,1):" " :: NEX
T K

1650 REM POLL KBD

1660 CALL SOUND(100,440,4)
1670 CALL KEY(0,R,S):: IF S<>1 THEN 1670 ELSE R$=C

HR$(R)
1680 IF R$="S" THEN CW=CW-1 :: IF CW<0 THEN CW=MAX

COL

1690 IF R$="D" THEN CW=CW+1 :: IF CW>MAXCOL THEN C
W=0

1700 IF R$="E" THEN RWB=RWB-NL :: IF RWB<0 THEN RW
B=0

1710 IF R$="X" THEN RWB=RWB+NL :: IF RWB>MAXROW TH
EN RWB=0

1720 IF R$="Q" THEN 1810
1730 IF R$<>"C" THEN 1550
1740 REM READ SCREEN

1750 RW=RWB

1760 FOR 1=5 TO 5+NL-l

1770 ACCEPT AT(I,9)SIZE(-9)VALIDATE(NUMERIC)BEEP:N
1780 MODEL(RW,CW)=N
1790 RW=RW+1 :: IF RW>MAXROW THEN 1650

1800 NEXT I :: GOTO 1550

1810 RETURN

1820 REM DO CALC

1830 FOR 1=0 TO MAXCALC

85

Electronic Spreadsheets T

1840 IF CALC(I,0)=0 THEN 1930
1850 DISPLAY AT(24,1):"Working. Step ";I
1860 IF CALC(1,0)=2 THEN 1900
1870 R1=CALC(I,1):: N=CALC(I,2):: R2=CALC(1,3):: R

3=CALC(I,4)
1880 FOR K=0 TO MAXCOL-1 :: Cl,C2,C3=K :: GOSUB 20

20 :: NEXT K

1890 GOTO 1920

1900 C1=CALC(I,1):: N=CALC(I, 2): : C2=CALC(1,3):: C
3=CALC(I,4)

1910 FOR K=0 TO MAXROW-1 :: Rl,R2,R3=K :: GOSUB 20
20 :: NEXT K

1920 NEXT I

1930 DISPLAY AT(24,l):"Row and column totals."
1940 FOR 1=0 TO MAXROW :: T=0 :: FOR J=0 TO MAXCOL

-1

1950 T=T+MODEL(I,J):: NEXT J
1960 MODEL(I,MAXCOL)=T :: NEXT I
1970 FOR 1=0 TO MAXCOL :: T=0 :: FOR J=0 TO MAXROW

-1

1980 T=T+MODEL(J,I):: NEXT J
1990 MODEL(MAXROW,I)=T :: NEXT I
2000 DISPLAY AT(24,1):" "
2010 RETURN

2020 REM CALC

2030 ON N GOTO 2040,2050,2060,2070,2090,2100,2110,
2120

2040 MODEL(R3,C3)=MODEL(Rl,Cl)+MODEL(R2,C2):: RETU
RN

2050 MODEL(R3,C3)=MODEL(Rl,Cl)-MODEL(R2,C2):: RETU
RN

2060 MODEL(R3,C3)=MODEL(Rl,Cl)*MODEL(R2,C2):: RETU
RN

2070 IF MODEL(R2,C2)<>0 THEN MODEL(R3,C3)=MODEL(Rl
,C1)/MODEL(R2,C2)

2080 RETURN
2090 MODEL(R3,C3)=MODEL(R1,C1)*MODEL(R2,C2)/100 ::

RETURN

2100 MODEL(R3,C3)=MODEL(Rl,Cl)+(MODEL(Rl,Cl)*MODEL
(R2,C2)/100):: RETURN

2110 MODEL(R3,C3)=MODEL(Rl,Cl)-(MODEL(Rl,Cl)*MODEL
(R2,C2)/100):: RETURN

2120 IF MODEL(R1,C1)<>0 THEN MODEL(R3,C3)=((MODEL(
R2,C2)-MODEL(R1,C1))/MODEL(R1,C1))*100

2130 RETURN

2140 REM LOAD ""J
2150 CALL OPENI(192,FCODE):: IF FCODE=0 THEN 2230
2160 INPUT #2:MAXROW,MAXCOL,MAXCALC an
2170 FOR 1=0 TO 10 :: INPUT #2:ROW$(I),:: NEXT I '

86

i

1

lipQ

(#11

JtWSt

V8H

(jim

f?ftWl

2180
2190

2200 FOR 1=0 TO MAXCALC

2:CALC(I,J),:: NEXT
2210 FOR 1=0 TO MAXROW :

UT #2:MODEL(I,J),::
2220 CLOSE #2

2230 RETURN

2240 REM SAVE

2250 CALL OPENO(192,FCODE):: IF FCODE=0 THEN 2330
2260 PRINT #2:MAXROW;MAXCOL;MAXCALC
2270 FOR 1=0 TO 10

: PRINT #2

2280 FOR 1=11 TO 20

:: PRINT #2

2290 FOR 1=0 TO 15

: PRINT #2

2300 FOR 1=0 TO MAXCALC

2:CALC(I,J);:: NEXT
2310 FOR 1=0 TO MAXROW :

NT #2:MODEL(I,J);::
T I

2320 CLOSE #2

2330 RETURN

2340 SUB OPENI(RL,FCODE)
2350 DATA 3

2360 DATA " 1 Cassette 1

2370 DATA " 2 Disk"

2380 DATA " 3 Other"

2390 RESTORE 2350 :: READ N

D CHOICE?(I):: NEXT I
2400 CALL MENU("Open Input File",CHOICE?(),N,FCODE

)
2410 IF FCODE=0 THEN 2480

2420 IF FCODE=l THEN 2470

2430 DISPLAY AT(15,1):"Type device.filename"
2440 ACCEPT AT(17,1)SIZE(-28)VALIDATE(UALPHA,DIGIT

,".")BEEP:NM? :: IF NM?="" THEN 2440
2450 OPEN #2:NM?,INTERNAL,INPUT ,VARIABLE RL
2460 GOTO 2480

2470 OPEN "CS1",INTERNAL,INPUT ,FIXED RL
2480 SUBEND

2490 SUB OPENO(RL,FCODE)
2500 DATA 4," 1 Cassette 1 CSl"
2510 DATA " 2 Cassette 2 CS2"

2520 DATA " 3 Disk"

2530 DATA " 4 Other"

2540 RESTORE 2500 :: READ N :: FOR 1=1 TO N
D CHOICE?(l):: NEXT I

FOR 1=11 TO 20
FOR 1=0 TO 15

Electronic Spreadsheets

INPUT #2:ROW?(I),
INPUT #2:COL$(I),:

NEXT I

NEXT I

INPUT #:: FOR J=0 TO 4 ::

J :: NEXT I

: FOR J=0 TO MAXCOL

NEXT J :: NEXT I

INP

PRINT #2:ROW?(I);:

PRINT #2:ROW?(I);

PRINT #2:COL?(I);:

i: FOR J=0 TO 4

J :: PRINT #2

: FOR J=0 TO MAXCOL

NEXT J :: PRINT #2

CSl"

NEXT I

NEXT I

NEXT I

PRINT #

NEXT I

PRI

NEX

FOR 1=1 TO N REA

REA

87

Electronic Spreadsheets "^

2550 CALL MENU("Open Output File",CHOICE?(),N,FCOD
E)

2560 IF FCODE=0 THEN 2640

2570 IF FCODE=l OR FCODE=2 THEN 2620

2580 DISPLAY AT(15,1):"Type device.filename"
2590 ACCEPT AT(17,1)SIZE(-28)VALIDATE(UALPHA,DIGIT

,".")BEEP:NM? :: IF NM?="" THEN 2590
2600 OPEN #2:NM?,INTERNAL,OUTPUT,VARIABLE RL
2610 GOTO 2640

2620 IF FCODE=l THEN NM?="CS1" ELSE NM?="CS2"
2630 OPEN OUTPUT #2:NM?,INTERNAL,OUTPUT,FIXED RL
2640 SUBEND

2650 SUB MENU(TITLE?,CHOICE?(),N,FUNC)
2660 C=(28-LEN(TITLE?))/2
2670 DISPLAY AT(1,C)ERASE ALL:TITLE?
2680 DISPLAY AT(4,l):"Do you want to:"
2690 R=6 :: FOR 1=1 TO N

2700 DISPLAY AT(R,l):CHOICE?(I): : R=R+2
2710 NEXT I

2720 R=R+1

2730 DISPLAY AT(R,1)BEEP:"Type your selection -> "
2740 CALL KEY(0,R2,S):: IF S<>1 THEN 2740
2750 IF R2=13 THEN FUNC=0 :: GOTO 2780

2760 IF R2<49 OR R2>48+N THEN 2730

2770 FUNC=R2-48 :: DISPLAY AT(R,24)SIZE(1):CHR? (R2
)

2780 SUBEND

fj^Wi

Program 4-2. Tiny Plan 2
100 REM TINY PLAN 2

110 ON BREAK NEXT :: ON WARNING NEXT

120 NL=11 :: MAXROW,MAXCOL=10 :: MAXCALC=15
130 DIM MODEL(10,10),ROW?(10),COL?(10)
140 DIM OPLIST?(8),CHOICE?(10),CALC(15,4)
150 GOSUB 280 UNITIALIZE

160 REM MAIN MENU

170 DATA 5," 1 Define the model"
Run the model"

Load model&data"

Save model&data"

Leave Tiny Plan"
220 RESTORE 170 :: READ N :: FOR 1=1 TO N :: READ "^

CHOICE?(I):: NEXT I
230 CALL MENU ("Tiny Plan 2",CHOICE? (),N,FCODE) =•»
240 IF FCODE=0 THEN 150 '
250 IF FCODE=5 THEN 270

260 ON FCODE GOSUB 380,1400,2860,2950 :: GOTO 220 i
270 CALL CLEAR :: END

n
88

180 DATA
ii 2

190 DATA
ii

3

200 DATA
ti 4

210 DATA
ii 5

Electronic Spreadsheets
fi#ffl

mm 280 REM INITIALIZE

- 290 DISPLAY AT(12,1)ERASE ALL:"Initializing Tiny P
Ian": :"Just a moment ..."

300 DATA 8,+,-,*,/,%,%+,%-,%D
310 RESTORE 300 :: READ NOPR :: FOR 1=1 TO NOPR ::

READ 0PLIST?(I):: NEXT I
320 FOR 1=0 TO MAXROW-1 :: ROV7? (I)= "R"&STR? (I):: N

EXT I

330 FOR 1=0 TO MAXCOL-1 :: COL?(I) = "C"&STR? (I): : N
EXT I

340 ROW?(MAXROW) = "COL TOTAL" :: COL?(MAXCOL) = "ROW
TOTAL"

350 FOR 1=0 TO MAXROW :: FOR J=0 TO MAXCOL :: MODE
L(I,J)=0 :: NEXT J :: NEXT I

360 FOR 1=0 TO MAXCALC :: FOR J=0 TO 4 :: CALC(I,J
)=0 :: NEXT J :: NEXT I

370 RETURN

380 REM DEFINE MODEL

390 DATA 3," 1 Give row names"
400 DATA " 2 Give column names"

410 DATA " 3 State calculation rules"
420 RESTORE 390 :: READ N :: FOR 1=1 TO N :: READ

CHOICE?(I):: NEXT I
430 CALL MENU("Define the model",CHOICE?(),N,FCODE

)
440 IF FCODE=0 THEN 460

450 ON FCODE GOSUB 470,580,690 :: GOTO 420
460 RETURN

470 REM ROW NAME

480 DISPLAY AT(1,8)ERASE ALL:"Give Row Names"
490 GOSUB 1160

500 FOR 1=0 TO MAXROW-1

510 DISPLAY AT(3,1):"Row ";I;" of ";MAXROW
520 DISPLAY AT(8,3)SIZE(10):ROW?(I)
530 GOSUB 1210 IREAD SCREEN

540 IF NM?="END" OR NM?="end" THEN 570
550 ROW?(l)=NM?
560 NEXT I

570 RETURN

580 REM COL NAME

590 DISPLAY AT(1,6)ERASE ALL:"Give Column Names"
600 GOSUB 1160

610 FOR 1=0 TO MAXCOL-1

620 DISPLAY AT(3,l):"Column ";I;" of ";MAXCOL
630 DISPLAY AT(8,3)SIZE(10):COL?(I)

J™ 640 GOSUB 1210 IREAD SCREEN
650 IF NM?=MEND" OR NM?="end" THEN 680

pm 660 COL?(I)=NM?
1 670 NEXT I

1$^!

89

Electronic Spreadsheets T

j

680 RETURN —

690 REM CALCULATION RULES H
700 DISPLAY AT(1,2)ERASE ALL:"State Calculation Ru

les"
710 DISPLAY AT(7,l):"Row(R) or Col(C) or Quit(Q)?"
720 DISPLAY AT(8,3):"->"
730 DISPLAY AT(10,1):"1st row/column name"
740 DISPLAY AT(11,3):"->"
750 DISPLAY AT(13,1):"Calculation:"
760 DISPLAY AT(14,3):"->"
770 DISPLAY AT(16,1):"2nd row/column name"
780 DISPLAY AT(17,3):"->"
790 DISPLAY AT(19,1):"Answer row/column name"
800 DISPLAY AT(20,3):"->"
810 DISPLAY AT(23,1):"Calculations can be:"
820 DISPLAY AT(24,1):"+ - * / % %+ %- %D"
830 FOR K=0 TO MAXCALC

840 DISPLAY AT(4,1):"Step ";K;" of ";MAXCALC
850 IF CALC(K,0)=2 THEN 900
860 T?="R" :: Tl?=ROW?(CALC(K,1)): : T2?=0PLIST?(CA

LC(K,2))
870 T3?=ROW?(CALC(K,3)): : T4?=R0W?(CALC(K,4))
880 GOTO 910

890 T?="C" :: Tl?=COL?(CALC(K,1)) :: T2?=OPLIST?(CA
LC(K,2))

900 T3?=COL?(CALC(K,3)):: T4?=C0L?(CALC(K,4))
910 DISPLAY AT(8,5)SIZE(1):T?
920 DISPLAY AT(11,5)SIZE(10):T1?
930 DISPLAY AT(14,5)SIZE(2):T2?
940 DISPLAY AT(17,5)SIZE(10):T3?
950 DISPLAY AT(20,5)SIZE(10):T4?
960 ACCEPT AT(8,5)SIZE(-1)VALIDATE("RCQ")BEEP:T? :

: IF T?="" THEN 960 ELSE IF T?="Q" THEN 1140
970 IF T?="R" THEN CALC(K,0)=1 ELSE CALC(K,0)=2
980 ACCEPT AT(11,5)SIZE(-10)BEEP:NM? :: IF NM?=""

THEN 980

990 IF T?="R" THEN GOSUB 1250 ELSE GOSUB 1300
1000 IF N=-l THEN 980

1010 CALC(K,1)=N
1020 ACCEPT AT(14,5)SIZE(-2)VALIDATE("+-*/%D")BEEP

:NM? :: IF NM?="" THEN 1020
1030 GOSUB 1350 :: IF N=-l THEN 1020

1040 CALC(K,2)=N «_
1050 ACCEPT AT(17,5)SIZE(-10)BEEP:NM? :: IF NM?="" !

THEN 1050

1060 IF T?="R" THEN GOSUB 1250 ELSE GOSUB 1300 ^
1070 IF N=-l THEN 1050

1080 CALC(K,3)=N «?
1090 ACCEPT AT(20,5)SIZE(-10)BEEP:NM? :: IF NM?="" '

THEN 1090

90

SB^I

(T'l'ftBBl

iw$it

I'UNWI

Electronic Spreadsheets

1100 IF T?="R" THEN GOSUB 1250 ELSE GOSUB 1300
1110 IF N=-l THEN 1090

1120 CALC(K,4)=N
1130 NEXT K :: GOTO 1150

1140 FOR J=0 TO 4 :: CALC(K,J)=0 :: NEXT J
1150 RETURN

1160 REM SHOW NAME SCREEN

1170 DISPLAY AT(5,1):"What name do you want?": "Typ
e 'END' when done."

1180 DISPLAY AT(8,1):"->{10 SPACES}<-"
1190 DISPLAY AT(23,1):"Hit ENTER to use":"the info

rmation shown."

1200 RETURN

1210 REM READ NAME SCREEN

1220 ACCEPT AT(8,3)SIZE(-10)BEEP:NM? :: IF NM?=""
THEN 1220

1230 IF NM?="END" OR NM?="end" THEN 1240
1240 RETURN

1250 REM ROW #

1260 FOR 1=0 TO MAXROW-1

1270 IF NM?=ROW?(l)THEN N=I :: GOTO 1290
1280 NEXT I :: N=-l

1290 RETURN

1300 REM COL #

1310 FOR 1=0 TO MAXCOL-1

1320 IF NM?=COL?(l)THEN N=I :: GOTO 1340
1330 NEXT I :: N=-l

1340 RETURN

1350 REM OPERATOR #

1360 FOR 1=1 TO NOPR

1370 IF NM?=OPLIST?(I)THEN N=I :: GOTO 1390
1380 NEXT I :: N=-l

1390 RETURN

1400 REM RUN MODEL

1410 DATA 4," 1 Review or change data"
1420 DATA " 2 Do the calculations"

1430 DATA " 3 Print the results"
1440 DATA " 4 Save data for plotting"
1450 RESTORE 1410 :: READ N :: FOR 1=1 TO N :: REA

D CHOICE?(l):: NEXT I
1460 CALL MENU("Run the Model",CHOICE?(),N,FCODE)
1470 IF FCODE=0 THEN 1490

1480 ON FCODE GOSUB 1500,1840,2160,2570 :: GOTO 14
50

1490 RETURN

1500 REM DISPLAY & CHANGE
1510 DISPLAY AT(1,4)ERASE ALL:"Review or Chanqe Da

ta"

1520 IMAGE "######.## ######.##»

91

Electronic Spreadsheets
InJipI

I

1530 DISPLAY AT(22,1):"S,D Scroll columns" _
1540 DISPLAY AT(23,1):"E,X Scroll rows" 1
1550 DISPLAY AT(24,1):"C{4 SPACES}Change data

{5 SPACES}Q Quit"
1560 RWB,CW=0
1570 REM WINDOW

1580 RW=RWB :: CT=CW+1 :: IF CT>MAXCOL THEN CT=1

1590 DISPLAY AT(3,9)SIZE(9):COL?(CW)
1600 DISPLAY AT(3,20)SIZE(9):COL?(CT)
1610 FOR 1=5 TO 5+NL-l

1620 DISPLAY AT(I,1)SIZE(7):ROW?(RW)
1630 DISPLAY AT(I,9):USING 1520:MODEL(RW,CW),MODEL

(RW,CT)
1640 RW=RW+1 :: IF RW>MAXROW THEN 1660

1650 NEXT I

1660 FOR K=I+1 TO 19 :: DISPLAY AT(K,1):" " :: NEX
T K

1670 REM POLL KBD

1680 CALL SOUND(100,440,4)
1690 CALL KEY(0,R,S):: IF S<>1 THEN 1690 ELSE R?=C

HR?(R)
1700 IF R?="S" THEN CW=CW-1 :: IF CW<0 THEN CW=MAX

COL

1710 IF R?="D" THEN CW=CW+1 :: IF CW>MAXCOL THEN C
W=0

1720 IF R?="E" THEN RWB=RWB-NL :: IF RWB<0 THEN RW
B=0

1730 IF R?="X" THEN RWB=RWB+NL :: IF RWB>MAXROW TH
EN RWB=0

1740 IF R?="Q" THEN 1830
1750 IF R^o'^" THEN 1570
1760 REM READ SCREEN

1770 RW=RWB

1780 FOR 1=5 TO 5+NL-l

1790 ACCEPT AT(I,9)SIZE(-9)VALIDATE(NUMERIC)BEEP:N
1800 MODEL(RW,CW)=N
1810 RW=RW+1 :: IF RW>MAXROW THEN 1670

1820 NEXT I :: GOTO 1570

1830 RETURN

1840 REM DO CALC

1850 FOR 1=0 TO MAXCALC

1860 IF CALC(I,0)=0 THEN 1950
1870 DISPLAY AT(24,1):"Working. Step ";I
1880 IF CALC(1,0)=2 THEN 1920 j
1890 Rl=CALC(I,l)t: N=CALC(I, 2): : R2=CALC(I,3):: R

3=CALC(I 4) ^^
1900 FOR K=0 TO MAXCOL-1 :: ClfC2,C3=K :: GOSUB 20 '

40 :: NEXT K

1910 GOTO 1940

92

tSvA

pfrcasa

Electronic Spreadsheets

1920 C1=CALC(I,1):: N=CALC(I,2):: C2=CALC(1,3): : C
3=CALC(I,4)

1930 FOR K=0 TO MAXROW-1 :: Rl,R2,R3=K :: GOSUB 20
40 :: NEXT K

1940 NEXT I

1950 DISPLAY AT(24,1):"Row and column totals."
1960 FOR 1=0 TO MAXROW :: T=0 :: FOR J=0 TO MAXCOL

-1

1970 T=T+MODEL(I,J):: NEXT J
1980 MODEL(I,MAXCOL)=T :: NEXT I
1990 FOR 1=0 TO MAXCOL :: T=0 :: FOR J=0 TO MAXROW

-1

2000 T=T+MODEL(J,l):: NEXT J
2010 MODEL(MAXROW,I)=T :: NEXT I
2020 DISPLAY AT(24,1):" "
2030 RETURN

2040 REM CALC

2050 ON N GOTO 2060,2070,2080,2090,2110,2120,2130,
2140

2060 MODEL(R3,C3)=MODEL(Rl,Cl)+MODEL(R2,C2):: RETU
RN

2070 MODEL(R3,C3)=M0DEL(R1,C1)-M0DEL(R2,C2): : RETU
RN

2080 MODEL(R3,C3)=MODEL(Rl,Cl)*MODEL(R2,C2):: RETU
RN

2090 IF MODEL(R2,C2)<>0 THEN MODEL(R3,C3)=MODEL(Rl
,C1)/MODEL(R2,C2)

2100 RETURN

2110 MODEL(R3,C3)=MODEL(R1,C1)*MODEL(R2,C2)/100 ::
RETURN

2120 MODEL(R3,C3)=MODEL(Rl,Cl)+(MODEL(Rl,Cl)*MODEL
(R2,C2)/100):: RETURN

2130 MODEL(R3,C3)=M0DEL(R1,C1)-(MODEL(Rl,Cl)*MODEL
(R2,C2)/100):: RETURN

2140 IF MODEL(R1,C1)<>0 THEN MODEL(R3,C3)=((MODEL(
R2,C2)-M0DEL(R1,C1))/MODEL(R1,C1))*100

2150 RETURN

2160 REM PRINT

2170 DISPLAY AT(1,6)ERASE ALL:"Print the Results"
2180 DISPLAY AT(4,1):"Starting column 0-";MAXCOL
2190 DISPLAY AT(5,1):"Ending column{3 SPACES}0-";M

AXCOL

2200 DISPLAY AT(6,1):"Starting row{4 SPACES}0-";MA
XROW

2210 DISPLAY AT(7,1):"Ending row{6 SPACES}0-";MAXR
OW

2220 DISPLAY AT(10,1):"Digits before decimal"
2230 DISPLAY AT(11,1):"Digits after decimal"
2240 DISPLAY AT(12,1):"(14 digits max.)"

93

Electronic Spreadsheets

2250 DISPLAY AT(15,1):"Spaces between columns"
2260 DISPLAY AT(21,1):"O.K. to print (Y or N)?" **|
2270 ACCEPT AT(4,26)SIZE(-3)VALIDATE(DIGIT)BEEP:Cl
2280 ACCEPT AT(5,26)SIZE(-3)VALIDATE(DIGIT)BEEP:C2
2290 IF CK0 OR Cl>MAXCOL OR C2<0 OR C2>MAXCOL OR

C2<C1 THEN 2270

2300 ACCEPT AT(6,26)SIZE(-3)VALIDATE(DIGIT)BEEP:R1
2310 ACCEPT AT(7,26)SIZE(-3)VALIDATE(DIGIT)BEEP:R2
2320 IF Rl<0 OR Rl>MAXROW OR R2<0 OR R2>MAXROW OR

R2<R1 THEN 2300

2330 ACCEPT AT(10,26)SIZE(-2)VALIDATE(DIGIT)BEEP:D1
2340 ACCEPT AT (11,26)SIZE(-2)VALIDATE(DIGIT)BEEP:D!2
2350 IF Dl+D2>14 THEN 2330

2360 F?=RPT?("#",D1):: IF D2>0 THEN F?=F?&"."&RPT?
("#" D2)

2370 ACCEPT AT(15,26)SIZE(-3)VALIDATE(DIGIT)BEEP:SP
2380 IF SP>30 THEN 2370

2390 L=LEN(F?)
2400 PW=10+SP+(C2-C1+1)*(L+SP): : FW=L+SP
2410 DISPLAY AT(18,l):"Print width is ";PW
2420 ACCEPT AT(21,28)SIZE(-1)VALIDATE("YN")BEEP:R?

:: IF R?="" THEN 2420 ELSE IF R?="N" THEN 22
70

2430 REM * OPEN PRINTER *

2440 OPEN #1:"RS232.BA=1200",DISPLAY ,OUTPUT,VARIA
BLE PW

2450 K=0 :: FOR C=Cl TO C2

2460 PRINT #1:TAB(10+SP+K*FW);COL?(C);:: K=K+1
2470 NEXT C

2480 PRINT #1 :: PRINT #1

2490 FOR R=Rl TO R2 :: PRINT #l:ROW?(R);:: K=0
2500 FOR C=C1 TO C2

2510 PRINT #1:TAB(10+SP+K*FW);
2520 PRINT #1,USING F?:MODEL(RfC);:: K=K+1
2530 NEXT C :: PRINT #1 :: NEXT R

2540 PRINT #1 :: PRINT #1
2550 CLOSE #1

2560 RETURN

2570 REM SAVE FOR PLOT

2580 DISPLAY AT(1,4)ERASE ALL:"Save Data for Plott
ing"

2590 DISPLAY AT(4,1):"Plot rows(R) or columns(C)"

2600 DISPLAY AT(7,1):"X-axis (horizontal)"
2610 DISPLAY AT(9,7):"number" *!
2620 DISPLAY AT(12,1): "Y-axis (vertical)"
2630 DISPLAY AT(14,7): "number" —>|
2640 DISPLAY AT(22,1):"Row number range 0-";MAXROW
2650 DISPLAY AT(23,1):"Col number range)-";MAXCOL
2660 ACCEPT AT(4,28)SIZE(1)VALIDATE("RC")BEEP:T? :

: IF T?="" THEN 2660

94

$&SI Electronic Spreadsheets
fr%E^

2670 IF T?="R" THEN Tl?="Row" ELSE Tl?="Col"
f" 2680 DISPLAY AT(9,3)SIZE(3):Tl? :: DISPLAY AT(14,3

)SIZE(3):T1?
2690 ACCEPT AT(9,27)SIZE(-2)VALIDATE(NUMERIC)BEEP:

Dl :: IF DK0 THEN 2690

2700 IF T?="R" AND D1>MAXR0W THEN 2690
2710 IF T?="C" AND D1>MAXC0L THEN 2690
2720 ACCEPT AT(14,27)SIZE(-2)VALIDATE(NUMERIC)BEEP

:D2 :: IF D2<0 THEN 2720

2730 IF T?="R" AND D2>MAXR0W THEN 2720
2740 IF T?="C" AND D2>MAXC0L THEN 2720
2750 CALL OPENO(64,FCODE):: IF FCODE=0 THEN 2850
2760 IF FCODE<0 THEN 2850

2770 IF T?="C" THEN 2810
2780 FOR 1=1 TO MAXCOL

2790 PRINT #2:M0DEL(D1,I);M0DEL(.D2,I)
2800 NEXT I :: GOTO 2840

2810 FOR 1=0 TO MAXROW

2820 PRINT #2:M0DEL(I,D1);M0DEL(I,D2)
2830 NEXT I

2840 PRINT #2:-l;-l :: CLOSE #2
2850 RETURN

2860 REM LOAD

2870 CALL OPENI(192,FCODE):: IF FCODE=0 THEN 2940
2880 INPUT #2:MAXROW,MAXCOL,MAXCALC
2890 FOR 1=0 TO 10 :: INPUT #2:ROW?(I),:: NEXT I
2900 FOR 1=0 TO 10 :: INPUT #2:COL?(I),:: NEXT I
2910 FOR 1=0 TO MAXCALC :: FOR J=0 TO 4 :: INPUT #

2:CALC(I,J),:: NEXT J :: NEXT I
2920 FOR 1=0 TO MAXROW :: FOR J=0 TO MAXCOL :: INP

UT #2:MODEL(I,J),:: NEXT J :: NEXT I
2930 CLOSE #2

2940 RETURN

2950 REM SAVE

2960 CALL OPENO(192,FCODE):: IF FCODE=0 THEN 3030
2970 PRINT #2:MAXROW;MAXCOL;MAXCALC
2980 FOR 1=0 TO 10 :: PRINT #2:ROW?(I);:: NEXT I :

: PRINT #2

2990 FOR 1=0 TO 10 :: PRINT #2:COL?(I);:: NEXT I :
: PRINT #2

3000 FOR 1=0 TO MAXCALC :: FOR J=0 TO 4 :: PRINT #
2:CALC(I,J);:: NEXT J :: PRINT #2 :: NEXT I

3010 FOR 1=0 TO MAXROW :: FOR J=0 TO MAXCOL :: PRI
mm NT #2:MODEL(I,J);:: NEXT J :: PRINT #2 :: NEX

T I

*« 3020 CLOSE #2
3030 RETURN

3040 SUB OPENI(RL,FCODE)
f" 3050 DATA 3

3060 DATA " 1 Cassette 1 CSl"

Electronic Spreadsheets

3070 DATA " 2 Dislc"

3080 DATA " 3 Other" \
3090 RESTORE 3050 :: READ N :: FOR 1=1 TO N :: REA

D CHOICE?(I):: NEXT I
3100 CALL MENU("Open Input File",CHOICE?(),N,FCODE

)
3110 IF FCODE=0 THEN 3180

3120 IF FCODE=l THEN 3170
3130 DISPLAY AT(15,1):"Type device.filename"
3140 ACCEPT AT(17,1)SIZE(-28)VALIDATE(UALPHA,DIGIT

,".")BEEP:NM? :: IF NM?="" THEN 3140
3150 OPEN #2:NM?,INTERNAL,INPUT ,VARIABLE RL
3160 GOTO 3180

3170 OPEN "CSl",INTERNAL,INPUT ,FIXED RL
3180 SUBEND

3190 SUB OPENO(RL,FCODE)
3200 DATA 4," 1 Cassette 1 CSl"
3210 DATA " 2 Cassette 2 CS2"

3220 DATA " 3 Dislc"

3230 DATA " 4 Other"
3240 RESTORE 3200 :: READ N :: FOR 1=1 TO N :: REA

D CHOICE?(l):: NEXT I
3250 CALL MENU("Open Output File",CHOICE?(),N,FCOD

E)
3260 IF FCODE=0 THEN 3340

3270 IF FCODE=l OR FCODE=2 THEN 3320

3280 DISPLAY AT(15,1):"Type device, filename"
3290 ACCEPT AT(17,1)SIZE(-28)VALIDATE(UALPHA,DIGIT

,".")BEEP:NM? :: IF NM?="" THEN 3290
3300 OPEN #2:NM?,INTERNAL,OUTPUT,VARIABLE RL
3310 GOTO 3340

3320 IF FCODE=l THEN NM?="CSl" ELSE NM?="CS2"
3330 OPEN #2:NM?,INTERNAL,OUTPUT,FIXED RL
3340 SUBEND

3350 SUB MENU(TITLE?,CHOICE?(),N,FUNC)
3360 C=(28-LEN(TITLE?))/2
3370 DISPLAY AT(1,C)ERASE ALL:TITLE?
3380 DISPLAY AT(4,l):"Do you want to:"
3390 R=6 :: FOR 1=1 TO N

3400 DISPLAY AT(R,l):CHOICE?(I): : R=R+2
3410 NEXT I

3420 R=R+1

3430 DISPLAY AT(R,1)BEEP:"Type your selection -> "
3440 CALL KEY(0,R2,S):: IF S<>1 THEN 3440 -^
3450 IF R2=13 THEN FUNC=0 :: GOTO 3480
3460 IF R2<49 OR R2>48+N THEN 3430
3470 FUNC=R2-48 :: DISPLAY AT(R,24)SIZE(1):CHR?(R2

)
3480 SUBEND

fiS^k

96

pSB

psi

he last chapter discussed electronic spreadsheets. Per
haps you are collecting household information for
which a spreadsheet approach is not really required.

For example, you may simply be collecting household
expenses by category. Or you might be recording gas mileage
at every fill up.

Whether it was computed by a spreadsheet program or
just recorded and saved, you probably can think of household
information that you would like to review and study. Usually
the purpose of such study is to look for trends. Are the gro
cery expenses going up, down, or staying about the same? Has
the gas mileage on the family car worsened? Is it time for a
new set of plugs and points? The telecommunications industry
is changing rapidly. Our telephone bills will require closer
scrutiny. Can any trends be isolated?

How do we go about drawing conclusions from all the
data—from just columns of numbers? It is easy to see the
smaller month-to-month variations, but ideally it's best to
review an entire set of data.

In order to make the proper changes in a family's house
hold management, the overall trends and tendencies must be
studied and evaluated. This is really the only way to make
changes that will be beneficial. Short-range fluctuations are to
be expected, but long-range trends are needed to react appro
priately. If, for example, a particular expense category has
been rising steadily, you might want to take some action.

There are mathematical tools that can be used to perform
this type of data analysis. Examples of such tools are curve fit-

wm ting programs, descriptive statistics, and multiple linear regres
sion analysis. These tools do a good job, but they are

fm specialized subjects in their own right.
Computer graphics is another tool in the analyst's tool kit.

fi=> With computer graphics, you can see your data. This visual

99

PR

Computer Graphics

representation has much more impact than rows and columns
of numbers. By viewing the data, you can begin making _J
conclusions about trends and patterns very easily. In fact, pro
fessional analysts often prepare a graph of the data before
they use the more sophisticated techniques. They want some
idea of how the data is behaving before studying it in more
detail.

Bar Charts
There are several different types of graphs or charts:

—line graphs,
—pie charts, and
—bar charts.

There are other types, but these are the most common.
Line graphs show the relationship of one data item or variable
as a function of another. A good example of this is the familiar
graph of a sine wave. Pie charts help the analyst visualize the
contribution of different parts to the whole. A pie chart would
be good for showing different expense categories and how
they compare. Bar charts are most useful for examining and
comparing data over discrete intervals such as time. For exam
ple, bar charts are ideal for displaying income on a month-to-
month basis. Figure 5-1 illustrates these three graphic
techniques.

This chapter will discuss bar chart programs. Almost all of
the household graphs can be done quite nicely with bar
charts. Your TI can produce very effective bar chart displays
on your television or monitor.

The TI-99/4A hardware does have a high-resolution
graphics mode. This mode enables the TI to produce line
graphs and pie charts as well. However, specialized machine
language software is required. Unfortunately, such software is
beyond the scope of this book.

System Requirements
There are two programs in this chapter:

—Bar Charts, and
—Bar Charts 2.

All of these programs have been designed for a 16K TI-
99/4A and Extended BASIC. Figure 5-2 shows the equipment
that you'll need for the two bar chart programs.

100

1

CS51

1MB

|MWS1

|BB

fSSfJ
I

Computer Graphics

Figure 5*1. Types of Graphs

Line Graph

3000 -

2500 -

e
S <« 2000 -

|| 1500
1000

500 -J

Pie Chart

Expenses

Mortgage

Bar Chart

350 -

300 -

S 250 -

200 -

150 -

12 3 4 5 6 7

Month

Utilities

Food

Computers

Other

8 9 10 11 12

100 -

50 - 1 • • 1 • 111
12 3 4 5 6 7

Month

8 9 10 11 12

101

Computer Graphics

You will probably find yourself using Bar Charts most „
often. It produces the charts on your TV or monitor. Charts -J
may contain up to 15 vertical and 12 horizontal intervals. If
you have a printer, Bar Charts can print a copy of the chart.
However, no extra equipment is really needed.

Bar Charts 2 can produce charts with a great deal more
detail than Bar Charts. The resolution of Bar Charts 2 is 25
vertical and 35 horizontal intervals. These charts are too large
for a video display. Bar Charts 2 requires a printer for proper
operation.

In all other respects, Bar Charts and Bar Charts 2 are
identical. The operating instructions apply to both of these
programs unless stated otherwise.

Figure 5-2. Bar Charts and Bar Charts 2
System Requirements

Bar Charts

Required:
—TI-99/4A console
—Extended BASIC
—Cassette tape recorder

Optional:
—32K memory expansion
—RS232 interface
—Printer

—Disk drive

—Disk controller

Bar Charts 2

Required:
—TI-99/4A console
—Extended BASIC
—Cassette tape recorder
—RS232 interface
—Printer ^

Optional:
—32K memory expansion «=•]
—Disk drive
—Disk controller =*]

102

ESwl

^IflSB

fiSnTI

PBU

faun

Computer Graphics

Bar Charts General Operation
Bar Charts is a menu-driven program. The particular tech
niques employed require you to type in your selection and
then hit ENTER. In other words, Bar Charts does not use a
single-keystroke approach.

The main menu screen lists the major functions that are
available:

1 Enter data,
2 Change data,
3 Save data,
4 Display data, and
5 End bar charts.

Notice that the first three selections deal with data
manipulation. In fact, Bar Charts contains its own built-in data
manager. This means that you do not need a separate program
to record data and to fix data when mistakes have been made.
You can do all this with Bar Charts. Data management is such
an important topic that it will be treated separately.

Selection 4 is used to create a bar graph from data. Once
selection 4 is chosen, another display screen will appear and
ask for chart titles and various scaling options.

The final option, selection 5, puts you back in the BASIC
environment. As with the other programs in this book, you
must be careful. Make sure that all data is properly saved on
tape or disk before ending the program.

Data Management
Before a bar chart can be produced, the data for the chart must
be stored in the computer's memory. Bar Chart expects the
data in a certain format.

The data is always stored as X-Y pairs. The first number,
or X, represents a position along the X or horizontal axis. Like
wise, Y, the second number, represents a position on the Y or
vertical axis. Each such pair of numbers is called an
observation.

Let's look at an example. The expenses for the first three
months of the year were:

January 642.10
February 531.29
March 589.67

A pair of numbers are needed for Bar Charts. In this

103

WK

Computer Graphics T!

example the month number will be used for X and the
expense amount for Y: —

1 642.10

2 531.29

3 589.67

Thus, there are three observations or three pairs of num
bers. The month's number will often be used as the X vari
able. There are quite a few household transactions that will be
tracked monthly. If daily information is desired, the day of the
month will be X. Occasionally, circumstances may arise in
which the quarter number of the year could be used.

Not every bar chart will use time as the X axis. Suppose
you are doing a bit of home energy analysis and want a chart
that will show electricity consumption for the lowest tem
perature in a 24-hour period. The temperature reading could
go on the Xaxis and the kilowatt hours on the Y axis.

Regardless of the actual situation, Bar Charts will be
happy as long as the data is arranged as X-Y pairs.

Data Management: Enter Data
How is data entered into the computer? Selection 1 on the
main menu invokes the Enter Data function. Use this function
when you want to put data in the computer.

The data entry screen will present you with another
choice. The data may come from:

K Keyboard,
T Tape, or
D Disk.

Choose the appropriate option. If you are entering
observations for the first time, the keyboard will be the source
of input. Select tape or disk if you've previously saved the
observations and want them read in again.

Assume that the keyboard is the input device. Bar Charts
will

—display the current observation number,
—ask for the X variable, »
—ask for the Y variable, and
—ask if there is another observation.

This process repeats until you tell bar charts that you've
typed in all the observations.

104

SI

ISO

Computer Graphics

pa Observations entered by the keyboard are always stored
after any observations that may already be in memory. This
means that keyboard data entry acts as an append function.
We may return to the Enter Data function and type in addi
tional observations whenever necessary.

Tape and disk input follow the standard TI procedures.
When you are using disk input, you will be asked for a
filename such as "DSK1.EXPENSES".

Tape and disk data entry functions do not work in the
append mode. When tape or disk is specified as the input
device, all of the observations in memory are cleared.
Observations from tape or disk start with observation number
one.

An observation of —1,-1 for tape and disk input signals
end of file. This tells Bar Charts to turn off the tape recorder
or stop reading from the disk. Both Bar Charts and Tiny Plan
automatically write a —1,-1 as the last record on a file. Any
of your own programs that will transfer data to Bar Charts
should do the same thing.

The main menu screen will be displayed when data entry
is completed.

Data Management: Change Data
When you type in a set of observations, the data is not locked
away forever in some memory chip. Perhaps you've spotted
something unusual on a bar chart. You would like to go back
and review the observations. Perhaps you'll discover that gro
cery expenses were very high one month because someone
typed in the mortgage payment by accident. Perhaps nothing
is wrong with the data at all. There must be another
explanation.

Bar Charts provides the facilities for examining and
changing data. These functions are invoked by means of selec
tion 2 on the main menu.

Bar Charts will display each observation one at a time.
The cursor will be placed at the X variable and then the Y
variable. You may type in a new value for either X or Y. If

f™1 you want the current values, just hit ENTER.
Bar Charts will ask you what you want to do next. There

^ are several choices:

D Delete this observation,
S See this observation,

105

Computer Graphics

. _]

foprciii)

N See next observation,
P See previous observation, and '
Q Quit.

D will delete an observation. The observation is removed
from memory. Then, of course, the observation will not
appear on any bar charts. The delete function is a handy way
of taking care of duplicate entries that sometimes occur.

The S function takes you to a specific observation. Bar
Charts always starts out by showing the first observation.
What if the 50th observation requires correction? With this
function you can avoid the time-consuming process of going
observation by observation until we arrive at the 50th one. Bar
Charts will ask for an observation number. If you type 50, the
50th observation will be displayed. Then you can make the
needed corrections.

N and P are often used together. N moves the display for
ward one observation. P moves the display backward one
observation. By using these two functions together, you do not
need to know exactly which observation had an error, but
rather its approximate location. You could use S to position
the display at observation 45, then use N and P to go forward
and backward until you home in on the problem observation.

The Q option will return the program to the main menu
screen.

Notice that the data change functions are designed only
for changing and deleting observations. You cannot add
observations at this point in Bar Charts. To add observations,
go back to the Enter Data option of the main menu.

All of these functions presume that there are some
observations on which to work. If, by chance, you try to
change data before typing any in, Bar Charts will say,
* NO OBSERVATIONS ENTERED *

You will be quickly escorted back to the main menu.

Data Management: Save Data
In most instances, a permanent record of the data is important.
This is true if the data is being collected periodically rather "^
than all at once.

Selection 2 from the main menu invokes the save data °"|
function. The observations can be saved on one of several
devices: ^

106 n

Computer Graphics
fswi

OT N Null device,
! 1 Cassette unit #1,

2 Cassette unit #2, and
D Disk

The null device is not a new TI peripheral. It is just an
escape mechanism. Maybe, on reflection, you really aren't
quite ready for saving the data yet. If you select the Null
option, the data is not saved. It is simply a way to get back to
the main menu.

The other device options are standard in their approach.
Just follow the instructions that appear on the screen. If you
are using the disk option, you will be asked for a filename.

As part of the data save operation, Bar Charts will auto
matically write a —1,-1 as the last observation. This marks
the end of the file. When the save operation is completed, Bar
Charts will display the main menu screen again.

Display Data
The next major function on the main menu screen is Selection
4—display data. This is where you will see results of the data
displayed graphically.

Selection 4 displays a full screen on which you can spec
ify many options. These options determine how the bar charts
will look. This is the information that you may wish to add to
the display:

—chart titles,
—type of bar chart, and
—X and Y axis scales.

If you wish, you can ignore all of these options. When
ever Bar Charts asks for information, just hit ENTER. The bar
charts will still be displayed on the screen and printed if you
are using the print option.

In the following sections, we will focus on ways of cus
tomizing the bar charts by using the display options.

Chart Titles
ma A bar chart without titles is fine for casual use. However, a

title is also one of the ways that a chart conveys information.
tlia If you are showing the chart to others or if you must reference

it yourself at a later time, you'll want to include a title.
fm With Bar Charts, you can specify:
i

107

|$$8H

Computer Graphics

— the title of the chart, ,_.
— the Xaxis label, and '
— the Y axis label.

Each of these titles or labels may contain up to 28 charac
ters of information. Upper- and lowercase letters may be freely
mixed.

The chart title should give a good idea of the information
that is being conveyed. Here are a few examples of chart titles:

Daily expenses for Aug. 1983,
1982 monthly kilowatt hours, and
1983 gas mileage—Escort.

Similarly, the X and Y axis should be labeled with
explanatory information. Frequently, the X axis represents
time. So an X axis label might identify the specific units of
time involved, such as days or months. Generally, the Y axis
label will state the units of the quantity that is being charted.
For example, the Y axis label might say

Expense dollars,
Kilowatt hours, or
Miles per gallon.

Chart Type
Bar Charts will do three kinds of computations, one at a time,
on the data, and then display the results. The computations
are:

—average the figures within each interval,
—sum the figures within each interval, and
—count the occurrences within each interval.

The particular selection that you choose governs the type
of bar chart that you will see. Bar Charts will ask you what
type of chart you want. It will ask you if you want:

—a sum,

—an average, or
—a frequency chart.

These three types of charts correspond to the three types of "^
data computations.

An example will illustrate this. Expense monitoring is a *H
common household application. Let's say that you at least
keep a record of your expenses. You write down the data of "f

108

Computer Graphics

pw

„ the expense, the amount, and the category. An excerpt from
• the log might contain:

12/1
12/1
12/1
12/2
12/2

Let's take a look at the possible bar chart variations. First
of all, the day number will always be placed along the X or
horizontal axis. If a sum chart is desired, Bar Charts will add
up the expenses for each day. The total expenses for Decem
ber 1 are $67.50, and for December 2 they are $110.00. Bar
Charts will graph 67.50 in the first interval and 110.00 in the
second. The sum chart gives a day-by-day record of total
expenses.

When an average chart is requested, Bar Charts will show
the average expenses for each day. Using the above figures,
the average for December 1 is $22.50, and the average for
December 2 is $55.00. This type of chart does not seem too
useful for budget applications. What can be seen from average
expenses? There are many high amounts (mortgage payments)
and low amounts (chewing gum). The average, therefore,
tends to be just a hodgepodge.

On the other hand, the average chart can come in handy
for other applications. A good example is an application where
periodic meter readings are being taken. The readings are
taken several times and then an average is computed. You
might want to try this yourself. Weigh yourself at different
times of the day, over a period of several days. Write down
the scale readings. Each evening, type in the day's weights.
Let Bar Charts compute your average daily weight. Look at
the resulting bar chart. Can you draw any conclusions?

The frequency chart is the third type. Bar Charts counts
how many numbers or readings fall into each X axis interval.
This count is then graphed. In the expense example, there
were three expense transactions on December 1 and two on

wm December 2. This particular type of chart can give useful
insight into buying patterns. Does the number of expense

vm transactions diminish at the end of a pay period? What hap
pens after a payday? Of course, there will be some seasonal

r™ influence in such records.

50.00 groceries
12.50 gas

5.00 meals

100.00 utilities

10.00 contribution

|«M

109

KSWB

flB

Computer Graphics

The chart options give a great deal of flexibility. You can _
type in a set of data and have it displayed three different -J
ways. Best of all, no extra programming is required.

X and Y Axis Scales
Bar Charts and Bar Charts 2 produce charts with different
levels of detail.

Intervals Bar Charts Bar Charts 2
X axis 12 35
Y axis 15 25

The number of X axis intervals governs the number of
bars that will be on a bar chart. Thus, there can be up to 12
bars with Bar Charts and 35 with Bar Charts 2. The number of
Y axis intervals determines a charting program's ability to
show differences between numbers that are close together in
magnitude. Generally speaking, there can be a finer degree of
detail with a larger number of Y axis intervals.

Both of these programs have a certain specific number of
X and Y intervals. Does this mean that they are limited in the
range of numbers that they can display? Consider Bar Charts.
The X axis is limited to 12 intervals. This is fine for charting
monthly data. The month number will range from 1 to 12.
But, what about daily information? Is Bar Charts lost when
you try to display numbers from 1 to 31 along its X axis? Of
course not.

Bar Charts and Bar Charts 2 use a process called scaling.
Scaling is a mathematical technique. It makes sure that your
data, no matter what size the numbers are, can be properly
displayed.

Here is how the scaling process works. The data is exam
ined. The largest X axis number and the largest Y axis number
are located. The number of X axis intervals is divided by the
largest X axis number. The same thing is done for the Y axis.
The quotient, then, becomes the size of each interval. Con
sider the display of daily information with Bar Charts again.
The largest day number is 31. There are 12 X axis intervals.
Therefore, each bar, or interval, represents 31/12 or 2.58 days. «

Scaling is completely automatic. The calculations are done
before the bar charts are displayed. The programs scale the «
data so that the charts will fill the available X and Y intervals
as much as possible. In other words, you will obtain the larg- «
est chart that the programs can produce. '

110
&!1

r* Computer Graphics

The scaling operations can produce results that are awk-
t ward to use. How do you interpret a bar chart where each bar

counts for 2.58 days? And you can get equally strange factors
for the Y axis.

There is a way around this. You can turn off the auto
matic scaling calculations. You can tell the programs what fac
tors you want used for scaling. How do you know which
factors should be used? Well, let Bar Charts run in the auto
matic mode first. Look at the scaling factors that it has chosen.
Then, adjust them appropriately by rounding them up to the
nearest integer, for example. Using the above illustration, you
might try using 3 days instead of 2.58 days for the X axis
interval. It's much easier to analyze units of 3 whole days.
You could also try units of 5 or 7 days, although this will
reduce the number of bars on the chart.

Scale Options
There are six options—three for the X axis and three for the Y
axis—that you can use for controlling chart scaling. These
options are:

X axis

—number of intervals
—computer or manual scaling
—interval size

Y axis

—number of intervals
—computer or manual scaling
—interval size

Notice that you can control the number of intervals as well as
the interval size.

These six options have standard values, called defaults,
which the computer will use unless you specify differently.
The default values are shown on the screen. If the default
value is acceptable to you, press ENTER when the cursor
points to it. Otherwise, type in the value that you want.

When would you want to vary the number of chart inter
im vals? Suppose you are collecting and graphing monthly data.

At the end of March, three months of data are available. Tell
OT Bar Charts that there are only three X axis intervals. The data

for January, February, and March will be plotted properly in
m, intervals 1, 2, and 3.

In addition to the number of intervals, you may specify

111

Computer Graphics "^

computer or manual scaling. Computer scaling is the default. „
In this case, the Xand Yinterval sizes are calculated as pre- '
viously discussed. If you specify manual scaling, you must
then give the interval size that should be used. You can also
plot the three months' data another way, by asking for manual
scaling and an interval size of one.

Manual scaling is also handy for adjusting Y axis inter
vals. If expenses are being plotted, you would like each Y axis
interval to be a convenient amount such as $100 or $500
rather than a computed amount such as $237.82.

Bar Chart Examples
Figures 5-3 and 5-4 show the types of charts that can be
obtained. These samples also illustrate the effects of the scal
ing options.

Both examples were produced using the data shown
below.

X Y

1 1

2 2

3 3

4 4

5 5

This is the familiar Y=X function. It produces a line at a
45 degree angle when plotted on graph paper.

Look at Figure 5-3. This bar chart was produced using the
default scaling options—computer scaling. Notice that the data
is stretched so that it fills all of Bar Chart's display area.
Notice, too, that the scaling factors are not integers.

The same data is displayed in Figure 5-4 but uses our
own scaling factors. The X and Y interval sizes were set at 1.0.
Notice the differences in the charts. Does Figure 5-4 represent
what you expected to see in the first place?

These examples serve another purpose as well. Try
graphing this same set of data. If you've typed in Bar Charts
properly, you should be able to duplicate the examples. Thus,
this set of simple data acts as a calibration mechanism. =i

Display Data Summary «j
Selection 4 of the main menu screen invokes the bar chart dis
play function. You have a great deal of control over the =^

112

X Y

6 6

7 7

8 8

9 9

10 10

JWWI

Computer Graphics

Figure 5-3. Sample Bar Charts
Computer Scaling

15

14

13

12 ***

11 *** He** *** ***

10 *** *** *** ***

9 *** *** *** *** ***

8 *** *** *** *** *** ***

7 *** *** *** *** *** ***

6 *** *** *** *** *** *** ***

5
*** *** *** *** *** *** *** ***

4 *** *** *** *** *** *** *** ***

3 **# *** *** *** *** *** *** *** ***

2 *** *** *** *** *** *** *** *** *** ***

1 *** *** *** *** *** *** *** *** *** ***

1 2 3 4 5 6 7 8 9 10 11 12

X-axis:

Y-axis:

INTEGERS 1-
: INTEGERS 1

-10

-10

Scale:
Scale:

.83

.67

Figure 5*4. Sample Bar Charts
Manual Scaling

15

14

13

12

11

10

9

8

7

6

5
4

3

2

1

*** *** ***

*** *** *** *%* *** ***

*** *** He** *** *** He** **iti

*** *** *** *** *** *** lit** *** *** ***

12 3 4

X-axis: INTEGERS 1-10
Y-axis: INTEGERS 1-10

9 10 11 12

Scale: 1.00
Scale: 1.00

113

Computer Graphics ""]

ultimate format of the bar chart. You may specify:

—the chart titles, '
—the type of bar chart, and
—the X and Y axis scales.

Although there are many options, Bar Charts has default
values for all of them. You can obtain your initial charts by
using them. Then you can dress up the bar chart by adding
titles and adjusting the scaling factors.

Print Bar Charts
Both Bar Charts and Bar Charts 2 have the capability of print
ing the charts. Bar Charts will display a chart on your TV or
video monitor. After the chart is displayed, you may press the
P key. Doing so will produce a printed copy of the chart.

Bar Charts 2 does not display its charts. After you have
finished completing the chart options, Bar Charts 2 will begin
printing a copy of the chart.

Both programs handle the printing the same way. They
ask you for the name of an output device. You should respond
with "RS232" plus the appropriate options if you are using a
serial printer. If you are using a parallel printer, respond with
PIO.

Why not put the device name in the program? These pro
grams illustrate another programming technique. Do you have
to respond with the printer's device name? No. Suppose you
specified a disk file as the output device. Well, Bar Charts will
send the chart to disk. What good will it do there? Other pro
grams can then access the charts. A prime example of this is
word processing. You can produce a chart with Bar Charts,
direct it to disk, and later include it in a document. This is
very nice, indeed.

Bar Charts and Bar Charts 2 assume you have a standard
80-column printer. No special graphics characters are used. If
you have a printer with graphics capability, you may want to
enhance the chart-printing routines.

How It Works
The structure chart for Bar Charts is shown in Figure 5-5. The "H
labels in the structure chart boxes generally correspond to
REM statements that mark the beginning of a subroutine. The T
main program dimensions the arrays and initializes a few vari
ables. The main menu displays the available selections and *"]

114 ^

(mki
L

(<«!*)

pjSBO

Computer Graphics

invokes the proper subroutine to process the selected function.
Both Display Data and Enter Data invoke other functions. Bar
Charts 2 has a very similar structure. The Display Axis and
Display Bars subroutines have been removed. The Print Chart
subroutine has been revised to work exclusively with a printer.

Figure 5-6 lists the major variables used by Bar Charts
and Bar Charts 2. The only subprogram used is a simple delay
loop.

Figure 5-5. Bar Charts Program Structure

Enter Data

Keyboard
Data Entry

Get
Options

Change
Data

Tape
Data Entry

Scale
Data

Main

Program

Menu

Save Data

Disk

Data Entry

Display
Axis

Display
Data

Display
Bars

Exit

Print
Chart

Figure 5-6. Bar Charts and Bar Charts 2 Variables

OBS(n,n)— This two-dimensional array contains the
observations or data to be plotted. The data is
stored as X,Y pairs. If you have the 32K mem
ory expansion, you may increase the first
dimension of OBS.

MAXN— The maximum number of observations. MAXN
must match the first dimension of the array OBS.

115

{DM

Computer Graphics "^

XMAXINT— The maximum number of X axis intervals.
XINT— The actual number of X axis intervals.
YMAXINT— The maximum number of Y axis intervals.
YINT— The actual number of Y axis intervals.
NCOUNT(n)— The number of observations that falls in each

X axis interval. The dimension of NCOUNT
must match XMAXINT.

TOTAL(n)— The sum of the Y values of the observations
that fall in each X axis interval. The dimension
of TOTAL must match XMAXINT.

AVERAGE(n)— The average value of the Y values of the
observations that fall in each X axis interval.
The dimension of AVERAGE must match
XMAXINT.

Program 5-1. Bar Charts1
100 REM BAR CHARTS

110 ON WARNING NEXT :: ON BREAK NEXT
120 OPTION BASE 1

130 MAXN=100 :: XMAXINT,XINT=12 :: YMAXINT,YINT=15
140 DIM OBS(100,2),NCOUNT(12),TOTAL(12),AVERAGE(12

)
150 GOSUB 2550 UNIT

160 GOSUB 2610 IMENU
170 IF FINI=0 THEN 160

180 GOSUB 2770 IEND

190 END

200 REM ENTER DATA

210 GOSUB 320 IENTER MENU

220 IF INPDEV$="" THEN 210
230 IF INPDEV$="K" THEN GOSUB 420
240 IF INPDEV$="T" THEN GOSUB 600
250 IF INPDF,V$<>"D" THEN 310
260 DISPLAY AT(13,3):"FILE NAME "
270 DISPLAY AT(15,3):FILENAME$
280 ACCEPT AT(15,3)SIZE(-15)VALIDATE(UALPHA,".",DI

GIT)BEEP:FILENAME?
290 IF FILENAME$="" THEN 280
300 GOSUB 720

310 RETURN "=1

320 REM ENTER MENU

330 CALL CLEAR «,

340 DISPLAY AT(2,7):"** Enter Data **" '
350 DISPLAY AT(5,1):"Read data from:"
360 DISPLAY AT(7,3):"K Keyboard" ""!

116 H

Computer Graphics

Jim)

370 DISPLAY AT(9,3):"T Tape"
f™ 380 DISPLAY AT(11,3):"D Disk"

390 DISPLAY AT(22,1):"Type your selection"
400 ACCEPT AT(22,25)BEEP SIZE(1)VALIDATE("KTD"):IN

PDEV$
410 RETURN

420 REM KEYBOARD ENTRY

430 CALL CLEAR

440 DISPLAY AT(2,1):"** Keyboard Data Entry **"
450 DISPLAY AT(5,1):"Observation number"
460 DISPLAY AT(7,3):"Value for X"
470 DISPLAY AT(9,3):"Value for Y"
480 DISPLAY AT(22,1):"Press 'Q' to quit?"
490 DISPLAY AT(23,7):"ENTER to continue."
500 FOR I=N0BS+1 TO MAXN
510 DISPLAY AT(5,21)SIZE(5):USING "#####":I
520 ACCEPT AT(22,28)SIZE(-1)BEEP:R$:: IF R$="Q" T

HEN 580
530 DISPLAY AT(7,16):I
540 ACCEPT AT(7,16)BEEP VALIDATE(NUMERIC)SIZE(-10)

:X

550 ACCEPT AT(9,16)BEEP VALIDATE(NUMERIC)SIZE(-10)
:Y

560 OBS(I,l)=X :: 0BS(l,2)=Y
570 NEXT I

580 NOBS=I-l

590 RETURN

600 REM TAPE DATA ENTRY

610 CALL CLEAR

620 DISPLAY AT(2,2):"** Tape Data Entry"
630 OPEN #1:"CS1",SEQUENTIAL,INTERNAL,FIXED,INPUT
640 FOR 1=1 TO MAXN

650 INPUT #1:X,Y
660 IF X=-l AND Y=-l THEN 690
670 OBS(I,l)=X :: OBS(l,2)=Y
680 NEXT I

690 NOBS=I-l

700 CLOSE #1

710 RETURN

720 REM DISK DATA ENTRY

730 DISPLAY AT(2,2)ERASE ALL:"** DISK DATA ENTRY *
*«•

740 OPEN #2:FILENAME$,INTERNAL,VARIABLE,INPUT
J"« 750 FOR 1=1 TO MAXN

760 INPUT #2:X,Y
psj 770 IF X=-l AND Y=-l THEN 800

780 OBS(I,l)=X :: OBS(I,2)=Y
790 NEXT I

800 NOBS=I-l
(/WHS

117

Computer Graphics **]

810 CLOSE #2

820 RETURN ""I
830 REM CHANGE DATA
840 CALL CLEAR

850 DISPLAY AT(2,6):"** Change Data **"
860 DISPLAY AT(5,1):"Observation number"
870 DISPLAY AT(7,3):"Value for X"
880 DISPLAY AT(9,3):"Value for Y"
890 DISPLAY AT(17,1):"Type function code N"
900 DISPLAY AT(19,2):"D Delete this observation"
910 DISPLAY AT(20,2):"S See this observation"
920 DISPLAY AT(21,2):"N See next observation"
930 DISPLAY AT(22,2):"P See previous observation"
940 DISPLAY AT(23,2):"Q Quit"
950 OBSNO=l

960 IF NOBS=0 THEN DISPLAY AT(13,1):MSG1$:: CALL
DELAY(1000):: RETURN

970 DISPLAY AT(5,20)SIZE(5):USING "#####":OBSNO
980 DISPLAY AT(7,16)SIZE(10):OBS(OBSNO,1)
990 DISPLAY AT(9,16)SIZE(10):OBS(OBSNO,2)
1000 ACCEPT AT(7,16)BEEP VALIDATE(NUMERIC)SIZE(-10

):0BS(0BSN0,1)
1010 ACCEPT AT(9,16)BEEP VALIDATE(NUMERIC)SIZE(-10

):0BS(0BSN0,2)
1020 ACCEPT AT(17,20)BEEP VALIDATE("DSNPQ")SIZE(-1

):R$
1030 IF R$="" THEN 1020
1040 IF R$="D" THEN GOSUB 1120
1050 IF R$="S" THEN ACCEPT AT(5,20)BEEP VALIDATE(N

UMERIC)SIZE(5):OBSNO
1060 IF R$="N" THEN 0BSN0=0BSN0+1
1070 IF R$="P" THEN 0BSN0=0BSN0-1
1080 IF R$="Q" THEN RETURN
1090 IF 0BSN0<1 THEN OBSNO=NOBS
1100 IF OBSNO>NOBS THEN OBSNO=l
1110 GOTO 960

1120 REM DELETE OBSERVATION
1130 FOR I=OBSNO TO NOBS

1140 OBS(l,l)=OBS(l+l,l)
1150 OBS(l,2)=OBS(l+l,2)
1160 NEXT I

1170 IF N0BS>=1 THEN OBS(NOBS,1),OBS(NOBS,2)=0 ::
NOBS=NOBS-l

1180 RETURN «|
1190 REM SAVE DATA

1200 CALL CLEAR «*
1210 DISPLAY AT(2,6):"** Save Data **" 1
1220 DISPLAY AT(5,1):"Save data on"
1230 DISPLAY AT(7,3):"N Null device" ^

118 . I

p!Sl

i'JtsfWSJ

MW

fPH^I

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

Computer Graphics

DISPLAY AT(9f3):"l Cassette unit #1"
DISPLAY AT(11,3):"2 Cassette unit #2"
DISPLAY AT(13,3):"D Disk"
ACCEPT AT(5,24)BEEP SIZE(1)VALIDATE("N12D"):R
$
IF R$="" THEN 1270
IF R$="N" THEN RETURN
IF R$="l" OR R$="2" THEN 1380
DISPLAY AT(15,3):"FILE NAME"
IF FILENAME$="" THEN FILENAME$="DSK1."
DISPLAY AT(17,3):FILENAME$
ACCEPT AT(17,3)SIZE(-15)VALIDATE(UALPHA, ".",D
IGIT)BEEP:FILENAME$
IF FILENAME$="" THEN 1340
OPEN #1:FILENAME$,INTERNAL,VARIABLE,OUTPUT
GOTO 1390
OPEN #1: "CS"ScR$,SEQUENTIAL, INTERNAL,OUTPUT, FI
XED

FOR 1=1 TO NOBS

PRINT #l:OBS(I,l),OBS(l,2)
NEXT I

PRINT #1:-1,-1
CLOSE #1

RETURN

REM DISPLAY DATA

IF NOBS=0 THEN DISPLAY AT(5,1)ERASE ALL:MSG1$
:: CALL DELAY(500):: RETURN

GOSUB 1540 1GET OPTIONS

GOSUB 1900 1SCALE DATA

GOSUB 2050 1DISPLAY AXIS

GOSUB 2350 1DISPLAY BARS

CALL KEY(0,R,S):: IF S<>1 THEN 1510
R$=CHR$(R):: IF R$="P" THEN GOSUB 2800 Iprint
RETURN

REM GET DISPLAY OPTIONS

CALL CLEAR

DISPLAY AT(1,6):"** Display Data **"
DISPLAY AT(3,1):"Enter titles for"
DISPLAY AT(4,3):"Chart ";CTITLE$
DISPLAY AT(5,3):"X axis ";XTITLE$
DISPLAY AT(6,3):"Y axis ";YTITLE$
DISPLAY AT(8,1):"Enter type of chart ";CTYPE$
DISPLAY AT(9,3):"A average{4 SPACES}S sum"
DISPLAY AT(10,3):"F frequency"
DISPLAY AT(13,1):"X axis options"

of intervals (1-12)";XINT
C computer ";XS

DISPLAY AT(14,3):
DISPLAY AT(15,3):"scaling:
CLE$

1670 DISPLAY AT(16,13):"M manual"

119

Computer Graphics

1680 DISPLAY AT(17,3):"interval size "
1690 DISPLAY AT(17,18):USING "####.##":XINTSIZE
1700 DISPLAY AT(19,1):"Y axis options"
1710 DISPLAY AT(20,3):"# of intervals (1-15)";YINT
1720 DISPLAY AT(21,3):"scaling: C computer ";YS

CLE?
1730 DISPLAY AT(22,13):"M manual"
1740 DISPLAY AT(23,3):"interval size "
1750 DISPLAY AT(23,18):USING "####.##":YINTSIZE
1760 ACCEPT AT(4,10)BEEP SIZE(-15):CTITLE$
1770 ACCEPT AT(5,10)BEEP SIZE(-15):XTITLE$
1780 ACCEPT AT(6,10)BEEP SIZE(-15):YTITLE?
1790 ACCEPT AT(8,21)BEEP SIZE(-1)VALIDATE("AFS"):C

TYPE?
1800 IF CTYPE$="" THEN 1790
1810 ACCEPT AT(14,25)BEEP SIZE(-2)VALIDATE(DIGIT) :

XINT :: IF XINT<1 OR XINT>XMAXINT THEN 1810

1820 ACCEPT AT(15,26)BEEP SIZE(-1)VALIDATE("CM"):X
SCLE$

1830 IF XSCLE$="" THEN 1820
1840 IF XSCLE$="M" THEN ACCEPT AT(17,18)BEEP SIZE(

8)VALIDATE(NUMERIC):XINTSIZE
1850 ACCEPT AT(20,25)BEEP SIZE(-2)VALIDATE(DIGIT):

YINT :: IF YINT<1 OR YINT>YMAXINT THEN 1850

1860 ACCEPT AT(21,26)BEEP SIZE(-1)VALIDATE("CM"):Y
SCLE$

1870 IF YSCLE$="" THEN 1860

1880 IF YSCLE$="M" THEN ACCEPT AT(23,18)BEEP SIZE(
8)VALIDATE(NUMERIC):YINTSIZE

1890 RETURN

1900 REM SCALE DATA

1910 FOR 1=1 TO XINT :: NCOUNT(I),TOTAL(I),AVERAGE
(I)=0 :: NEXT I

1920 XMAX=-99999E-99

1930 FOR 1=1 TO NOBS
1940 IF 0BS(I,1)>XMAX THEN XMAX=OBS(I,1)
1950 NEXT I

1960 IF XSCLE$="C" THEN XINTSIZE=XMAX/XINT
1970 FOR 1=1 TO NOBS

1980 CELL=INT(OBS(1,1)/XINTSIZE+. 5)
1990 IF CELL<1 OR CELL>XINT THEN 2030

2000 NCOUNT(CELL)=NCOUNT(CELL)+l
2010 TOTAL(CELL)=TOTAL(CELL)+OBS(l,2)
2020 IF NCOUNT(CELL)>0 THEN AVERAGE(CELL)=TOTAL(CE

LL)/NCOUNT(CELL)
2030 NEXT I

2040 RETURN

2050 REM DISPLAY AXIS

2060 CALL CHAR(128,"0404040404040407")IY

120

fciBWJf

CSTTn

M3?|

PHSS

Computer Graphics

2070 CALL CHAR(129,"00000000000101FF")IX
2080 CALL CHAR(130,"4040404C5212120C")110
2090 CALL CHAR(131,"4040404242020202")111
2100 CALL CHAR(132,"40404C524204081E")112
2110 CALL CHAR(136,"FFFFFFFFFFFFFFFF")1BAR
2120 CALL CLEAR

2130 CALL VCHAR(1,6,128,15)
2140 CALL HCHAR(15,7,129,24)
2150 J=l

2160 FOR I=YMAXINT TO 1 STEP -1

2170 DISPLAY AT(J,1)SIZE(2):USING "##":I
2180 J=J+1

2190 NEXT I

2200 J=5
2210 FOR 1=1 TO 9

2220 DISPLAY AT(17,J)SIZE(2):USING "##":I
2230 J=J+2

2240 NEXT I

2250 CALL HCHAR(17,26,130,1)
2260 CALL HCHAR(17,28,131,1)
2270 CALL HCHAR(17,30,132,1)
2280 DISPLAY AT(19,(28-LEN(CTITLE$))/2):CTITLE$
2290 DISPLAY AT(20,1):"X: ";XTITLE$
2300 DISPLAY AT(21,1):"Y: ";YTITLE$;
2310 DISPLAY AT(23,1):"Press: P to print"
2320 DISPLAY AT(24,8):"any key to continue"
2330 CALL COLOR(14,7,7)
2340 RETURN

2350 REM DISPLAY BARS

2360 YMAX=-99999E-99

2370 FOR 1=1 TO XINT

2380 IF CTYPE$="F" AND NCOUNT(I)>YMAX THEN YMAX=NC
OUNT(I)

2390 IF CTYPE$="S" AND TOTAL(I)>YMAX THEN YMAX=TOT
AL (I)

2400 IF CTYPE$="A" AND AVERAGE(I)>YMAX THEN YMAX=A
VERAGE(I)

2410 NEXT I

2420 IF YSCLE$="C" THEN YINTSIZE=YMAX/YINT
2430 COL=8

2440 FOR 1=1 TO XINT

2450 IF CTYPE$="F" THEN NBAR=INT(NCOUNT(I)/YINTSIZ
E+.5)

2460 IF CTYPE$="S" THEN NBAR=INT(TOTAL(I)/YINTSIZE
+ .5)

2470 IF CTYPE$="A" THEN NBAR=INT(AVERAGE(I)/YINTSI
ZE+.5)

2480 IF NBAR>15 THEN NBAR=15

2490 IF NBAR>0 THEN CALL VCHAR(16-NBAR,COL,136,NBA
R)

121

Computer Graphics]

2500 C0L=C0L+2 »

2510 NEXT I '
2520 DISPLAY AT(20,19):USING "* ####.##":XINTSIZE
2530 DISPLAY AT (21,19)-.USING "* ####.##": YINTSIZE
2540 RETURN

2550 REM INIT

2560 NOBS=0

2570 XINTSIZE,YINTSIZE=0 :: XSCLE$,YSCLE?="C" :: C
TYPE$="S"

2580 FILENAME?="DSK1." :: PRINTFILE$="RS232.BA=120
0"

2590 MSG1$="* NO OBSERVATIONS ENTERED *"
2600 RETURN

2610 REM MENU

2620 CALL CLEAR

2630 DISPLAY AT(2,7):"** Bar Charts **"
2640 DISPLAY AT(5,1):"Do you want to:"
2650 DISPLAY AT(7,3):"1 Enter data"
2660 DISPLAY AT(9,3):"2 Change data"
2670 DISPLAY AT(11,3):"3 Save data"
2680 DISPLAY AT(13,3):"4 Display data"
2690 DISPLAY AT(15,3):"5 End bar charts"
2700 DISPLAY AT(22,1):"Type your selection:"
2710 ACCEPT AT(22,23)BEEP SIZE(1)VALIDATE("12345")

:R$
2720 IF R$="" THEN 2710
2730 FCODE=VAL(R$)
2740 IF FCODE=5 THEN FINI=1 :: GOTO 2760

2750 ON FCODE GOSUB 200,830,1190,1450
2760 RETURN

2770 REM END

2780 CALL CLEAR

2790 RETURN

2800 REM PRINT GRAPH

2810 DISPLAY AT(1,7)ERASE ALL:"Print Bar Charts"
2820 DISPLAY AT(6,1):"Type output device name:"
2830 DISPLAY AT(8,1):PRINTFILE?
2840 ACCEPT AT(8,1)SIZE(-28)VALIDATE(UALPHA,DIGIT,

".")BEEP:PRINTFILE?
2850 IF PRINTFILE?="" THEN 2840
2860 T?=SEG?(PRINTFILE?,1,2)
2870 IF T?="CS" THEN OPEN #1:PRINTFILE?,OUTPUT,DIS

PLAY ,FIXED 128
2880 IF T?<>"CS" THEN OPEN #1:PRINTFILE?,OUTPUT,DI J

SPLAY ,VARIABLE
2890 PRINT #1: : :TAB((80-LEN(CTITLE?))/2);CTITLE? ""j
2900 PRINT #1: : : :

2910 FOR I=YMAXINT TO 1 STEP -1 «|
2920 PRINT #1:TAB(10); J

122 '

(iWS)

(idWJ

Computer Graphics

2930 PRINT #1,USING "##{3 SPACES}":I;
2940 FOR J=l TO XINT

2950 IF CTYPE?="F" THEN NBAR=INT(NCOUNT(J)/YINTSIZ
E+.5)

2960 IF CTYPE?="S" THEN NBAR=INT(TOTAL(J)/YINTSIZE
+ .5)

2970 IF CTYPE?="A" THEN NBAR=INT(AVERAGE(J)/YINTSI
ZE+.5)

2980 IF NBAR>=I THEN PRINT #1:"*** ";ELSE PRINT #1
:"{4 SPACES}";

2990 NEXT J

3000 PRINT #1

3010 NEXT I

3020 PRINT #l:TAB(15);RPT?("-",47)
3030 PRINT #1:TAB(15);
3040 FOR 1=1 TO 12 :: PRINT #1,USING "### ":I;:: N

EXT I

3050 PRINT #1: : :TAB(11);"X-axis: ";XTITLE?;TAB(4
9);"Scale:";

3060 PRINT #1,USING " #####.##":XINTSIZE
3070 PRINT #1: :TAB(11);"Y-axis: ";YTITLE?;TAB(49)

;"Scale:";
3080 PRINT #1,USING " #####.##":YINTSIZE
3090 PRINT #1:CHR?(12)I form feed
3100 CLOSE #1

3110 RETURN

3120 SUB DELAY(LENGTH)
3130 FOR 1=1 TO LENGTH :: NEXT I

3140 SUBEND

Program 5*2. Bar Charts 2
100 REM BAR CHARTS 2

110 ON V7ARNING NEXT :: ON BREAK NEXT

120 OPTION BASE 1

130 MAXN=100 :: XMAXINT,XINT=35 :: YMAXINT,YINT=25
140 DIM OBS(100,2),NCOUNT(35),TOTAL(35),AVERAGE(35

)
150 IMAGE ####.##

160 GOSUB 2030 UNIT

170 GOSUB 2090 1MENU

180 IF FINI=0 THEN 170

190 GOSUB 2250 IEND

200 END

210 REM ENTER DATA

*"" 220 GOSUB 330 1ENTER MENU
230 IF INPDEV?="" THEN 220

mm 240 IF INPDEV?="K" THEN GOSUB 430
250 IF INPDEV?="T" THEN GOSUB 610

123

Computer Graphics '

260 IF INPDEV?<>"D" THEN 320 «j
270 DISPLAY AT(13,3):"FILE NAME "
280 DISPLAY AT(15,3):FILENAME?
290 ACCEPT AT(15,3)SIZE(-15)VALIDATE(UALPHA,".",DI

GIT)BEEP:FILENAME?
300 IF FILENAME?="" THEN 290
310 GOSUB 730

320 RETURN

330 REM ENTER MENU

340 CALL CLEAR

350 DISPLAY AT(2,7):"** Enter Data **"
360 DISPLAY AT(5,1):"Read data from:"

370 DISPLAY AT(7,3):"K Keyboard"
380 DISPLAY AT(9,3):"T Tape"
390 DISPLAY AT(11, 3): "D Dislr"
400 DISPLAY AT(22,1):"Type your selection"
410 ACCEPT AT(22,25)BEEP SIZE(1)VALIDATE("KTD"):IN

PDEV?
420 RETURN

430 REM KEYBOARD ENTRY

440 CALL CLEAR

450 DISPLAY AT(2,1):"** Keyboard Data Entry **"
460 DISPLAY AT(5,1):"Observation number"
470 DISPLAY AT(7,3):"Value for X"
480 DISPLAY AT(9,3):"Value for Y"
490 DISPLAY AT(22,1):"Press 'Q' to quit;"
500 DISPLAY AT(23,7):"ENTER to continue."
510 FOR I=N0BS+1 TO MAXN

520 DISPLAY AT(5,21)SIZE(5):USING "#####":I
530 ACCEPT AT(22,28)SIZE(-1)BEEP:R? :: IF R?="Q" T

HEN 590

540 DISPLAY AT(7,16):I
550 ACCEPT AT(7,16)BEEP VALIDATE(NUMERIC)SIZE(-10)

:X

560 ACCEPT AT(9,16)BEEP VALIDATE(NUMERIC)SIZE(-10)
:Y

570 0BS(I,1)=X :: 0BS(I,2)=Y
580 NEXT I

590 NOBS=I-l

600 RETURN

610 REM TAPE DATA ENTRY

620 CALL CLEAR

630 DISPLAY AT(2,2):"** Tape Data Entry" "1
640 OPEN #1:"CSl",SEQUENTIAL,INTERNAL,FIXED,INPUT
650 FOR 1=1 TO MAXN ^
660 INPUT #1:X,Y '
670 IF X=-l AND Y=-l THEN 700 _

680 OBS(I,l)=X :: OBS(l,2)=Y \

124

C3E3*

690

700

710

720

730

740

750

760

770

780

790
800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

960

970

Computer Graphics

NEXT I

NOBS=I-l

CLOSE #1

RETURN

REM DISK DATA ENTRY

DISPLAY AT(2,2)ERASE ALL:"** DISK DATA ENTRY *

OPEN #2:FILENAME?,INTERNAL,VARIABLE,INPUT
FOR 1=1 TO MAXN

INPUT #2:X,Y
IF X=-l AND Y=-l THEN 810

0BS(I,1)=X :: OBS(l,2)=Y
NEXT I

NOBS=I-l

CLOSE #2

RETURN

REM CHANGE DATA

CALL CLEAR

DISPLAY AT(2,6):"** Change Data **"
DISPLAY AT(5,1):"Observation number"
DISPLAY AT(7,3):"Value for X"
DISPLAY AT(9,3):"Value for Y"
DISPLAY AT(17,1):"Type function code N"
DISPLAY AT(19,2): "D
DISPLAY AT(20,2): "S
DISPLAY AT(21,2): "N
DISPLAY AT(22,2):"P
DISPLAY AT(23,2): "Q
OBSNO=l

IF NOBS=0 THEN DISPLAY AT(13,1):MSGl? :: CALL
DELAY(1000):: RETURN

980 DISPLAY AT(5,20)SIZE(5):USING "#####":OBSNO
990 DISPLAY AT(7,16)SIZE(10):OBS(OBSNO,1)
1000 DISPLAY AT(9,16)SIZE(10):OBS(OBSNO,2)
1010 ACCEPT AT(7,16)BEEP VALIDATE(NUMERIC)SIZE(-10

):0BS(0BSN0,1)
1020 ACCEPT AT(9,16)BEEP VALIDATE(NUMERIC)SIZE(-10

):0BS(0BSN0,2)
1030 ACCEPT AT(17,20)BEEP VALIDATE("DSNPQ")SIZE(-1

):R?
1040 IF R?="" THEN 1030
1050 IF R?="D" THEN GOSUB 1130
1060 IF R?="S" THEN ACCEPT AT(5,20)BEEP VALIDATE(N

UMERIC)SIZE(5):OBSNO
1070 IF R?="N" THEN OBSNO=OBSNO+l
1080 IF R?="P" THEN OBSNO=OBSNO-l
1090 IF R?="Q" THEN RETURN
1100 IF 0BSN0<1 THEN OBSNO=NOBS

1110 IF OBSNO>NOBS THEN OBSNO=1

Delete this observation"

See this observation"

See next observation"

See previous observation"
Quit"

125

Computer Graphics

1120 GOTO 970

1130 REM DELETE OBSERVATION ™
1140 FOR I=OBSNO TO NOBS
1150 0BS(I,1)=0BS(I+1,1)
1160 0BS(I,2)=0BS(I+1,2)
1170 NEXT I

1180 IF N0BS>=1 THEN OBS(NOBS,1),OBS(NOBS,2)=0 I:
NOBS=NOBS-l

1190 RETURN

1200 REM SAVE DATA
1210 CALL CLEAR
1220 DISPLAY AT(2,6):"** Save Data **"
1230 DISPLAY AT(5,l):"Save data on"
1240 DISPLAY AT(7,3):"N Null device"
1250 DISPLAY AT(9,3):"1 Cassette unit #1"
1260 DISPLAY AT(11,3):"2 Cassette unit #2"
1270 DISPLAY AT(13,3):"D Disk"
1280 ACCEPT AT(5,24)BEEPSIZE(1)VALIDATE("N12D"):R

?
1290 IF R?="" THEN 1280
1300 IF R?="N" THEN RETURN
1310 IF R?="l" OR R?="2" THEN 1390
1320 DISPLAY AT(15,3):"FILE NAME"
1330 IF FILENAME?="" THEN FILENAME?="DSK1. "
1340 DISPLAY AT(17,3):FILENAME?
1350 ACCEPT AT(17,3)SIZE(-15)VALIDATE(UALPHA,".",D

IGIT)BEEP:FILENAME?
1360 IF FILENAME?="" THEN 1350
1370 OPEN #1:FILENAME?,INTERNAL,VARIABLE,OUTPUT
1380 GOTO 1400

1390 OPEN #1:"CS"&R?,SEQUENTIAL,INTERNAL,OUTPUT,FI
XED

1400 FOR 1=1 TO NOBS

1410 PRINT #l:OBS(l,l),OBS(I,2)
1420 NEXT I

1430 PRINT #1:-1,-1
1440 CLOSE #1

1450 RETURN

1460 REM DISPLAY DATA

1470 IF NOBS=0 THEN DISPLAY AT(5,1)ERASE ALL:MSGl?
:: CALL DELAY(500):: RETURN

1480 GOSUB 1520 1GET OPTIONS

1490 GOSUB 1880 1SCALE DATA

1500 GOSUB~2280 Iprint ~[
1510 RETURN

1520 REM GETLDISPLAY OPTIONS *m,
1530 CALL CLEAR '
1540 DISPLAY AT(1,6):"** Display Data **" _
1550 DISPLAY AT(3,1):"Enter titles for" 1

126 ~^

f?^5D

ps>

|fPrf?1

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

Computer Graphics

DISPLAY AT(4,3):"Chart ";CTITLE?
DISPLAY AT(5,3):"X axis ";XTITLE?
DISPLAY AT(6,3):"Y axis ";YTITLE?
DISPLAY AT(8,1):"Enter type of chart ";CTYPE?
DISPLAY AT(9,3):"A average{4 SPACES}S sum"
DISPLAY AT(10,3):"F frequency"
DISPLAY AT(13,1):"X axis options"
DISPLAY AT(14,3):"# of intervals (1-35)"
DISPLAY AT(15,3):"scaling: C computer
cleS
DISPLAY AT(16,13):"M manual"
DISPLAY AT(17,3):"interval size "
DISPLAY AT(17,18):USING 150:XINTSIZE
DISPLAY AT(19,1):"Y axis options"
DISPLAY AT(20,3):"# of intervals (1-25)"
DISPLAY AT(21,3):"scaling: C computer

CLE?
DISPLAY AT(22,13):"M manual"
DISPLAY AT(23,3):"interval size "
DISPLAY AT(23,18):USING 150-.YINTSIZE
ACCEPT AT(4,10)BEEP SIZE(-15):CTITLE?
ACCEPT AT(5,10)BEEP SI7.F. (-15):XTITLE?
ACCEPT AT(6,10)BEEP SIZE(-15):YTITLE?
ACCEPT AT(8,21)BEEP SIZE(-1)VALIDATE("AFS"):C
TYPE?
IF CTYPE?="" THEN 1770
ACCEPT AT(14,25)BEEP SIZE(-2)VALIDATE(DIGIT):
XINT :: IF XINT<1 OR XINT>XMAXINT THEN 1790
ACCEPT AT(15,26)BEEP SIZE(-1)VALIDATE("CM"):X
SCLE?
IF XSCLE?="" THEN 1800
IF XSCLE?="M" THEN ACCEPT AT(17,18)BEEP SIZE(
8)VALIDATE(NUMERIC):XINTSIZE
ACCEPT AT(20,25)BEEP SIZE(-2)VALIDATE(DIGIT):
YINT :: IF YINT<1 OR YINT>YMAXINT THEN 1830
ACCEPT AT(21,26)BEEP SIZE(-1)VALIDATE("CM"):Y
C/-1T p C

IF YSCLE?="" THEN 1840
IF YSCLE?="M" THEN ACCEPT AT(23,18)BEEP SIZE(
8)VALIDATE(NUMERIC):YINTSIZE
RETURN

REM SCALE DATA

FOR 1=1 TO XINT

(I)=0 :: NEXT I
XMAX=-99999E-99

FOR 1=1 TO NOBS
IF OBS(I,D>XMAX THEN XMAX=OBS (1,1)
NEXT I

IF XSCLE?="C" THEN XINTSIZE=XMAX/XINT

•XINT

";XS

•YINT

";YS

NCOUNT(I),TOTAL(I),AVERAGE

127

Computer Graphics ""1

1950 FOR 1=1 TO NOBS «

1960 CELL=INT(OBS(I,l)/XINTSIZE+.5) J
1970 IF CELL<1 OR CELL>XINT THEN 2010
1980 NCOUNT(CELL)=NCOUNT(CELL)+1
1990 TOTAL(CELL)=TOTAL(CELL)+OBS(I,2)
2000 IF NCOUNT(CELL)>0 THEN AVERAGE(CELL)=TOTAL(CE

LL)/NCOUNT(CELL)
2010 NEXT I

2020 RETURN

2030 REM INIT
2040 NOBS=0

2050 XINTSIZE,YINTSIZE=0 :: XSCLE?,YSCLE?="C" :: C
TYPE?="S"

2060 FILENAME?="DSK1." :: PRINTFILE?="RS232.BA=120

2070 MSG1?="* NO OBSERVATIONS ENTERED *"
2080 RETURN

2090 REM MENU

2100 CALL CLEAR

2110 DISPLAY AT(2,7):"** Bar Charts **"
2120 DISPLAY AT(5,l):"Do you want to:"
2130 DISPLAY AT(7,3):"1 Enter data"
2140 DISPLAY AT(9,3):"2 Change data"
2150 DISPLAY AT(11,3):"3 Save data"
2160 DISPLAY AT(13,3):"4 Display data"
2170 DISPLAY AT(15,3):"5 End bar charts"
2180 DISPLAY AT(22,l):"Type your selection:"
2190 ACCEPT AT(22,23)BEEP SIZE(1)VALIDATE("12345")

:R?
2200 IF R?="" THEN 2190
2210 FCODE=VAL(R?)
2220 IF FCODE=5 THEN FINI=1 :: GOTO 2240
2230 ON FCODE GOSUB 210,840;1200,1460
2240 RETURN

2250 REM END
2260 CALL CLEAR
2270 RETURN

2280 REM PRINT GRAPH

2290 DISPLAY AT(1,7)ERASE ALL:"Print Bar Charts"
2300 DISPLAY AT(6,l):"Type output device name:"
2310 DISPLAY AT(8,1):PRINTFILE?
2320 ACCEPT AT(8,1)SIZE(-28)VALIDATE(UALPHA,DIGIT,

".")BEEP:PRINTFILE? ^
2330 IF PRINTFILE?="" THEN 2320 \
2340 T?=SEG?(PRINTFILE?,1,2)
2350 IF T?="CS" THEN OPEN #1:PRINTFILE?,OUTPUT,DIS -B|

PLAY ,FIXED 128

2360 IF T?o"CS" THEN OPEN #1:PRINTFILE?,OUTPUT,DI mm
SPLAY ,VARIABLE !

128 *n

SiBJ

Computer Graphics

ma 2370 DISPLAY AT(12,1)ERASE ALL:"Press any key to s
1 top":"printing."

2380 REM PRINT GRAPH

2390 YMAX=-99999E-99 :: FOR 1=1 TO XINT

2400 IF CTYPE?="F" AND NCOUNT(I)>YMAX THEN YMAX=NC
OUNT(I)

2410 IF CTYPE?="S" AND TOTAL(l)>YMAX THEN YMAX=TOT
AL(I)

2420 IF CTYPE?="A" AND AVERAGE(I)>YMAX THEN YMAX=A
VERAGE(I)

2430 NEXT I

2440 IF YSCLE?="C" THEN YINTSIZE=YMAX/YINT
2450 PRINT #1: : :TAB((80-LEN(CTITLE?))/2);CTITLE?
2460 PRINT #1: : : :

2470 FOR I=YINT TO 1 STEP -1

2480 CALL KEY(0,R,S):: IF S<>0 THEN 2670
2490 PRINT #1:TAB(6);
2500 PRINT #1,USING "## ":I;
2510 FOR J=l TO XINT

2520 IF CTYPE?="F" THEN NBAR=INT(NCOUNT(J)/YINTSIZ
E+.5)

2530 IF CTYPE?="S" THEN NBAR=INT(TOTAL(J)/YINTSIZE
+ .5)

2540 IF CTYPE?="A" THEN NBAR=INT(AVERAGE(J)/YINTSI
ZE+.5)

2550 IF NBAR>=I THEN PRINT #1:"* ";ELSE PRINT #1:"
••.

2560 NEXT J

2570 PRINT #1

2580 NEXT I

2590 PRINT #l:TAB(10);RPT?("-",70)
2600 PRINT #1:TAB(28);"1";TAB(48);"2";TAB(68);"3"
2610 PRINT #1:TAB(10);RPT?("1 234567890",

3);
2620 PRINT #1:"1 2 3 4 5"

2630 PRINT #1: : :TAB(11);"X-axis: ";XTITLE?;TAB(4
9);"Scale: ";

2640 PRINT #1,USING 150:XINTSIZE
2650 PRINT #1: :TAB(11);"Y-axis: ";YTITLE?;TAB(49)

;"Scale: ";
2660 PRINT #1,USING 150:YINTSIZE
2670 PRINT #1:CHR?(12)Iform feed
2680 CLOSE #1

2690 RETURN

2700 SUB DELAY(LENGTH)
2710 FOR 1=1 TO LENGTH :: NEXT I
2720 SUBEND

129
i'Wmi

3

31

fS^i

pfU

ow many times have you turned your house upside
down looking for a piece of paper? Perhaps you
needed an address for a friend you haven't seen in

years. Maybe you were looking for the parts list for your five-
year-old lawn mower that just made some strange noises and
quit working.

Does this sound familiar? Sure, we all have a filing sys
tem. Nobody wants to lose important papers. But too often
household filing systems work only one way. They are
excellent for storing information. But how about retrieving
things? Can you get what you need rapidly? Or, are you heard
saying, "I put it in a safe place so I could find it again"?

Suppose on some rainy weekend you decided to reorga
nize your filing system. How might you proceed? You might
start by arranging a central file. A shoe box in the bedroom
closet and a shoe box in the broom closet and a shoe box
everywhere just won't do. You'll need everything stored in
one place so you will have a better chance of finding some
thing again.

Next, you must decide what to keep in this new central
file. Certainly health records, insurance policies, appliance
warranties, receipts for computer purchases, and the like.
Some items might best be kept in a safe-deposit box. Examples
of these would be titles, deeds, certificates of deposit, and so
forth. Even though these items may be stored in a safe-deposit
box, it's a good idea to keep a record of them in a file. For
example, you might record the document's number, descrip
tion, and when it was put in the safe-deposit box.

Of course a household filing system will be designed for
ease of retrieval. It would be embarrassing to go to all this
trouble and still not be able to find anything. So the central
file should be divided according to categories or subjects. All
the warranties will be kept together, as will all the automobile

133

Electronic Card File "^

records. Thus, one starting point is setting up the list of «^
subjects. —J

Let's carry this idea a bit further. Within each subject,
there may be more than one document. How will a specific
document be located? It's always possible to search through
each document one by one. If you are unlucky enough not to
know the subject, you might have to search the entire file
document by document.

There is a technique that can be used to speed up docu
ment retrieval by creating a cross-reference or document index
file. The index file will contain a list of all documents on file
for a given subject. This is much like the author or subject
index files at your public library. When searching for a docu
ment, you would look first in the index file to make sure the
document is present.

For such a system to work, each document must be
identified in some fashion. For many household documents,
this is not a problem. Insurance policies usually have a policy
number. Likewise, appliances have serial numbers. If nothing
else, a sequence number will work. As a rule of thumb, each
document should have its own number. This way the docu
ments will not get confused.

Obviously, a great deal of effort is required to operate
such a filing system. It takes a good bit of work to set it up to
start with. As documents are added, they must be numbered
and filed correctly. If a document index file is employed, it too
must be kept up-to-date.

Description
Not many households would bother with such a filing system.
The cost in terms of time is just too great.

This is where your TI-99/4A comes in. For decades,
computers have been advertised as labor-saving devices. In
this chapter, you will see how the 99/4A will help with
household filing needs.

Of course, papers are not going to be stored inside the
computer. Rather, the computer will be used to record
information about the documents. Things that you might keep ^
track of are the location of the actual documents, summary
information, expiration dates, and the like. ^

But let's think not only in terms of documents. Suppose
you have an extensive music library. Organizing the selections °^

134

Electronic Card File

fm by composer would be handy. Or you may want to store your
favorite recipes. You may even want to organize feeding and
watering instructions for your household plants. The Elec
tronic Card File satisfies these requirements beautifully.

Think of the Electronic Card File as simply an electronic
version of a manual filing system. The Electronic Card File
gives you a way to store and organize any type-of information
with the help of your TI.

System Requirements
There are two versions of the Electronic Card File:

—Tape Card File and
—Disk Card File.

These programs differ in terms of the functions that they
perform and in the hardware they require. Figure 6-1 sum
marizes the system requirements for these programs.

One of the strong points of the 99/4A is the way that it
can gradually be expanded. The Tape Card File is designed to
work with just the console. The tape version provides the sim
ple functions of data entry and retrieval. If, on the other hand,
you have both the disk system and the memory expansion,
you will want to use the Disk Card File. The disk version has
some additional cross-referencing features plus the capacity to
accept more text for each file entry.

Tape Card File
Description. The Tape Card File is an information storage

and retrieval program. It works much like a 3-by-5 index card
filing system. As Figure 6-2 shows, the file contains one or
more index cards which are called entries. Each card has some
identifying information written at the top. This information
can be thought of as the title of the card; it will be called the
card's identifier. The remainder of the index card contains
notes.

The Tape Card File automates this concept on your TI.
Figure 6-3 illustrates the Tape Card File screen format. You

(w type the identifier name at the top of the screen. There is
room for 10 lines of 25 characters each for whatever informa-

w» tion you want. In other words, there can be up to 250 charac
ters of text per entry. Several lines at the bottom of the screen

f*» are used by the program for operating messages and
instructions.

135

rwsa

Electronic Card File 'TI

Figure 6-1. Electronic Card File <==}
System Requirements
Tape Card File

Required:
—TI-99/4A console
—Extended BASIC
—Cassette tape recorder
Optional:
—RS232 Interface

—Printer

Disk Card File

Required:
—TI-99/4A console
—Extended BASIC

—32K Memory Expansion
—Disk Drive

—Disk Controller

Optional:
—RS232 Interface

—Printer

The Tape Card File has two restrictions which should be
kept in mind. First, each identifier must be given its own
name. You cannot use the same identifier for more than one
entry. After all, the only way that an entry can be retrieved is
by its identifier. In practice, this restriction should not pose too
much of a problem. More importantly, all of the entries must
be in the computer's memory at the same time. This will limit
you to a total of about 4000 characters of text on a 16K 99/4A.
You may set up as many tape files of information as needed,
however. For example, you might use one tape file to keep
track of insurance documents and another to keep track of
appliance warranties.

Operation. The functions available through the main
menu screen are self-explanatory. You may:
1 load data **]
2 save data

3 list entries ^
4 retrieve an entry
5 add an entry ^
6 return to BASIC

136

d7|

famrrfil

(!HB

IMWI

Electronic Card File

Figure 6-2. 3-by-5 Card Filing System

ifier

Cake

Brownies

V_ Apple Pie

\

E
t \

ntry Notes

Figure 6-3. Tape Card File
Screen Format

Identifier-

Notes

Instructions and Messages

Selections 1 and 2 provide for the permanent storage of
information. When you save data on tape, just make sure that
you use a C60 cassette. TI-99/4A tape files seem to be great
tape eaters. A CIO tape will handle only very small files.

Use selection 3 when you want to find out what is stored
in the file. This option lists the identifier of each entry in the
file.

137

Electronic Card File J

To retrieve a specific entry, select option 4. The program ^
will ask you to type in the identifier of the entry that you
want. If the entry cannot be found, you will be asked to
retype the identifier. When the entry is found, it will be dis
played in the format shown in Figure 6-3.

At this point, you have three options available. First, you
may simply wish to retrieve another entry. If so, just type
ENTER. Perhaps you would like to revise the information
shown on the screen. If you do, press R for revise. The cursor
will be placed so that you can change any of the notes that
you have previously typed. Notice that you cannot change the
identifier. The ERASE key can be used to delete entire lines
that are no longer needed. Finally, you may obtain a printout
of the screen by pressing P for print. Only the text is
printed—not the special graphics characters.

Selection 5 is used to add an entry to the file. You will be
given a blank screen and asked to type in an identifier and
any appropriate notes. When you have finished preparing an
entry, you can type P, R, or ENTER. P and R work exactly as
described above. ENTER, however, is used to place the
information in the file. Keep in mind, that the identifier cannot
be changed once the entry is in the file. Each time an entry is
made, the screen will show how many characters of text have
been typed. Stop when you get close to 4000 characters!

Selection 6 returns control to BASIC. Make sure that you
have saved the file on tape before ending the program. To
help you remember this, selection 6 will ask you if you are
really sure that you want to end the program.

Precautions. There are several general rules to remember
when using the Tape Card File. When you are writing BASIC
programs, it is a good practice to save the program every now
and then just in case. The same holds true for the Tape Card
File. There is nothing more frustrating than losing an hour's
worth of typing. Play it safe.

If you have a lot of information, watch the character
count carefully. Do not go over 4000 characters on an
unexpanded 99/4A. If you do, you are likely to get a memory ^
full error. Needless to say, that is an unpleasantness of the
highest degree. ™j

As presently designed, the tape card will accept up to 30
entries. Once this limit is reached, additional entries will not ™"j
be accepted. All other operations will continue to function as

138

wssn

(0$B!&

TS!5S

Electronic Card File

described, though. On the average, you can type in about 133
characters per entry (4000 characters / 30 entries) in a 16K
99/4A.

If you do not have a printer, you may find it helpful to
disable the print subroutine. This may be accomplished by
placing a SUBEXIT statement immediately after the SUB
PRINTCARD(ID$,BUFF$()) statement. This will prevent
another unpleasantness—an I/O error if you accidentally
press the P key.

If you do have a printer, make sure that the OPEN state
ment in the program will work with your printer. The pro
gram uses the first RS232 serial port with all the standard TI
options. However, the baud rate is set to 1200. Locate the
print subroutine and double-check the OPEN statement.
Change it as required and make your own copy of the
program.

If you follow these hints, you should find the Tape Card
File easy to use and trouble-free.

Disk Card File

Description. The Disk Card File program is a more
advanced filing system. Figure 6-4 shows how the Disk Card
File organizes your information. The file itself contains one or
more subjects. Each subject, in turn, contains one or more
entries. Each entry contains information relating to the particu
lar subject. In addition, the Disk Card File program maintains
a separate cross-reference or index file. The index file lets you
take a quick look at all the entries belonging to a subject. As
you can see, the Disk Card File closely follows the operation
of the central filing system described earlier.

The Disk Card File screen format is shown in Figure 6-5.
At the top of the screen there is room to type in the appro
priate subject and identifier name. You may type two pages of
notes per entry. Each page of notes will hold up to 10 lines of
24 characters each. Thus, there are 2 x 240 or 480 characters
available per entry.

The Disk Card File program has three restrictions. First,
there may be no more than 80 entries for one subject. Second,
each entry must have its own identifier, and the information
stored in a file must not exceed the available disk capacity. A
single-sided diskette will hold about 150 entries.

As was shown in Figure 6-1, the Disk Card File program

139

Electronic Card File

does require the memory expansion option. The program is
just too large to run in a 16K TI.

Figure 6-4. Disk Card File Organization

Entries ^r;

Subject
Name

Figure 6-5. Disk Card File
Screen Format

140

Subject
t >

Identifier

Notes

•

«

•

•

- —«

,

Instructions and Messages

ihr

liO^I

Electronic Card File

wn Operation. The main menu screen provides a fairly exten
sive set of functions:

1 list subjects
2 list entries by subject
3 browse a subject
4 browse entries

5 retrieve an entry
6 add an entry
7 return to BASIC

Notice that most of the functions have something to do
with retrieving information. The Disk Card File is designed to
help you locate and get what you need quickly. There are no
selections for saving or loading data. This is not an omission.
This Disk Card File automatically takes care of saving your
information.

Let's discuss how the Disk Card File saves and loads
information before discussing the other operations. When you
first start the Disk Card File program, it will ask you for a
filename. Type in a filename up to nine characters long. (Do
not type DSK1 in front of the filename. The Disk Card File
will do this for you.) Now, you will be asked whether or not
this is a new file. A new file is one that you have not pre
viously saved on the diskette. After you have entered this
information, you will be given a chance to verify it. If the file
is old, the subject cross-references or index file will be read
from disk into the computer's memory.

At this point, the main menu screen will be displayed. If
you add any new entries, they will be saved immediately on
the diskette. Similarly, any changes to existing entries will also
be saved immediately. While these changes and additions are
being made, the cross-reference file, which is now in memory,
is constantly being updated. The cross-reference or index file
is written back to the diskette when you have indicated that
you are ready to return to BASIC.

Selections 1 and 2 both produce lists on your display
screen. Selection 1 shows you the names of all the subjects
that have been typed in so far. The subjects are listed alpha
betically. The second selection is similar. However, it lists each
of the identifiers present within each subject. The subjects are
still listed alphabetically. The identifiers, though, are listed in
the order in which they were entered. You can use these two

141

^PfH

Electronic Card File "**]

selections to help you locate a specific entry. _
Selections 3 and 4 are called browses. A browse displays)

another entry every time you type ENTER. The browse selec
tions are used when you want to review information and pos
sibly make a few corrections at the same time. When you
browse through a subject, you will be able to review all of the
details for each of the entries in that subject. Again, the entries
are displayed in the order in which they were typed. Selection
4 will display the entries in alphabetical order regardless of
the subject to which they belong.

Selections 3 and 4 have another very handy feature. Very
seldom would you want to browse through a file from the
beginning to the end. So when you use either of these browse
selections, you may specify the starting point of the browse. In
other words, you may specify which subject or which identi
fier should be the first to be displayed.

But suppose you can't remember the exact spelling of a
subject or an identifier. For example, let's assume you have a
file of composers. The composers' last names have been used
as the subject. You want to browse through the subjects for
Schumann. Alas, you can never quite remember if Schumann
is spelled Schuman or Schumann. Well, pick selection 3 to
browse through a subject. Then, specify that you want to
begin the browse with "Schum". Notice that you must be very
careful with upper- and lowercase letters. The program will
look for any subject containing the letters "Schum". If Schu
mann is the only subject that meets this condition, you're in
luck. Now, suppose that "Schu" was specified as the starting
point. There is a good chance that the browse would have
started with Schubert. You need to type in enough of the sub
ject or identifier name so that you end up with the one desired
subject.

Selection 5 is used to retrieve a specific entry. The entire
identifier name must be typed in. The search features of the
browse modes are not available in selection 5. Therefore, the
program will search for an exact match with the identifier that
you specify.

When an entry is displayed (through selections 3, 4, or 5), T
you have several options similar to those in the Tape CardJ r r ess)
File. You may press P to print the entry, R to revise informa- !
tion, or ENTER to continue. There are two additional options
in the Disk Card File. Two pages of notes are available for T

142

Electronic Card File

^ each entry. If you want to see what's on page two, press 2.
Likewise, if you want to go back to page one, press 1.

Use selection 6 to add entries. Both a subject and an
identifier are required. The same options—P, R, 1, 2, and
ENTER—are available. Remember that once an entry is added
to the file, its subject and identifier cannot be changed.

When you are finished, selection 7 will return control to
BASIC. The updated cross-reference or index file will be writ
ten back to the diskette automatically. There it will be ready
for the next time you want to use it. Remember, you must use
selection 7, return control to BASIC, in order for the updated
cross-reference or index file to be saved to disk.

Precautions. The same general set of precautions that
were discussed for the Tape Card File also apply to the Disk
Card File. The techniques may be a little different, though.

Use the Disk Manager cartridge regularly. Before you sit
down to add a lot of new entries to a particular file, make sure
there is plenty of room on the diskette. As a rule of thumb,
each entry will gobble up two sectors. If you are planning to
add 20 entries, there should be at least 40 available sectors on
the diskette. Don't forget that the index files also require
space. Their space requirements are very modest, but are diffi
cult to calculate ahead of time. As an aid, the Disk Card File
will display the number of entries in the file at the bottom of
the main menu screen.

Be sure to make backup copies of your important files. It
is inconvenient to do this with a single drive system. Weigh
the inconvenience against the agony of a lost or destroyed
diskette.

Suppose there is a problem of some sort while you are
entering information. Let's say there was a momentary power
loss. Is any of the work salvageable? Perhaps. Any new entries
since the last time you exercised selection 7 will have to be
reentered. Recall that the index files are kept in the computer's
memory. The index files are written back to the diskette auto
matically when you choose selection 7. Adding entries is the

^ only action that would affect the index files. Changing existing
entries does not—they have already been given a subject and
an identifier. Therefore, if a power failure did occur, the new
entries would be on the diskette, but they would not be

f™ retrievable. There was no chance for the program to write the
revised index files to the diskette. So, the new entries would

143

P$H!

Electronic Card File

have to be typed in again in order to get things straightened *H
out. This may sound a bit complicated, but it's handy to know
if you ever run into this type of situation.

As was discussed earlier, you may want to disable the
print subroutine if you do not have a printer. This is a very
prudent step that could prevent an accidental program crash.
Follow the instructions given for the Tape Card File. If you do
have a printer, make sure that the OPEN statement is correct
for your particular printer.

Just for Practice
Figure 6-6 lists some sample information that you can use
with the Tape Card File or Disk Card File programs. The
application is illustrative of how you might make a household
inventory. In the example there are four subjects or cate
gories—appliances, computers, stereos, and televisions. Each
subject has one or more entries.

Try typing this information. If you are using the Tape
Card File, do not type the subjects; just type the identifier and
accompanying notes. Notice that there are two entries for tele
visions. The entries are called TV 1 and TV 2. Remember that
you cannot use the same identifier name more than once.

After you have entered the information, try the different
retrieval options available for the program that you are using.
The Tape Card File should be able to list the names of the en
tries as well as display any entry. There are several retrieval
options in the Disk Card File. Try each of them.

Next, you might try changing an entry. Retrieve the speci
fied entry in which you're interested. When the notes are dis
played, press R to revise them. The cursor should be
positioned to the beginning of the notes. Make any changes
that you wish. After making the changes, retrieve this same
entry again just to make sure that the changes were actually
applied and that everything is working.

If you have a printer, try printing an entry or two. If you
experience any difficulties here, check the OPEN statement in
the program. The OPEN statement must match the commu- =j
nications specifications of your printer.

Finally, attempt to save the information and load it back «*
again. The save and load process should not change the
information in any way. The subject, if applicable, identifier, «i
and notes should say exactly the same things after the

144

IPfflU

fWI

po

t'JSW

J$S)

Electronic Card File

information has been reloaded from tape or diskette.
This example shows how you might use the Electronic

Card File in your home. The example also provides you with a
chance to enter and manipulate information. This is the best
way to learn how to use the Tape Card File and Disk Card
File.

Figure 6-6. Sample

SUBJECT:
IDENTIFIER:

NOTES:

SUBJECT:
IDENTIFIER:

NOTES:

SUBJECT:
IDENTIFIER:

NOTES:

SUBJECT:
IDENTIFIER:

NOTES:

SUBJECT:
IDENTIFIER:

NOTES:

SUBJECT:
IDENTIFIER:

NOTES:

Information—Electronic Card File

Appliances
Toaster

Purchased 1/2/83; # 187428

Appliances
Microwave

Purchased 5/18/83; # 98456

Computers
TI-99/4A
Purchased 2/6/82; # 100899

Stereo

Speakers
Purchased 3/1/75; # 00045

Televisions
TV 1

Purchased 9/4/80; # 998001

Televisions

TV 2

Purchased 6/9/83; # 472819

How It Works
The Disk Card File program is perhaps the most complex pro
gram in this book. It uses a combination of RELATIVE and
SEQUENTIAL files to form an indexed file structure. This is
similar to the technique discussed in Chapter 3. However, the
Disk Card File program carries the concept a step further. The
Disk Card File allows multiple entries per subject. Thus, a sub
ject by itself will not uniquely identify an entry.

How does the program keep track of the entries that
belong to each subject? Disk Card File keeps a list of record
numbers associated with each subject. When a record is
added, the subject is located. Then the record number is added

145

F
ig

ur
e

6-
7.

D
is

k
C

ar
d

F
il

e
P

ro
gr

am
St

ru
ct

ur
e

L
is

t
S

ub
je

ct
s

L
o

a
d

In
d

e
x

F
il

e

L
is

t
E

n
tr

ie
s

by
S

ub
je

ct

M
ai

n
P

ro
g

ra
m

M
e
n

u

B
ro

w
s
e

a

S
ub

je
ct

S
a
v

e
In

d
e
x

F
il

e

B
ro

w
s
e

E
n

tr
ie

s

R
e
tr

ie
v

e
a
n

E
nt

ry
A

d
d

o
n

E
nt

ry
E

x
it

J
J

J
J

s o n o o O

J
J

J

Electronic Card File

f™ to the list. The process works for retrieval as well. If you have
a subject, you can search the subject list for a match. When a
match is found, the proper record numbers will be made avail
able. Then you can display each of the entries for the subject.

The Tape Card File program is a simplified version of
Disk Card File. Tape Card File keeps all of the entries in mem
ory rather than on disk. Furthermore, the subject cross-
referencing capabilities are not present in Tape Card File.

Figure 6-7 shows the program structure of Disk Card File.
The main program dimensions the arrays and initializes a few
variables. If you are working with an existing data file, the
index files are loaded. The main menu shows the different
selections that are available. One of several subroutines will be
invoked, depending on the function selected. When you are
finished, control returns to the main program. The index files
are automatically written back to disk.

Disk Card File's major variables are listed in Figure 6-8.
Figure 6-9 describes the many subprograms used by Disk Card
File.

The Tape Card File program is a bit different. However,
the information presented in Figures 6-7 through 6-9 should
give you enough information to follow the Tape Card File
program.

Figure 6-8. Disk Card File Variables

SUBJECT$(n,n)— This two-dimensional string array con
tains the list of subjects and associated
record numbers. The subject names are
stored in SUBJECT$(X,1). Record num
bers are stored in SUBJECT$(X,2). Record
numbers are stored as a list of three-digit
numbers with leading zeros. For example,
record numbers 2 and 8 would be stored

as "002008". This is the way multiple en
tries are associated with a particular

„_ subject.
IDLIST$(n)— This string array contains an identifier

and its record number. The record num

ber is in characters 1 through 3. The
identifier occupies characters 4 and on
ward. Suppose that the recipe for apple

HW

tSRI

147

Electronic Card File

NMAX—

BUFFER$(n)—

pie is on record 26. The IDLIST$ entry
would be "026APPLE PIE".
The maximum number of entries allowed.
The dimensions of IDLIST$ and SUB
JECTS should match NMAX. Two sectors
of disk space are consumed by each en
try. If NMAX is 150, 300 sectors will be
used.
This string array is a hold area for two
pages of notes.

Figure 6-9. Disk Card File Subprograms

DELAY—

GETREC—

PUTREC—

GETNAME—

FINDSUBJ—

SEARCHID—

CHANGECARD-

LISTENTRY—

SEARCHSUBJ—

MATCHID—

ADDID—

148

A simple delay loop.
Reads an entry from the disk file. An en
try consists of 20 lines of 24 characters.
Two disk records are needed for one
entry.
Writes an entry to the disk file. Two disk
records are written for each entry.
Asks the user for a nine-character
filename. Appends an " X" to the
filename, thereby obtaining the index
filename.
Finds the subject name associated with a
given record number. Searches
SUBJECT$(X,2) for the record number.
Finds the record number belonging to a
given identifier. Searches IDLIST$(X) for
an identifier match.
Changes the information for an entry.
Uses several other subprograms.
Lists the identifier names of the entries
belonging to a subject.
Searches the subject list SUBJECT$(X,1)
for a match on a user-supplied subject
name.

Searches the identifier list IDLIST$(X) for
a match with a given identifier name.
Adds a new identifier name to the identi
fier list. Identifier names are kept in
alphabetical order. Makes sure that no
duplicates are added.

(W)!l

1B1

|sB3

fSPI

IsS&l

ADDSUBJ—

LISTSUBJ—
BLANKLINES—

MAINMENU—

PRINTCARD—

READCARD—

CLEANSTR—

WRITECARD—

GETRESPONSE-

GETKEY—

GETYN—

DRAWCARD—

DRAW BORDER-

TTTLESCREEN—

Electronic Card File

Adds a new subject and record number
to the subject list. If the subject is already
in the subject list, the record number of
the new record is added to the record
number list.
Lists all the subjects in the subject list.
Clears the screen from a beginning row
to an ending row.
Displays the main menu and obtains the
selection.
Prints the information for an entry. Note:
The OPEN statement must be set up to
work with your printer.
Reads the screen. Obtains the subject,
identifier, and notes for an entry. Han
dles paging of notes.
Removes special graphics characters from
the end of a string read from the screen.
Displays the information for an entry on
the screen. Handles paging of notes.
Gets response key from the keyboard.
Accepts specified keys.
Displays a message line. Waits for a key
to be pressed.
Accepts a Y or N response.
Displays a blank entry ready for sub
sequent input.
Draws the border around the entry, using
graphics characters.
DISPLAYS the title screen, using graphics
characters.

Program 6*1. Tape Card File
100 REM TAPE CARD FILE

110 ON BREAK NEXT :: ON V7ARNING NEXT :: OPTION BAS

E 1

120 NEXTREC=1 :: NMAX=30
130 DIM IDL$(30),NT$(30,10),BUFF$(10)
140 REM MAIN ROUTINE

150 CALL MAINMENU(FCODE):: IF FCODE=6 THEN 170
160 ON FCODE GOSUB 210,360,530,750,560 :: GOTO 150
170 DISPLAY AT(3,1)ERASE ALL:"Are you sure (Y or N

)?"
180 CALL GETKEY(R,""):: IF R<>89 THEN 150

149

Electronic Card File

190 CALL CLEAR :: PRINT "Thank You": :"Program Com "*\
pleted"

200 END

210 REM LOAD DATA

220 CALL CLEAR :: FOR 1=1 TO NMAX :: IDL$(I)="" ::
FOR J=l TO 10 :: NT$(I,J)="" :: NEXT J :: NEX

T I

230 OPEN #2:"CS1",INTERNAL,INPUT ,FIXED 192
240 INPUT #2:LIM :: NEXTREC=LIM+1

250 FOR 1=1 TO LIM STEP 5

260 INPUT #2:IDL$(l),IDL$(l+l),IDL$(l+2),IDL$(l+3)
,IDL$(l+4)

270 NEXT I

280 FOR 1=1 TO LIM

290 INPUT #2:RTYPE$,:: IF RTYPE$="2" THEN 330
300 INPUT #2:NT$(I,1),NT$(I,2),NT$(I,3),NT$(I,4),N

T$(I,5),
310 INPUT #2:NT$(l,6),NT$(l,7),NT$(l,8),NT$(l,9),N

T$(I,10)
320 GOTO 340

330 FOR J=l TO 10 STEP 5 :: INPUT #2:NT$(I,J),NT$(
I,J+l),NT$(l,J+2),NT$(l,J+3),NT$(I,J+4):: NEXT
J

340 NEXT I :: CLOSE #2

350 RETURN

360 REM SAVE DATA

370 CALL CLEAR :: LIM=NEXTREC-1

380 OPEN #2^'CSl",INTERNAL,OUTPUT,FIXED 192
390 PRINT #2:LIM

400 FOR 1=1 TO LIM STEP 5

410 PRINT #2:IDL$(I);IDL$(I+l)?IDL$(I+2);IDL$(l+3)
;IDL$(l+4)

420 NEXT I

430 FOR 1=1 TO LIM :: T=0 :: FOR J=l TO 10 :: T=T+

LEN(NT$(I,J)):: NEXT J
440 IF T>180 THEN 480

450 PRINT #2:"1";NT$(I,1);NT$(I,2)?NT$(I,3);NT$(I,
4)?NT$(I,5);

460*PRINT #2:NT$(I,6);NT$(I,7);NT$(I,8);NT$(I,9);N
T$(I,10)

470 GOTO 510

480 PRINT #2:"2"?:: FOR J=l TO 10 STEP 5
490 PRINT #2:NT$(I,J);NT$(I,J+1)?NT$(I,J+2);NT$(I,

J+3)yNT$(l,J+4) H
500 NEXT J

510 NEXT I : : CLOSE #2 •*!

520 RETURN '
530 REM LIST ENTRIES

540 CALL LISTENTRY(IDL$(),NMAX,RCODE) j

150

Electronic Card File

550 RETURN

560 REM ADD AN ENTRY

570 CALL DRAWCARD :: ID$="" :: FOR 1=1 TO 10 :: BU
FF$(l)=,,n :: NEXT I

580 CALL WRITECARD(ID$,BUFF$())
590 CALL READCARD(ID$,BUFF$(),"A")
600 CALL GETPESPONSE(PESP)
610 IF RESP=1 THEN 590

620 IF RESP=5 THEN CALL PRINTCARD(ID$,BUFF?()):: G
OTO 600

630 DISPLAY AT(20,1):"* Working. Just a moment. *
it

640 CALL ADDID(lD$,IDL$(),NMAX,NEXTREC,RCODE)
650 IF RCODF>0 THEN DISPLAY AT(20,1):"*Identifier

already present*" :: PAGE=1 :: GOTO 590
660 IF RCODE<0 THEN DISPLAY AT(20,1):"*Sorry, memo

ry is full. *" :: CALL DELAY(2000):: GOTO 740
670 FOR 1=1 TO 10 :: NT$(NEXTREC,I)=BUFF$(I):: NEX

T I

680 T=0 :: FOR 1=1 TO NEXTREC :: T=T+LEN(IDL$(I)):
: FOR J=l TO 10 :: T=T+LEN(NT$(I,J)):: NEXT J
:: NEXT I

690 DISPLAY AT(24,1)ERASE ALL:"Characters used ";T
700 NEXTREC=NEXTREC+1

710 DISPLAY AT(12,1):"Do you want to add another
entry (Y or N)?"

720 CALL GETKEY(RESP,"")
730 IF RESP=89 THEN 560 ELSE IF RESP<>78 THEN 710

740 RETURN

750 REM RETRIEVE AN ENTRY

760 DISPLAY AT(1,6)ERASE ALL:"Retrieve an Entry"
770 DISPLAY AT(3,l):"Type the entry identifier." :

: DISPLAY AT(20,1):"Hit ENTER when done."
780 ACCEPT AT(5,1)SIZE(-25)BEEP:ID$:: IF ID$=M" T

HEN 860

790 CALL MATCHID(lD$,IDL$(),NMAX,RCODE)
800 IF RCODE=0 THEN DISPLAY AT(8,1):"Identifier no

t found." :: GOTO 780

810 IDN$=SEG$(IDL$(RCODE),l,3):: P=VAL(IDN$)
820 FOR 1=1 TO 10 :: BUFF$(I)=NT$(P,I):: NEXT I
830 CALL CHANGECARD(ID$,BUFF$(),0)
840 FOR 1=1 TO 10 :: NT$(P,I)=BUFF$(I):: NEXT I
850 GOTO 760

860 RETURN

870 SUB DELAY(D)
880 FOR 1=1 TO D :: NEXT I
890 SUBEND

900 SUB CHANGECARD(ID$,BUFF$() ,FSW)
910 IF FSW=0 THEN CALL DRAWCARD

151

Electronic Card File
6Cff|

920 CALL WRITECARD(ID$,BUFF$()):: CALL GETRESPONSE sb>
(RESP) '

930 IF RESP=4 THEN 970

940 IF RESP=1 THEN CALL READCARD(ID$,BUFF$(),"C")
950 IF RESP=5 THEN CALL PRINTCARD(ID$,BUFF$())
960 GOTO 920

970 SUBEND

980 SUB LISTENTRY(IDL$(),NMAX,RCODE)
990 P2=l :: RCODE=0 :: DISPLAY AT(1,8)ERASE ALL:"L

ist of Entries"

1000 DISPLAY AT(22,2):"SPACE to continue"
1010 DISPLAY AT(23,2):"ENTER to end list"
1020 FOR R0W=3 TO 18

1030 IF IDL$(P2)="" OR P2>NMAX THEN CALL BLANKLINE
S(ROW,18):: P2=l :: GOTO 1060

1040 DISPLAY AT(R0W,2):SEG$(IDL$(P2),4,25):: P2=P2
+1

1050 NEXT ROW

1060 CALL GETKEY(R,"PRESS"):: IF R=32 THEN 1020 EL
SE IF R<>13 THEN 1060

1070 SUBEND

1080 SUB MATCHID(ID$,IDL$(),NMAX,RCODE)
1090 RCODE=0 :: FOR 1=1 TO NMAX

1100 IF ID$=SEG$(IDL$(I),4,255)THEN RCODE=I :: GOT
O 1120

1110 NEXT I

1120 SUBEND

1130 SUB ADDID(ID$,IDL$(),NMAX,NEXTREC,RCODE)
1140 RCODE=0 :: FOR 1=1 TO NMAX :: T$=SEG$(IDL$(I)

,4,25)
1150 IF ID$=T$ THEN RCODE=I :: GOTO 1240
1160 IF IDL$(I)="" OR ID$<T$ THEN Pl=I :: GOTO 118

0

1170 NEXT I :: RCODE=-l :: GOTO 1240

1180 FOR I=P1 TO NMAX

1190 IF IDL$(I)="" THEN P2=I :: GOTO 1210
1200 NEXT I :: RCODE=-l :: GOTO 1240
1210 FOR I=P2 TO Pl+1 STEP -1 :: IDL$(I)=IDL$(1-1)

:: NEXT I

1220 T$=STR$(NEXTREC):: T$=RPT$("0",3-LEN(T$))&T$
1230 IDL$(P1)=T$&ID$:: IF P2<NMAX THEN IDL$(P2+1)

•3 II II

1240 SUBEND

1250 SUB BLANKLINES(BEGINL,ENDL) «=j
1260 FOR I=BEGINL TO ENDL :: DISPLAY AT(I,1):M " : '

: NEXT I ,_
1270 SUBEND I

1280 SUB MAINMENU(FCODE)
1290 CALL SCREEN(12):: CALL DRAWBORDER «J

152

f§\?i£}

flPBQ

(MB

Electronic Card File

1300 DISPLAY AT(3,5):"Electronic Card File"
1310 DISPLAY AT(6,l):"Do you want to:"
1320 DISPLAY AT(8,2):"1
1330 DISPLAY AT(9,2):"2
1340 DISPLAY AT(10,2):"3
1350 DISPLAY AT(11,2):"4
1360 DISPLAY AT(13f2):"5
1370 DISPLAY AT(15,2):"6
1380 CALL GETKEY(R,"Enter vour selection."):: IF R

<49 OR R>55 THEN 1380

1390 SUBEND

1400 SUB PRINTCARD(ID?,BUFF?())
1410 IF F=0 THEN OPEN #1:"RS232.BA=1200" :: F=l
1420 PRINT #l:TAB(10)j"IDENTIFIER:"?TAB(25);ID?:TA

B(10)?"NOTES:": :
1430 FOR 1=1 TO 10

1440 IF BUFF$(I)<>"" THEN PRINT #1:TAB(15);BUFF$(I
)

1450 NEXT I

1460 FOR 1=1 TO 5 :: PRINT #1 :: NEXT I
1470 SUBEND

1480 SUB READCARD(ID$,BUFF?(),TRANS?)
1490 IF TRANS?<>MA" THEN 1530
1500 ACCEPT AT(4,2)SIZE(-25)BFEP:ID? :: CALL CLEAN

STR(ID?)
1510 IF ID?=M" THEN DISPLAY AT(20,2)BEEP:"**Plea8e

enter identifier**" :: GOTO 1500

1520 DISPLAY AT(20,1):" "
1530 FOR 1=1 TO 10

1540 ACCEPT AT(8+I,2)SIZE(-25)BEEP:T? :: CALL CLEA
NSTR(T?):: IF T?=M" AND BUFF?(l)=M" THEN 1560
ELSE BUFF?(I)=T?

1550 NEXT I

1560 SUBEND

1570 SUB CLEANSTR(T?)
1580 T=POS(T?,CHR?(136),l):: IF T THEN T?=SEG?(T?,

1,T-1)
1590 SUBEND

1600 SUB WRITECARD(ID?,BUFF?())
1610 IF FL?=,,M THEN FL?=RPT? (CHR? (136) ,25)
1620 DISPLAY AT(4,2)SIZE(25):ID?&FL?
1630 FOR 1=1 TO 10 :: DISPLAY AT(8+1,2)SIZE(25):BU

FF?(I)&FL? :: NEXT I
1640 SUBEND

1650 SUB GETRESPONSE(RESPONSE)
1660 RESPONSE=0 :: CALL GETKEY(R,"PRESS ONE OF THE

FOLLOWING")
1670 IF R=13 THEN RESPONSE=4 IENTER

1680 IF R=82 THEN PESPONSE=l 1R

load data"
save data"

list entries"

retrieve an entry"
add an entry"
return to BASIC"

your selection."):
ELSE FCODE=R-48

153

Electronic Card File '

1690 IF R=80 THEN RESP0NSE=5 IP °*J
1700 IF RESPONSE=0 THEN 1660

1710 SUBEND

1720 SUB GETKEY(R,MSG?)
1730 DISPLAY AT(20,1):MSG?
1740 CALL SOUND(200,262,0):: K=0
1750 CALL KEY(3,R,S):: IF S<>1 THEN K=K+1 :: IF K<

250 THEN 1750 ELSE 1740

1760 CALL KEY(5,R1,S):: DISPLAY AT(20,1):" "
1770 SUBEND

1780 SUB DRAWCARD

1790 CALL SCREEN(16):: IF F=0 THEN CALL CHAR(132,M
000000FF"):: CALL CHAR(136,"0000000000427E"):
: CALL COLOR(14,13,1):: F=l

1800 CALL DRAWBORDER

1810 CALL HCHAR(6,2,132,30):: CALL HCHAR(19,2,132,
30):: CALL HCHAR(21,2,132,30)

1820 DISPLAY AT(2,1):"Identifier:"
1830 DISPLAY AT(7,l):,,Notes:M
1840 DISPLAY AT(22,1):"R to revise. P to print"
1850 DISPLAY AT(23,1):"ENTER when done."
1860 SUBEND

1870 SUB DRAWBORDER

1880 CALL CLEAR

1890 IF P1?=MH THEN P1?="FF"&RPT?("00",7)&RPT?("01
M,8)&RPT?(M00,,,7)&"FF"&RPT?(M80",8):: CALL CH
AR(128,P1?):: CALL COLOR(13,5,l)

1900 CALL HCHAR(1,2,128,30):: CALL VCHAR(1,1,129,2
4):: CALL HCHAR(24,2,130,30):: CALL VCHAR(1,3
2,131,24)

1910 SUBEND

Program 6*2. Disk Card File
100 REM DISK CARD FILE

110 ON BREAK NEXT :: ON WARNING NEXT :: OPTION BAS

E 1

120 NEXTREC=0 :: NMAX=150
130 DIM SUBJECT?(150,2),IDLIST?(150),BUFFER?(20)
140 REM MAIN ROUTINE

150 CALL TITLESCREEN

160 CALL GETNAME(INDEXNM?,DATANM?,NEWFILE?)
170 IF NEWFILE?="N" THEN GOSUB 280 «=*,
180 OPEN #3:"DSKl."&DATANM?,UPDATE,INTERNAL,RELATI '

VE,FIXED 254
190 CALL MAINMF,NU(FCODE,NEXTREC) i
200 IF FCODE=7 THEN 230
210 ON FCODE GOSUB 440,470,500,640,970,770 «^
220 GOTO 190

154

'i

Electronic Card File

230 DISPLAY AT(3,1)ERASE ALL:"Are you sure (Y or N
)?"

240 CALL GETYN(R?):: IF R?="N" THEN 190 ELSE GOSUB
360

250 CALL CLEAR :: PRINT "Thank You": :"Program Com
pleted"

260 CLOSE #3

270 END

280 REM LOAD INDEX FILE

290 DISPLAY AT(1,7)ERASE ALL:"Load Index File" ::
DISPLAY AT(5,l)s"Just a moment."

300 OPEN #2:"DSKl."&INDEXNM?,INPUT ,INTERNAL,VARIA
BLE 254

310 INPUT #2:NEXTREC :: LIM=NEXTREC+1
320 FOR 1=1 TO LIM :: INPUT #2:SUBJECT?(1,1): : INP

UT #2:SUBJECT?(I,2):: NEXT I
330 FOR 1=1 TO LIM :: INPUT #2:IDLIST?(I):: NEXT I
340 CLOSE #2

350 RETURN

360 REM SAVE INDEX FILE

370 DISPLAY AT(1,7)ERASE ALL:"Save Index File" ::
DISPLAY AT(5,1):"Just a moment."

380 OPEN #2:"DSKl."&INDEXNM?,OUTPUT,INTERNAL,VARIA
BLE 254

390 PRINT #2:NEXTREC :: LIM=NEXTREC+1
400 FOR 1=1 TO LIM :: PRINT #2:SUBJECT?(1,1):: PRI

NT #2:SUBJECT?(1,2):: NEXT I
410 FOR 1=1 TO LIM :: PRINT #2:IDLIST?(I):: NEXT I
420 CLOSE #2

430 RETURN

440 REM LIST SUBJECTS

450 CALL LISTSUBJ(SUBJECT?(,),NMAX)

460 RETURN
470 REM LIST ENTRIES BY SUBJECT

480 CALL LISTENTRY(IDLIST?(),SUBJECT?(,),NMAX,RCOD
E)

490 RETURN

500 REM BROWSE A SUBJECT

510 FSW=0 :: DISPLAY AT(1,7)ERASE ALL:"Browse a Su
bject"

520 CALL SEARCHSUBJ(SUBJECT?(,),NMAX,P,RCODE)
530 LIM=LEN(SUBJECT?(P,2)): : P2=l :: SUBJ?=SUBJECT

?(P,1)
540 IDN?=SEG?(SUBJECT?(P,2),P2,3)
550 FOR 1=1 TO NMAX

560 IF IDN?=SEG?(IDLIST?(I),1,3)THEN ID?=SEG?(IDLI
ST?(I),4,25):: GOTO 580

570 NEXT I :: ID?="**Missing**"

155

Electronic Card File

580 R=VAL(IDN?)
590 CALL GETREC(R,BUFFER?())
600 CALL CHANGECARD(SUBJ?,ID?,BUFFER?(),USW,FSW)::

FSW=FSW+1
610 IF USW THEN CALL PUTREC(R,BUFFER?())
620 P2=P2+3 :: IF P2<=LIM THEN 540
630 RETURN

640 REM BROWSE ENTRIES
650 FSW=0 :: DISPLAY AT(1,8)ERASE ALL:"Browse Entr

• _ _ H

660 CALL SEARCHID(IDLIST?(),NMAX,P,RCODE)
670 FOR I=P TO NMAX
680 IDN?=SEG?(IDLIST?(I),1,3):: ID?=SEG?(IDLIST?(I

),4,25)
690 IF IDN?="" THEN 760
700 CALL FINDSUBJ(IDN?,SUBJ?,SUBJECT?(,),NMAX)
710 R=VAL(IDN?)
720 CALL GETREC(R,BUFFER?())
730 CALL CHANGECARD(SUBJ?,ID?,BUFFER?(),USW,FSW)::

FSW=FSW+1
740 IF USW THEN CALL PUTREC(R,BUFFER?())
750 NEXT I

760 RETURN

770 REM ADD AN ENTRY

780 CALL DRAWCARD

790 PAGE=1 :: SUBJ?,ID?="" :: FOR 1=1 TO 20 :: BUF
FER?(I)="" :: NEXT I

800 CALL WRITECARD(SUBJ?,ID?,BUFFER?(),PAGE)
810 CALL READCARD(SUBJ?,ID?,BUFFER?(),PAGE,"A")
820 CALL GETRESPONSE(RESP)
830 IF RESP=1 THEN 810
840 IF RESP=2 THEN PAGE=1 :: GOTO 800
850 IF RESP=3 THEN PAGE=2 :: GOTO 800
860 IF RESP=5 THEN CALL PRINTCARD(SUBJ?,ID?,BUFFER

?()):: GOTO 820
870 DISPLAY AT(20,1):"* Working. Just a moment. *

it

880 CALL ADDID(ID?,IDLIST?(),NMAX,NEXTREC,RCODE)
890 IF RCODE>0 THEN DISPLAY AT(20,1):"*Identifier

already present*" :: PAGE=1 :: GOTO 810
900 IF RCODE<0 THEN DISPLAY AT(20,1):"*Sorry, memo

ry is full.*" :: CALL DELAY(2000):: GOTO 960
910 CALL ADDSUBJ(SUBJ?,SUBJECT?(,),NMAX,NEXTREC,RC

ODE)
920 CALL PUTREC(NEXTREC,BUFFER?())
930 NEXTREC=NEXTREC+1
940 DISPLAY AT(12,1)ERASE ALL:"Do you want to add

another entry (Y or N)?" ^
950 CALL GETYN(R?):: IF R?="Y" THEN 770

156

i5S?!v5

j

<U4

0RP}

fUWSi

Electronic Card File

I"55* 960 RETURN
970 REM RETRIEVE AN ENTRY

980 ID?=""
990 DISPLAY AT(1,6)ERASE ALL:"Retrieve an Entry"
1000 DISPLAY AT(3,1):"Type the entry identifier."

:: DISPLAY AT(20,1):"Hit ENTER when done."
1010 ACCEPT AT(5,1)SIZE(-25)BEEP:ID? :: IF ID?=""

THEN 1110

1020 CALL MATCHID(ID?,IDLIST?(),NMAX,RCODE)
1030 IF RCODE THEN 1050

1040 DISPLAY AT(8,1):"Identifier not found." :: GO
TO 1010

'1050 IDN?=SEG?(IDLIST?(RC0DE),1,3):: P=VAL(IDN?)
1060 CALL FINDSUBJ(IDN?,SUBJ?,SUBJECT?(,), NMAX)
1070 CALL GETREC(P,BUFFER?())
1080 CALL CHANGECARD(SUBJ?,ID?,BUFFER?(),USW,0)
1090 IF USW THEN CALL PUTREC(P,BUFFER?())
1100 GOTO 990

1110 RETURN

1120 SUB DELAY(D)
1130 FOR 1=1 TO D :: NEXT I

1140 SUBEND

1150 SUB GETREC(RECNO,T?())
1160 INPUT #3,REC 2*RECNO:R?,T?(1),T?(2),T?(3),T?(

4),T?(5),T?(6),T?(7),T?(8),T?(9),T?(10)
1170 INPUT #3,REC 2*RECNO+l:R?,T?(11),T?(12),T?(13

),T?(14),T?(15),T?(16),T?(17),T?(18),T?(19),T
?(20)

1180 SUBEND

1190 SUB PUTREC(RECNO,T?())
1200 R=RECNO*2 :: R?=STR?(R):: R?=RPT?("0",3-LEN(R

?))&R?
1210 PRINT #3,REC R:R?,T?(1),T?(2),T?(3),T?(4) ,T?(

5),T?(6),T?(7),T?(8),T?(9),T?(10)
1220 R=R+1 :: R?=STR?(R):: R?=RPT?("0",3-LEN(R?))&

R?
1230 PRINT #3,REC R:R?,T?(11),T?(12),T?(13),T?(14)

,T?(15),T?(16),T?(17),T?(18),T?(19),T?(20)
1240 SUBEND

1250 SUB GETNAME(INDEXNM?,DATANM?,NEWFILE?)
1260 DISPLAY AT(1,5)ERASE ALL:"Electronic Card Fil

e"

mm 1270 DISPLAY AT(3,1):"What is the file name?"
1280 DISPLAY AT(4,1):"(May be up to 9 characters.)

ii

!"* 1290 ACCEPT AT(6,1)SIZE(-9)VALIDATE(UALPHA,DIGIT)B
EEP:FNAME?

P» 1300 INDEXNM?=FNAME?&"X" :: DATANM?=FNAME?&"D"
1310 DISPLAY AT(8,1):"Is it a new file? (Y or N)"

157

Electronic Card File

1320 CALL GETYN(NEWFILE?) «*i
1330 DISPLAY AT(12,1):"The file name is ";FNAME? !
1340 IF NEWFILE?="Y" THEN T?="New" ELSE T?="6ld"
1350 DISPLAY AT(13,1):"The file is ";T?
1360 DISPLAY AT(15,1):"O.K. (Y or N)?"
1370 CALL GETYN(R?):: IF R?="N" THEN 1290
1380 SUBEND

1390 SUB FINDSUBJ(IDN?,SUBJ?,SUBJECT?(,),NMAX)
1400 FOR J=l TO NMAX :: T?=SUBJECT?(J,2)
1410 FOR K=l TO LEN(T?)STEP 3
1420 IF IDN?=SEG?(T?,K,3)THEN SUBJ?=SUBJECT?(J,1):

: GOTO 1440

1430 NEXT K :: NEXT J :: SUBJ?="**Missing**"
1440 SUBEND

1450 SUB SEARCHID(IDLIST?(),NMAX,P,RCODE)
1460 RCODE=0 :: DISPLAY AT(3,1): "With which identi

fier do youwish to begin the list?"
1470 ACCEPT AT(6,2)BEEP:ID?
1480 IF ID?="" THEN P=l :: GOTO 1530
1490 DISPLAY AT(20,1):"Searching ..."
1500 FOR 1=1 TO NMAX

1510 IF POS(SEG?(IDLIST?(I),4,25),ID?,1)<>0 THEN P
=1 :: GOTO 1530

1520 NEXT I :: P=l

1530 DISPLAY AT(20>1):" "
1540 SUBEND

1550 SUB CHANGECARD(SUBJl^JD?,BUFFER?(),USW,FSW)
1560 USW=0 :: PAGE=1 :: IF FSW=0 THEN CALL DRAWCAR

D

1570 CALL WRITECARD(SUBJ?,ID?,BUFFER?(),PAGE)
1580 CALL GETRESPONSE(RESP)
1590 IF RESP=4 THEN 1650

1600 IF RESP=1 THEN CALL READCARD(SUBJ?,ID?,BUFFER
?(),PAGE,"C"):: USW=1

1610 IF RESP=2 THEN PAGE=1

1620 IF RESP=3 THEN PAGE=2

1630 IF RESP=5 THEN CALL PRINTCARD(SUBJ?,ID?,BUFFE
R?())

1640 GOTO 1570

1650 SUBEND

1660 SUB LISTENTRY(IDLIST?(),SUBJECT?(,), NMAX,RCOD
E)

1670 RCODE=0 :: DISPLAY AT(1,4)ERASE ALL:"Entries -^
within Subject"

1680 CALL SEARCHSUBJ(SUBJECT?(,),NMAX,P,RCODE)
1690 DISPLAY AT(4,1):" " :: DISPLAY AT(6,1):" " **)
1700 DISPLAY AT(22,2):"SPACE to continue"
1710 DISPLAY AT(23,2):"ENTER to end list" «j
1720 DISPLAY AT(3,1):SUBJECT?(P,1)]

158

I^vsskJ

f#^

t

p^El

1730

1740

1750

1760

'1770
1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

Electronic Card File

P2=l :: LIM=LEN(SUBJECT?(P,2))
FOR ROW=5 TO 18

IF P2>LIM THEN CALL BLANKLINES(ROW,18)::
1810

IDN?=SEG?(SUBJECT?(P,2),P2,3):: P2=P2+3
FOR 1=1 TO NMAX

IF IDN?=SEG?(IDLIST?(I),1,3)THEN DISPLAY
0W,2):SEG?(IDLIST?(I),4,25):: GOTO 1800
NEXT I :: RCODE=-l :: GOTO 1840

NEXT ROW

CALL GETKEY(R,"PRESS"):: IF R=13 THEN 1840
SE IF R<>32 THEN 1810

IF P2<=LIM THEN 1740

P=P+1 :: IF P<=NMAX AND SUBJECT?(P,1)<>"" THE
N 1720

SUBEND

SUB SEARCHSUBJ(SUBJECT?(,),NMAX,P,RCODE)
RCODE=0 :: DISPLAY AT(3,1):"With which subjec
t do you{3 SPACES}wish to begin the list?"
ACCEPT AT(6,2)BEEP:SBJ?
IF SBJ?="" THEN P=l :: GOTO 1930
DISPLAY AT(20,1):"Searching ..."
FOR 1=1 TO NMAX

IF POS(SUBJECT?(I,1),SBJ?,1)<>0 THEN P=I :: G
OTO 1930

NEXT I :: P=l

DISPLAY AT(20,1):" "
SUBEND

SUB MATCHID(ID?,IDLIST?(),NMAX,RCODE)
RCODE=0 :: FOR 1=1 TO NMAX

IF ID?=SEG?(IDLIST?(I),4,25)THEN RCODE=I :: G
OTO 1990

NEXT I

SUBEND

SUB ADDID(ID?,IDLIST?(),NMAX,NEXTREC,RCODE)
RCODE=0 :: FOR 1=1 TO NMAX :: T?=SEG?(IDLIST?
(I),4,25)
IF ID?=T? THEN RCODE=I :: GOTO 2110
IF IDLIST?(I)="" OR ID?<T? THEN Pl=I :: GOTO
2050

GOTONEXT I :: RCODE=-l : :

FOR I=P1 TO NMAX

IF IDLIST?(I)="" THEN
NEXT I :: RCODE=-l ::

FOR I=P2 TO Pl+1 STEP
?(I.-1): : NEXT I
T?=STR?(NEXTREC): : T?=RPT?("0",3-LEN(T?))&T?
IDLIST?(PI)=T?&ID? :: IF P2<NMAX THEN IDLIST?
(P2+1)="M

P2=I

GOTO

-1 : !

2110

:: GOTO

2110

IDLIST?(I)=IDLIST

2080

GOTO

AT(R

EL

159

HG&fy>

Electronic Card File

2110 SUBEND ^
2120 SUB ADDSUBJ(SUBJ?,SUBJECT?(,),NMAX,NEXTREC,RC

ODE)
2130 RCODE=0 :: FOR 1=1 TO NMAX

2140 IF SUBJ?=SUBJECT?(I,1)THEN 2170
2150 IF SUBJECT?(1,1)="" OR SUBJ?<SUBJECT?(1,1)THE

N P1=I :: GOTO 2200

2160 NEXT I :: RCODE=-l :: GOTO 2300 \
2170 IF LEN(SUBJECT?(1,2))>240 THEN RCODE=-l :: GO

TO 2300

2180 T?=STR?(NEXTREC):: T?=RPT?("0",3-LEN(T?))&T?
2190 SUBJECT?(I,2)=SUBJECT?(I,2)&T? :: GOTO 2300
2200 FOR I=P1 TO NMAX

2210 IF SUBJECT?(1,1)="" THEN P2=I :: GOTO 2230
2220 NEXT I :: RCODE=-l :: GOTO 2300
2230 FOR I=P2 TO Pl+1 STEP -1

2240 SUBJECT?(I,1)=SUBJECT?(I-1,1):: SUBJECT?(I,2)
=SUBJECT?(1-1,2)

2250 NEXT I

2260 SUBJECT?(PI,1)=SUBJ?
2270 T?=STR?(NEXTREC):: T?=RPT?("0",3-LEN(T?))&T?
2280 SUBJECT?(PI,2)=T?
2290 IF P2<NMAX THEN SUBJECT?(P2+1,1)="" :: SUBJEC

T?(P2+1,2)=""
2300 SUBEND
2310 SUB LISTSUBJ(SUBJ?(,),N)
2320 DISPLAY AT(1,7)ERASE ALL:"List of Subjects"
2330 DISPLAY AT(22,2):"SPACE to continue"
2340 DISPLAY AT(23,2):"ENTER to end subject list"
2350 P=l

2360 FOR ROW=3 TO 17

2370 IF SUBJ?(Pf 1)="" O'R P>N THEN CALL BLANKLINES(
ROW, 17):: P=l :: GOTO 2390 :: ELSE DISPLAY AT
(ROW,I):SUBJ?(P,l):: P=P+1

2380 NEXT ROW

2390 CALL GETKEY(R,"PRESS"):: IF R=32 THEN 2360 EL
SE IF R<>13 THEN 2390

2400 SUBEND

2410 SUB BLANKLINES(BEGINL,ENDL)
2420 FOR I=BEGINL TO ENDL :: DISPLAY AT(I,1):" " :

: NEXT I

2430 SUBEND

2440 SUB MAINMENU(FCODE,N) •«[
2450 CALL DRAWBORDER —!
2460 DISPLAY AT(3,5):"Electronic Card File"
2470 DISPLAY AT(6,1):"Do you want to:" "
2480 DISPLAY AT(08,2):"1 list subjects"
2490 DISPLAY AT(09,2):"2 list entries by subject" ^
2500 DISPLAY AT(10,2):"3 browse a subject"

160

r^s^l

$PPI

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2880

2890

Electronic Card File

DISPLAY AT(11,2):"4 browse entries"
DISPLAY AT(12,2):"5 retrieve an entry"
DISPLAY AT(14,2):"6 add an entry"
DISPLAY AT(16,2):"7 return to BASIC"
DISPLAY AT(23,1):"Number of entries";N
CALL GETKEY(R,"Enter your selection."):: IF R
<49 OR R>55 THEN 2560 ELSE FC0DE=R-48

SUBEND

SUB PRINTCARD(SUBJ?,ID?,BUFFER?())
IF F THEN 2610

OPEN #1:"RS232.BA=1200" :: F=l

PRINT #1:TAB(10);"SUBJECT:";TAB(25);SUBJ?
PRINT #1:TAB(10);"IDENTIFIER:";TAB(25);ID?
PRINT #1:TAB(10);"NOTES:"
PRINT #1

FOR 1=1 TO 20

IF BUFFER?(I)<>"" THEN PRINT #1:TAB(15);BUFFE
R?(D
NEXT I

FOR 1=1 TO 5 :: PRINT #1 :: NEXT I

SUBEND

SUB READCARD(SUBJ?,ID?, BUFFER?(),PAGE,TRANS?)
IF PAGEOl OR TRANS? <> "A" THEN 2780
ACCEPT AT(3,2)SIZE(-25)BEEP:SUBJ? :: CALL CLE
ANSTR(SUBJ?)
IF SUBJ?="" THEN DISPLAY AT(20,2)BEEP:"**Plea
se enter subject**" :: GOTO 2720
DISPLAY AT(20,1):" "
ACCEPT AT(6,2)SIZE(-25)BEEP:ID? :: CALL CLEAN
STR(ID?)
IF ID?="" THEN DISPLAY AT(20,2)BEEP:"**Please
enter identifier**" :: GOTO 2750

DISPLAY AT(20,2):" "
IF PAGE=2 THEN BIAS=10 ELSE BIAS=0

FOR 1=1 TO 10

ACCEPT AT(8+1,2)SIZE(-24)BEEP:T? :: CALLCLEA
NSTR(T?):: IF T?="" AND BUFFER?(BIAS+I)="" TH
FN 2820 ELSE BUFFER?(BIAS+I)=T?
NEXT I

SUBEND

SUB CLEANSTR(T?)
T=POS(T?,CHR?(136),1):: IF T THEN T?=SEG?(T?,
1,T-1)
SUBEND

SUB WRITECARD(SUBJ?,ID?,BUFFER?(),PAGE)
IF FL?="" THEN FL?=RPT?(CHR?(136),25)
DISPLAY AT(3,2)SIZE(25):SUBJ?&FL? :: DISPLAY
AT(6,2)SIZE(25):ID?&FL?
IF PAGE=2 THEN BIAS=10 ELSE BIAS=0

161

Electronic Card File

2900 DISPLAY AT(8,22)SIZE(2):PAGE «=^
2910 FOR 1=1 TO 10 :: DISPLAY AT(8+1,2)SIZE(24):BU

FFEP?(BIAS+I)&FL? :: NEXT I
2920 SUBEND

2930 SUB GETRESPONSE(RESPONSE)
2940 RF.SPONSE=0 :: CALL GETKEY(R, "PRESS ONE OF THE

FOLLOWING")
2950 IF R=13 THEN RESPONSE=4 1ENTER

2960 IF R=82 THEN RESPONSE=l IR

2970 IF R=49 THEN RESPONSE=2 11

2980 IF R=50 THEN RESPONSE=3 12
2990 IF R=80 THEN RESPONSE=5 IP

3000 IF RESPONSE=0 THEN 2940

3010 SUBEND

3020 SUB GETKEY(R,MSG?)
3030 DISPLAY AT(20,1):MSG?
3040 CALL SOUND(200,262,0):: K=0
3050 CALL KEY(3,R,S):: IF S<>1 THEN K=K+1 :: IF K<

250 THEN 3050 ELSE 3040

3060 CALL KEY(5,R1,S):: DISPLAY AT(20,1):" "
3070 SUBEND

3080 SUB GETYN(R?)
3090 CALL GETKEY(R,"")
3100 IF R=89 THEN R?="Y" ELSE IF R=78 THEN R?="N"

ELSE 3090

3110 SUBEND

3120 SUB DRAWCARD

3130 IF F=0 THEN CALL CHAR(132,"000000FF"):: CALL
CHAR(136,"0000000000427E"):: CALL COLOR(14,13
,1):: F=l

3140 CALL DRAWBORDER

3150 CALL HCHAR(4,2,132,30):: CALL HCHAR(7,2,132,3
0):: CALL HCHAR(19,2,132,30):: CALL HCHAR(21,
2,132,30)

3160 DISPLAY AT(2,1):"Subject:"
3170 DISPLAY AT(5,1):"Identifier:"
3180 DISPLAY AT(8,1):"Notes:" :: DISPLAY AT(8,25):

"of 2".
3190 DISPLAY AT(22,1):"R to revise. 1,2 for page #

II

3200 DISPLAY AT(23,1):"P to print. ENTER when done
ti

3210 SUBEND -^
3220 SUB DRAWBORDER -*
3230 CALL CLEAR

3240 IF Pl?="" THEN Pl?="FF"&RPT?("00",7)&RPT?("01 *"J
",8)&RPT?("00",7)&"FF"&RPT?("80",8):: CALLCH
AR(128,P1?):: CALL COLOR(13,5,1) «=P

162
)

F33E3

Electronic Card File

p^, 3250 CALL HCHAR(1,2,128,30):: CALL VCHAR(1,1,129,2
4):: CALL HCHAR(24,2,130,30):: CALL VCHAR(1,3
2,131,24)

3260 SUBEND

3270 SUB TITLESCREEN

3280 P1?=RPT?("01",8)&RPT?("00",7)&"FF"&RPT?("01",
7)&"FFFF"&RPT?("01",7):: P5?="FF"

3290 CALL CHAR(128,P1?):: CALL CHAR(132,P5?):: CAL
L COLOR(13,2,1)

3300 CALL CHAR(136,SEG?(P1?,1,16)&SEG?(P1?,49,16)&
P5?):: CALL COLOR(14,2,9)

3310 CALL CLEAR

3320 CALL VCHAR(3,1,128,22):: CALL HCHAR(24,2,129,
27):: CALL HCHAR(24,29,130)

3330 CALL VCHAR(3,29,128,21):: CALL HCHAR(3,29,131
):: CALL HCHAR(3,2,132,27)

3340 CALL HCHAR(2,3,128):: CALL HCHAR(1,5,128):: C
ALL HCHAR(23,30,132)

3350 CALL HCHAR(21,31,132):: CALL HCHAR(2,4,138,26
):: CALL HCHAR(1,6,138,25)

3360 CALL VCHAR(3,30,136,20):: CALL VCHAR(2,31,136
,19):: CALL HCHAR(2,30,137):: CALL HCHAR(1,31
,137)

3370 DISPLAY AT(7,4)SIZE(20):"Electronic Card File
ii

3380 DISPLAY AT(12,10)SIZE(8):"for the"
3390 DISPLAY AT(14,9)SIZE(10):"TI-99 4/A"
3400 DISPLAY AT(16,7)SIZE(14):"Home Computer"
3410 CALL DELAY(2000)
3420 SUBEND

.|>SB

L

163

3

3

3

3

3

3

3

fHBSJ

ne of the more trying aspects of running a house
hold is making sure that everybody is at the right
place at the right time. There are church, school,

and sports activities for the youngsters. There are club meet
ings, dinner parties, and socials for the parents. For the entire
family there are assorted doctor and dentist appointments,
outings, and computer club meetings.

How do you keep track of all these activities? You prob
ably have a household appointment calendar. Does everyone
in the family always know where it is? Is it faithfully updated?

Often the need arises for a record of appointments that
were scheduled for last month or even several months ago.
Who keeps records of such things? Don't we all just tear off
and discard last month's calendar at the start of a new month?

Appointment Calendar
In the last chapter you looked at an electronic card file
application. This chapter presents a complementary program
tailored to a specific purpose.

Your TI-99/4A, with the "Appointment Calendar" pro
gram, can help you keep track of your household's appoint
ments. You can look at one month at a time. You can type in
the appointments for the month. Then you can save all the
appointments on tape or disk. (Appointment Calendar expects
you to enter in the program your years of interest ahead of
time. More will be said about this later.)

Later on, you can look at the appointments for that
month. A desired day's appointments may be called up and

vm reviewed. You may change the details for any appointments
that may have already been recorded. Of course, you can add

Is™ new appointments at any time.
So the Appointment Calendar program works just like the

J""1 appointment calendar that you may now be keeping. Even
some of the same operating procedures apply. The TI cannot

167

Appointment Calendar
l«EWi*

automatically record or announce upcoming events. nj
The Appointment Calendar program will introduce some —'

new operating procedures. Household members may want you
to explain how to use the program. Also, a convenient storage
place for the appointment tapes or disks should be set up.

System Requirements
The Appointment Calendar program is designed for a 16K 99/4A
with Extended BASIC. Figure 7-1 shows the equipment that
you will need.

Notice that the 32K memory and disk drive equipment are
optional. The addition of memory will, with the proper pro
gram changes, allow for more appointments for a month. In a
16K system, there is room for about 50 appointments per
month.

A disk drive does not introduce any additional capabilities
as far as Appointment Calendar goes. However, the storage
and retrieval of monthly appointment information will be
much faster than with a cassette recorder.

The program does not require, nor can it use, a printer.
The calendar and appointments are shown strictly on your TV
or video monitor.

Figure 7-1. Appointment Calendar
System Requirements

Required:
—TI-99/4A console
—Extended BASIC
—Cassette tape recorder

Optional:
—32K memory expansion
—Disk drive
—Disk controller

Setting Up the Calendar
Appointment Calendar is not a general-purpose calendar pro- "=]
gram. It is not designed for displaying any arbitrary calendar
such as June 1139. Rather, the program is intended to track ^
appointments within a certain data range that you specify.

Before using Appointment Calendar, check that the *"]
proper calendars have been stored in the program. You can

168

tn

Appointment Calendar

store the calendars for several years. So, the job of updating
Appointment Calendar should not be a difficult one. You will
have to do it only once every several years.

There are two steps involved with setting up the calendar.
First, locate the subprogram called DATELIM. There are two
variables in this subprogram—Yl and Y2. Set these variables
to the lower and upper limits of the date range that you want.
The following line established 1984 and 1985 as the years of
interest:

2390 Yl = 1984:: Y2 = 1985

Notice that the full four-digit year number is used. This com
pletes the first step.

The second step is a little more involved. Find the sub
program MONTHSET. Locate the DATA statements in this
subprogram. There are DATA statements for the names of the
months and the number of days in the months. Do not change
these. You are looking for the DATA statements just after the
remark:

2460 REM ** BEGIN CALENDAR DATA STATEMENTS **

The first DATA statement contains just one number. That
number tells the number of years that Appointment Calendar
should handle. Since we are dealing with two years, the
DATA statement will read:

2480 DATA 2

Following this DATA statement, there should be one addi
tional DATA statement per year (lines 2500 and 2510). Each
of these DATA statements should contain 13 numbers:

Number 1 the four-digit year number
Numbers 2-13 the day number of the first of the month.

Numbers 2-13 require a bit of explanation. Day numbers
range from 1 to 7. Sunday is day 1, Monday is day 2, and so
on, with Saturday being day 7. Consider the first three months
of 1984.

Month Day Day Number
January 1 Sunday 1

February 1 Wednesday 4

March 1 Thursday 5

p^, The complete DATA statement for 1984 is:

2500 DATA 1984,1,4,5,1,3,6,1,4,7,2,5,7

169

\

Appointment Calendar

As a double-check, count the numbers in the DATA state
ment. There should be 13. In addition, there should be two H
such statements—one for 1984 and the other for 1985.

In this manner, you can set up Appointment Calendar for
any number of years. The program as shown in the listing will
work for 1984 and 1985. 1984 is treated as a leap year.

Save a copy of the program after you've changed the
DATA statements. It is this customized copy that you will be
working with in the future.

Operating the Appointment Calendar
Appointment Calendar is another menu-driven program. The
main menu screen lists the major functions. The menu uses
the single keystroke technique. Choose a function and type in
the selection number.

There are five major functions:

1 specify a month and year,
2 load appointments,
3 review appointments,
4 save appointments, and
5 return to BASIC.

Selection 1 is used to tell Appointment Calendar with
which year and month you will be working. The program can
display a calendar for only one month on the screen at a time.
But how does Appointment Calendar know what month?

Selection 1 will display another screen. You will be asked
for a four-digit year number and a two-digit month number.
The year number must fall within the range that has been set
by the DATA statements discussed earlier. Otherwise,
Appointment Calendar will keep asking you for a year num
ber. The month number must fall within the range 01 through
12 inclusive. After you've specified the year and month, the
main menu will be displayed again.

Generally speaking, use Selection 1 only for the first time
that you're making appointments for a month. Selection 1
erases all appointment information from memory. Be careful
here. «_

Selection 2 loads appointments into the computer's mem- J
ory. Any appointments already in memory are erased. Thus,
you must load all the old appointments first before making *
any new ones. You may use any one of the following input
devices: '

170 =1

Appointment Calendar

1 tape,
f" 2 disk, or

3 other.

If you choose option 2 or 3, you will be asked for a com
plete filename. For tape input, follow the loading instructions
that will be displayed on the screen. The main menu will be
displayed again after the appointments have been read in.

Loading appointments automatically sets the year and
month. So if you use Selection 2 for loading appointments,
you do not need Selection 1. You only need Selection 1 as a
way to get started with a particular year and month in the first
place.

Can Appointment Calendar be confused? No. Certain
safeguards are built-in. For example, suppose you choose
Selection 1 and set up February 1984. Next, you immediately
use Selection 2. Either on purpose or by accident, you load
January 1984's appointment tape in the computer. Will you
end up with January's days showing up on February's cal
endar? Certainly not. Appointment Calendar will realize what
happened. It will display a correct calendar and a correct set of
appointments for January 1984. You will notice the mistake:
The calendar will be labeled January instead of February.

Appointments are reviewed, changed, and added all
through Selection 3. These functions will be discussed in a
separate section.

Selection 4, saving appointments, is an important func
tion. Always remember to save your appointments. This is
especially true if you plan to look at another month. Selections
1 and 2 erase all appointments from memory. If you change
any appointments or add any new ones, be certain that you've
saved them. You may use tape, disk, or some other device for
appointment storage.

Selection 5 provides a way to return to BASIC. Again,
appointments should be saved before leaving Appointment
Calendar.

Review Appointments
»> Selection 3, review appointments, is the heart of Appointment

Calendar. This selection shows you the calendar.
wm When you choose Selection 3, the calendar for the year

and month set by Selection 1 or 2 is displayed. The calendar is
mm shown in a grid produced by graphics characters. Figure 7-2

JjSfiSo.iJ

Appointment Calendar «^>

i

shows the calendar for January 1984. Notice that the grid has
room for six weeks. This was done so that any month could *"|
be displayed. The calendar does not fit into nice, even, four-
week patterns, so there will always be some empty squares on
the calendar. Just ignore these.

The calendar is clearly labeled. The year and month are
shown above the calendar. Double-check the year and month
before you begin making appointments.

You will notice a set of instructions below the calendar.
These represent the keys that are active. A special function is
associated with each of these keys. A particular function is
called up by typing the appropriate key.

Selecting Dates
Before appointments can be reviewed, changed, or added, the
particular appointment days must be selected. Look at Figure
7-2 again. There is a little arrow in the upper left corner. This
arrow is the day selector or cursor. The idea is to move the
arrow to each of the days of interest. When the arrow lands at
the proper day, press ENTER. This tells Appointment Cal
endar to remember that day. You are going to do something
with that day later.

To move the arrow around, use the following keys:

D move the arrow forward,
S move the arrow backward,
E move the arrow up,
X move the arrow down, and

ENTER select a day.
Do not hold the FCTN key down when you're moving

the arrow. The FCTN key is not necessary for arrow
movement.

When you select a day, a little tag will appear in the
upper left corner of the day's grid. This tag lets you know the
days that have been selected. Suppose you press ENTER at
the wrong date and make an incorrect selection. Just press
ENTER again. You will see the tag disappear. In effect,
ENTER toggles the tag on and off. —j

How can you tell on what days you already have appoint
ments? Appointment Calendar uses another tag. The appoint- a^
ment tag is on the bottom left-hand corner of the day's grid. If
you load appointments from tape, you can quickly spot the «=,

172 H

(UI&Bl

f.flWI

|WP1

Appointment Calendar

appointment days. Now, if you want to see the specific
appointments, select the day or days by means of the arrow,
as described above.

You may return to the main menu at any time. Press
FCTN BACK. This does not alter the appointments in any
way. Nor does it affect the days that you've selected. They
remain marked with the selection tag.

Figure 7-2. Appointment Calendar Display
January 1984

-1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

move arrow to desired date
D forward S back
E up X down

ENTER mark date

PROC'D update appointments

Adding and Changing Appointments
After all the days have been selected and marked, press FCTN
PROC'D. This takes Appointment Calendar out of the cal
endar mode and puts it in the appointment mode. The cal
endar display will be replaced by an appointment display. You
can look at each appointment for each selected day, or go
from selected day to selected day while skipping over the
appointment details.

Figure 7-3 shows what the appointment display looks
like. The name of the day (Monday) and the day of the month
(1) are at the top of the display. Then there are four items of
information for each appointment:

—time,
—place,
—person being met, and
—subject or purpose of the appointment.

173

Appointment Calendar

Figure 7*3. Appointment Display
Monday 1

Time: 2:30
Place: Medical Building
Person: Dr. Drill
Subject: Cavities
1 Appointment for the day
AID make a new appt.
BACK return to menu
ENTER review next appt.
PROC'D review next date
REDO change appt. info.

Following this is a count of the number of appointments
made for the day. Last, the active function keys are listed.

At this point, Appointment Calendar will recognize the
following function keys:
AID make a new appointment,
BACK return to the menu,
ENTER review the next appointment,
PROC'D review the next selected date, and
REDO change appointment information.

These functions are invoked by holding down the FCTN
key and then pressing one of the keys listed above.

Notice that there is no delete appointment key. A record
is kept of everything. You can always mark an appointment as
cancelled or rescheduled. If an entry is made by mistake, you
can say something to that effect in the subject field.

Let's take a brief look at each of these functions.
AID lets you make a new appointment. The cursor is

positioned at the Time field. Type in all the appropriate
information for the four fields. When you have finished add
ing an appointment, the appointment counter will be in
cremented by one.

BACK returns you to the main menu. Use this option
when you are finished reviewing or adding appointments.

ENTER shows you the next appointment, if any, for the
day. If you keep pressing ENTER, you will cycle through all of
the day's apointments. '

PROC'D takes you to the next selected date. This is a
way of quickly looking at each selected day. If all of the I

174

&Slic?::l

n

rcpra

JBBBB1

JiWP

Appointment Calendar

selected days have been displayed, PROC'D will take you
back to the main menu.

REDO lets you make changes to any appointment
information. The date of the appointment, of course, cannot be
changed this way. If the date changes, the appointment should
be added on the new date.

Restrictions

There are some restrictions as to the number of appointments
that can be recorded. These restrictions are due to memory
limitations. In a 16K TI, about 50 appointments a month can
be stored. You can store 15 appointments per day as long as
you don't exceed 50 appointments overall.

With more memory the storage capacity can be increased
quite a bit. To increase the allowable number of appointments,
increase the first dimension of the two-dimensional array
APPT$. Set MAXAPPT so that it matches the new first dimen
sion of APPT$.

To increase the permitted number of appointments per
day, change the variable DAYAPPT. It was set to 15 arbitrarily
so that all 50 appointments would not be used in one day.

Summary of Operation
Appointment Calendar is a very useful program for keeping
track of household appointments. The main menu screen pro
vides the means of invoking the major functions of setting the
year and month, loading and saving appointments, and
reviewing appointments. The appointment review function is
where most of the appointment work is done. A calendar for
the year and month is displayed. You select the days of
interest by manipulating a cursor. Then you proceed to the
appointment review mode. Each of the selected days can be
examined. You can add or change appointments as necessary.
When you are finished, return to the main menu and save the
appointments.

How It Works

The structure chart for Appointment Calendar is shown in Fig
ure 7-4. The program is composed of a series of subroutines
and subprograms. The main program dimensions the arrays
and initializes a few variables. The main menu is implemented
as a subprogram. The menu subprogram is called over and
over again until Appointment Calendar is instructed to return

175

Appointment Calendar

to BASIC. The major processing functions are subroutines
which are called from the main program.

All of the subroutines in Appointment Calendar have
REM statements as their first line. The REM statements give
the name of the subroutine and follow Figure 7-4 fairly
closely.

There are many subprograms in Appointment Calendar.
In general, they are called from several places. Figure 7-5 lists
all of the subprograms and gives a brief description of what
they do. No attempt has been made to describe the sub
program parameters except in a few instances.

Two arrays used by Appointment Calendar are APPT$
and MARKLIST$. APPT$ is dimensioned as 50 by 3. The
appointment information is stored in APPT$. The second
dimension is used as follows:

APPT$(X,0) time
APPT$(X,1) place
APPT$(X,2) person
APPT$(X,3) subject

MARKLIST$, dimensioned 5 by 6 by 1, holds calendar
information. The first dimension is for the weeks, which may
range in number from zero to five. The second dimension
represents the days of the week, which are numbered zero to
six. Subscript zero of the third dimension tells whether or not
a day has been marked for review. Similarly, the first subject
of the third dimension tells if there is an appointment for the
day.

n

176 n

F
ig

ur
e

7*
4.

A
p

p
o

in
tm

en
t

C
al

en
da

r
P

ro
gr

am
St

ru
ct

ur
e

Sp
ec

if
y

a
M

on
th

a
n

d
Y

e
a
r

M
ai

n
P

ro
g

ra
m

M
e
n

u

L
o

a
d

A
pp

oi
nt

m
en

ts

M
a
k

e
a

N
e
w

A
pp

oi
nt

m
en

t

R
e
v

ie
w

A
pp

oi
nt

m
en

ts

D
is

pl
ay

A
pp

oi
nt

m
en

ts
fo

r
a

D
ay

S
a
v

e

A
pp

oi
nt

m
en

ts

C
ha

ng
e

A
pp

oi
nt

m
en

t
In

fo
rm

a
ti

o
n

1
1

"1 > n o *
*

•

3 D o nT S3 O
-

Appointment Calendar

Figure 7-5. Appointment Calendar Subprograms

DELAY—

CLEARLIST—

GETDEVICE—

SETCAL—

DAYNAME—

MARKCAL—

SETCSR—

LABELCAL—

DRAWGRID—

GETKEY—

MAINMENU—

DATELIM—

MONTHSET—

A FOR-NEXT delay loop.
Clears MARKLIST$; sets the number of
appointments to zero.
Obtains a device

name for an input or
an output operation.
Gets the year and month from the user;
calls DATELIM and MONTHSET.

Given a week number (0-5), day number
(0-6), and the day number of the first of
the month, returns the name of the day.
Moves the cursor around the calendar;
marks selected dates.
Moves the cursor (a sprite) to a specified
week and day.
Prints the dates on the calendar.

Draws the grid for the calendar by means
of user-defined graphics characters.
Displays a prompt message; waits for a
key; periodically beeps a reminder tone.
Displays the main menu screen; gets the
function selection from the user.
Returns the beginning and ending years
of Appointment Calendar's range. The
limits are defined by the user.
Given a year and month, returns the day
number of the first of the month minus
one, the number of days in the month,
and the name of the month. Contains
DATA statements for setting up the cal
endar. The DATA statements are set by
the user.

Program 7-1. Appointment Calendar
100 REM APPOINMENT CALENDAR

110 ON BREAK NEXT

120 DIM MARKLIST$(5,6,1),APPT$(50,3),A$(3)
130 NEXTAPPT=0 :: MAXAPPT=50 :: DAYAPPT=15

140 REM MAIN PROGRAM LOOP

178

n

£**!?!

Appointment Calendar

150 CALL MAINMENU(FCODE,NEXTAPPT):: ON FCODE GOSUB
180,220,340,450,160 :: GOTO 150

160 CALL CLEAR

170 END

180 RFM SPECIFY A MONTH & YEAR

190 CALL CLEARLIST(MARKLIST$(,,),NEXTAPPT)
200 CALL SETCAL(MM$,YY$,BEGINMM,NDAYS)
210 RETURN

220 REM LOAD APPOINTMENTS

230 CALL GETDEVICE("Load Appointments",F$)
240 IF F$="CS1" THEN OPEN #1:"CSl",INPUT ,INTERNAL

,FIXED ELSE OPEN #1:F$,INPUT ,INTERNAL,VARIABL
E

250 CALL CLEARLIST(MARKLIST$(,,),NEXTAPPT)
260 INPUT #1:MM$,YY$,BEGINMM,NDAYS
270 INPUT #1:W,D,T$:: IF W>=0 THEN MARKLIST$ (V7,D,

1)=T$:: GOTO 270
280 INPUT #1:NEXTAPPT

290 FOR 1=0 TO NEXTAPPT

300 FOR J=0 TO 3 :: INPUT #1:APPT$(I,J),:: NEXT J
310 NEXT I

320 CLOSE #1

330 RFTURN

340 REM REVIEW APPOINMENTS

350 IF MM$="" THEN 440
360 CALL DRAY70RID :: CALL LABELCAL(MM$&" "&YY$,BEG

INMM,NDAYS)
370 FOR V7=0 TO 5 : : FOR D=0 TO 6

380 IF MARKLIST$(W,D,0)="Y" THEN CALL HCHAR(W*2+4,
D*4+3,135)

390 IF MARKLIST$(W,D,1)<>"" THEN CALL HCHAR(W*2+6,
D*4+3,136)

400 NEXT D :: NEXT W

410 CALL SETCSR(0,0):: CALL MARKCAL(MARKLIST$(,,),
R):: CALL SETCSR(0,11)

420 IF R=15 THEN 440

430 IF R=12 THEN GOSUB 590

440 RETURN

450 RFM SAVE APPOINTMENTS

460 CALL GETDEVICE("Save Appointments",F$)
470 IF F$="CS1" THEN OPEN #1:"CSl",OUTPUT,INTERNAL

,FIXED 192 ELSE OPEN #1:F$,OUTPUT,INTERNAL,VAR
IABLE 254

480 PRINT #1:MM$;YY$;BEGINMM;NDAYS
490 FOR W=0 TO 5 :: FOR D=0 TO 6

500 IF MARKLIST$(W,D,1)<>"" THEN PRINT #1:W?D?MARK
LIST$(W,D,1)

510 NEXT D :: NEXT W

520 PRINT #1:-1?-1;"FINI"

179

Appointment Calendar

530 PRINT #1:NEXTAPPT

540 FOR 1=0 TO NEXTAPPT ***,
550 FOR J=0 TO 3 :: PRINT #1:APPT$(I,J);:: NEXT J

:: PRINT #1

560 NEXT I

570 CLOSE #1

580 RFTURN

590 REM REVIFV7 MARKED DATES

600 DISPLAY AT(4,1)ERASE ALL:"Time:"
610 DISPLAY AT(6,1):"Place:"
620 DISPLAY AT(8,1):"Person:"
630 DISPLAY AT(10,1):"Subject:"
640 DISPLAY AT(13,4):"Appointments for the day"
650 DISPLAY AT(18,1):"AID{5 SPACES}make a new appt

it

660 DISPLAY AT(19,1):"BACK{4 SPACESjreturn to menu
it

670 DISPLAY AT(20,1):"ENTER{3 SPACES}review next a
ppt. "

680 DISPLAY AT(21,1):"PROC'D review next date"
690 DISPLAY AT(22,1):"RED0{4 SPACESlchange appt. i

nfo."

700 FOR W=0 TO 5 :: FOR D=0 TO 6
710 IF MARKLIST$(W,D,0)<>"Y" THEN 920
720 CALL DAYNAME(W,D,BEGINMM,D$)
730 DISPLAY AT(1,1):" " :: DISPLAY AT(1,(28-LEN(D$

))/2):D$
740 NAPPT=LEN(MARKLIST$(W,D,l))/2
750 DISPLAY AT(13,1)SIZE(2):USING "##":NAPPT
760 REM DAY

770 P=l

780 T$=SEG$(MAPKLIST$(W,D,1),P,2)
790 IF T$="" THEN DISPLAY AT(4,10):" " :: DISPLAY

AT(6,10):" " :: DISPLAY AT(8,10):" " :: DISPLA
Y AT(10,10):" " :: GOTO 850

800 P1=VAL(T$)
810 DISPLAY AT(4,10):APPT$(P1,0)
820 DISPLAY AT(6,10):APPT$(P1,1)
830 DISPLAY AT(8,10):APPT$(P1,2)
840 DISPLAY AT(10,10):APPT$(P1,3)
850 CALL GETKEY(R,"Press the desired FCTN key.")
860 IF R=15 THEN 940
870 IF R=l THEN GOSUB 950
880 IF R=13 THEN P=P+2 :: IF P<=2*NAPPT THEN 780 E -^

LSE 770

890 IF R=12 THEN 920 <_-.
900 IF R=6 THEN GOSUB 1040 1
910 GOTO 850

920 NEXT D **\

180 ^

(Mad

fSWI

Appointment Calendar

930 NEXT W

940 RETURN

950 REM MAKE A NEW APPT

960 IF NEXTAPPT>MAXAPPT THEN DISPLAY AT(24,1):"**
CALENDAR IS FULL **" :: CALL DELAY(1000):: GOT
O 1030

970 IF NAPPT>DAYAPPT THEN DISPLAY AT(24,1):"** DAY
IS FULL **" :: CALL DELAY(1000): : GOTO 1030

980 GOSUB 1080 1READ SCREEN

990 FOR J=0 TO 3 :: APPT$(NEXTAPPT,J)=A$(J):: NEXT
J

1000 T1$=STR$(NEXTAPPT):: IF NEXTAPPT<10 THEN Tl$=
"0"&T1$

1010 IF NAPPT<=DAYAPPT THEN MARKLIST$(W,D,1)=MARKL
IST$(W,D,1)&T1$

1020 NEXTAPPT=NEXTAPPT+1 :: NAPPT=NAPPT+1 :: DISPL

AY AT(13,1)SIZE(2):USING "##":NAPPT
1030 RETURN

1040 REM CHANGE APPT INFO

1050 GOSUB 1080 IREAD SCREEN

1060 FOR J=0 TO 3 :: APPT$(Pi,J)=A$(J):: NEXT J
1070 RETURN

1080 REM READ SCREEN

1090 ACCEPT AT(4,10)SIZE(-10)BEEP:A$(0):: IF A$(0)
="" THEN 1090

1100 FOR J=l TO 3

1110 ACCEPT AT(2*J+4,10)SIZE(-19)BEEP:A$(J):: IF A
$(J)="" THEN 1110
NEXT J

RETURN

SUB DELAY(N)
FOR 1=1 TO N :: NEXT I

SUBEND

SUB CLEARLIST(A$(,,),N)
FOR W=0 TO 5 :: FOR D=0 TO

:: A$(V7,D,1) = "" :: NEXT D :
SUBEND

SUB GFTDEVICE(MSG$,DNAME$)
1210 DISPLAY AT(1,(28-LEN(MSG$))/2)ERASE ALL:MSG$
1220 DISPLAY AT(8,1):"Which device do you want?"

DISPLAY AT(10,3):"1 Tape"
DISPLAY AT(12,3):"2 Disk"
DISPLAY AT(14,3):"3 Other"
CALL GETKEY(R,"Type your selection ->")
IF R<49 OR R>51 THEN 1260

IF R=49 THEN DNAME$="CS1" :: GOTO 1320
IF R=50 THEN DISPLAY AT(16,1):"Type the disk
file name.": :"DSK1."

1120

1130

1140

1150

1160

1170

1180

1190

1200

1230

1240

1250

1260

1270

1280

1290

:: A$(W,D,0)=""
NEXT W :: N=0

181

Appointment Calendar «i

1300 IF R=51 THEN DISPLAY AT(16,1):"Type the compl
ete file name." «=**!

1310 ACCEPT AT(18,1)SIZE(-20)VALIDATE(UALPHA,DIGIT •'
,"=.")BEFP:DNAME$:: IF DNAMF$="" THEN 1310

1320 SUBEND

1330 SUB SETCAL(MM$,YY$,BEGINMM,NDAYS)
1340 CALL DATELIM(Y1,Y2)
1350 DISPLAY AT(1,4)FRASE ALL:"Specify a Month & Y

ear"

1360 DISPLAY AT(4,1):"What year?{3 SPACES}1983"
1370 DISPLAY AT(6,1):"What month?{4 SPACES}01"
1380 DISPLAY AT(10,1):"- Type the 4 diqit year."
1390 DISPLAY AT(12,1):"- Type the 2 digit month":"

number."

1400 ACCEPT AT(4,14)SIZE(-4)VALIDATE(DIGIT)BEEP:YY
1410 IF YY<Y1 OR YY>Y2 THEN 1400 ELSE YY$=STR$(YY)
1420 ACCEPT AT(6,16)SIZE(-2)VALIDATE(DIGIT)BEEP:MM
1430 IF MM<1 OR MM>12 THEN 1420

1440 CALL MONTHSET(YY,MM,BEGINMM,NDAYS,MM$)
1450 SUBEND

1460 SUB DAYNAME(WKNO,DYNO,BEGINMM,DAY$)
1470 IF F$="Y" THEN 1510
1480 DATA SUNDAY,MONDAY,TUESDAY,WEDNESDAY,THURSDAY

,FRIDAY,SATURDAY,Y

1490 DIM DN$(6):: RESTORE 1480
1500 FOR 1=0 TO 6 :: READ DN$(I):: NEXT I :: READ

F$
1510 D=WKNO*7+DYNO-BEGINMM+l

1520 DAY$=DN$(DYNO)&" "&STR$(D)
1530 SUBEND

1540 SUB MARKCAL(MARKLIST$(,,),R)
1550 DISPLAY AT(17,1):"move arrow to desired date"
1560 DISPLAY AT(19,3):"D forward{4 SPACES}S back

it

1570 DISPLAY AT(20,3):"E up{9 SPACES}X down"
1580 DISPLAY AT(22,1):"ENTER{3 SPACES}mark date"
1590 DISPLAY AT(23,1):"PROC'D update appointments

it

1600 DISPLAY AT(24,1):"BACK{4 SPACESjreturn to men
u"

1610 X,Y=0
1620 DX,DY=0 :: CALL KEY(3,R,S):: IF S=0 THEN 1620
1630 IF R=12 OR R=15 THEN SUBEXIT

R=13 THEN 1770 »^
R=69 THEN DY=-1 !

R=88 THEN DY=1

R=68 THEN DX=1 °*"{
R=83 THEN DX=-1

DX=0 AND DY=0 THEN 1620 «^
i

182 *=*!

1640 IF

1650 IF

1660 IF

1670 IF

1680 IF

1690 IF

|iSU

(llfSB

fSSRl

(i#H1

fl^WJS

fWH

fllW&l

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050
2060

2070

2080

2090

2100

2110

2120

2130

Appointment Calendar

X=X+DX :: Y=Y+DY

IF X>6 THEN X=0

IF X<0 THEN X=6

IF Y>5 THEN Y=0

IF Y<0 THEN Y=5

CALL SETCSR(X,Y)
GOTO 1620

REM MARK DATE

R=Y*2+5 :: C=X*4+5

CALL GCHAR(R,C,CH):: IF CH=32 THEN 1620
R=Y*2+4 :: C=X*4+3 :: CALL GCHAR(R,C,CH)
IF CH=128 THEN CH2=135 :: MARKLIST$(Y,X,0)="Y
" FLSE CH2=128 :: MARKLIST$(Y,X,0)="N"
CALL HCHAR(R,C,CH2):: GOTO 1620
SUBEND

SUB SETCSR(X,Y)
IF F$="" THEN CALL SPRITE(#1,134,05,200,1)::
F$="Y"
R=Y*2+5 :: DOTR=(R-l)*8+l
C=X*4+3 :: DOTC=(C-l)*8+l
CALL LOCATE(#1,DOTR,DOTC)
SUBEND

SUB LABELCAL(T$,MMBEGIN,NDAYS)
K=0 :: D=l

FOR R=5 TO 15 STEP 2 :: FOR C=2 TO 26 STEP 4

IF K>=MMBEGIN AND D<=NDAYS THEN DISPLAY AT(R,
C)SIZE(2):USING "##":D :: D=D+1
K=K+1

NEXT C :: NEXT R

DISPLAY AT(1,(28-LEN(T$))/2):T$
SUBEND

SUB DRAWGRID

IF F$="Y" THEN 2100
CALL CHAR(128,"000000FF")1HORIZONTAL LINF
CALL CHAR(129,RPT$("01",8))IVERTICAL LINE
CALL CHAR(130,"010101FF01010101")1CROSS
CALL CHAR(131,"000000FF01010101")1TOP ANGLE
CALL CHAR(132,"010101FF")1BOTTOM ANGLE
CALL CHAR(133,RPT$("80",8))IRIGHT EDGE
CALL CHAR(134,"000406FF0604")1CURSOR
CALL CHAR(135,"000000FFFCFCFCFC")IMARKER
CALL CHAR(136,"00FCFCFF")IAPPT
CALL COLOR(13,16,1,14,16,1):: F$="Y"
CALL CLEAR

FOR C=2 TO 26 STEP 4

):: NEXT C
FOR P=4 TO 16 STEP 2

):: NEXT R
FOR R=6 TO 14 STEP 2

CALL VCHAR(4,C,129,13

CALL HCHAR(R,3,128,28

FOR C=6 TO 26 STEP 4

CALL HCHAR(R,C,130,1):: NEXT C NEXT R

183

G55*ft

Appointment Calendar

2140 FOR C=6 TO 26 STEP 4 :: CALL HCHAR(4,C,131,1)
:: NEXT C }

2150 FOR C=6 TO 26 STEP 4 :: CALL HCHAR(16,C,132,1
):: NEXT C

2160 CALL VCHAR(4,31,133,13)
2170 DISPLAY AT(3,2):"SUN MON TUE WED THU FRI SAT"
2180 SUBEND

2190 SUB GFTKEY(R,MSG$)
2200 DISPLAY AT(24,1):MSG$
2210 CALL SOUND(200,262,6):: K=0
2220 CALL KEY(3,R,S):: IF S<>1 THEN K=K+1 :: IF K<

250 THEN 2220 ELSE 2210

2230 CALL KEY(5,R1,S):: DISPLAY AT(24,1):" "
2240 SUBEND

2250 SUB MAINMENU(FCODE,N)
2260 DISPLAY AT(1,5)ERASE ALL:"Appointment Calenda

r"

2270 DISPLAY AT(5,l):"Do you want to:"
2280 DISPLAY AT(7,3):"1 specify a month & year"
2290 DISPLAY AT(9,3):"2 load appoinments"
2300 DISPLAY AT(11,3):"3 review appoinments"
2310 DISPLAY AT(13,3):"4 save appoinments"
2320 DISPLAY AT(15,3):"5 return to BASIC"
2330 DISPLAY AT(18,1):USING "### Appointments ente

red.":N

2340 CALL GETKEY(R,"Type your selection -> ")
2350 IF R<49 OR R>53 THEN 2340

2360 FCODE=R-48

2370 SUBEND

2380 SUB DATELIM(Y1,Y2)
2390 Yl=1984 :: Y2=1985

2400 SUBEND

2410 SUB MONTHSET(YY,MM,BFGINMM,NDAYS,MM$)
2420 DIM M$(12),ND(12),D(12):: IF M$(l)<>"" THEN 2

460

2430 DATA JANUARY,31,FEBRUARY,28,MARCH,31,APRIL,30
,MAY,31,JUNE,30

2440 DATA JULY,31,AUGUST,31,SEPTEMBER,30,OCTOBER,3
1,NOVEMBER,30,DECEMBER,31

2450 RESTORE 2430 :: FOR 1=1 TO 12 :: READ M$(I),N
D(I):: NEXT I

2460 PEM ** BEGIN CALENDAR DATA STATEMENTS **

2470 REM YEARS OF DATA

2480 DATA 2 "=*]
2490 RFM year and day number (1-7) of 1st day of m

onth e»)
2500 DATA 1984,1,4,5,1,3,6,1,4,7,2,5,7 '
2510 DATA 1985,3,6,6,2,4,7,2,5,1,3,6,1
2520 REM *"!

184]

[•*• Appointment Calendar

2530 RESTORE 2480 :: READ Y :: FOR 1=1 TO Y

l* 2540 READ Yl :: FOR J=l TO 12 :: READ D(J):: NEXT
J

2550 IF Y1=YY THEN BEGINMM=D(MM)-1
2560 NEXT I

2570 NDAYS=ND(MM):: MM$=M$(MM)
2580 IF MM=2 AND(YY=1984)THEN NDAYS=NDAYS+1
2590 SUBEND

(MWI

185

-5

n

MR}

/((PR)

BTOJ

pir^
S;:

pWB

his book has presented several major application pro
grams. Yes, each program works well by itself.
Wouldn't it be nice, though, if all the programs were

put together into one package? Then all the programs would
be in one place and accessible from one menu screen. This
would make things very convenient.

There are other benefits as well. As time goes by, you will
develop or acquire additional programs. Would you like to put
these new programs in with your other home information
programs?

How can this be done? Clearly, all the programs could be
combined into one great big program. This would require a
great deal of memory, and you would have to be sure that all
the line numbers were correct.

There are ways to overcome these obstacles. This chapter
will explore some additional programming and disk system
techniques that will result in a set of programs that will be
called a "Home Information System." It must be pointed out,
however, that all the programs in this chapter require at least
one disk drive. If you do not have a disk drive, you can never
theless learn some of the techniques. Who knows, maybe that
urge to expand your system will overcome you.

Description
Extended BASIC'S ability to RUN a program from another pro
gram was briefly examined in Chapter 3. Using this technique,
it's possible to set up a small menu program. The selections on
the menu will turn out to be other programs. Thus, when a
selection is made, the proper program will be brought into
memory with the RUN "DSK1.XXXXX" statement. When the
program is finished, it will do another RUN. This time, the
menu program will be brought back. So another program may
be selected.

189

Putting It All Together

It is therefore possible, for example, to perform a »
spreadsheet analysis, plot the results, and go back and do the
spreadsheet again. All this can be done almost at the press of
a button. There will be no need to type in the NEW, OLD, or
RUN commands.

A second feature of Extended BASIC will also come in
handy. When Extended BASIC is first started, it will look for a
file called "DSKl.LOAD". That is why the disk drives turn on
whenever you select Extended BASIC from the TI's menu. If
DSKl.LOAD is found, Extended BASIC will try to run the pro
gram. In practical terms, this gives us an automatic start-up
feature.

Even though it is possible to RUN a program from a pro
gram, large amounts of data can be passed between programs
only by means of files. After a while, the free space on a
diskette will diminish toward zero. The Disk Manager Com
mand Module is the obvious way to monitor disk space.
Unplugging Extended BASIC and plugging in the Disk Man
ager can be somewhat disruptive. Luckily, the disk directory
information can be read from Extended BASIC just as though
the directory were another file. So, you can write your own
program that will tell us how much space we have left.

This chapter will look at three programs:
—a DSKl.LOAD program for automatic start-up,
—an application menu program, and
—a disk directory or catalog program.

These programs, plus selected application programs, will form
our Home Information System.

DSKl.LOAD
Program 8-1 shows a start-up program. Type it in and SAVE it
using the name DSKl.LOAD. This particular program just dis
plays a title screen and then invokes the system menu.

You can do other things with DSKl.LOAD. Perhaps you
would like a more comprehensive set of operating instructions.
DSKl .LOAD is a good place to put them. The instructions will
be displayed as soon as Extended BASIC comes up. Since the —^
instructions are in DSKl .LOAD, they don't take up valuable
memory space from other programs. ^

DSKl.LOAD is also a good place for defining custom
graphics characters. Maybe you would like true lowercase let- ^
ters instead of TI's small capital letters. You can define the

190

Putting It All Together

characters in DSKl.LOAD. Whenever a program is run from
another program, the character definitions remain in effect.
The custom characters will return to their normal values only
when you get back to Extended BASIC.

The same holds true for screen colors. You can set the
screen to a particular color in DSKl.LOAD. That screen color
will remain until you get back to Extended BASIC. If you are
using a green or amber monochrome monitor, you might want
to issue a

CALL SCREEN(15)

statement, which sets the screen color to white. This yields
very nice results on a monochrome monitor.

There are several ways that you can make use of
DSKl.LOAD. Try some of them. Program 8-1 represents the
simplest approach. See if you can customize it for your own
needs.

System Menu
The system menu program, Program 8-2, uses the menu sub
program that was discussed in Chapter 2. The system menu
presents a selection of programs. When you make a selection,
the proper program is executed with the RUN statement. Type
the program in and save it with the name
DSK1.SYSTEMMENU.

The programs that you can select from the system menu
are listed below. The programs must be stored on disk with
the indicated names.

Program Program Name
4-1 DSK1.TINYPLAN

5-1 DSK1.BARCHARTS
5-2 DSKl .BARCHARTS2
6-2 DSK1.DCARDFILE
7-1 DSK1.CALENDAR

8-3 DSKl.CATALOG

Of course, you may add your own programs to the list.
All of these programs require a minor modification so you

will see the system menu again. This way you can run the
same program again with perhaps a different set of data.
Maybe you just want to run a different program. Most pro
grams finish with an END statement. The END statement
returns control to Extended BASIC.

191

Putting It All Together

Locate the END statement in each program. Replace the
END statement with these two lines: _J

DISPLAY AT(12,1) ERASE ALL:"Just a moment ... "
RUN "DSK1.SYSTEMMENU"

This way you'll see the system menu again when a pro
gram finishes.

System Catalog
The system catalog program is shown as Program 8-3. The
purpose of the system catalog program is to help keep track of
data files. Consider the program a specialized version of the
Disk Manager.

Program 8-3 will list the data files that are present on any
drive—1, 2, or 3. The name of each file and its size in both
sectors and bytes will be shown. The total number of bytes
still available on the diskette will also be displayed.

In addition to simply displaying filenames, the system cat
alog program gives you the option of deleting data files. When
the program is first started, it will ask you if you want to
selectively delete files. If you do, the data filenames will be
displayed one by one. You will have to specify whether you
want to keep the file or delete it. If you do not choose to
selectively delete files, a list of all data filenames will be pre
sented. You cannot delete files in this mode.

Notice that the system catalog program displays only data
files. The program intentionally hides program files. This was
done to safeguard programs from being accidentally deleted.

The program works by reading the diskette directory. The
directory works like a table of contents. Located in the direc
tory are the names of the files stored on the diskette. The
directory contains information about the files such as their
type, size, and record length.

The directory is a RELATIVE INTERNAL file with the
null string as the filename. The first record in the directory
contains information about the diskette itself. Then, there is
one directory record for each file. Program 8-3 simply reads
the directory and displays its contents. «^

Error Handling
You have seen how a nice program-to-program flow can be ^
set up. Unfortunately, errors can disrupt this flow. Suppose
you select the Bar Chart program. You already have the data ^

192

j^E |̂#

{Msb)

p*> Putting It All Together

c

^^J

l&WI

file that contains the X,Y pairs for plotting. What happens if
you type in the filename incorrectly? Chances are pretty good
that you will see an I/O error message on the screen.
Extended BASIC will then take over. Our system menu has
lost control.

Chapter 2 discussed how Extended BASIC can intercept
errors. You might like to add a few lines of error-handling
logic at the beginning of each of the application programs. The
application programs all begin with line number 100. Thus,
there is room for some additional lines.

Program 8-4 shows the error-handling statements. Type
these statements in and save them on disk with the MERGE
format. Then you can easily add them to the application pro
grams with the MERGE command. Do not put these state
ments in any program until you are satisfied that the program
is working properly in the first place. Do not put away your
debugging tools until you are sure you are finished with them.

Program 8-4 does nothing more than display the various
error codes. It waits until you press a key before resuming. At
that point, the application program is started from the very
beginning. This is not a very graceful recovery. Since the pro
gram is started from the beginning again, any work in
progress up to the error will be lost. Errors should be few and
far between. If most errors are due to miskeyed input
filenames, not much will be lost. Generally, the application
programs ask for the input filename before going very far with
any processing. Again, experiment.

Program 8-1. DSK1.LOAD
100 REM DSKl.LOAD

110 ON BREAK NEXT

120 l@P-
130 DISPLAY AT(4/5)ERASE ALL:"C O M P U T E 1 ' S"
140 DISPLAY AT(6,11):"H O M E"
150 DISPLAY AT(8,4):"I NFORMATION"
160 DISPLAY AT(10,9):"S Y S T E M"
170 DISPLAY AT(19,l):"FOR:":" TI-99/4A EXTENDED BA

SIC"

180 RUN "DSKl.SYSTEMMENU"

190 END

193

Putting It All Together

Program 8-2. System Menu
100 REM SYSTEM MENU ~3
110 ON BREAK NEXT

120 DATA 7

130 DATA "1 Tiny Plan Spreadsheet"
140 DATA "2 Bar Charts (Video)"
150 DATA "3 Bar Charts (Printer)"
160 DATA "4 Card File"
170 DATA "5 Appointment Calendar"
180 DATA "6 System Catalog"
190 DATA "7 Extended BASIC"
200 READ N

210 FOR 1=1 TO N :: READ CHOICE?(I):: NEXT I
220 CALL MENU("APPLICATION MENU",CHOICE?(),N,FUNC)
230 IF FUNC=0 THEN 220

240 DISPLAY AT(12,1)ERASE ALL:"Just a moment ..."
250 ON FUNC GOTO 260,270,280,290,300,310,320
260 RUN "DSK1.TINYPLAN"

270 RUN "DSK1.BARCHARTS"
280 RUN "DSK1.BARCHARTS2"

290 RUN "DSK1.DCARDFILE"

300 RUN "DSKl.CALENDAR"
310 RUN "DSKl.CATALOG"
320 CALL CLEAR

330 END

340 SUB MENU(TITLE?,CHOICE?(),N,FUNC)
350 C=(28-LEN(TITLE?))/2
360 DISPLAY AT(1,C)ERASE ALL:TITLE?
370 DISPLAY AT(4,1):"D0 YOU WANT:"
380 R=6 :: FOR 1=1 TO N

390 DISPLAY AT(R,1):CH0ICE?(I):: R=R+2
400 NEXT I

410 R=R+1 :: DISPLAY AT(R,1)BEEP:"TYPE YOUR SELECT
ION ->"

420 CALL KEY(0,R2,S):: IF S<>1 THEN 420
430 IF R2=13 THEN FUNC=0 :: GOTO 460
440 IF R2<49 OR R2>48+N THEN 420

450 FUNC=R2-48 :: DISPLAY AT(R,24)SIZE(1):CHR?(R2)
460 SUBEND

Program 8-3. System Catalog
100 REM SYSTEM CATALOG

110 ON BREAK NEXT ~"|
120 REM DEFINE VARIABLES

130 FILENAME?,DRIVE?,DSKNAME?,ACTION?, DODELETE?="" »[
140 FILETYPE,SECTORSUSED,RECLEN,CHARSUSED,LINENO,D

OCCOUNT,R,S,DISKSECTORS=0 „
150 IMAGE "### ########## ### ##### #» \
160 CALL KEY(0,R,S)

194 H

Putting It All Together

t.

170 1@P-

f83 180 REM GET DISK NUMBER AND DELETE OPTION
190 DISPLAY AT(11,1)ERASE ALL:"Do you want to sele

ctively delete files (y or n)? n"
200 ACCEPT AT(12,24)SIZE(-1)VALIDATE("yn")BEEP:DOD

ELETE?
210 IF DODELETE?="" THEN 200
220 DISPLAY AT(15,l):"V7hich drive (1-3)? 1"
230 ACCEPT AT(15,21)SIZE(-1)VALIDATE("123")BEEP:DR

IVE?
240 IF DRIVE?="" THEN 230
250 REM OPEN CATALOG AND GET HEADER

260 OPEN #1:"DSK"&DRIVE?&"."&"",INPUT ,RELATIVE,IN
TERNAL

270 INPUT #1:DSKNAME?,FILETYPE,DISKSECTORS,SECTORS
USED

280 REM BUILD DISPLAY

290 DISPLAY AT(1,1)ERASE ALL:"DATA FILES FOR ";DSK
NAME?

300 DISPLAY AT(3,1):" # File Name Sectr Char DEL"
310 DISPLAY AT(22,1):SECTORSUSED*256?" chars free

on disk"

320 FOR LINENO=l TO 15

330 INPUT #1:FILENAME?,FILETYPE,SECTORSUSED,RECLEN
340 IF LEN(FILENAME?)=0 THEN 450
350 IF FILETYPE=5 OR FILENAME?="DCARDFILE" THEN 33

0 1SKIP OVER PROGRAM FILES

360 DOCCOUNT=DOCCOUNT+l

370 DISPLAY AT(4+LINENO,l):USING 150:DOCCOUNT,FILE
NAME?,SECTORSUSED,SECTORSUSED* 256, "n"

380 IF DODELETE?="n" THEN 420
390 ACCEPT AT(4+LINENO,27)SIZE(-l)VALIDATE("yn")BE

EP:ACTION?
400 IF ACTION?="" THEN 390
410 IF ACTION?="y" THEN DELETE "DSK"&DRIVE?&"."&FI

LENAME?
420 NEXT LINENO

430 DISPLAY AT(24,1): "Press any Tcey for more."
440 CALL KEY(0,RfS):: IF S<>1 THEN 440 ELSE 320
450 FOR LINENO=LINENO TO 15

460 DISPLAY AT(4+LINENO,l):" "
470 NEXT LINENO

480 DISPLAY AT(24,1):"Press any Tcey to quit."
Is* 490 CALL KEY(0,R,S):: IF S<>1 THEN 490

500 REM END CATALOG LIST

Ps 510 DISPLAY AT(14,1)ERASE ALL:"Just a moment, plea
se. "

520 RUN "DSK1.SYSTEMMENU"
530 END

195

/

Putting It All Together =1

Program 8-4. Error Recovery

10 ON ERROR 20 J
15 GOTO 100

20 DISPLAY AT(4,1)ERASE ALL:"AN ERROR HAS OCCURRED
ti

25 CALL ERR(CODE,TYPE,SEVERITY,LINENUM)
30 DISPLAY AT(6,1):"CODE"
35 DISPLAY AT(6,14)BEEP:CODE
40 DISPLAY AT(8,1):"TYPE"
45 DISPLAY AT(8,14)BEEP:TYPE
50 DISPLAY AT(10,1):"SEVERITY"
55 DISPLAY AT(10,14)BEEP:SEVERITY
60 DISPLAY AT(12,1):"LINE/FILE #"
65 DISPLAY AT(12,14)BEEP:LINENUM
70 DISPLAY AT(17,1)BEEP:"PRESS ANY KEY TO CONTINUE

75 CALL KEY(0,R,S):: IF S<>1 THEN 75
80 RETURN 10

n

196 n

ywW

faVU

ACCEPT statement 23-25
Altair computer 3
APPEND mode of OPEN 38
"Appointment Calendar" program

discussion 167-78
how program works 175-76
operation 170-74
program 178-85
restrictions 175

safeguards 171
setup 168-70
subprograms 178
system requirements 168

"Array Initialization" subprogram 21
ASCII 38,55
"Backup Relative File" program 54
bar charts 100
"Bar Charts 1" and "Bar Charts 2"
programs

changing data 105-6
chart type 108-10
entering data 104-5
examples 112-14
functions 103

printing 115
program notes 114-15
programs 115-29
saving data 106-7
system needs 102
titles 107-8
X and Y scales 110-112

bubble sort 21-22
CALL command 19-20
cassette file considerations 39
"Checkbook Adder" programs

discussion 24
programs 24-25

CLOSE statement 36
COLOR subprogram 19
data files 37-39

sequential or relative 38
decimal points, aligning 23
"Diplomatic Hi-Lo" program

discussion 17-18
program 18-19

"Disk Card File" program
discussion 139-44

example 144-45
how program works 145-48
operation 141-43
precautions 143-44
printer considerations 144
program 154-63
restrictions 139-40
subprograms 148-49
variables 146-48

disk controller card 7-9
disk drive file considerations 39

diskettes 7-8
Disk Manager command module 8
"Disk Manager I" 8
"Disk Manager II" 8
disk operating system 8

located in ROM 8

DISPLAY statement 23-25
double colon, as statement sepa
rator 14-15

DSK1.LOAD file 190
custom characters and 190-191
screen colors and 191

"DSKl.LOAD" program
discussion 190-191
program 193

"Electronic Card File"
discussion 133-49

programs 149-63
system requirements 135-36

electronic spreadsheets 61-96
defined 61-63

planning 65-66
end-of-file marker 41-42
EOF function 56

not for cassette files 56
"Error Recovery" program

discussion 192-93
merge and 193
program 196

error trapping 5, 27-29
expansion box 6
Extended Basic 4, 13
field 35

files 35-58

backup 53-54
CLOSE and 36
filename 39-40
file number 39-40
management 35-58
OPEN and 36

types 38
filing concepts 133-34
fixed length records 39, 41, 55
flowchart 30

sample 31
"GET KEY" subprogram 23
graphics 99-125
hexadecimal representation 55
"Hex Dump" utility

discussion 54-56

program 56-58
high-resolution graphics mode 100
home information system

discussion 189-93

197

programs 193-96
IF-THEN statements 14

discussion 16-18

improved in Extended BASIC 4
IMAGE statement 23
indexed files

discussion 49-50
example programs 50-53

INPUT mode of OPEN 38
INPUT # statement 45
INPUT statement 23
INTERNAL format records 55
International 99/4 Users-Group 9
KEY subprogram 22
line graphs 100
LIST command 36
local variables 21
memory expansion card 6

Extended BASIC and 6
menu 30

MENU subprograms 31-32
MERGE format 20, 193
microcomputers, early history of 3
"Miles per Gallon" program

discussion 26
program 26-27

motherboard 6

"Multiplan" spreadsheet program 63
multiple statements per line 4

discussion and examples 13-16
"Name List" programs

discussion 40-42

programs 43-45
OLD command 36
ON BREAK statement 27-28
ON ERROR statement 27-29
ON WARNING statement 27-29
OPEN statement 36, 38-41

defines file characteristics 39-40
OUTPUT mode of OPEN 38
parallel port 7
peripheral expansion system 6
pie charts 100
PRINT # statement 45
PRINT statement 23
program design 29-32
program files 36-37
random access 45
Read Only Memory (see ROM)
REC clause 45

record 35-36

INPUT statement and 36
relational expression 16
relative file organization 38, 45-49

advantages and disadvantages 47
example programs 47-49

198

RES command 19
ROM 8

RS232 interface card 6-7
RS232 interface

file considerations 39
RUN command 37, 189
SAVE command 36-37
screen formatting

discussion 23-24

improved in Extended BASIC 5
SCREEN subprogram 19
sequential file organization 38

discussion 40-42
serial port 7
SIZE option of ACCEPT 41
sound generator 5
SOUND subprogram 19
speech synthesizer 5
sprites 5
string arrays 21-22
"String Sort" subprogram 22
SUB command 20
SUBEND statement 21
subprograms 4

writing your own 19-21
Extended BASIC enhancements 19-

23

"System Catalog" program
discussion 192
program 194-95

"System Menu" program
discussion 191-192
program 194

"Tape Card File" program
discussion 135-38
precautions 138-39
printing 138
program 149-54
restrictions 136

TI BASIC 4

ACCEPT 26

CLOSE 36

DISPLAY 23-25
IF-THEN 14

IMAGE 23

INPUT 23

INPUT # 45
LIST 36

OLD 36

ON BREAK 27-28
ON ERROR 27-29
ON WARNING 27-29
OPEN 36,38-41
PRINT 23

PRINT # 45

RUN 37, 189

CSsfti

frfSSJ

SAVE 36-37 programs 81-96
SUB 20 scrolling 72-73
SUBEND 21 setup 66-68

TI Extended BASIC (see ExtendedBASIC) system requirements 64-65
TI-99/4A computer 3 trends, graphics and 99
"Tiny Plan" and "Tiny Plan 2" programs UPDATE mode of OPEN 38

discussion 63-81 user groups 9
examples 76-78 USING option
files 74-75 of ACCEPT and DISPLAY
how programs work 78-81 statements 26
memory expansion and 75-76 of PRINT statement 23
names 70-71 VALIDATE option of DISPLAYstate-
operating 69-75 ment 24,28-29
operators 72 variable length records 39,55

	front-cover
	Binder1
	chapter000
	content000
	chapter001
	content001
	chapter002
	content002
	chapter003
	content003
	chapter004
	content004
	content004B
	chapter005
	content005
	content005B
	chapter006
	content006
	content006B
	chapter007
	content007
	chapter008
	content008

	back-cover

