

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-67-1

10 987654321

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies and is not associated with any
manufacturer of personal computers. Adam is a trademark of COLECO Industries, Inc. «=*,
Apple is a trademark of Apple Computer, Inc. Atari is a trademark of Atari, Inc. |
Commodore 64, VIC-20, and PET are trademarks of Commodore Electronics Limited.
IBM PC and IBM PCjr are trademarks of International Business Machines, Inc. TRS-80
and TRS-80 Color Computer are trademarks of Tandy, Inc. TI-99/4 and TI-99/4A are
trademarks of Texas Instruments.

**"^l

1

r

jipnsert

Foreword v

Acknowledgments vi

Introduction vii

1 Stories in Software 1

2 What Makes a Good Adventure? 17

3 Infocom Adventures 25

4 Scott Adams Adventures 43

5 Sierra On-Line Adventures 57

6 More Adventures 67

7 Action Adventures 89

8 A Field Guide for Frustrated Adventurers 97

9 How They Work 117

10 Doing Your Own 137
11 Tower of Mystery: A Simple Adventure Program 159

12 The Edge of the Future 183

Suggested Reading 199

Index 201

111

ipso

fii'irnjffj

You've come through steamy jungle valleys and over moun
tains thick with trolls. Across arid prairies and through
labyrinthlike cities, you've persevered. You've fought dragons
and found treasure and braved all sorts of danger. It's been a
long, long trip. Best of all, you've survived.

Is this a story or a game? Both. Adventure games give you
a bit of each.

COMPUTERS Guide to Adventure Games introduces you to
those fascinating worlds that can occupy your computer's
memory and your own mind. Can you really find excitement
in a game made up mostly of words? Definitely. In fact, of all
the games available for home computers, text adventures may
well be the most engrossing. Using nothing but words (in
some cases supplemented by graphics), they create computer-
borne fantasies that excite the imagination in a way that few
other games can match.

Experienced adventure gamers will tell you that text
adventures force you to think, react, and make judgment calls.
You have to reason and make decisions, with real-world re
sults. You actually experience what your game character
experiences.

There are some excellent text adventures available from
commercial software publishers, and most enthusiasts start
with one of them. To help you pick the games that are right
for you, this book includes reviews of several of the most
popular adventure programs.

But it doesn't stop there. You'll find hints on basic game
structure and specific tips on programming to help you create
text adventures of your own. You'll also observe many of
these techniques in action in "Tower of Mystery," a complete
text adventure program ready for you to type in and run. Ver
sions are included for virtually every popular computer.

The author has had wide experience with text adventure
games. From early experience with Adventure, the granddaddy
of all text adventures, his infatuation with the genre has
grown into an incurable habit. Now, with COMPUTEl's Guide
to Adventure Games, you're about to discover why.

Acknowledgments
Thanks are due to many people for providing information and
ideas for this book. Special thanks go to John Baker, Kevin
Bernier, Denise Bouley, Stu Galley, Scorpia (for more than just
the material that appears under her name here), and especially *•*
to master adventurer Steve Wright. In addition, I would like to --'
thank the many members of the CompuServe Game SIG who
have widened my knowledge of adventuring.

This book is dedicated to all the creators of new worlds.

VI

-jftfeii

fpSSl

One of the major fringe benefits of working at MIT's Lab
oratory for Computer Science in 1976 was being close to
ARPAnet. ARPAnet was the first nationwide computer net
work, and some of the most strenuous testing of its capabili
ties came not from planned experiments but from the volumes
of messages and programs that were passed from site to site.

One of the most popular programs that we received over
ARPAnet was a new game, by Will Crowther and Don Woods,
called Adventure. I was hooked from the start and spent many
weekends at the lab trying to find my way through the Hall of
Mists, past the Troll Bridge, and out of the maze of twisty
little passages.

By 1977 I had moved on to a job in industry, but still
made regular weekend visits to LCS. On one of those visits,
former co-worker Dave Lebling suggested that I try a new
game that he and some friends had been working on. This
game, which he described as an enhanced successor to Adven
ture, was called Zork.

It was fun. I enjoyed being able to type in four-word com
mands instead of the two-word commands that Adventure was
limited to. After burgling my way into the house, I spotted a
rug and tried lifting it. This earned me only a rebuke from the
program, so I wandered off into the woods and remained lost.
Dave encouraged me to try the rug again, and the next version
of the program explained to rug-lifters that the rug was just
too heavy. But moving the rug uncovered a trap door and led
the way to the riches of the Great Underground Empire.

Knowing the need to save batteries, I carried a lamp down
but didn't turn it on yet. A couple of turns later, I was told, "It
is pitch dark. You are likely to be eaten by a grue." This, I
thought, was the time to see what Zork was really good at. So
I typed in, WHAT IS A GRUE. The program immediately re
sponded with an explanation of the nasty creatures, including
their dietary habits. After that, it was a long time before I gave
another thought to Adventure.

That was the beginning of an incurable habit, but I had to
spend the next couple of years suffering withdrawal symp
toms. Personal computers in 1977 were clumsy to use, and
mass-market software was a concept no one had yet dreamed
up. But the breakthroughs came at last. When the creators of

vn

Zork formed Infocom and started selling their adventures for
home computers, I started buying them. Soon I discovered
Scott Adams and other adventure creators as well. Since then,
I have spent many long evenings trying to find hidden trea
sures and unmask murderers. Eventually I realized that other
adventure enthusiasts could benefit from what I had learned,
and the result is this book.

I have tried to cover every major aspect of adventure
games: their history, how to play them, how to write them,
and where they might lead in the future. I've also reviewed
many of the major adventure games.

As I worked on the book, I realized that there was one
glaring deficiency in my experience: adventures with graphics.
The TRS-80 Model III, which is my mainstay computer, can
display only the crudest black-and-white pictures; adventures
that involve high-resolution graphics just aren't available for
it. To remedy this, I went to a friend whom I have never met:
Scorpia, the sysop for the Game Special Interest Group on
CompuServe. We had many discussions concerning computer
adventures, and her chapter concerning Sierra On-Line's
graphic adventures adds greatly to this book.

I have two hopes for this book. First, I trust that readers
will finish it knowing more than before about how to enjoy—
and perhaps write—computer text adventures. Second, and
with unapologetic selfishness, I hope that it will play some
part in encouraging software creators to come out with more
and better adventures.

vin

/iwrffi)

pBS

tones

man has been murdered. Anyone in the
household could have done it—or perhaps
even someone from outside. There are clues,
but only the sharpest detective will be able to
spot them and build them into a case against
the murderer.

Will the detective succeed? That is up to
yOU—for y0u are the detective. You are, in fact, reading a
story; but the story is unfolding on the screen of your com
puter, in response to your commands. You are playing one of
the most engrossing and demanding kinds of computer games,
the text adventure.

Computer text adventures fall into the very broad cate
gory of simulation programs. Anyone who has played video
games has dealt with graphic simulations ofmissile attacks,
jungle chases, automobile races, and the like. Text adventures
also simulate tense situations, but they interact with the user
through words more than through pictures and joystick move
ments. People may disagree about whether the computer
should use pictures (graphics) or words to describe the simu
lated situation, and many adventures use both. But for telling
the computer what you want to do, there is no question that
words are far more flexible than any joystick or trackball.

You, the player, are the main character in the story that a
computer adventure lays out. You are presented with a situa
tion and a goal. Sometimes the goal is a single object, such as
catching a murderer or escaping with your life; at other times
it's a matter of accumulating as many points as possible by
solving problems and picking up treasures along the way.

The program guides you along by giving you a text
description of your character's surroundings. It might tell you
that you are in a large cave, or a broom closet, or—heaven
help you!—a maze of twisting, identical passages. It will single
out interesting objects that you might be able to pick up or
otherwise use, and it will point out directions in which you
can go.

In response to each description, you type in a verbal-style
command indicating the action you want your character to

Stories in Software

take. Adventure programs vary tremendously in the vocabu
lary and complexity of commands they will accept. Most
adventures are restricted to simple verb-object commands,
such as TAKE BOOK, ATTACK DRAGON, or GO NORTH.
However, the most sophisticated programs allow commands
with adjectives, multiple objects, and modifying phrases, such
as TAKE ALL BOXES EXCEPT THE RED ONE.

Your character can carry objects. When you give a com
mand to TAKE an object, the program checks whether you can
in fact pick it up, then adds it to your inventory if you can.
Having the right object at the right time (for instance, a sword
if an unfriendly troll shows up) can be vital to your success.
There are limits, of course, on what you can carry; the pro
gram will let you carry only so many objects (or, if it's clever
enough, only so much weight), and there are some objects
that are just too big to pick up.

An adventure consists of a series of puzzles to solve. The
most common challenge is simply figuring out how to get
somewhere. You may have to find a secret passage, open a
lock, get past a guardian, or answer a riddle. Then, after get
ting to your destination, you might find more surprises. You
could encounter a locked box, an enigmatic machine, or a
dragon sitting on a treasure. In each case, the solution lies in
having the right tools and thinking of the right action.

Unlike video arcade games or realtime action adventures,
some text adventures (which I'll refer to from now on simply
as adventures) invite you to sit back and think instead of call
ing on you to make quick reflex actions. Most adventures let
you take as long as you want to decide on a command; game
time doesn't pass while you're making up your mind. The bet
ter ones even have a save feature that lets you save the cur
rent state of the game on disk or tape, turn off your computer,
and come back later to continue. But adventures aren't for the
passive-minded. You have to be observant and inventive to
get through one.

At its best, an adventure is a literary form that is unique
in requiring the reader's participation. In fact, some books
have been written in imitation of adventure games. These ask
the reader to select at intervals one of several possible courses
of action and then to turn to a corresponding page. But they
don't really demand active participation; the only choices are
the ones listed. The adventure game doesn't enumerate your

GE^

fl^>

Stories in Software

alternatives in advance the way an adventure book does; the
right thing to do may be one that doesn't occur to you for a
long time. The thrill of finally thinking of that solution and
finding that it works is the special pleasure of adventures.

Some people seem to think that enjoyment means turning
off their minds and watching something passively or engaging
in meaningless activity. But for others, enjoyment means
giving their minds a change of pace and scene while still stay
ing alert and curious. Adventure games offer this kind of
change of pace—the chance to experience a different kind of
world and try to solve the problems that it offers, as well as
the chance to take risks without the unpleasant consequences
of real-life failure. It is escapism, perhaps, in the sense of an
escape from the routine of daily life. But it's not an escape
from thinking.

In the Beginning
Will Crowther created the first adventure game—the prelimi
nary version of Adventure—in 1975. It was written in FOR
TRAN on a Digital Equipment Corporation PDP-10 computer,
and its popularity spread quickly as Crowther made it avail
able nationally through ARPAnet. (ARPAnet was the first
nationwide computer network, linking many computer centers
at universities and research facilities around the country.)

Don Woods of Stanford University made some major
enhancements to Crowther's program, and the result was the
program that is still regarded as the standard version of
Adventure. Enhancements and adaptations have gone on,
though, and today the game is available in numerous versions
for every sort of computer.

Adventure has all the features that are now traditional
f» parts of the genre. The player gives two-word commands to
I direct the character's actions (through an underground com

plex). The more treasure the character finds and brings to the
m surface, the more points he gets. And if he solves the entire
L labyrinth, he is finally carried away on the shoulders of the

cheering elves.
«n Crowther's inspiration for Adventure, with its mixed bag
I of mythologies and its environment of mysterious under

ground passages, came largely from a noncomputer game,
pn which was as revolutionary in its own field as Adventure was

Stories in Software

in computer games: the role-playing game called Dungeons
and Dragons.

Tactical Studies Rules (now known as TSR Hobbies, Inc.) ^
published the first edition of Dungeons and Dragons in 1974. -•*
The rules in that edition were badly written and often grossly
ambiguous, but players were thrilled by the concept. D&D is "^j
an open-ended game in which the players assume the roles of - '
characters in a story and can have those characters attempt
any action whatsoever. The game is controlled by a games-
master, who uses tables, dice, and personal judgment to de
cide on the effect of a character's efforts.

In more traditional games, including the most sophis
ticated war games, the player's choices are set out in advance.
If a hero piece moves next to an ogre piece, the hero can at
tack the ogre, run away from it, or even befriend it, if a spe
cific rule is included. The only options are the ones spelled out
in the rules. But in Dungeons and Dragons, a player can try
anything he might think of. He might try to sneak past the
ogre, intimidate it by waving a weapon, or offer it a reward.
The gamesmaster has to consider the character's specified abil
ities and the nature of ogres to assign probabilities to the vari
ous outcomes; then he rolls the dice (with those probabilities
in mind) to determine what actually happens.

The open-endedness of role-playing games can produce
all kinds of surprises—and as often as not, it's the
gamesmaster who is surprised. Consider the following di
alogue from a hypothetical D&D game:

Gamesmaster: You advance north 50 feet and come to
the end of the corridor. There's a wooden door there.

Garmon (a fighter): I open the door.
(Gamesmaster rolls dice to fool the players, even though

he knows that the door is locked.)
Gamesmaster: It doesn't even budge. «*»
Melkar (a thief): I'm checking the door to see if it's - '

locked or anything.
Gamesmaster: It's locked, all right. You see a bolt going ««]

into the door frame. There's also a keyhole. -
Melkar: You said the door's made of wood?
Gamesmaster (anticipating): It looks like very tough «**j

wood, probably too tough for an ax. —'
Melkar (to the other players): Well, we've got that bottle

from the alchemist, which is supposed to warp any wooden

iw^i

W#Bl

|pB

0St&

XfflS)

Stories in Software

object entirely out ofshape. Shall we try it on the door?
(The gamesmaster is suddenly worried but endeavors to

look impassive. A dialogue ensues in which the players agree
to use the bottle.)

Melkar: I'm going to pour the stuff onto the door, start-
ring close to the lock side, about a foot above the lock. I'm

pouring slowly, to make sure it soaks nicely into the wood.
(The gamesmaster considers. Is this wood so tough that

the chemical will just run off it? Might it just warp the door
more firmly into the lock, so that even when they find the key
they were supposed to use, they won't be able to open it? Or
will it warp the door out of the lock, as the players hope? He
assigns a range on the possible dice rolls to each of these
alternatives, then rolls.)

Gamesmaster (glumly): You pour the contents of the
bottle onto the door. It starts to buckle, and the lock snaps
loose from the frame. (He smiles as he has another thought,
then rolls the dice.) But some of the potion splashed onto your
hand, Melkar. You took four points of damage.

Melkar: No big deal. Now let's open the door and see
what's in here.

(The players have now entered the central chamber with
out having met the Wizard who was supposed to have pro
vided them with the key to the door. This sets up a whole
new situation, which the gamesmaster must now handle.)

Obviously no computer game can be as completely open-
ended as a game managed by a human being. But Adventure
did capture some of the spirit of D&D by not laying out a set
of usable commands before starting the game. The player can
try any command at all, and it just might work, or at least
elicit an amusing response.

The second milestone in computer adventures was a pro-
pa gram called Zork, designed by Dave Lebling, Marc Blank, Tim
i Anderson, and Bruce Daniels. Zork also used a D&D-type

milieu, but its authors had several advantages over Adventure's
r creators. First, the language they used was MDL (humorously

called MUDDLE) a language similar to LISP that has much
better facilities for expressing data relationships than FOR-

rTRAN does. Second, they were working just downstairs from
MIT's Artificial Intelligence Laboratory, so they had ready ac
cess to previous work in handling English-language input.

p" Zork's creators gave it a command-handling facility that

Stories in Software

went far beyond Adventure. They added prepositional phrases, - >
indirect objects, adjectives, multiple direct objects, and com
pound commands. Prepositional phrases allow specifying an <*»
implement to be used in an action (ATTACK DEMON WITH ---'
TOOTHPICK). Adjectives distinguish between objects of the
same category (OPEN LARGE BOX). Multiple direct objects <*»
are convenient when grabbing or discarding several things at . -J
once (TAKE DIAMOND AND AX AND HAT). Multiple ob
jects are implied in the command DROP ALL, and further
refinements come from combining adjectives, prepositions, and
multiple objects (TAKE ALL GEMS EXCEPT THE BROKEN
ONE).

Zork also expanded the scope of the nonplayer characters
controlled by the program. Adventure has several dwarves and
a pirate who move around randomly and take specific actions,
such as throwing knives at the adventurer; it also has some
characters in fixed locations who perform specialized func
tions, such as blocking a bridge. But in Zork, the pirate is up
graded to Thief, a character who performs a number of
unpleasant functions besides taking treasure away from you.
For instance, he may pick up objects and drop them off in an
other place to confuse you. There is also a robot, who can
move at your command and who might be able to do jobs that
a human could not manage. Other creatures (including a troll
and a Cyclops) do not move, but their capabilities are more
varied than their counterparts in Adventure.

Combat with these creatures is especially interesting, for
the battle is not decided by a single blow. Instead, each fighter
accumulates wounds, and several wounds are usually needed
to kill. In each turn during a combat, both the adventurer and
his adversary can attack; the effectiveness of the attack is af
fected by the attacker's health and his choice of weapon, as
well as by a random factor. One side will usually get the up- =»]
per hand and then finish off his wounded opponent; but if the *
attacker is disarmed at a crucial moment, he can suddenly find
himself in trouble. «m

Another feature found in Zork is the use of vehicles, ->
which can take the adventurer to places unreachable on foot.
You must BOARD the vehicle before using it, then issue an «j
appropriate command, such as LAUNCH, to make it carry J
you. You don't necessarily have full control of the vehicle; this
can be inconvenient if you are in a boat rushing toward a «m
waterfall. .„ I
8

Stories in Software

' The original version of Zork was created in 1977; the
name incidentally, is just a nonsense word of the sort popular

f" in MIT's computer labs for spur-of-the-moment generic names.
*• A couple of years later, its creators implemented the Z-

machine. The idea of the Z-machine was to write Zork for one
r imaginary computer and then write programs for real com

puters that would let them run as if they were Z-machines.
(This is the same concept as the P-code system that lets com
piled Pascal programs be moved from one computer to an
other.) The Z-machine software included a high-level,
LISP-like language called ZIL (Zork Implementation Language)
and an assembly language called ZAP (Zork Assembly Pro
gram). The first Z-machine emulator was created for the TRS-
80 Model I, followed shortly by an Apple version. The original
Zork was reduced to a smaller program, with the intention
(since fulfilled) of releasing the remaining portions as parts II
and III.

Zork's creators formed Infocom to sell their adventure pro
grams. Originally the marketing was done through Personal
Software; later, Infocom set up its own marketing and direct
sales operations.

Since releasing Zork, Infocom has continued to enhance
the command-handling capability of its new adventures. In
addition, starting with Deadline, it has introduced real plots
into its adventures. True, Zork has some rudimentary elements
of plotting, including the adventurer's ongoing war with the
Thief. But Deadline and subsequent Infocom adventures have
tied all the events into a single, overriding purpose—catching
the murderer, stopping a plague, or whatever.

As microcomputers grew in popularity, Scott Adams
broke ground in a different direction with his Adventure Inter
national series. Many hobby computers have no more than 16

r kilobytes of storage and can input programs only from an or
dinary audio-cassette recorder. This puts programs like Zork
and even Adventure out of their reach. But Adams showed

F° that with clever programming techniques, enough material can
<- be crammed into that amount of storage to make an exciting

adventure program.
f** Adams's first adventures used an interpreter program,
- written in BASIC, that would read a data file and spin out the

adventure in accordance with the data in that file and the
P™ player's input. This method provided much more effective use

ffS»3

Stories in Software

of data storage than straightforward programming of the
adventure in BASIC would have provided.

Since then, Adams has rewritten his interpreter to run in
the machine language ofa variety ofcomputers. This rewriting
has enhanced the speed and compactness of the adventures
while greatly reducing the amount of time they take to load
from cassette tape. For those interested, the original BASIC
version of Adams's Pirate's Adventure was published in the
December 1980 issue of Byte.

All 12 programs in Adams's series use a standard screen
format for presenting information. The top part shows the
character's current locations ("I am in...."), followed by a list
of "visible items." The remainder of the screen, which may
vary in size depending on the size of the items list, is a
scrolling area for commands and responses.

The descriptions and responses are terse; Adams prefers
having more rooms and a larger command vocabulary to giving
lengthy descriptions. The same phrase will often be incor
porated into several different responses, at a savings in mem
ory over having each response be different. For instance, the
phrase "won't let me" might appear in the reactions of several
different guardians.

As memory becomes cheaper and home computers with
disk drives become more common, the restrictions that af
fected Adams's earliest adventures are becoming less of a
problem. Adventure publishers are looking for ways to take
advantage of the additional capability of expanded memory.
One path that several publishers are pursuing is the Zork ap
proach, which has more descriptions, a larger vocabulary, and
more complex command handling. Such adventures as Cyborg
and Empire of the Over-Mind have gone this way to varying
degrees. Another popular route, though it has not always been
put to the best possible use, is the addition of graphics.

Graphics, when used to complement the text and not just
illustrate it, can add a great deal to an adventure. One of the
best examples is Prisoner 2, in which the situation is presented
largely through graphics, and commands directly affect the
picture. Other adventures provide animated sequences to get
from one location to another. Too often, though, graphics are
used just to illustrate the text with still pictures. Since the best
home-computer graphics today fail to live up to the quality of
a Saturday-morning cartoon, this is a rather ineffective use of

10

imsvM

£S2Sl

Him

Stories in Software

computer storage. If the author of an adventure really wants
to provide illustrations, he or she would be better off to in-

P elude a booklet and have the program say, "Look at page 23"
(though this does have the disadvantage of letting players
peek before they've gotten to their destination). Avalon Hill's

P G.F.S. Sorceress makes good use of this method.
Complicated command handlers do take a lot of program

ming effort, and the publisher has to be able to justify the
cost. On the other side of the ledger, too, computer-game
publishers may be hesitant to make their product too complex.
Still, several publishers have been contributing to the slow but
steady growth of more sophisticated adventure programs. This
growth suggests that there are computer gamers who can
handle the English language and who regard a game as a
chance to think about something different rather than to stop
thinking.

Origins
The English-language-handling capabilities of adventure pro
grams, and especially of Zork and its descendants, owe a great
deal to the work that was done in artificial intelligence (AI) in
the 1960s and '70s. The researchers in AI put a great deal of
work into handling natural language input, meaning input in
English or other human languages, and some of the results are
remarkable.

The best known of these AI programs is Eliza by Professor
Joseph Weizenbaum at MIT. Eliza, named for the heroine of
Shaw's Pygmalion, accepts input text in English and produces
responses based on a script. The best-known Eliza script simu
lates a psychotherapist, and the program that uses this script is
often known as Doctor.

(There are several programs available for microcomputers
j™ that are called Eliza, and that emulate the original program's

Doctor script to a greater or lesser extent. But most of these
programs lack any script-handling capability, or at least don't

f* let the user know how to create scripts. Thus, they miss the
major point of the original Eliza.)

-^ According to Weizenbaum, who described the program in
["Eliza—A Computer Program for the Study of Natural Lan

guage Communication Between Man and Machine" (Commu
nications of the ACM, Volumn 9, No. 1, January 1966), "The

f3 gross procedure of the program is quite simple; the text is read

11

Stories in Software J

and inspected for the presence of a keyword. If such a word is
found, the sentence is transformed according to a rule asso
ciated with the keyword, if not a content-free remark or, un- ^
der certain conditions, an earlier transformation is retrieved. "
The text so computed or retrieved is then printed out."

The program might turn I HATE YOU into YOU HATE **|
ME, for instance, or cue on a word like BROTHER or
MOTHER to evoke a standard question about the user's family.
It is easy enough for the user to provide input that drives the
program to unintelligible responses, but some sessions have let
the program seem surprisingly human. A piece of sample di
alogue, presented by Weizenbaum, follows, with the pro
gram's responses in uppercase:
I need some help, that much seems certain.
WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP
Perhaps I could learn to get along with my mother.
TELL ME SOME MORE ABOUT YOUR FAMILY
My mother takes care of me.
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU
My father.
YOUR FATHER

You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE

Eliza showed that a computer program could scan
English-language input and produce interesting results; how
ever, its approach is entirely different from the method needed
for any sort of command input. Rather than trying to ex
haustively analyze the syntax of each input line, Eliza simply
looks for key words and phrases and makes the best of those.
It will never admit to not understanding a sentence.
Weizenbaum has been somewhat embarrassed by the "aura of
magic" that the program has acquired and stresses that it is
"merely a translating processor." ^

The program's strategy of concealing its failures is appro- '
priate to generating that aura.

"But to encourage its conversational partner to offer ^
inputs from which it can select remedial information," '
Weizenbaum notes, "it must reveal its misunderstanding." A
program that does this successfully—that, for instance, can tell
the user it doesn't understand CLOBBER THE DIRTY CROOK
and indicate the exact point of failure—has to take quite a dif
ferent approach from Eliza.

12

C*5w>|

Stories in Software

In addition, Eliza retains only a little information from
previous input. It does not change its model of the situation in

P response to every input line. Such information as it does retain
has very little structure to it; it simply allows the program to
make occasional references back to earlier parts of the di-

P alogue. For instance, some time after the user mentions an ill-
1 ness he once had, the program might attempt to liven the

dialogue with the line, AWHILE AGO YOU MENTIONED
YOUR ILLNESS. WHAT ELSE DOES THAT SUGGEST TO
YOU? Even the most elementary adventure program has to do
more than Eliza in this regard.

A more direct ancestor to adventure games, particularly to
Zork, was T. Winograd's SHRDLU. This program, created as
part ofhis 1971 Ph.D. thesis, accepts complex commands for
moving blocks of various shapes around. The program kept
track of the blocks only in an internal representation; but with
today's robotic technology, ifnot that of 1971, it would be fea
sible to have a mechanical arm that actually obeyed the
commands.

You might, for instance, tell SHRDLU to pick up the big
red block. This causes it to perform a whole sequence of ac
tions to carry out the command. First it must determine which
object is the big red block; then it must check if any objects
are sitting on the block and move them to the "table" that
supports all objects. After that, it can designate the indicated
block as being picked up.

Patrick H. Winston, in Artificial Intelligence (Addison-
Wesley, 1977) cites four categories that are significant in
SHRDLU's "blocks world." These are objects (such as specific
blocks and pyramids); relations between objects (such as IN-
FRONT-OF and SUPPORTED-BY); relations between objects
and intrinsic properties (such as color and size); and actions

P (such as PICK-UP, PUT-ON, and STACK).
These capabilities are necessary to any simulation that in

volves manipulating physical objects in a realistic way. In an
P adventure program, you need to know whether the dragon

(object) is on the pedestal (relation between objects), which
pedestal you are talking about (its intrinsic properties), and

P whether it is possible to open the pedestal (action) without
doing something else first.

SHRDLU, in its restricted context, has capabilities that
P go beyond any adventure program yet created. Its syntax

13

Stories in Software

handling allows very complex commands. Relations between
intrinsic properties, such as "taller than," are within its capac
ity, as are alternatives such as "either a green cube or a
pyramid."

On the other hand, SHRDLU deals with a very small class
of objects, which occupy only one "room" and which always
remain passive except when manipulated by a command. A
block will not explode two turns after you put it in the box,
nor will a second robot walk in and steal it. There is no ques
tion of what implement to use for an action, since the robot
has only one hand. SHRDLU is an expert in a very narrow
field; adventure programs must be generalists by comparison.

Computer Fantasies
When talking about Eliza, SHRDLU, or adventure programs, it
is important to realize that these programs do not think. Each
of these programs is set up to deal with its input and generate
output according to certain rules that cannot be broken.

Some artificial intelligence programs, such as Eliza, have
made a great impression on naive users, who have thought
that the computer really "understood" what they were telling
it. Weizenbaum has been honest enough to discourage this
impression; unfortunately, creators of some other computer
programs seem to seriously believe that what the programs are
doing is "thinking" or "understanding."

Working with these programs is a good way to dispel any
illusions about what they are doing. Enter commands which
go beyond their designated capabilities, and the programs
either return a stock confession of ignorance or issue non
sensical responses.

Deliberately playing an adventure in this way—not trying
to solve it, but to probe the limits of its present capabilities—
can be fun as well as help to break down the illusion that the
computer "knows" something. With a two-word command
handler and a tiny vocabulary, overcoming the program is so
easy that it doesn't provide any satisfaction. But if the program
is powerful enough that you can't be sure whether a com
mand really is beyond the program, then testing it can become
an enjoyable game in itself.
Player: Drop dead
Program: I DON'T SEE ANY DEAD HERE

14

Stories in Software

^ Granted, even the best adventure programs don't match
the complicated conversational programs coming out of arti-

P ficial intelligence labs. Still, the pattern is there. The program
handles only a certain amount of subject matter and can handle
it only according to certain rules. When the input touches on a

P borderline or unusual case of the subject matter, the success of
the program depends on how complete the rules are in that
area. If the subject matter is well delimited—a chess game or
the manipulation of blocks, for instance—then the pro
grammer doesn't have to worry very much about the border
line cases. But when it is wide open, as it is when the program
is trying to simulate the actions ofa human adventurer, then
there will always be cases that the program can't handle.
Discovering this truth helps to take much of the mystique
away from complex computer programs.

An adventure game can be played on a number of levels.
You can treat it simply as a game of logic and try to solve the
puzzles. You can look at it as an unfolding story in which
your actions shape your character's fate. Or you can offer it
your own challenge and see how far you can push it before it
reaches its limits.

The games also promote a special sort of interaction
among people, even though they are played solitaire. In play
ing an adventure, you may find yourself stuck on some point;
if you've tried your best, there's nothing wrong with asking a
friend who's already played the game to offer you a hint.
Experienced players delight in coming up with subtle, devious
hints in response to inquiries. A good hint still lets the player
solve the puzzle mostly on his or her own; it just gives an
other perspective on the situation. Pac-Man, on the other
hand, doesn't lend itself to much conversation beyond asking
what fruit is in the tenth maze.

p" Can an adventure game be played only once? This is like
- asking if a novel can be read only once. Usually you would

rather go on to a new book than reread an existing one; but if
Ip a particular book contains more subtleties than you could en-

joy in a single reading, you may well want to read it over and
over again. The same is true, in a somewhat different way, of

F* a good adventure game. Even after you've reached the highest
score, you can go back and try courses you hadn't taken
before just to see what might happen. If you got through a

f" situation by luck, you might want to look again in order to

15

Stories in Software T

see whether the author planted some subtle clue you could
have used.

No other class of computer games offers such a multi-
faceted source of excitement. Chess sharpens your analytic
powers, war games test your sense of strategy, word games
stretch your ability to recognize words, and arcade shoot-'em- F*\
ups challenge your coordination and reactions. But none of
these offers the range of satisfactions to be found in a top-
quality adventure.

Welcome, then, to the dungeon, to the scene of the crime,
and to other worlds.

16

n judging the quality of any home computer
software, you should keep one point in mind:
publishers of this kind of software suffer a
theft, or piracy, rate that would frighten any
store owner. It's hard for someone to justify
large development costs when he knows that
a large percentage of the people who take

advantage of his efforts won't be paying him anything. Under
the circumstances, we should be grateful that people keep
producing new home computer programs at all, instead of
moving into a more financially secure area.

Evaluating adventures is trickier than evaluating most
other kinds of software. A strictly practical program, such as
an accounting package or word processor, is judged by how
easily it gets the job done. Even with an ordinary game pro
gram, the critic expects the commands or controls to be as
easy to use as possible. And in either case, the documentation
is supposed to be complete; if you aren't told how to print a
letter or shoot at the invaders, you have every reason to
complain.

With an adventure, on the other hand, figuring out how
the program works is part of playing the game. You don't
know what all the commands are or whether they'll always
work. The program might even go into a special mode without
warning, requiring you to use an entirely different set of com
mands until you get back into the normal situation.

Even so, there are definite standards for a good adven
ture, just as there are standards for a good novel. First of all,
the difficulties in an adventure should lie in the situation it
presents, not in getting the program to understand what you
mean. There is nothing more frustrating than knowing exactly
what you want to do but being unable to convey your intent
to the program. To avoid this frustration, the program should
have a powerful command parser, a large vocabulary, and
understandable error messages. As the authors of Zork put it,
"the game should simulate the real world sufficiently well so
that the player is able to spend most of his time solving the
problems rather than solving the program."

19

What Makes a Good Adventure? !

In a game with a good parser, you can express your ac
tions directly. In an adventure that accepts only two-word
commands, it is difficult to express an action like putting a "^1
coal into a fire. The program must either arbitrarily assume
that DROP COAL puts it into the fire or ask for a second com
mand to specify the destination of the coal. Being able to type **^j
DROP COAL IN FIRE is much more convenient. J

A large vocabulary can increase both the number of avail
able actions and the number of ways the player can express »
those actions. After all, kicking an ogre might do something
useful; why not let the player try it? Having a small vocabu
lary encourages playing the program rather than playing the
adventure, since it lets the player zero in on the correct actions
just by noticing that certain words are in the game's vocabu
lary. If the vocabulary is large, the mere fact that a word is
acceptable doesn't mean that it's necessary to solving the
puzzle.

Good error handling makes it easier to figure out just
where the program's limits lie. If the response is simply "I
don't understand," you can't tell whether one of the words
you used isn't in the program's vocabulary (or which word) or
whether the way you combined the words made no sense to
it. This means you have to rephrase a command several times
before you can figure out why you weren't getting through.

The program's responses should be clear and grammati
cal. Exits and objects should be clearly noted, unless they are
supposed to be difficult to find. Descriptions should convey a
sense of your actually being there, just like descriptive pas
sages in any other work of fiction.

They should also follow the rules of the language on
grammar and spelling. Sadly, a number of adventure publish
ers have allowed errors to slip into their games—errors that
even the sloppiest magazine editor would catch at a glance. ^?
The trouble is that nearly all adventure authors are pro-
grammers first and writers second.

Responses shouldn't be misleading. It's acceptable for the "^
program to misdirect the player, to disguise.the nature of
things, but it shouldn't produce a response that flatly contra
dicts the way the adventure world is intended to be. That may ^
sound obvious, but it's tricky to accomplish because of all the --'
possible actions that a player can attempt. The first version of
Zork, for instance, responded to attempts to LIFT the rug by *^

20
^^

r

r

What Makes a Good Adventure?

saying that fiddling with it wasn't useful, when in fact there
was something hidden under it. The program handled the in
tended verb, MOVE, correctly, but the writers just hadn't
considered the possibility that someone would try LIFT.

If the adventure includes graphics, they should do more
than just illustrate what the text says. They should supply
additional facts or at least expand on the ones the text men
tions. Many graphic adventures do this by including items in
the graphics but not mentioning them in the list of items
present. In many cases, the graphics can also help to clarify
the geographic layout. Some adventures, however, add graph
ics only as an afterthought. In those cases, they only slow
things down and leave less room on the screen for text.

The speed at which the program runs is important. If you
have to wait ten or fifteen seconds after each command, it's
easy to get bored with the adventure. This can be a problem if
the program is constantly bringing in graphics or text overlays
from the disk, especially on systems with slow disk drives.
The language in which the adventure is written can affect its
speed; any program that runs under a BASIC interpreter is going
to be slower than an equivalent machine language program.

Finally, the quality of the theme, story (if any), and asso
ciated puzzles is all-important. Not all adventure programs
spin out a story; some just present an assortment of puzzles in
a common setting. But in either case the situation should hold
the player's interest, or the program degenerates into a dry ex
ercise in problem solving. In Adventure, much of the pleasure
comes from the sense of going deeper and deeper into the
cave and discovering unexpected passages. Monsters and trea
sures aside, it conveys the feeling of exploring a spectacular
area. In Witness and other mystery adventures, it comes from
interacting with the characters and discovering their motives.

To have this quality, the adventure should fit together as
a self-consistent world. This means that the puzzles should
play fair, but it includes much more. Elements that are foreign

P1 to the game's milieu shouldn't intrude. If the setting is based
on science fiction, a puzzle shouldn't arbitrarily throw in
magical elements. If it follows the world of Greek mythology,

f^ Wotan and Brunhilde shouldn't appear without a good reason.
^ Deliberately mixing milieus can be the basis of an amusing

story, as in Poul Anderson's novel, Operation Chaos, which
p3 gleefully combines magic and science fiction. But the mixing

21

What Makes a Good Adventure?

should be intentional and well prepared, or the player will get
the feeling that the author is just trying to confuse him.

The difficulties that the player's character encounters
should make sense in terms of the situation. It makes sense,
for example, that an elevator button might be gimmicked so
that trespassers will have trouble getting to restricted areas.
However, it doesn't make sense to have the elevator button at
the other end of the building. The player should be able to
recognize patterns and follow them through logically. If he's
reduced to trying every possible action at random, then the
adventure (or at least that particular puzzle) is a failure.

The adventure should also create the illusion that the
player's character is a clever person who anticipates diffi
culties, senses dangers, and deals with them successfully on
his way to victory. When the player has finally solved the
adventure and can play it from beginning to triumphant end,
the actions he takes along the way should seem reasonable to
someone looking over his shoulder.

This means that every danger should be preceded by
signs that, at least in hindsight, can be recognized as a warn
ing. It means that the character shouldn't have to take actions
that are motivated only by information he gained in a "pre
vious life."

Some adventures give the character a limited number of
resurrections; this makes it more likely that he will learn from
fatal mistakes. However, such an approach makes sense only
in a capricious world like that of Adventure or Zork, or in one
in which science, magic, or mythology permits a return to life,
such as Lords of Karma. Adventures with more natural environ
ments don't have this recourse.

Consider, for example, the case of a room full of poison
gas. The way to get through the room is to give the command
HOLD BREATH before entering. If the character has no rea-'
son for holding his breath except that he choked to death in
that room the last time he played, his actions become illogical.

However, things can be kept reasonable if the description
of the previous room states that wisps of green mist are com
ing from under the door. Giving the command SMELL MIST
might elicit a stronger warning, and then it would make sense
that the character should take precautions. The point isn't that
a really good player should be able to get through the adven-

22

«E3)

What Makes a Good Adventure?

ture on the first try, but that the character should stay within
the bounds of the game's reality.

^ So what is a good adventure? Agood adventure is one in
which the player can vicariously experience the sense of being
the character in a story. To the greatest extent possible, the

|T* player shouldn't have to worry about the right phrasing. He
should be able to feel that his opposition is the situation itself,
rather than a programmer who's trying to confuse him. The
adventures currently on the market vary tremendously in how
closely they approach this ideal, and even the best have a long
way to go.

23

3

1

3

3

3

Infocom Adventures

n the world of adventure programs, certain
families stand out enough to deserve overall
discussions in addition to reviews of their in
dividual members. Among the most note
worthy of these is Infocom's Interlogic
adventure series.

Infocom's adventures use text without
graphics, a fact in which the company's advertisements take
great pride. A typical Infocom ad states, "We draw our graph
ics from the limitless imagery of your imagination—a tech
nology so powerful, it makes any picture that's ever come out
of a screen look like graffiti by comparison." Sticking to text
has another advantage: it makes it much easier to put the
same adventure out on many different computers.

In the realm of text, Infocom is considered by many
clearly to be the industry leader. Its products are unmatched in
command handling, story construction, and literary quality.
Commands can use adjectives, prepositions, and multiple ob
jects. PUT THE RED CARD ON THE TABLE, GIVE THE
RING TO THE WEASEL-LIKE ALIEN, and TAKE ALL BOXES
EXCEPT THE WOODEN BOX are typical of what the pro
grams can handle. Each program "understands" more than
600 different words.

The programs make use of the context in interpreting
commands. Suppose, for instance, that you want to attack a
troll with your sword. Then you could type the whole com
mand, ATTACK TROLL WITH SWORD. Aternatively, you can
type only ATTACK TROLL. If you have only one weapon (a
sword, for instance), the program will add the message (with
the sword) to let you know what assumption it has made. If
you have more than one weapon, it will ask what you want to
attack the troll with. You don't have to retype the whole com
mand at this point; you can just type SWORD or KNIFE or
whatever your choice of weapon might be.

Another way to initiate an attack against the troll would
be to type SWING SWORD. The program will then look for a
possible target. If the troll is the most reasonable target, it will
complete the command and let you attack the troll.

There are hazards, though. In an early version of Zork I, if

27

Infocom Adventures

there were no better target around, the program would give
the message (at the you) in response to SWING SWORD—in
fact, to swinging anything, however harmless—and cheerfully
let you commit suicide. The complexities of a program often
lead to surprises, even to the people who wrote it.

Infocom's developers have been learning from experience
with such unexpected results, and they have incorporated a
few improvements into each new product. Recently the com
pany went back to Zork I and re-released it with many of the
enhancements that they had created for more recent games.

Each of the adventures has a similar format; the text
scrolls up the screen, and a status line at the top displays such
information as the name of the currently occupied room and
the player's score. Many of the descriptions are long, and the
player is prompted to hit a key for MORE if the text is so
lengthy that it would scroll off the screen before he could read
it. A standard feature is the ability to save the state of the
game on any return and later restore it. The number of avail
able save files varies from one computer system to another.

Many of the adventures are populated by characters who
are busily moving about, even when the player's character
isn't around to see them. It is possible to address these charac
ters; for example, you could type FRED, TELL ME ABOUT
MR. SMITH. The limitations of the technology show up more
in talking to characters than in straight command handling;
there are a lot of things you'd like to ask the characters that
you can't. The format is still basically verb, object, and prepo
sitional phrase; this excludes a lot of probing questions.

Time is a major factor. Game time passes only when the
player enters a move, but then any number of things may
happen. In several of the adventures, the player's character
must eat, drink, and sleep after a certain amount of game time
has passed. Characters do things at scheduled times, and natu
ral events may happen after a certain amount of time has
passed. In the murder mysteries Deadline and Witness, the time
of day is so critical that it is displayed on the status line.

Although Zork was written to challenge MIT students and
staff members, not for the general computer-gaming commu
nity, Infocom's more recent adventures, starting with Witness,
have been at an easier level than the earlier ones. This move
was intended to appeal to a wider market. Let's hope that the

28

IS™f|

fllpsfe)

Infocom Adventures

company will continue to put out really challenging adven
tures along with the easier ones.

Most of the negative points about Infocom's adventures
come at a level that other companies haven't even reached
yet. Occasionally a puzzle has an arbitrary solution or requires
tedious trial and error. A more significant point is that the
tongue-in-cheek attitude that runs through all the adventures
has kept them from developing into stories of real worth. The
plot of Deadline, for instance, is worthy of Agatha Christie in
its basic ideas, but it has many touches that remind the player
that it's "only a game." For instance, in one of the rooms is a
novelization of Deadline itself. If you read the ending of the
book, you learn that the detective kills himself in disgust—and
then you kill yourself in disgust.

There's nothing wrong with humor, but the writers at
Infocom seem afraid to be taken seriously. Perhaps they're too
self-conscious about the limitations of the medium or too dif
fident about their literary abilities.

But it's hard to complain about a company that has
accomplished so much more than anyone else. If a competitor
arises with adventures of equal technical quality but different
strengths, then serious criticisms will be more meaningful.

Hints are available from Infocom in the form of the
"InvisiClues" booklets. These illustrated booklets give hints
printed in invisible ink, which can be exposed with the
developing marker that is included with the game. One book
let and a map are packaged together for each game. Besides
providing an aid to perplexed players, they make a good
souvenir of a completed game. Finally, a newsletter called The
New Zork Times is available to anyone who wants to be put on
Infocom's mailing list.

Now let's take a look at Infocom's adventures, one at a
time. The reviews are presented here in the order in which the
programs were released.

Zork I
Zork I: The Great Underground Empire, by Marc Blank and
Dave Lebling, is essentially a cut-back version of the original
Zork, with very little new material added. The reduction is
only in the number of rooms and accompanying puzzles; the
command handling, descriptions of the surviving rooms, and
general capabilities are retained in full.

29

Infocom Adventures

Zork I borrows a lot from Adventure. There is a house on -
the surface near the Great Underground Empire; there is "a
maze of twisty little passages, all alike"; and there is a Thief ^
who is an enhanced version of Adventure's pirate. The map —'
and puzzles, however, are completely different from those of
its predecessor. The Great Underground Empire gives the im- ^
pression of a world created entirely out of magic, in contrast -
with the natural feel of Adventure's Colossal Cave.

Nothing resembling a plot is to be found. Your goal is
simply to go down into the dungeon, recover treasures, and
put them in the trophy case in the house. Not all the treasures
are in the dungeon; a few are to be found in the surrounding
woods and along the Frigid River, which stretches from Flood
Control Dam #3 to Aragain Falls. When you have stored all
the treasures away, you are rewarded with an ending that
serves as a lead-in to Zork II.

Light is necessary in the dungeon, since there are hungry
creatures called grues roaming anywhere it is dark. Only a
light will keep them at a distance. Grues have become Infocom's
standard way of enforcing the need for light, lurking even in
the dark passageways of science-fiction adventures.

Consistency obviously wasn't a goal. Some parts are tech
nological, such as the dam and the machine in the coal mine,
and even the brass lantern (like the one in Adventure) runs on
batteries. Elsewhere there are elements of pure magic, such as
the rainbow bridge. A Cyclops, who turns out to be the son of
Polyphemus from the Odyssey, has somehow wandered in.
The torch has an inextinguishable flame that seems magical,
but it also has some realistic physical drawbacks. Some of the
puzzles require strict logic; others need wild flashes of
intuition.

There isn't necessarily a single solution to a problem.
When you first meet the Cyclops, for instance, he may seem "^
impossible to defeat, but there are actually two different ways
to handle him.

Just getting your treasures back to the house is a problem "^
in itself; someone always locks the door to the dungeon after
you go in, so you have to find another way back out. There
are several such exits, though some of them may not be wide "^
enough to let you carry everything out.

An assortment of weapons is available to you. Some are
better than others, and some may be positively suicidal in use. •*[

30

Infocom Adventures

*- If your weapons fail you and all seems lost, prayer may help.
This adventure is a good introduction to Infocom's line,

p since it awards points for performing certain tasks and for
acquiring treasure. This gives the beginner a sense ofmaking
progress. Some other Infocom titles, such as Deadline and Wit-

f*1 ness, give no points for partial success; these are better suited
for experienced players who can hope to finish the whole
thing. Others, including Enchanter and Planetfall, give points
for making progress but are really built around a single goal.
Zork I is the only Infocom adventure that gives the less experi
enced player a chance to pick up a few of the treasures, leave
with them, and get a sense of accomplishment.

Zork II
Zork II: The Wizard of Frobozz, by Marc Blank and Dave
Lebling, continues where Zork I leaves off. Before you are
more underground passages to explore. You discover such
creatures as a dragon and a unicorn, which are no more than
you expected in such a place. But soon you find that you have
a more persistent foe—the Wizard of Frobozz—who contin
ually throws an assortment of spells at you. His specialty is
spells beginning with F, such as Fear, Falling, and Fierceness.
Most of these spells are just nuisances, but the wrong one at
the wrong time might make you launch a kamikaze attack on
the dragon or fall fatally off a cliff. In the end you can defeat
the Wizard, but the cost will be high.

As in Zork I, you accumulate treasures and score points
for them. This time, however, there is no concept of going
home with some of the treasures. You can leave the dungeon
only when you have solved everything, and then you will exit
to a passage that leads to Zork III.

One of the most difficult features here is a maze that
f™ seems entirely random. There is an odd pattern of clues to the

maze, including diamond-shaped windows, a club autographed
by Babe Flathead, and the Wizard's voice, mocking your in-

["* ability to get to first base. But even with this information, it
may be a long time before you discover the maze's secret, and
it may be even longer before you pass the obstacle that lies

P beyond the maze.
There is a rather unlikely explosive device in this game;

when you find that you might need an explosive, you may

L

31

Infocom Adventures

have to start lighting various objects until you do yourself in.
Then you can figure out how to use it correctly.

taisyw'J

Zork III J
Zork III: The Dungeon Master, by Marc Blank and Dave
Lebling, takes on a different flavor from the first two. Your ob- ^
ject is not to acquire treasures, but to gain entry to the sanc
tum of the Dungeon Master. What you'll need in order to
accomplish that is learned only through careful observation.
As in the first two installments, you face an adversary; how
ever, the obvious response to his challenge isn't necessarily
the right one. The encounter may leave you wondering
whether George Lucas played this game before creating Return
of the Jedi.

Instead of having a point system for accumulating trea
sures, Zork HI gives you a "potential" rating from 0 to 7,
based primarily on your reaching certain locations in the laby
rinth. This score isn't very informative, since you may have
reached all the right places but still not have performed the
right actions or obtained the items you need.

A more useful indicator is the Dungeon Master's response
each time you seek him out. He will express near-despair if
you haven't found any of the objects you need, and he will
get more encouraging as you accumulate more of them. But
there is one deed that you must perform before you even get
to see him.

In most adventures, the map remains constant except for
passages that you open and close by your actions. Here,
though, an earthquake intervenes part way through the
adventure to destroy existing passages and open new ones.
This makes being in the right place at the right time very im
portant. Elsewhere in the adventure, being in the right time at
the right place is what counts...but I'll leave that one for you ^
to puzzle over. '

In one room you will find a portal that lets you see and
briefly enter scenes labeled I, II, III, and IV. Two of these take "^
you into parts of the earlier Zorks, and the third takes you to ••'
another room in the current adventure. The one labeled IV
takes you to a scene that has since become part of Enchanter; ^
your stay there is brief but permanent. -

32

Infocom Adventures

Deadline
mm In Deadline, by Marc Blank, you are the detective and have 12
L hours to solve a murder. The clock ticks, not in real time, but

according to how much time it takes your character to perform
p, each action you specify. The status line at the top of the
[screen tells you exactly what time it is, a fact which is im

portant for anticipating scheduled events as well as for know
ing how much time is left.

The adventure is peopled by characters who are con
stantly moving about the house, engaged in routine tasks (or
perhaps trying to destroy evidence). You can explore the
house, examine possible evidence, have Sergeant Duffy take
items to the lab for analysis, and eventually arrest a suspect
when you think you have enough evidence. To bring the
adventure to a successful conclusion, you must not only arrest
the correct suspect but have enough evidence to get a
conviction.

The dead man, Marshall Robner, has apparently commit
ted suicide in a locked room by taking an overdose of a
prescription drug. But there is a suspicious circumstance. Just a
few days before his death, Robner contacted his lawyer about
changing his will. Could someone have poisoned Robner? And
if so, how?

As with any good mystery, there are subplots and red
herrings. As you make progress, you may be convinced sev
eral times that you have found the real murderer, only to dis
cover that you have to recheck the facts and let the situation
develop a little more. But if you wait too long, the murderer
may strike again to get rid of someone who knows too much—
and it may be you!

The variety of possible outcomes is very impressive. Aside
p, from the one you would like—arresting and convicting the
! murderer—you can arrest a suspect and not get a conviction,

or get killed yourself, or run out of time. If you don't get a
» conviction, you receive a letter explaining just why the jury
i was dissatisfied with your case.

The package comes with a sealed folder containing a let-
po ter describing your assignment, along with various memos and
I items of evidence. These show the same attention to detail as

the game itself.
fflBfll

33

Infocom Adventures -J

Starcross
Starcross, by Dave Lebling, casts you as a space miner whose j—.
luck is running low until your mass detector reports a pre- _]
viously uncharted asteroid in the area. But when you go to in
vestigate it, your delight changes to astonishment—the object ^
is not an asteroid, but a gigantic alien spaceship! You have]
little choice at that point, as a tractor beam brings you into a
docking area; you might as well see what's in the artifact.

The first trick is to get in. You find a bunch of oddly ar
ranged bumps on the airlock, and pressing one is apt to make
them all disappear. But look again; does that arrangement re
mind you of anything? This motif of having to recognize
arrangements of dots or bumps occurs several times in the
adventure.

The makers of the artifact stay out of sight, but you dis
cover that an assortment of species from other worlds is on
board. There is a tribe of weasel-like aliens, pathetically
degenerated from their once high technological level. There is
a lone intelligent spider, who is content to stand by and ob
serve things. Worst of all, the makers have visited the world
of Zork and brought grues aboard; these nasty creatures lurk
in dark places, ready to devour you if you don't stay in the
light.

Before long, you realize that the makers are subjecting
you to an intelligence test and that your life is forfeit if you
don't pass. Success, on the other hand, will make you a hero,
since you will be able to bring a product of unbelievably ad
vanced technology to Earth.

The key to success is finding the various colored rods
around the artifact, which are used to activate machines and
open doors. You have to make progress here quickly, since
you find that the place is running out of breathable air.

Among the entertaining touches that are scattered _]
throughout the artifact is a computer that stands in need of re
pair. If you forget to take certain basic precautions, you end (S(_
up filling the air with the delightful smell of fried computer.)
Another clever idea is the use of the ray gun. You can use it to
wreak all kinds of violence—but then will you have it when
you really need it? And is killing the only thing a ray gun is \
good for?

The package, which resembles a Frisbee, is clever (but not ^

34

"]

Infocom Adventures

*• very practical for stacking on a shelf). Don't lose the map that
comes with it; without it, you'll never get anywhere. The

P" package also includes a sheet explaining how to give co-
L ordinates to your ship's computer.

p* Suspended
Suspended was created by Michael Berlyn. Like the author's
earlier Cyborg, Suspended presents a situation that is especially
appropriate to the adventure game format. You are the master
of a complex that controls monitoring systems necessary to
the world's survival, but you have no power to do anything
yourself since you are in suspended animation. To control the
complex, you issue orders to six robots, each with different
capabilities. Iris can see, Whiz can get information from
computers, Auda can listen, Poet can diagnose objects by
touch and utter strange sayings, Sensa has an assortment of
special sensory apparatus, and Waldo specializes in carrying
and manipulating things. You talk to the robots through the
Filtering Computers, which understand only a limited range of
commands.

You control a robot by addressing it. For instance, you can
say, WALDO, TAKE THE 16-INCH CABLE. For convenience
in moving the six robots around, you can give a robot a
destination (AUDA, GO TO LIBRARY CORE), and the robot
will compute a path and tell you when it has arrived.

This adventure comes with a map of the entire complex,
as well as pieces to keep track of the robots' locations. Even
so, you will have to send your robots exploring to find out
what the various chambers contain.

This game is best approached slowly, since it takes time
to get used to looking at the world from six different perspec
tives and then adding the information up. Hard as it may be

F3 to ignore the fact that millions of people are dying out there,
(you should probably spend the first few sessions just discover

ing what the robots can and cannot do and what equipment
rthey have to work with.

At the start of the game, weather control is going bad. In
addition, seismic shocks are disrupting parts of your own com-

P° plex. When you start assessing the damage, you soon discover
' another problem: Iris has gone blind. You can fix that, but

soon afterward the serious trouble begins.
f" Unlike most adventures, this one continues to present a

35
R^D

Infocom Adventures

challenge even after you've solved it. First, your score depends
on how good a job you've done. After solving it the first time,
you can keep refining your strategy to get the best score. And ^
once you've perfected your performance, you can select the
advanced scenario, in which problems hit you more quickly.
You can even configure the game to challenge yourself or a **(
friend. J

My one complaint is that the messages you get for finish
ing the adventure with a mediocre score are unnecessarily
insulting, considering that you have just saved the world.

Once you've completed the advanced and configured ver
sions, you can type IMPOSSIBLE for the toughest challenge of
all. Infocom promises that "anyone successful in completing
the Impossible version ofSuspended will win an all-expenses-
paid trip to Contra, there to be immediately installed as Cen
tral Mentality for the next 10,000 years."

Believe me, they're on very safe ground.

Witness
Witness, by Stu Galley, is Infocom's second murder mystery.
It is set in the 1930s. Freeman Linder has asked you to come
to his house because of a threat on his life, and before you
have been there very long, he is killed before your eyes! A
few minutes later, Sergeant Duffy arrives, accompanying a
man in handcuffs. He explains that he had seen the suspect
running from the house right after the shot was fired. What's
more, the suspect is the very man who Linder had said was
threatening him. An open-and-shut case, right? Well, maybe
not....

Witness is significantly easier than any previous Infocom
adventure, perhaps too easy for some people. But it is rich in
detail, and the way the crime was actually committed is an in- _
genious piece of plotting. ^

Your choice of whom to arrest is limited to three charac
ters: Stiles, who apparently shot Linder; Phong, the Oriental ^
butler; and Monica, Linder's daughter. This is a smaller num-)
ber than in Deadline, but before you can make a successful ar
rest, you have to dig out the evidence. The smaller number of ^
characters leaves room for a greater variety of actions; for in- J
stance, asking a suspect a particular question may provoke dif
ferent responses depending on what you have already done. g—

36

Plffi!

fpSS)

ps3D

Infocom Adventures

As in Deadline, Sergeant Duffy is on call to analyze things
for you at headquarters. Of course, since this mystery is set in
the 1930s, don't count on the same sophisticated lab equip
ment that's available to Duffy in the other adventure.

In the early part of the adventure, what happens is mostly
predetermined. Phong answers the door and brings you to the
living room; Linder puts off your questions until he finishes
his drink; you accompany him to his office; Monica goes out;
Linder is shot; Stiles is arrested. You can take actions that
change this sequence—for instance, just staying outside the
house for an hour—but they either lead back to the main plot
line or turn out to be dead ends. After Stiles is handcuffed to
the couch, you have many more options.

In spite of its relative simplicity, Witness probably would
not make a good introduction to Infocom games, since it
doesn't offer any partial victories. However, it makes a good
second step before going on to the more difficult ones.

Planetfall
Planetfall is by Steve Meretzky. You start as an Ensign Sev
enth Class mopping floors on a Stellar Patrol spaceship. But
then the ship explodes, and your escape pod lands on an
apparently deserted planet. Your first order of business is to
find enough food to keep yourself alive; then you can start
figuring out the purpose of the scientific complex on the is
land. Your time is limited by the food supply, disease, and the
fact that the surrounding ocean is rising and threatening to en
gulf the island. Planetfall is set in the same universe as
Starcross, and the events of Starcross are cited as the source of
the knowledge that makes interstellar travel possible in
Planetfall's time. This planet also has the nasty, darkness-
loving creatures called grues, which first came to earth (that is,
to Zork) from the starship discovered in Starcross.

A lighter touch is evident here than in most of Infocom's
adventures, particularly in the treatment of a robot named
Floyd. This robot is at first an amusing companion, later pos
sibly a little boring as his antics become repetitious, but ul
timately he is indispensable to your purpose. He can come to
a tragic end, though, and the hideously maudlin description of
his death must be intended to punish the player for sending a
brave robot to its doom.

37

Infocom Adventures

There are two island complexes that you must explore; ^
you can attempt to move between them by train, helicopter, or
teleporter. Using any of these conveyances requires finding the ^
appropriate magnetic access card. And do be careful about the - J
handling of these cards! Operating the train is an interesting
exercise; it can accelerate or decelerate by a certain amount ^
each turn, and it may take a few tries before you can bring it '
into the station without crashing into the wall.

Not all of the problems in Planetfall are soluble; in fact,
some of the dead ends are quite elaborate. This helps to make
the world of the adventure seem more complete, since many
things besides the elements of the actual problem are present.
These dead ends can be frustrating to the player who assumes
that every interesting object and place must be useful or
attainable.

The packaging includes a Stellar Patrol ID card, three pic
ture postcards from different planets, and a few pages of a
diary. The ID card includes a magnetic strip and a signature
strip, and they all look impressive. However, these materials
don't provide the kind of vital information that the items
packaged with most of the recent Infocom games do.

Enchanter
In Enchanter, by Dave Lebling and Marc Blank, the warlock
Krill is at large—and the Circle of Enchanters must find a way
to prevent his evil power from spreading over the land. But
sending a powerful mage against him won't work, though, be
cause Krill would be alerted by his coming. So the Enchanters
choose you, an apprentice at magic, to penetrate Krill's castle
and find some way to defeat him.

This adventure returns to the magical world of Zork, with
several enhancements. For example, you now have the use of
magic spells. You start out with a spell book that contains a ^
few spells; as you proceed, you will find scrolls containing
spells that can be added to your repertoire. As in Dungeons
and Dragons, a spell fades from your mind after you cast it; **l
you must relearn it from the spell book afterward. You also
forget all spells when you go to sleep.

Another enhancement is that the game pays attention to *1
the basic necessities of life. Before you enter the castle, you
must provide yourself with food and water. Cycles of day and
night occur, and you must sleep periodically. As well as giving "^

38

L

I Infocom Adventures

you rest, sleep brings you dreams, which may contain hints
from the gods—or rather, the Implemented.

P* Your score advances as you overcome obstacles between
yourself and Krill. Ifyou defeat him, you earn a score of400
and a seat at the Circle of Enchanters. On the other hand,

I*1 there is an evil even worse than Krill that you may carelessly
unleash. If you do this, you get a score of -10 and a rating of
Menace to Society. Achieving your goal while avoiding this
catastrophe requires solving a nice logical puzzle (which is not
too difficult).

One of the most amusing touches in this game is the
appearance of an adventurer bearing a brass lantern and an
Elvish sword of great antiquity. Anyone who has played Zork
will recognize this character, who engages in the kinds of
strange actions that frustrated Zork adventurers often attempt.
The adventurer does serve a purpose, as do several other crea
tures found in or around the castle.

Like most of Infocom's more recent adventures, Enchanter
is considerably easier to solve than the Zorks. Still, it provides
a satisfying assortment of difficulties and a sense of growing
excitement as you move toward your final duel with Krill.

Finally, the package is one of the most beautiful ever cre
ated for a computer game. Anyone considering accepting a pi
rated disk instead of the legitimate packaged product should
keep in mind what he or she will be missing.

Sorcerer
Sorcerer, by Steve Meretzky, is a sequel to Enchanter and starts
off at a fever pitch. As the adventure begins, a hellhound is
racing toward you, baring its teeth—and you have just one
turn to do something about it!

Your character is the same one who, in Enchanter, de-
P feated Krill and was rewarded with membership in the Circle

of Enchanters. In this adventure, Belboz, the leader of the
Circle, has disappeared; since all the other Enchanters are

f*1 away, it's up to you to find and rescue him.
The first part of the action (not counting that little busi

ness with the hellhound) takes place in the Hall of the Circle
F* of Enchanters. You must find out what has happened to

Belboz, gather any items that might be useful, and discover
how to get to his location. Don't be shy about taking things

ipn

39

Infocom Adventures

that belong to your fellow Enchanters; under the circum
stances, they'll understand.

You then transport yourself to an entirely different area to ^
search for Belboz. There is no going back to the Hall once '
you've done this, so make sure you take everything you might
need. You have a large area to explore, including wilderness, ^
caverns, and an assortment of manufactured structures, before
you can find him.

As in Enchanter, spells are the key to success. You have a
larger initial repertoire this time, but you still need to find
many spell scrolls in order to accomplish your quest. One of
the spells allows you to provide for your own resurrection and
lets you return to life any number of times. It is not useful
toward the end of the game, however, since some places can
be entered only once. A newsource of magic—powerful po
tions—is available as well.

This adventure contains some excellent descriptive writ
ing. There is excitement when you go on a wild roller-coaster
ride, humor as you rout some monsters that have disguised
themselves, bafflement as you come face-to-face with your
own double, and sheer horror if you find Belboz but blunder
in your attempt to save him. The handling of the time loop
when you meet your double is especially striking.

Still, Enchanter is a difficult act to follow, and Sorcerer
does not really break new ground. It does not provide as
consistent a universe as its predecessor; the amusement park
(which includes the roller coaster) is a gross incongruity in a
medieval world of magic. Players who succeeded at Enchanter
might well want a greater challenge in the sequel, but both
adventures are relatively easy. Another problem is that Sor
cerer sometimes requires "knowledge from a previous life."
For example, one part of the adventure involves exploring a
coal-mine maze on a limited air supply; performing the nee- ""l
essary actions in time is impossible unless the maze has al
ready been mapped.

Included with the adventure is a copy of Popular Enchant- ^
ing, which provides background information as well as
explaining how to play, and an "infotater" wheel with illus
trated descriptions of a dozen monster species. Another un
usual packaging element is the musty smell that is apparent
when the wrapper is opened.

40

1

Infocom Adventures

^ Sorcerer offers no radical departures from Infocom's pre
vious adventures, but it is an enjoyable adventure that makes

f" good use of the company's game experience.

Infidel
P Infidel, by Michael Berlyn, is the most literary of Infocom's

adventures to date. The trouble is that the hero of Infidel
imitates an anti-hero with whom few people would care to
identify.

You are an archeologist who has antagonized your entire
Egyptian work crew into quitting and running off (taking most
of your equipment). This leaves you with barely enough sup
plies to set out on your own and find the pyramid that only
you know the location of. Once you find the pyramid, you
must commit further acts of vandalism in order to achieve the
ultimate goal of finding and opening the sarcophagus.

As you, the player, push this character toward his fate,
you may find yourself wondering whether it's really worth it.
Even the messages you get in response to silly commands
have a nastier edge to them than usual and rub in the charac
ter's worthlessness. Your doubts will only be doubled when
you finish the game with a perfect score, for there is no real
victory. The best possible outcome is to find the sarcophagus,
open it, drool over its riches—and then die. You have no
choice about the character's development; in success or failure,
he's equally rotten. This aspect stands in contrast especially to
Zork III, in which you can make choices about your character's
development and thereby affect the outcome of his quest.

In an adventure that builds toward a single goal, the qual
ity of the final puzzle is very important. Infidel's finale only
adds to the disappointment, since it requires performing ac
tions in every possible order until you just chance on the right

P* combination. Considering that this fiddling around occurs in
the burial chamber, it can get quite depressing.

The command handling and text descriptions are up to
f81 Infocom's usual high standard. The puzzles are strictly logical,

perhaps more so than in any other Infocom adventure. Other
than that, the major plus in the game is the use of "hiero-

P glyphics," made of combinations of ASCII characters, found in
various places. A student of languages would turn pale at see
ing them presented as ideographs with an English-like syntax,

P*a

41

Infocom Adventures . J

but they provide a novel way of getting clues about the pyra
mid. The best approach to these hieroglyphs isn't to try to
translate whole sentences, but to notice when the same sym- ^
bol occurs in different places.

Infidel's apparent goal of moving in a realistic and literary
direction is a commendable one. But there is more to reality **1
than self-destructiveness, and more to literature than anti-
heroes. Of all Infocom's adventures, this has the least to
recommend it.

42

(ttf&sJ

L

Scott Adams
Adventures

cott Adams wrote his adventures to run on a
wide variety of computers, using just 16
kilobytes of memory and a tape recorder to
input the program. The memory limitations
make the vocabulary and map small in
comparison to many disk-based adventures,
but all the games are strong on imagination

and filled with clever puzzles. Their main weakness is rather
poor English usage and spelling.

While Infocom's adventures are, by most measures,
greatly superior to Adams's, they are also much more expen
sive and time-consuming. The player who doesn't want to
spend 40 to 60 dollars on an adventure, and weeks on solving
it, can find a satisfying alternative in this series. The real
adventure fan will, of course, want to explore both series.

This series approaches things differently from Adventure.
Instead of treating you, the player, as the character in the
story, the Adams programs let you give commands to a more
or less obedient "puppet." Instead of saying, "You are at the
top of a tree" (or wherever your character might be), the pro
gram says, "I am at the top of a tree." Both viewpoints (first
and second person) have proven popular in adventures written
since then.

Beyond a few lines of promotional material, no back
ground material is provided in any of the adventures. Your
character just appears in a situation and you may never find
out why. In several of the adventures, this means that you will
have to spend some time just figuring out what's going on.

Adams makes good use of repeated message fragments to
pack more messages in. A given phrase, such as "won't let
me," may appear in several different messages while taking
up memory space only once.

Adventure International is in the process of releasing all
these adventures in illustrated versions, called the S.A.G.A.
(Scott Adams Graphic Adventure) series. No significant
changes have been made in the text or problems; the only dif
ference is in the display format, which now includes one

45

Scott Adams Adventures

illustration per location. Some of the solutions are more ob
vious than in the standard edition, since the pictures make the
situation clearer. The graphic quality is good, but putting up °^
and taking down pictures makes the program run more
slowly. The INVENTORY command produces a sequence of
objects being emptied from a bag; this is cute but tedious. "^

For frustrated explorers, Adventure International provides
a "Book of Hints" that covers all 12 Scott Adams adventures.

Adventureland
Adventureland, by Scott Adams, is the first of the Scott Adams
series and the closest in spirit to Adventure.

You start off wandering around in an area filled with such
hazards as quicksand, nasty chiggers, and a sleeping dragon
with a keen sense of smell. Fortunately, there is also an item
that can be put to a couple of good uses, one of which lets
you get into an underground complex. From there, you have
to face an assortment of hostile creatures, including a bear and
a swarm of killer bees, in order to pick up the treasures they
guard. There is also a helpful being around—but he can be
pushed too far.

Even if you get killed, you're offered another chance. You
find yourself in Limbo; if you can find the exit, you live again.
If you go the wrong way, though, the comment that accompa
nies the next description puts your situation quite succinctly.

Hints are liberally sprinkled throughout the game. The
descriptions are concise and often humorous, if not elegant. On
the whole, this is one of the easiest adventures in the series.

Pirate's Adventure
In Pirate's Adventure, by Scott Adams, finding a copy of Trea
sure Island literally sends you back to the days of Long John
Silver, where you have the opportunity to go sailing and find j
some treasure for yourself. As with several of the series
games, various critters are around to help or hinder you. The
parrot, for example, can give useful advice and help you in)
other ways (a gimmick from Adventure is reused here), but
only if you can keep it from flying away. The mongoose may
be able to help you—or then again, it might not. Crocodiles J
and snakes can make life difficult or short.

Since the island where you arrive isn't the one with the
treasures, your first task is to build a ship. This is simply a]

46

Scott Adams Adventures

matter of bringing all the necessary materials together; once
you've got the materials and the plans, the ship goes together

[with amazing speed. Gathering these materials makes up a
large part of the adventure.

^ Alot of the fun involves the pirate, a tough-looking
I character who is helpful enough if you play on his weak

nesses. He turns up in some outrageously unexpected places,
and he's ultimately indispensable to your getting to Treasure
Island. After all, you can't sail a ship without a crew.

There are only two treasures in this adventure, so it's very
nearly an all-or-nothing proposition. However, finding them is
easy enough to provide a good introduction for new adventure
players. This is one of the easiest of the Scott Adams series,
but the puzzles are still clever.

A full listing of the BASIC version is given in the Decem
ber 1980 issue of Byte.

Adventure #3
In Adventure #3 (formerly Mission Impossible), by Scott Adams,
your mission—should you decide to accept it—is to stop a
saboteur from blowing up a nuclear reactor.

The major difficulty is in getting through the reactor's se
curity system. A number of doors are locked and will open
only if you show appropriate authorization to the automated
camera above the door. You were originally provided with
that authorization, but the saboteur has run off with some of
your materials. That leaves you on your own to get the se
curity badges you need. This system of using badges to get
through various areas anticipates Planetfall's use of access
cards. In this case, though, the two-word format shows its lim
its. You may eventually accumulate several different badges

_ (called pictures), in which case it becomes impossible to tell
\ the program which picture you want to take or drop. Fortu

nately, the command SHOW PICTURE always selects the
right one.

[While you have to be clever to work your way through
this security system, there are also times when brute force is

psa needed. Think of the objects that are available and consider
(which one might do the job.

The danger of the bomb blowing up adds to the excite-
p^j ment. Several actions that you have to perform will arm the
I bomb (as your surgically implanted bomb detector will warn

47

L

Scott Adams Adventures

you); then you have to drop whatever you were doing and
run to disarm it. If you haven't learned how to disarm it—
well, your family will get a nice pension. ^

When you finally do find the bomb, timing becomes even
more critical. You must take exactly the right actions and per- *
form them in the right place, or you will set off a disaster of]
your own making, even as you prevent the one the saboteur
intended.

This adventure shows how different people may perceive
the difficulty of an adventure and shows why I haven't tried
to assign difficulty ratings to the adventures in this book. The
Adventure International catalogue rates this one as advanced
in difficulty, going so far as to say, "If you survive this
challenging mission, consider yourself a true Adventurer!"
However, I had less difficulty with this one than with any
other adventure in the series. Personal difficulty is very much
a matter of how well your mind meshes with the situation.

Voodoo Castle
"Count Cristo's been CURSED! There's one way for him to
flee! Find it, and he'll go FREE!" Not very good poetry, but
there are some fine puzzles to solve in Voodoo Castle, by
Alexis Adams. What is the strange moaning from the chim
ney? How do you get through a passage that's too small for
you? How do you survive a room in which chemical tubes are
constantly exploding? What significance does the Ju-ju Man
statue have?

Eventually the pieces start coming together, letting you
discover the magic ritual for breaking the curse. Different
kinds of magic are thrown together freely; the spell uses a
couple of European good-luck charms along with voodoo's
traditional doll stuck with pins. At the climax, there are lots of
dramatic effects and thunder. The only catch is that along the]
way, you've shrunk yourself to four feet in height, and you
seem doomed to live the rest of your life that size. Oh, well, at
least you'll be able to get through low doorways in your next j
adventure.

This adventure isn't very careful about making you spec-
ify which tool to use for a job. As a result, it's possible to go ^j
around with a double handful of items and get things open
without really solving the problem, or even realizing that
there ever was one.]

48

Scott Adams Adventures

torn**

In a couple of places, items are listed in capitals to call
attention to them. This is rather uncalled for; hints should be

r85 something you look for, not something that the adventure's
reality throws in your face. It's not that hard to realize that
two sapphires have something to do with each other without

f* being told that the door has "a SAPPHIRE in it."
Voodoo Castle is fun and fairly easy. It would be a good

first step up from such simple games as Pirate's Adventure.

The Count
In The Count, by Scott Adams, your enemy is Count Dracula
himself. Your object is to destroy him from within his house.
If you don't succeed in time, you will turn into a vampire, too.
But if you overcome the obstacles, you have the satisfaction of
typing KILL DRACULA as the last command of the game.

The Count predates Infocom's Planetfall and Enchanter in
providing a cycle of day and night. The adventure runs over a
period of days and you have to sleep. This causes problems,
since Dracula takes that opportunity to do all sorts of un
pleasant things. When you sleep, you have strange dreams,
which appear in the form of a screenful of messages flashed
for a fraction of a second; if you're quick, you may get a clue
from them. There are some things that you have to do at
night. In order to get them done, you need something to over
come your tendency to doze off right after sunset.

The way you find the coffin is a bit unusual, to say the
least. Let's just say that where there are coffin nails, a coffin
can't be far away.

There doesn't seem to be a guaranteed route to success,
since on several occasions you have to engage in an activity
with a certain probability of a fatal outcome. This makes it a
good idea to save the game at several points as you progress.

P° The lack of documentation is irritating in this game, as in
some of the other Scott Adams adventures. When you first
start playing, you have no idea where you are or what you are

f™ supposed to do; only by exploring the house (and perhaps get
ting killed by angry villagers if you try to leave prematurely)
do you learn what your quest really is. It doesn't take very

P3 long to figure out what's going on, but a little information on
paper would have made for a more well-rounded adventure.

tyist

49

Scott Adams Adventures

Strange Odyssey
Strange Odyssey, by Scott Adams, puts you aboard a spaceship
that has apparently suffered from a bad landing, since you {
can't blast off again. All that you can do is explore the plan
etoid in the hope of finding something that may help you. *
Fortunately, this is a rather unusual planetoid. A little explor-]
ing leads you to a hexagonal room, apparently constructed by
aliens, with a portal to several different worlds. With all these
options, you should be able not only to repair your ship but to
return home richer than you were before.

There is an obvious Star Trek influence in this adventure.
Your weapon is a phaser, with stun and destroy settings. One
of the treasures is a bottle of Saurian brandy. The reason you
can't take off is that the crystals in your ship are damaged.

The events also show an interest in the physical require
ments of space travel. The space suit has a limited air supply
and should be used carefully. Where there's breathable air,
you don't need to wear it, but many areas have either no at
mosphere or one without oxygen. Gravity on the planetoid is
light, a fact that makes it possible for you to get started; but in
another place, the gravity is so strong that it will kill you un
less you have special equipment.

A number of details are included that help you develop
an idea of what the aliens who created the gateway are like.
The ease with which the controls move suggests that they are
a physically weak race compared with humans; the nature of
the treasures suggests that they have strong artistic tendencies,
but that their eyes see in a different spectrum from ours. Their
technological advancement goes without saying.

This attention to detail makes Strange Odyssey one of Scott
Adams's best. It's a pity he hasn't done more science-fiction
adventures.

Mystery Fun House
In Mystery Fun House, by Scott Adams, you explore a very
strange fun house in which a secret is hidden. This one is
short on motivation but long on fun, even though it's quite
difficult to solve. First, you have to get into the place, and the
program has some fun at your expense before you find the
right kind of admission payment. Next you have to figure out
why you went there; this requires you to pay some attention

50

£B$t

fSmviv)

G5fwi\

Ify&lgL)

(P?53

|$fE3

I

L

Scott Adams Adventures

to oddities about yourself. As usual, there is no documentation;
you jus.t appear without any idea of who you are or what
you're supposed to do.

The areas that are open to patrons don't pose too many
hazards. The fun-house format gives Adams an opportunity to
bring in a lot of intriguing situations. There are machines to

1 operate, knobs to fiddle with, a merry-go-round to ride, clay
pigeons to shoot, and a small maze to wander through. One
area provides an entertaining take-off on the Loud Room in
Zork I; a calliope is playing so loudly that your puppet has
trouble hearing your commands! Fortunately, this puzzle has a
more logical solution than its counterpart in Zork.

As long as you carry your ticket and keep your shoes on,
you can't get into too much trouble in these areas. But if you
try anything violent, a bouncer will promptly escort you to the
exit. The house rules are something of a nuisance, since the
shoes and ticket cut deeply into your carrying capacity. Add a
watch and a stick of chewing gum, and you're bent over with
the load—although you can carry a trampoline as easily as the
gum. This adventure illustrates the shortcomings of treating all
items as being equally burdensome.

Luckily, the bouncer doesn't enforce the "Authorized
Personnel Only" signs, which you have to ignore in order to
find the secret. Once you venture beyond these signs, you can
find yourself in real danger; but being a well-trained ad
venturer, you can often get out of a tight spot with your ath
letic abilities.

One of the toughest adventures in the series, this will pro
vide experienced players with a good workout.

Pyramid of Doom
Pyramid of Doom, by Scott Adams, puts you in an Egyptian

I pyramid where you hope to find the treasure of the Pha
raohs—but you have your work cut out just to get in alive in
the first place. In the course of searching the nearby desert
and oasis for something that will get you through the en
trance, a small desert nomad may appear. Be careful of him;
he might be waiting for the first opportunity to do you in.
Once you enter, you can start your treasure hunt. But how do
you get past the hostile mummy? What can you do about the
mundane but equally dangerous rats? Can you get the oyster

51

Scott Adams Adventures

to provide you with a pearl? Oyster? What's an oyster doing
in a pyramid?

One of the puzzles is figuring out what to do to get credit ^j
for the treasures. This requires putting some information to
gether, and you can't get any points at all until you've figured
it out. It's vital to SEARCH everything in order to get the nee- ^
essary hints. Better yet, SEARCH everything twice. Being so
thorough will, perversely, get you killed in a couple of cases,
but there's nothing to do about that except save the game fre
quently and go back to where you left off. This adventure, like
many others, has the flaw of requiring knowledge from a
"previous life" in order to anticipate traps.

A flashlight is necessary for exploring the pyramid's pas
sages, but one room is so filled with mirrors that your flash
light becomes worse than useless. Here, you must explore in
the dark—carefully! Be sure to turn your light back on at the
first opportunity.

Once you get past these early problems, you find your
real foe: an iron statue of Pharaoh that comes to life when you
approach it and ends yours unless you do something fast.
Only by learning how Pharaoh's heart has grown dark with
evil can you find the way to defeat this juggernaut. Even then
your job is not done; poisoned traps, disease, or the dreaded
purple worm may kill you before you can reach the top of the
pyramid and gather all the treasures.

Words are abbreviated to three letters, which causes
confusion in at least one case. You can FEED creatures and
FEEL some objects, but both commands are stored as FEE.
FEEing may transfer food to the object or let you know what
it feels like. It may also leave you wondering why the nomad
thinks you're weird when you offer him food.

This is not one of the series' easiest adventures, but the
puzzles are logical enough so that it shouldn't be impossible. ^

Ghost Town
Ghost Town, by Scott Adams, puts you in an old western ghost J
town that might still contain valuables. This particular town
also has a lively population of late lamented residents, who
are about as frightening as Disneyland's "Grim Grinning ^
Ghosts." They can often help you. The puzzles are up to
Adams's usual standard of ingeniousness, and there is even
more than the usual dose of humor. . j

52

Scott Adams Adventures

This isn't to say that the area is entirely safe. A rattle
snake endangers you at one point, and you are likely to blow

f^ yourself up trying to solve one of the puzzles. Besides, the
game goes through a cycle of day and night, and stumbling
around in the dark is as hazardous here as in any adventure.

f* In fact, the nighttime is when the ghosts are likely to be most
active, so think twice before dropping off to sleep!

Your spirits might start to decline when a ghostly voice
keeps whispering "Vain..." in your ear. But that voice isn't
necessarily talking about your efforts. There is a way to get
the town's only other living being to do something for you.
And there is a complex solution to the problem of how to get
the safe open. Star Trek fans may have a sense of deja vu as
they discover this solution.

It's especially important to make sure you go to every
place that can be reached. This requires getting over natural
obstacles, taking a ride, and even changing some of the natu
ral features. In some cases you need the right equipment, but
elsewhere simple know-how is all that is necessary.

Pyramid of Doom, the preceding adventure in the series,
featured a purple worm that had the nasty habit of eating ad
venturers. In this adventure, you can get a satisfying revenge
on the worm.

An interesting feature is that the program keeps two
scores: one is the usual score for accumulating treasures; the
other is a measure of how fast you complete the adventure.
This means that even after you've solved it, you can keep
working on getting the highest possible speed score. Getting
that score to be a positive number is a difficult trick.

Savage Island
Savage Island (Part 1, #10, and Part 2, #11), by Scott Adams,

I is sold in two separate parts, but you must solve Part 1 com
pletely in order to learn the password that will let you play
Part 2. When you finish Part 2, you are given a code. By using

I it, you can decipher a card that provides the conclusion to the
adventure. Without a doubt, this is the toughest of the series.

At the beginning, this seems to be a straightforward
J wilderness survival adventure—though surviving is anything

but straightforward. You need shelter from a hurricane that
soon strikes, but the only available cave is occupied by a bear

| with a nutritional deficiency. The climbing that it takes to get

53

Scott Adams Adventures I

there makes you sweat, and that increases the bear's interest
in you. Even if you manage to wash the perspiration off, being
around a bear makes you nervous, and you start sweating °^
again. But it's possible to get the bear interested in something
besides you.

You have to cross a lake to get to some places, but you ^
aren't an especially good swimmer. If you're carrying anything
at all, you find yourself in imminent danger of drowning. In
fact, you are so inept in the water that the program assumes
that you don't know enough to hold your breath before diving
beneath the surface; you die unless you first type HOLD
BREATH. Fortunately, help for YMCA dropouts is available.

If you survive the hurricane and don't drown, you can
start gathering the materials you need to explore further. Only
after you do this do you find out just how strange this island
is. Why are there antennae coming out of the pirate's head?
And why does the cave drawing show a spacecraft landing
among dinosaurs? Never mind the spacecraft, when did any
cave dweller ever see a live dinosaur?

At this point, you have to so something with an artifact
you find. The solution to this one borders on the ridiculous; so
it's only fair to advise trying every possible action on the arti
fact with every possible object. After this, things get a little
easier, provided your transportation doesn't fail you. It has be
come obvious by now, though, that this is not your everyday
jungle island.

When you get to Part 2, a sign advises you: "Compared
to what you're about to go through you'll think Part I was a
piece of cake!" In fact, you're missing a few things by now:
your clothes, some of your possessions, and air to breathe.
There is more than one way into Part 2, and not all of them
give you any chance of success. So don't sell your copy of Part
1 yet; you may want to replay it to a more useful conclusion. ^

Much of the difficulty comes from the fact that even if
you do everything right, at several points you could still get
killed by bad luck. This means that you will have to save and ^
restore the game frequently, which is rather tedious if you
have the cassette version. To make matters worse, the proce
dure for saving the game is disabled during one crucial stretch. *^[
You're on your own to survive there!

This is one adventure in which a better command parser
would have helped greatly. In several cases, you have to do ^

54

MB)

»*—I

p31

Scott Adams Adventures

something with a specific object. If you give a command that
requires such an object, the program asks "How?" You must
then give an appropriate answer, such as WITH SHOVEL.
This method isn't really enough to handle the complex actions
required, so in some cases you wind up "playing the pro
gram" rather that the situation. Still, Adams deserves credit
for having packed an amazingly complex adventure into 16
kilobytes.

Any adventurer who has zipped through everything else
and wants a real challenge should give Savage Island a try. It
sets up its difficulties without being wildly illogical, even if
some of the puzzles are a bit arbitrary. No one can claim to be
a master adventurer without having solved this one; I hope to
solve it myself someday.

Golden Voyage
Golden Voyage, by William Demas and Scott Adams, could
very well be Sinbad's eighth voyage, as a dying king com
mands you to find the remedy that will save his life. He pro
vides you with plenty of gold, so you have no problem buying
a ship and supplying it. You must search the neighboring is
lands for a cure, and there are problems enough to overcome.
An animated statue with a sharp sword hinders your access to
a temple; a mysterious fountain provides a liquid which may
or may not be useful; broken stones contain fragmentary
markings to be deciphered.

The ship is fully automatic and you have no trouble sail
ing where you want to go, even without a crew. However,
you don't have a map of the islands, so you have to be sure
you've found them all by thorough exploration. The ship in
cludes a crow's nest to facilitate spotting land masses, as well
as a cot, which makes a good refuge when it gets dark. But
time does pass, and you have only three days to save the
king's life.

A staircase on one of the islands presents a problem, since
the UP and DOWN commands don't work on it for some rea
son. The commands to use here are WALK UP and WALK
DOWN. It's nice to know this in advance, since you're likely
to get attacked the first time you step onto those stairs.

There isn't quite as much flavor here as in many of
Adams's adventures. Only a few situations give the sense of

55

Scott Adams Adventures

Middle Eastern adventure that you'd expect. The dark pas
sages, animated statues, scorpions, buried implements, and se
cret entrances give a sense of reused formulas. Perhaps Adams ^
realized he was running out of ideas when he closed off his —
adventure series with number 12.

56

«

Htm^d

Sierra On^Line
Adventures By Scorpia

he world of adventures is a large one, spread
out over many different computers. To make this
book even more valuable, I asked Scorpia, the
sysop ofCompuServe's Game Special Interest
Group, to write some reviews ofApple adven
tures for inclusion here. The result is this chap
ter. Scorpia's material not only covers an

important adventure publisher that otherwise would have been
neglected, but it gives you a chance to read a viewpoint on
graphic adventures that is more sympathetic than my own! —GM
In the beginning it was nothing but words. Text flowed across
the screen, evoking mental images of people, places, and
events. For a nongraphic computer, like the TRS-80, that was
fine. But for a computer with potential for high-resolution
color displays, like the Apple, that wasn't quite enough. While
arcade games had begun to take advantage of Apple's graphic
abilities, the art of hi-res adventures languished. And then
along came Online Systems.

Their first entry into the graphic-adventure field, Mystery
House, was hardly calculated to raise eyebrows. It was simply
done, with line drawings on a black background and no color,
and it wasn't what we now think of as hi-res. That really
came in with the second adventure, The Wizard and the Prin
cess, and graphic-adventure games haven't been the same
since.

The Wizard and the Princess set the pattern for most of the
hi-res games that were to follow: full-screen color graphics,
with four lines of text and player input at the bottom of the
screen, along with a means of flipping back and forth between
hi-res screen and all-text screen. The game itself had very
nice, smoothly drawn graphics, with a clean color-fill. Even to
day, with some very sophisticated hi-res displays around, Wiz
ard's graphics stand up well. That is even more remarkable
when you consider that the game was first published back in
1981 (ancient times, in computer terms).

59

Sierra On-Line Adventures

Aside from graphics, Online (later renamed Sierra On-
Line) also established a reputation for writing tough adven
tures. Wizard is not a game for novice players, nor are most of
the others in Sierra On-Line's stable. For these adventures are
more than pretty pictures. They present you with some tough
puzzles as well, and the combination quickly brought On-Line
to the forefront in the world of computer adventures.

One of the more interesting features of Sierra On-Line
adventures is their linearity. In most (although not all) of the
games, you move only forward, never back. The games tend
to have small clusters of locations which, once visited, need
never be visited again. The desert in Wizard is a case in point.
Once you have been through all the desert areas, and there
aren't too many, you don't ever have to go back there.

Another oddity of On-Line's adventures is the "limitless
inventory." Where many games limit the number of objects
you can hold at one time, On-Line's don't care in the least
how many you have with you. You can literally pick up every
item you come across, hauling them all around with you for
however long you please. This may sound like a big advan
tage, but first you have to get the item—and that's not always
easy! These games are good at concealing objects without
seeming to do so, which is why the reviews that follow all tell
you to look at the graphics carefully. Those pictures aren't
there just for show.

Mystery House
Mystery House, by Ken and Roberta Williams, was On-Line's
first adventure game. It puts you in a spooky-looking Vic
torian mansion, set in the middle of a dark forest. Somewhere
in that house is hidden a fortune in jewels—and someone
wants those jewels badly enough to kill for them.

You'll need to find a light source pretty quickly, since
night is rapidly approaching. Then, as you explore inside, out
side, upstairs and down, you will find clues to the identity of
the killer, as well as to that person's secret hiding place. And
you'd better find a weapon, too; when you finally track down
the killer, only one of you will walk away from the encounter.

That's pretty tough stuff, but the adventure itself is some
what easier than later Sierra On-Line games. There are a couple
of hard puzzles and one that might be considered a little un
fair, since it requires more of an intuitive leap than careful

60

B35I

tjispni

Sierra On-Line Adventures

reasoning. Also, players familiar with the dynamic Deadline
from Infocom may be disappointed by the static nature of this

P1 game. No matter what you do, the same people will always
turn up dead in the same places. There is no way to save them.

The graphics may come as a surprise to some people, too.
P» Unlike later games, Mystery House is not hi-res. Instead, the
- pictures are all done as line drawings on a black background,

with no color-fill. This occasionally produces some odd results
(for example, allowing you to see through many of the solid
objects in the game). However, the drawings themselves are
quite good.

The save game feature is somewhat limited. Saving is
done to the game disk itself, and you can save only one po
sition at a time. Each new save wipes out the previous one.
This can sometimes make you think twice when saving the
game, since you have only the one save.

By current standards, Mystery House is a little crude. But
overall it's a pretty good intermediate-level adventure.

The Wizard and the Princess
There you stand in the desert town of Serenia, with only a
few meager possessions in hand. Looking out over the endless
desert sands, you wonder if you can ever accomplish your
mission: rescuing the princess from the clutches of the evil
wizard. With a heavy sigh, you trudge northwards, only to
come face-to-face with a nasty snake.

Thus begins one of Sierra On-Line's most famous games,
The Wizard and the Princess, by Ken and Roberta Williams.
One of the earliest of the hi-res graphic adventures, it has
stood the test of time and is as playable today as it was when
it first came out.

Your journey to the wizard's castle will be long and hard.
P* Trackless desert, bottomless chasms, endless oceans, and

towering mountains are only some of the obstacles you must
overcome. Maddening gnomes, ferocious lions, and grumpy

P" giants will all do their best to stop you cold. And, when you
finally get through all this, there is still the magic castle, full of
tricks and traps for the unwary.

P™ Each part of the game builds on previous ones, so once
you move ahead, there is no going back. It's important to
search every area thoroughly to make sure you haven't over-

r3 looked anything, which is very easy to do in this adventure.

61

Sierra On-Line Adventures *3

The location or importance of some items may not be immedi- - -
ately obvious; careful attention to the graphics is essential to
complete the game successfully. *m

The graphics themselves are disk-driven. Each time you - -
move to a new area, the program must read in the picture
from the disk. The fill routines are a bit slow in comparison to "^
those in more recent hi-res games, but they are pretty to -• •'
watch. The graphics, while not spectacular, are quite good.

There is a save game feature, which allows you to make a
"snapshot" of up to 15 different positions on a separate save
disk. Frequent saving is highly recommended, since you never
know (until it's too late) when you've done something that
will prevent you from finishing the game.

This is a good, tough adventure for experienced players.

Cranston Manor
Cranston Manor, by Harold DeWitz and Ken Williams, is an
old-fashioned treasure hunt through a haunted house. The ob
ject is to explore the estate of Old Man Cranston and to re
cover 20 treasures, which will help revitalize the town of
Coarsegold, California. If you know anything about Sierra On-
Line games, you know this isn't going to be as easy as it
sounds.

Old Cranston was something of an evil-minded, old miser.
The treasures that he left behind are guarded by an animated
suit of armor in the house and by deadly tin soldiers who
haunt the caverns beneath the mansion. The armor is pesky
but not fierce; it simply follows you around the ground floor,
preventing you from taking any goodies you may find. The
soldiers, however, will shoot at you the first chance they get—
and if they hit you, it's time to restore the game.

Although the manor itself has a fair number of rooms, its
layout is straightforward and mapping is simple. The under- ^
ground areas, however, are another matter. The many cor-
ridors and openings take some strange twists and turns, so
you may not always end up where you want to. That can easily ™|
make a shambles of any map you try to draw. While there
aren't any mazes per se, just trying to get the underground
area figured out is frustrating enough. ^

You must learn your way around down there, for it is
only in the depths of the caverns that you will uncover the se
cret of the armor and the soldiers. But even after you banish ^1

62

f" Sierra On-Line Adventures

those troublesome contraptions, your problems aren't over.
Some of the treasures (such as the bottle in the cistern) are not

P easily accessible; others, like the emeralds, are not immedi
ately evident. As with all Sierra On-Line games, it is vital to
pay close attention to the graphics display.

p Cranston Manor features typically good, if slow, graphics.
The pictures are well drawn, nicely detailed, and the colors
don't appear to run into each other. The usual save game fea
ture is also available, allowing you to save up to 15 different
positions to a separate disk.

This is a good, hard adventure game for experienced
players.

Ulysses and the Golden Fleece
Someday, Sierra On-Line will explain why they named this
game for Ulysses, since most people know that it was Jason
who went after the Golden Fleece. Even so, anyone who is at
all familiar with The Odyssey, or who knows something about
the legends surrounding Ulysses, will be one step ahead of
everyone else in this adventure.

The game starts with your character (Ulysses) standing
penniless and empty-handed in a Greek town. From that
humble beginning, you must buy supplies, obtain a ship, hire
a crew, and set sail on your quest for the fabled Fleece.

Once underway, you will find several nasty puzzles and
traps in your path. The first is a hurricane; getting past it is
one of the more difficult problems in the game. The solution is
particularly maddening, too, as it isn't something you would
ordinarily think of—and there are absolutely no clues to help
you figure it out. You must just make an intuitive leap to dis
cover the answer.

Having done so, you proceed onwards to other obstacles.
P These include Neptune, God of the Sea; Pluto, God of the

Underworld; a wall of flame; several chasms; the Sirens; the
Cyclops; Harpies; and animated skeletons. There's even a

P dragon thrown in for good measure.
Your mind (and recollection of Greek myths) will get

quite a workout. Some of the solutions are quite subtle. It is
P very easy to pass by something important and never even

know that it's there. And passing something by could spell
disaster, since you can't backtrack in this game.

P Fortunately, you can save the game. Up to 15 different

r
63

Sierra On-Line Adventures

positions can be saved to a separate diskette. Considering the
difficulty of the game and the ease with which you can paint
yourself into a corner, frequent saving is highly recommended.

The graphics, as you might expect, are of high quality.
While simple in design, they are well drawn and use clean,
bright colors.

Overall, the game is excellent. But there is one thing to be
aware of. In the very beginning, when you go to the store,
you will find several items for sale. You can purchase all but
one of them. The only way to figure out which item not to
buy is through trial and error. This can become extremely
frustrating if you get very far into the game and then find that
you can't go on because you don't have what you need. If that
happens, there is nothing to do but start all over again from
the beginning of the game. But such challenges help to make
this tough adventure one of Sierra On-Line's best.

Time Zone
Time Zone, by Roberta Williams, may well be the most am
bitious hi-res adventure game ever designed. It spans the
course of history from the dawn of time to the far future,
taking you across the continents of Earth and out into the
depths of space. As a result, the program fills six double-sided
diskettes and is advertised as requiring "a year to complete."
That may or may not be true, but in any case, finishing this
game is definitely an achievement.

The story line is simple: you have been chosen to save
the Earth from destruction at the hands of an alien tyrant on
Neburon, a planet located many light years from Earth. You
are given a space/time machine that can transport you to dif
ferent continents and time periods on Earth, as well as into
space to the planet Neburon. The time machine is needed be
cause you have to pick up a few useful objects first, and these ^
objects are in different time periods on Earth. Thus, most of
the game is spent traveling back and forth among time zones,
solving puzzles to obtain the items you will need at the finish.

Make no mistake about it: the puzzles in this game are
tough. Part of the difficulty comes from having all those time
zones—figuring out which items to get from which time ^
periods is not easy! The difficulty is compounded by the fact
that if you try taking something backwards in time before it

64

lat&OTl

I

I

Sierra On-Line Adventures

could exist, that item will disappear forever. Fortunately, there
is no problem with taking anything forward in time.

P When you finally arrive on Neburon, things are no easier.
You will have to make your way around a hostile planet, over
coming a number of nasty tricks and traps as you go. There is

P also a maze that must be negotiated before you can locate and
destroy the tyrant's weapon. All in all, it's a rough trip.

Since it's likely to take some time to finish the game,
Sierra On-Line recommends that you back up the diskettes.
They provide a utility that will copy all but disk 1, side 1 (the
main boot program). They also provide another utility that
will initialize a blank diskette for saving the game. Each disk
can hold up to 15 separate positions, and you can have as
many different save disks as you like.

There are also some drawbacks to Time Zone. For one
thing, it is a very disk-intensive game. Every graphic display is
stored on disk, so there has to be an access every time you
move to a new location...and there are, as you can guess, quite
a few locations on 12 disk sides! Further, a lot of disk swap
ping is necessary as you move between the zones. Since the
game supports only one drive, that can become tedious during
long sessions of play.

In addition, while the graphics are quite good (and the fill
routines are faster than in previous On-Line games), there is
still waiting time while the new picture is loaded and drawn.
All this makes the game a bit more time-consuming than some
people might wish.

However, the most bothersome feature of this otherwise
superbly designed game is its over-use of "empty" zones and
red herrings. More than half the time periods are dead ends,
whose sole purpose is to slow you down, frustrate you, and
misdirect your efforts. Having red herrings is a time-honored

P convention in adventure games, but they should be carefully
placed and used sparingly. Here, they have been used almost
with abandon, adding extra frustration and confusion to an

P already-tough adventure. That's a shame, because the basic
L game is very well thought out and executed.

This is a good but hard adventure game, marred by a lot
P of filler. But if you want to spend the money and time, the

puzzles will provide a real challenge for the experienced
adventurer.

65

Sierra On-Line Adventures

Dark Crystal
This is an adaptation of the movie of the same title. However,
while having seen the movie might help a little, it really isn't
necessary to finishing the adventure.

The object is to guide Jen, the Gelfling, towards his goal
of healing the magical crystal and thus ending the reign of the
evil Skeksis. Jen must first make his way to Aughra (from
whom he will obtain the missing piece'of crystal) and then to
the palace of the Skeksis (where the piece will be returned to
its rightful place in the crytal).

Naturally, this will not be as easy as it sounds. Jen must
make his way through forests, swamps, and deserts, avoiding
traps, solving puzzles, and keeping out of the way of the
dreaded Garthim. He must uncover the answer to Aughra's
riddle, make friends with Kira, and learn to ride the Land-
striders. In the palace of the Skeksis, he must tread warily and
keep his ears open as he seeks a route to the crystal.

In spite of all that, however, the adventure is not too
difficult, and is in the novice category. It's a good game for
those who don't have much experience with adventuring, al
though some familiarity with adventures is helpful when try
ing to solve a couple of tough puzzles.

The graphics in the game are of uneven quality. Some
seem to be lacking in detail, almost as if they are unfinished,
while others are well drawn. There is a feeling that there
might have been a rush to get the game out, and some of the
graphics suffer because of it. This detracts a little from the
enjoyment of the adventure, but it is by no means a major flaw.

The game offers the usual capability to save to a separate
disk, with the standard (for Sierra On-Line) of 15 different po
sitions per disk. Also typical with Sierra On-Line, the game
supports only one drive, so disk swapping is necessary before
and after saving a position.

Bottom line: This is a fairly good adventure in the novice-
intermediate area.

66

r More Adventures

fp^^

jpSfc

Adventure is published by the Digital Equip
ment Corporation Users Society (DECUS),
Microsoft, and other suppliers.
This is the original, from which the genre got
its name. You must find a way into a vast
complex of caverns, pick up treasures, and

get them back to the house at the surface to get full points.
You face an assortment of enemies along the way. Shortly

after entering, you will come into the Hall of the Mountain
King, which is guarded by a huge, green snake. Unless you dis
cover the way to get past it, you will get to see very little of the
cave. Help is available, though it comes in an unlikely form.

Having vanquished the snake, you will soon find several
treasures. At one point a broad chasm blocks your path, but
there is a way across it (if you're imaginative in using what
you've found so far). Soon after this, a more persistent danger
will appear: a number of threatening dwarves who follow you
around throwing knives. And if they aren't enough trouble, a
bearded pirate will leap out of the shadows at inconvenient
moments, grabbing all your valuables and escaping before you
can make a move. Don't worry too much, though; there are
ways to defeat the dwarves and recover your treasure from the
pirate.

Eventually you may get to the Troll Bridge (complete with
a sign saying "Stop! Pay Troll!"), and then you will have to
give a treasure to the troll before he'l! let you cross the bridge.
He can be outfoxed. But what will you do when you get to the
barren room and find the bear? And how can you get an Ori
ental rug out from under a dragon? Well, if it were easy, it
wouldn't be fun.

Various versions of Adventure are in circulation. The orig
inal version takes only two-word commands but has a fairly
good vocabulary. Later versions include multiple direct objects
and prepositional phrases. There is also a cut-back version
available from Radio Shack on TRS-80 computers, mislead-
ingly published under the title Pyramid 2000. In all versions,
the descriptions are well written and picturesque. The sense
they give of exploring a spectacular environment remains
unequaled.

69

More Adventures

Some of the puzzles are quite clever, while others don't
really play fair. One of the best is the aforementioned en
counter with the troll. It seems at first that he will charge you
one treasure, if not two, but making the right moves lets you
get everything back in the end. Less satisfying, on the other
hand, is the encounter with a dragon. Success here depends
on answering a seemingly rhetorical question correctly. The
unfair aspect is that the program asks the same question at
other points in the game but doesn't recognize an answer from
the player.

Adventure has proven its durability and ranks high among
its descendants.

Asylum
Asylum, by David C. Willen, is based on the original Asylum
adventure by Frank Corr, Jr. and William F. Denman, Jr. (Med
Systems/Screenplay).
You have been put away in the asylum. Can you get out?
Perspective graphics, good command handling, and a large
map combine to make this an intriguing game. The going isn't
easy, and it may be a long time before you can even find the
way out of your cell. You do have a hand grenade that some
one slipped into the cell, but how can you use it in a small
room without blowing yourself to bits?

Once you get out, you find yourself roaming through cor
ridors and trying doors in the hope of escaping before the
guards catch you. If you do meet a guard, you may still be
able to outwit him. Patients might be able to help you if you
think you can trust them.

Graphic adventures often sacrifice command handling for
pictures, but Asylum is better with commands than many all-
text adventures. Its vocabulary (which can be displayed on
request) is over 200 words. You can enter commands as com
plex as GIVE COAT TO GUARD and OPEN DOOR WITH
SILVER KEY.

There are some oddities, though. Objects that aren't being
carried are always in "boxes." If you drop an object, a box
magically appears to hold it. To see what is in the room, you
have to OPEN BOX. You can also put an object under some
thing else. For instance, you can PUT GRENADE UNDER
BED. Once you do this, no amount of searching will reveal its

70

fiBH

More Adventures

presence. Only if you remember where it is and type TAKE
GRENADE UNDER BED can you get it back.

As you make your attempt to escape, a clock keeps ticking
whether you move or not. You have only 12 hours of game
time (about 6 hours of real time) to flee before the more com
petent day shift comes to lock you safely away. Fortunately,
you don't have to do the 6 hours at one sitting; you can sus
pend or save the game at any time.

One last word of warning: Don't look up! You never
know when they might decide to drop something on you.

Asylum II
Asylum II, by William F. Denman, Jr., is published by Med Sys
tems Software.
Many creators of successful products have tried to follow up
their success with a sequel, only to produce a pale shadow of
the original. This is largely true ofAsylum II. The idea, the
graphic approach, and the command handling are all essen
tially unchanged from Asylum. Once again, you start in a cell
and must escape. Why did Denman want to go over the same
material again? Perhaps he was trying to create an easier ver
sion for players who were frustrated with the original. In
many ways, this is easier. Getting out of the cell initially is not
as difficult. There are no guards roaming the halls to put you
back. A player can map out large areas of the asylum after
getting past the first locked door.

However, this simplification results in long, arid stretches
in which the player doesn't have much to do besides mapping
the convoluted passages. Most of the challenge comes from
accumulating the keys needed to open various doors. Some
doors, unfortunately, will set off alarms when opened and end
the game. The pattern behind these alarms seems random and
varies each time the game is played; often a door that leads to
a needed item will set off an alarm when opened. This can lead
to a lot of frustration, even with frequent saving of the game.

Many players of Asylum have undoubtedly been unable to
get far enough to discover the oddities of its map. Asylum II
lets you discover early in the game how strange its layout is.
There are at least two locations that quietly teleport you from
one location to another, as well as a block of rooms in the
form of a five-sided square! Interesting locations to visit in
clude shock therapy, plastic surgery (performed without

71

More Adventures

anesthesia), and psychiatry (where you can literally, be bored
to death if you hang around too long).

The documentation for the program cassette claims that
one side of the tape holds a 16K version and the other a 32K
version, the difference being that the 16K version has shorter
messages and a smaller vocabulary. On my tape, though, the
reverse side was marked "Duplicate," and I couldn't detect
any differences in the programs on the two sides. The mes
sages, unlike those in my IBM PC version of Asylum, are just
phrases rather than full sentences, and the vocabulary is
smaller.

Bedlam
Bedlam is available from Radio Shack.
Here is another adventure in which you have to escape from
an insane asylum. No, not an asylum for the insane, but an
insane asylum. Your goal is to get out in spite of the efforts of
a needle-waving doctor, a sadistic therapist, and a talking
guard dog (if you say HELLO to the dog, he answers). You •.
may be able to get help from some of the other patients. Each
time the program is started, these characters start out in dif
ferent cells. Once you find them, they will often follow you
around.

Unlike most adventures, the solution varies each time you
run the game. This adds to Bedlam's staying power, since you
can play it several times before you have found all the pos
sible solutions.

Radio Shack's adventure writers seem to have a fascina
tion with the word PLUGH, which originally appeared in
Adventure itself. It shows up in several of their adventures for
one purpose or another. In this one, it can get you out of some
otherwise hopeless situations.

The command parser has the inconvenient feature, in
common with several other Radio Shack adventures, that
when you enter an invalid command, the cursor remains in
the command line to let you edit it. It turns out that hitting
the CLEAR key lets you make a fresh start, though this isn't
mentioned anywhere in the instructions. The program's descrip
tions, entirely in upper case, are grammatical but a bit dull.

72

More Adventures

Blade of Blackpoole
p. Blade of Blackpoole, by Tim Wilson, is published by Sirius
I Software.

Your goal in this adventure is to find the magical sword
_, Myraglym and bring it back. Aiding you in your quest are a
[command parser, which is better than many well-written text

descriptions, and reasonably good high-resolution graphic
illustrations of each scene. Still, it may be a long time before
the score that measures your progress gets above zero. There
are two obvious obstacles near the beginning, and one of them
turns out to be completely impassable. Now there's nothing
wrong with having dead ends in an adventure; but having so
tempting a dead end so close to the start is bound to cause
any player hours of frustration.

Many of the other puzzles are simply capricious. A
normal-looking rope exhibits magical properties if thrown, but
only in two locations. A pit is sometimes there and sometimes
absent. A shrinking potion works on some objects but not on
others. Another irritation is the patronizing tone of the mes
sages that tell you a command doesn't work. Is it really nec
essary to tell a death-defying adventurer that he might get
hurt if he climbs a tree?

A good number of features are included. You can store up
to ten save files on disk. Commands such as TURN ON THE
LAMP and MOVE THE ROCK WITH THE LEVER are sup
ported. If further information is required, the program may ask
"With what?" or "On what?" and accept a completion. You
can get hints with the HELP command; considering how silly
some of the puzzles are, this is something you shouldn't be
ashamed to do.

Blade of Blackpoole makes a good first impression, but its
pa puzzles are apt to drive even an experienced adventurer to
i frustration. Approach it with patience and willingness to try

the unreasonable.

I Cyborg
Cyborg, by Michael Berlyn, is published by Sentient Software.

P Cyborg is a science-fiction concept meaning a being that is
partly human and partly machine, and the concept is a natural
for describing the view that an adventure player has of the

JM89

73

More Adventures

game world. You and the computer are the cyborg. Your real-
life computer represents the machine part of your mind; it
gives you all your data, and you can ask it to SCAN things or
even to give an OPINION.

When the game starts, you're lost in a very strange forest.
Your memory banks are damaged, and you haven't the faint
est idea of how you got here. Scattered around the forest are
portals that lead into rooms where there isn't even a building.
You can pass through some of these portals, but getting
through others takes a little work. Your first goal is just to get
enough energy to survive for a while; then you can worry
about what you're doing here and how you can get out.

Perhaps the space-suited lizard can help you—if you meet
his price. Or maybe the mini-droid can do things you can't do
yourself. The ultrafiche might have the information you need,
but how do you read it?

The command handler is quite good. You can take and
drop multiple objects with one command, and you can give
indirect objects with prepositions (GIVE FOOD TO LIZARD,
INSERT COIN IN SLOT). Certain common commands, such
as LOOK, don't work; but this is because more cyborg-like
commands, such as SCAN, have replaced them for the sake of
atmosphere. As the instructions explain, you can type AREA
SCAN to look around or BODY SCAN to check how healthy
your human and cyborg halves are.

This game, by the author who has since done Suspended
and Infidel, is one of the best-written adventures available.

Dungeon
Dungeon is published by the Digital Equipment Corporation
Users Society (DECUS).
The creators of Zork claimed that their game couldn't possibly
be done in FORTRAN (it was done in MDL, a LISP-like lan
guage). Robert Supnik of Digital Equipment Corporation took
them up on that claim, and the result was Dungeon.

Dungeon contains all the locations, descriptions, and puz
zles of the original Zork. It falls short only in its command
parser, which cannot handle all the complex commands of
Zork. This shortcoming does make some of the puzzles more
difficult, since certain commands won't work.

There are several versions of Dungeon in circulation, vary
ing in completeness. The most complete one includes the Puz-

74

Jfflffla

I

More Adventures

zle Room, the Tomb of the Unknown Implemented and an
end game when you have gathered all the treasures into the
trophy case.

Another incarnation of Dungeon is House of Banshi, which
is available on the CompuServe Information Service. At $6.00
an hour, you could go broke trying to solve it, but it's a good
opportunity for CompuServe subscribers to try a few moves
and get the flavor of Zork.

Empire of the Over-Mind
Empire of the Over-Mind is published by Microcomputer Games,
Inc., a division of The Avalon Hill Game Company.
Your quest is to destroy the evil Over-Mind, which is powerful
in its own right and has various creatures guarding it, too. The
action takes place on two planets; magical means let you get
from one to the other.

Eventually you will meet the Over-Mind itself, and that
encounter may be the toughest part of the whole quest. Unlike
most adventures, this one does not use compass directions at
all. Movement commands always specify a portal, such as a
road, a cliff, or a door, that leads from one place to another.
Typical movement commands are GO TO DOOR, CLIMB
TREE, and FOLLOW ROAD.

The command parser is a little more sophisticated than
the usual verb-object handler, in that it lets you use adjectives.
Unfortunately, it is not very good at indicating what is wrong
when you type in a command that it can't interpret. It also
makes assumptions when it encounters an ambiguous com
mand, so you may find yourself doing something you didn't
intend to do.

Included in the package is a poem that gives the history
behind the Over-Mind and contains a number of vital clues.
Read it carefully, and reread it if you get stuck.

A subtlety of Over-Mind, not found in any other game
that I know of, is the distinction between carrying an object
and holding it. You can carry several objects but hold only
one, and you can make effective use only of the object you are
holding. This requires planning ahead, since you could be in
trouble if you have to rummage through your knapsack while
a monster is attacking you.

A game in progress can be saved on tape, but on TRS-80
computers this requires having the TBUG program.

75

More Adventures

G.F.S. Sorceress
G.F.S. Sorceress, by Michael G. Cullum, is published by Micro
computer Games, Inc., a division of The Avalon Hill Game
Company.
This science-fiction adventure casts you in the role of Lieuten
ant Joe Justin of the Galactic Federation Navy. As the game
opens, you have just been falsely convicted of mutiny and
sentenced to float in space forever in a life-sustaining
spacesuit. But a friend has hidden a thruster in your suit, and
with it you are able to find your way to another starship.

This starship, the G.F.S. Sorceress, has a single occupant,
Captain Selena Sakarov. Why is she commanding a starship
without a crew? How does she know so much about you?
Why does she entrust the ship to you and then go into a
hybernation chamber? Sadly, these are things you will not
learn in this adventure. But the ship's computer contains
programming to go to any of four worlds besides Earth. You
have nothing better to do with the rest of your life; you may
as well go to these worlds on the wild chance that something
you find will help you prove your innocence.

The underlying program is very similar to Empire of the
Over-Mind. It has the same strengths and weaknesses as Over-
Mind's command handler, except that it seems to run a little
faster. Avalon Hill still hasn't learned that proofreading is nec
essary in adventure programs; spelling errors abound, al
though the use of the language is otherwise good. An
unsuccessful "improvement" over Over-Mind is that the screen
is cleared after every command you type.

The puzzles are fairly simple, and nothing in this adven
ture should cause an experienced player excessive trouble. Un
til you get close to the end, though, there is no sign that
you're making any progress toward your goal.

What is especially noteworthy about this adventure is the
supplementary material. One of the booklets included with it
is entitled "Restless Universe" and tells Joe Justin's story up to
the beginning of the adventure. The other booklet, the "Galac
tic Federation Naval Officer's Manual," contains descriptions
of the planets you can visit, along with color illustrations.
These illustrations are an intelligent alternative to screen
graphics, since they look better and don't take up memory
space. The "Officer's Manual" also includes several sections

76

|li(ntJA

More Adventures

that you are instructed not to read until the program tells you
to read them. You should observe this request, since reading
them would give away developments in the adventure.

Haunted House
Haunted House is published by Radio Shack.
The unique virtue (if virtue it is) of this adventure is that you
can have lunch, solve it completely, and still be back to work
within the hour. Running in a mere four kilobytes of memory
(but broken into two tape loads), it lets you go into a haunted
house and try to get back out alive. As is usual for tiny adven
tures, more of the challenge comes from figuring out the pro
gram than from the actual situation. A special source of
frustration is that the program doesn't tell you whether your
movement commands are successful or not; it simply repeats
the description of the place you were in if you can't go in the
direction you specify. Combined with the fact that adjacent
rooms often have identical descriptions, this makes figuring
out where you are rather difficult. Another irritation is that
you can't restart the game when you lose, except by reloading
it from tape.

The magic word PLUGH makes its appearance in this
adventure as the word that gets you into trouble in the first
place. So if you just don't say it, you're as well off as if you
had gone through the whole adventure and solved it. But
solving it is more fun.

An amusing feature of Haunted House is that you can kill a
ghost. No, I don't know how that can be, but the program tells
you afterward that the "body of a dead ghost" is in the room.

Whatever its weaknesses, this game shows an offbeat
sense of humor. It's also one of the lowest-priced adventures
available.

Lords of Karma
Lords of Karma is published by Microcomputer Games, Inc., a
division of The Avalon Hill Game Company.
Your goal here is to gain karma points by doing appropriate
deeds in a world of rather strangely mixed myths. You are re
born after every death, but if your karma points are negative
at the time of your death, you must first suffer in Purgatory.
Tolerance must not rank high in the eyes of the Karma Lords,

77

More Adventures

since they award you a large number of points for destroying
an idol. The map is large but repetitious. Most of the locations
are forests of various kinds with nothing exciting in them.
There are some interesting puzzles, but they are too few and
far between. Nor does the inattention to proofreading help.

Some story fragments are present. You can rescue a prin
cess from a ruffian, after which she will DEMAND (emphasis
hers) that you take her to her father and will keep following
you until you do. There is also a wizard who commands you
to bring him the staff of the evil shimmering wizard. Off in
the woods, there is a not-so-jolly green giant. You might even
tually wonder why you should bother with karma points for
helping these unpleasant characters; in fact, the game works
just as well if you play to get the lowest possible karma score
instead of the highest. But if you think this way, you might be
better off playing Prisoner 2 (see below).

This adventure accepts simple two-word commands and
has a reasonably large vocabulary. By taking up 48K bytes of
memory, it manages to have a less constrained feel—but it
seems more diluted than expanded.

Merlin's Treasure
Merlins's Treasure, by Michael D. Wile, is published by Adven
ture International. It is packaged on disk as the flip side ofThe
Sledge of Rahmul.
If you've ever wanted to do in a wizard and then steal all his
possessions, this adventure may be for you. Each orientation
in each room has its own graphic presentation (within the
TRS-80's rather meager capabilities), and a box on the screen
displays the last five commands entered. Movable objects in
the room do not appear in the display.

The adventure does have some challenging puzzles. Un
fortunately, the command language is extremely limited, and
many commands simply have no effect. You can beat the wiz
ard up and even stab him with a dagger; he'll just ignore you
and keep contemplating the ineffable until you either try to
take something (he does defend his property) or find the way
to kill him.

One element of storytelling that should be present in any
adventure is motivation. That is, if the character must take
some action in order to succeed, he should first have access to
a clue that suggests that action. For instance, if going into a

78

More Adventures

certain passage is dangerous and requires special precautions,
the character should be able to get prior warning of the dan-

f" ger. Without this warning, you would have the character take
precautions only because you knew from previous play that
doing otherwise would be fatal. From your character's stand-

P point, this means taking actions for no reason at all.
Merlin's Treasure violates this rule in a particularly blatant

way. One room is protected by a beam of light which triggers
a trap if you walk through it. There is no indication that you
are coming up to this beam until it's too late. The net effect is
that your character will crawl through the room only because
of knowledge gained in a previous incarnation.

A hint sheet is included; the hints are scrambled to pre
vent unintentional peeking.

Prisoner 2
Prisoner 2, by David Mullich, is published by Interactive Fanta
sies, a division of Edu-Ware, Inc.
Most graphic adventures use the graphics just to add pictures;
but Prisoner 2 integrates text and graphics in an innovative
and effective way. The adventure is based on the television se
ries The Prisoner, in which Patrick McGoohan played a captive
secret agent struggling to keep the independence of his own
mind despite the insidious methods of "The Village." Here, an
animated sequence, similar in spirit to the sequence that
opened each episode of The Prisoner, graphically transports
you to "The Island," where your captors attempt to get a piece
of secret information from you. This information has been
compressed into a three-digit number, so your first priority is
never to get careless and type in that number for any reason.

On arriving at the Island, you must find your way
through a maze. You move with one-letter commands; just to

f* break your morale down a little more, the commands that are
echoed on the screen aren't the same as those you typed in.
For the sake of your sanity, though, you really do move

I according to the commands you type.
Once you've gotten out (and there's an exceedingly de-

vious way to make it easier), you emerge among a group of
l buildings where you can go through a battery of tests. These

tests establish how well you are "adapting" and also include
an occasional sneaky attempt to get you to reveal the secret

79

More Adventures

number. Remember, no matter what the program does, don't
let them have that number!

The more individualistic you are, the more points you get.
But if your actions get out of bounds, you will incur the wrath
of Pax, a yellow sphere with an eye and a mouth in profile
(where have I seen that before?). And if you do disclose the
secret number, the program rubs it in quite thoroughly in a
final graphic sequence that welcomes you to "the flock." Pris
oner 2 is the best example I have seen of social satire in a
computer game.

Pyramid
Pyramid is published by Aardvark Systems Ltd.
This adventure is very much in the Scott Adams mold. It has
two-word commands, terse responses, clever puzzles, amusing
solutions, and bad spelling. Like the Adams adventures, it is
presented in the first person ("I am in...."). The premise of
Pyramid is simple enough: you have set out to explore a pyra
mid and get treasures. Your first problem is that there is only
one obvious entrance to the pyramid, and that one is locked.
But you can get in, and after solving several puzzles, you will
find yourself wandering through the twisting corridors of the
pyramid.

Some of these corridors contain inscriptions that don't
look at all like hieroglyphics; oddly enough, they give the im
pression of being English cryptograms! The code isn't hard to
break, and the messages give vital clues.

One passage is guarded by a mummy. If you try to hit or
push it, it becomes a "very mad mummy." Try again and it
becomes a "very mad very mad mummy," and so on. Fortu
nately, it never gets quite mad enough to do anything but
block the passage.

You are limited in the number of items you can carry, but
you have a knapsack that lets you carry more. To store an
item, you type PUT (item). The program asks "Where?" and
you answer IN KNAPSACK (or wherever else it might be
appropriate to put an item).

While this is a solid adventure in many ways, its interface
to the player is unforgivably poor. Words are truncated to two
letters, causing a great deal of confusion; for instance, if you
type FLOOR, the program will take the word as FLASH
LIGHT. Many actions, both successful and unsuccessful, get

80

$$3)

(plSS

More Adventures

no response from the program; you have to LOOK to see if
anything has happened. (Unlike the Scott Adams adventures,
Pyramid does not reserve part of the screen for a constantly
updated description of your surroundings.)

Only 17 verbs are recognized. You can't ENTER or
CLIMB something; you can only GO it. LOOKing things
works, but EXAMINEing them or SEARCHing them gets the
response, "I don't know how." You can't make northward
progress by typing N or NORTH or even GO N; you must
type GO NORTH.

Aardvark claims that this is one of its toughest adven
tures, with the average time to solve it being 50 to 70 hours.
While it isn't exactly easy—and while I'm not entitled to say
for certain without having solved it completely—this claim
seems exaggerated. The problems are tricky, and the limited
command handling doesn't help, but intermediate players
shouldn't be scared away from Pyramid.

Raaka-Tu
Raaka-Tu, by Robert Arnstein, is published by Radio Shack.
You have located a temple on the fringe of the Himalayas, pa
trolled by implacable guards. Being a dedicated (and slightly
greedy) anthropologist, you are determined to get into the
temple in spite of the risks. Once you have made it in, you
must make it past various guardians of the temple in order to
pick up treasures and then leave. To get full credit for your
treasures, you have to bring them back to your starting point.

The command parser allows adjectives and prepositions,
but the program doesn't make much use of this capability.
When you want to FEED something, the program insists that
you tell it with what (with the food, obviously!), and you must
GO INTO some places when ENTER would have served just

T" as well. For the most part, the program could have used a
simple two-word parser and made more room for commands
and messages.

J"5* The responses range from the humorous to the irritating.
If you try to rub the lamp, it goes out, and the program ex
plains that "you must have rubbed it the wrong way!" Less

J"* amusing is the response, "Why don't you leave the poor ...
alone," which the program frequently gives when it can't
handle your command. No adventure can cover every possible

81

More Adventures

action, but it doesn't have to try making the player feel guilty
about its inadequacies.

The major irritation of the game is that when you find the
exit, there's a fifty-fifty chance that the guards will see you
and kill you on your way out. This is very frustrating when
you've picked up all the treasures and are leaving. If there is a
way to avoid this hazard, I don't know it. And even when you
do get the maximum score, there are no fireworks or
congratulations; the program just routinely advises you, when
you type SCORE, that your score is 50 out of a possible 50.

The documentation includes a package of hints marked
"for hopeless situations only," which are geared toward the
beginner. Much of the game is simple, even though the high
est possible score is elusive. It's important to SEARCH every
room in order to find everything.

The Sledge of Rahmul
The Sledge of Rahmul, by Roger Jonathan Schrag, is published
by Adventure International. It is packaged with Merlin's
Treasure.

This game is the flip side of Merlin's Treasure, and it is the
better of the two. Unlike most adventures, this one checks
each entire word of each command rather than truncating
words to some number of letters. Simple graphics are included
to give a perspective view of the way you are facing; you have
to LOOK in all four directions to make sure you know about
everything in a room. In this adventure, you start out in seri
ous trouble; the lights go out on you, and you have no appar
ent source of illumination!

Once you overcome that little difficulty, you find yourself
wandering through a maze, hindered by such foes as a nasty
rat, an ugly bird, and a prison guard.

The command handler goes beyond the usual verb-object
parsing to allow commands of as many as four words. Un
fortunately, if you type more words than the program regards
as necessary, it simply ignores the rest. This can be misleading
at times. Also, there are some things that the program won't
let you do, but without giving any explanation. For instance,
your shears are sharp enough to cut a dead bush, but in
explicably won't cut a green twig.

While this program is a good one in many ways, it pro
vides one more demonstration of the folly of trading away

82

)

I More Adventures

command-handling possibilities for graphics—especially on a
computer that has such a limited graphics capability in the

p first place.
An interesting technical feature is Russ Wetmore's Duo-

Loader, which allows the same disk to run on either a TRS-80
p Model I, a Model III, or a Model IV.

Spook House
Spook House, by Roger Jonathan Schrag, is published by Adven
ture International. It is packaged with Toxic Dumpsite.
This is my favorite of Schrag's adventures using the Sledge of
Rahmul system. Its most unusual feature is the realtime limit;
if you fail to get out of the house within half an hour, a bomb
goes off and kills your character. Perspective line drawings are
used to indicate your point of view as you look in one of the
four cardinal directions.

Semianimated graphics are used to depict a strobe-lit
room and a spinning room, and the graphics in general add a
bit of fun. One corridor, for instance, doesn't lead where it
seems that it should; looking in various directions, you see
signs reading "Lost?" and "Confused?" Elsewhere, when you
land in some water, the program tries its best to persuade you
that you're sinking, but the pictures indicate that you're not
exactly in "deep" trouble.

Examining some objects will provide strange, cryptic mes
sages. These may be hints of some sort; more likely they're
bugs in the program. Sliding down the fireman's pole is fun
and sometimes necessary, but the program keeps track of how
many times you do it, and it makes you pay the price for
over-exertion. Having good peripheral vision is important-
check the pictures for directions in which you should look.

One of the toughest traps in the adventure is the
P "continuous corridor." You can go east or west as far as you

like, but you'll never get to the exit. If you do find a way out,
please let me know; I'm stuck there, and the bomb is about

Stone of Sisyphus
P Stone of Sisyphus, by Dixon Scott, is published by Adventure

International.
This adventure, part of the Maces and Magic series, incor-

P porates a much greater role-playing element than most. The

83

More Adventures

first time you play, you are given a character with randomly
generated strength, dexterity, charisma, and so on. You must
outfit this character by spending your initial allotment of gold
on weapons and armor. What you can bring into the dungeon J
depends not only on what you can afford, but on how much
you can carry. In addition, your dexterity must be good p
enough to handle the weapon you choose. If your character
survives the expedition, his record is saved on disk for reuse
in a later game.

Having outfitted your character, you proceed toward a
building with two entrances. All scenes are illustrated with
graphics; the quality, naturally, varies greatly depending on
which computer the program is running on. You indicate your
choice of action with single-keystroke commands. At each
location, you are usually presented with a choice of several ac
tions designated by numbers. For instance, when you come to
the Troll Bridge, you can enter 1 to pay the troll, 2 to fight
him, or 3 to turn back.

In addition, several single-letter commands always work.
G lets you grab an item. L lets you leave it behind, I lists your
inventory, and so on. Especially important is the P command,
which lets you pick an item that you're carrying and do some
thing with it. Only with the P command can you exercise your
imagination and enter commands of your choice. Usually you
will enter just a verb, with the thing you picked being under
stood as the object; sometimes a verb and object will work.
For instance, after picking a pile of timbers, you might give
the command, BUILD HOUSE.

The puzzles often show a strange sense of humor, and
some of them aren't too difficult. One room has a tiny red
creature that suicidally attacks you and then remains on the
screen as a squashed blob afterwards. Nearby is a manticore
who covers the walls of his room with pictures of monster p
stars. The text descriptions that go with these are quite a bit
of fun.

With all this going for it, it's a great shame that the way p
the game runs virtually ruins it. The program runs under the
BASIC interpreter, which doesn't make it speedy, and it con
stantly accesses the disk. It often has to go to the disk several p
times even to put up a single screen display. Some commands
must be terminated with the Return key, while others are just
single keystrokes. At other times, you must hit a key just to p

84

More Adventures

redisplay the message on the screen so that you can enter a
command. The response is so slow that you can't be sure

P whether you've completed the command or not.
Sisyphus was a character in Greek mythology who was

condemned to roll a boulder up a hill in Hades, only to see it
p roll back down and have to repeat the process eternally. How

that myth fits into the adventure isn't apparent from the parts
of the dungeon that I've reached; but the way the program
runs gives something of the sense of frustration that Sisyphus
must have felt. Stone of Sisyphus is a case of a good idea that
wasn't carried through with good programming; if Chameleon
Software, the group that developed the program, would only
redo it in a more efficient language and improve its disk
management, its next edition could yet be a success.

Toxic Dumpsite
Toxic Dumpsite, by Roger Jonathan Schrag, is published by
Adventure International. It is packaged with Spook House.
This adventure is packaged on a two-sided floppy with Spook
House. The command handler is similar to the one in The
Sledge of Rahmul. In addition to having simple graphics and
multiword commands, this adventure (like Spook House) is a
race against real time. An underground toxic waste system has
failed, and you have been sent in to pull the master shutoff
lever before the dump blows up. You have about 20 minutes
to do this, regardless of how many moves you make.

The first part of the adventure takes place on the office
level of the dumpsite. You've been sent in with no training or
preparation, so you have to find the things you need just to
get through the front door. Looking in, under, and behind
things is important. Your next major job is to descend in the
elevator to the underground level. This puzzle is difficult but

P not especially clever; it involves doing something quite far
away, which you would have no reason to associate with the
elevator.

P Down below, you have to reckon with a lack of ventila
tion; and you'd better have brought a light source. There is
lots of button-pushing to be done, and you must always spec-

P ify the color of the button. Why this should be necessary, I
don't know; I haven't found any situation in which buttons of
two different colors can be in the same room.

P A hint sheet is included for both this adventure and Spook

KB

85

More Adventures

House. This adventure lacks the humorous touches that make
its flip-side companion fun, but it plays fair (with the one
exception noted earlier) and rewards the systematic player. p

Xenos
Xenos is published by Radio Shack. P
The programming underlying this adventure is very similar to
Bedlam and Raaka-Tu, but the elbow room, which the disk for
mat provides, makes it significantly better than the others. You
have been assigned to investigate a reported UFO landing and
rushed to a recently evacuated town near the landing site. You
will probably want to spend a while investigating the deserted
buildings and looking for any equipment that might help you.
Like most adventure characters, you have been sent out with
out decent preparations, and it's a poor idea to go out into the
desert without food and water!

When you do find food, things become easier. Even
though what you find is described as a "small amount,"
there's always more left after you eat it—and it somehow fills
your need for water as well. Who says you can't have your
lunch and eat it, too?

Properly equipped, you can venture out into the desert.
But watch out for alien creatures, an unfriendly prospector,
and a magnetic anomaly that can have you going in circles if
you trust your compass.

With perseverance, you can eventually reach the alien
craft. To get in, though, you have to get past a sizable ob
stacle. The program describes the rooms on the ship in the
aliens' language; this adds quite a bit of color, as well as
reflecting the fact that you don't know what anything in this
ship is for. Once you decipher these mysteries, you can find
out whether the aliens are simply trying to phone home or are
up to something more sinister, and you can take appropriate p
action. Be careful poking around the ship—pushing the wrong
button could destroy the world!

The program is overlaid from the disk, so that more p
descriptions can be presented than will fit in memory at one ~
time. This allows for fairly detailed descriptions. However, the
overlay structure isn't very clever. If you go back and forth be- ^
tween two adjacent locations that are in different overlays, the ^
program will access the disk every time you go from one to
the other.]

86

MM9

More Adventures

As in other adventures of the Bedlam family, the com
mand parser can handle adjectives and prepositional phrases.

P Xenos makes much more use of this capability than the others
do. There is, for instance, a desk with three drawers and an
assortment of keys to try on them; so you might try to OPEN

p MIDDLE DRAWER WITH BRASS KEY. The only problem is
that the program sometimes insists on too much information.
If you try to SHOOT a creature, it wants to know what you're
shooting it with, even though there's only one possibility.

There are a number of logical red herrings. Don't assume
that every difficulty represents a puzzle to be solved; if you try
too hard, you may use up resources that are necessary for the
real work.

Xenos is easily the best text adventure (not counting Zork)
that Radio Shack has offered.

87

ppsj

Action Adventures

•̂P^^

^* 5E*
~WWWWM'f:"1'

close relative to the text adventure is another
kind of computer game, frequently called an
"action adventure." This type of game lets
the player control the actions of a character
who is exploring some area for the sake of
gold or glory, just as a text adventure does.
The difference is that it doesn't use English-

language commands and text descriptions, but instead displays
a map of the area the character is moving through and accepts
single-keystroke commands.

While action adventures are a different kind of game from
text adventures, each borrows characteristics of the other. Pris
oner 2 uses single-key commands and map displays, for in
stance, and Stone ofSisyphus incorporates many of the features
of action adventures, allowing both single-keystroke and word
commands. Future adventure games may well show even
more of a blend of the two types.

The basic similarity between the two types of adventures
is that in each case, the player controls the actions of a charac
ter in a hostile environment. The goal in either type of game
can be either to pick up treasures or to fulfill a quest. In each
type of game, the player has a variety of actions at his
disposal.

However, there are many differences between the two
types of adventures. Here are some of the major distinguishing
characteristics of action adventures, starting with the most basic.

Single-key commands and joystick control. The com
mand structure of action adventures is simplified so that the
player can concentrate on other things. Typically, the player can
move the character with the joystick or the cursor keys. Other
commands have well-defined functions; O might open a box
or a door, S might cause something to be searched, and so on.

Display of the character's position on a map. Usually,
this is an overhead view of the map, showing only what has
been explored so far. In some cases, the display may show a
perspective view from where the character is standing; this
technique is also used in some graphic text adventures, such
as Asylum.

Realtime action. The action in an action adventure comes
from the fact that time does not freeze between moves. If the

91

BGZ3

Action Adventures

player doesn't do anything for a while, a monster may wander - •*
into the room and attack his character. In combat, the player
must keep active and be ready to decide when to run away. ™*

Continuous movement. The character is not located - >
simply "in a room," but is always at a particular point in a
room. Treasures, monsters, and the like also have specific •"*]
locations, and the character must move toward them to carry
them away or fight them.

Elaborate combat sequences. In text adventures, the
player usually fights a monster by typing FIGHT MONSTER
and lets the results fall as they may. In action adventures,
however, as a general rule, there is much more detail. To
strike a blow requires hitting a key. As the character receives
blows, he weakens; if he gets into trouble, he can try to move
away and elude the pursuing enemy. Often the character can
either thrust or parry. He may also be able to shoot arrows or
laser beams instead of moving into hand-to-hand combat.

Character generation and experience. In text adventures,
the character's abilities are generally fixed. He is strong or
agile enough to do certain things but not others. The reason
for this is that text adventures are mostly concerned with
problem solving; if a powerful character could just bludgeon
his way through obstacles, much of the point would be lost.
However, action adventures are based on different expecta
tions. The character will fight and run, sometimes winning
and sometimes dying. Skill and luck are necessary, as well as
just knowledge of what to do. The character who comes out of
the dungeon alive and wealthy is distinct from his prede
cessors who died in the attempt. Moreover, in the process of
battling his enemies, he may gain experience points. The more
of these he gets, the more effectively he will be able to cast
spells and fight.

Variety in repeated playing. Atext adventure that "^
you've solved is like a novel that you've read—you might •'
want to go back over it to relish details that you had missed,
but it no longer offers a challenge as a game. An action m»
adventure, though, makes demands on your skill every time ^
you play it. You may have beaten the wyvern last time, but
that doesn't guarantee you can do it again. «s

Simple plots and little characterization. This is the price —'
that action adventures pay for their other features. The charac
ter can interact with his environment in only a few predeter- ^

92

[Action Adventures

mined ways, most of them violent. Other beings appear only
as enemies to fight or to perform a specific function before

F™ they disappear. Lacking dialogue, action adventures cannot
have the subtlety of text adventures. This isn't to say, how
ever, that they can't pull some utter surprises on the player.

P1 One of the oldest and best-known action adventures is
Temple ofApshai from Epyx, which is in many ways quite
similar to Dungeons and Dragons.

The first part of the game generates the character. The
player can either specify his own character's attributes or let
the program randomly generate a set of attributes for him.
These include intelligence, intuition, ego, strength, constitu
tion, and dexterity. The range for these attributes is the same
as in D&D, so it is not difficult to transplant a D&D character
into Apshai. Intuition replaces the D&D characteristic of wis
dom, and ego replaces charisma.

The character must purchase supplies from the Innkeeper,
using a limited amount of silver. The Innkeeper has armor,
weapons, and healing salves. The player can bargain with him
over each item until a price is agreed upon.

Once the character is fully equipped, he can venture into
the ruined Temple of Apshai to go treasure hunting. There are
four levels to the dungeon; the higher numbered levels (which
are deeper underground) have greater treasures and
correspondingly more powerful monsters.

As the character moves through the dungeon, the area he
occupies is mapped on the screen. Only a small part of the
dungeon fits on the screen at one time, so the program fre
quently redraws the map as the character moves to new
rooms. This mapping is extremely slow, as the program is
written largely in interpreted BASIC.

The booklet that comes with the program contains much
P" of the information about the dungeon. When the adventurer

enters a room, the computer's screen displays the number of
that room. The player can then look up the number in the

J*3 booklet and find out what he is seeing. These descriptions
*• often provide important information; but if you're going to try

to read them while an ant man is charging toward you, you'd
P* better be a fast reader. The booklet also contains explanations

of the various treasures and traps found around the ruined
temple.

r
93

Avii

Action Adventures

There are a large number of possible actions. Single key
strokes let the character open doors, search for secret doors
and traps, listen for sounds in the next room, apply healing ^
salves, speak with monsters to avoid combat, or fight. In com- -~'
bat, the character has the choice of attacking, thrusting, parry
ing, and firing normal or (if he has them) magic arrows. **l

The adventurer can move rapidly or slowly. Rapid move- - -*
ment is sometimes essential for escaping monsters, but it
builds up fatigue. In addition, the heavier the adventurer's
armor, the more he will be tired by rapid movement. Fatigue
impairs his ability to fight; complete fatigue makes him unable
to move or fight until he has rested. If a monster wanders by
while the adventurer is in this state, it could mean big trouble!

As in Dungeons and Dragons, a dead adventurer can
often be resurrected. Since the Apshai adventurer goes in
alone, however, his life can be restored only if another ad
venturer happens by and brings his body out. Some rescuers
will do this deed simply out of generosity; others will grant
themselves a large reward out of what the adventurer was
carrying.

Temple ofApshai has been so successful that Epyx has
published modules for additional portions of the temple as
well as for applying the game system to other situations.

Other game publishers have carried the concepts of
Apshai to even greater lengths. The Ultima series, from Orig
inal Systems, Inc., lets the player incorporate an entire party of
characters instead of just one. The characters can be of a
variety of species (human, elf, dwarf, etc.) and professions
(thief, cleric, fighter, etc.). Magic spells are included in the
game, and partial maps are provided to aid the party in its
quest. Ultima III provides for a limited opportunity to enter
words as well as single keystrokes as commands, thus crossing
partially into the realm of text adventures. ™|

While the Ultima adventures make the maximum use of a - j
computer's graphics and sound capabilities, it is not true that
all action adventures need a computer with high-resolution «*
graphics. Rogue, a program widely circulated on Unix sys- -
terns, presents the essentials of an action adventure using
computer terminals with no graphics capability at all. Simple mm
characters are used to draw the maps of the 20 levels of the - -»
dungeon. The adventurer is represented by the at sign (@);

94

Mfflfi

Action Adventures

monsters are represented by a single letter (for instance, Z for
zombie).

P" The rogue moves about the dungeon under keyboard con-
*• trol; he attacks a monster by attempting to move over it. As he

defeats monsters, he gains experience points and becomes
P3 more powerful. Once he has reached a high enough expe-

rience level, he can venture into the lower levels of the dun
geon, where more powerful monsters await him. Ifhe defeats
all the monsters, there is a treasure awaiting him on the
twentieth level; but then he has to bring it all the way up
again. The state of the game can be saved to a file at any time.

In exploring the dungeon, the adventurer will find magi
cal potions, weapons, scrolls, and armor to help him. Some
items are cursed, though, and rust monsters can reduce even
the best armor to a corroded mess. Other monsters to watch
out for are giant ants, which sap the adventurer's strength
with their stings, and umber hulks, which cause him to blun
der around aimlessly.

Rogue serves as the basis of Sword of Fargoal (from Epyx)
which offers essentially the same ideas in an elaborate graphic
version. Fargoal, unfortunately, does not have the game-saving
feature of Rogue, and it takes many hours to play.

Some adventures vary the perspective from that shown in
the overhead map. Aztec, from Datamost, shows a cross sec
tion of part of a pyramid that holds a golden idol. The ad
venturer is shown in full-body profile as he walks down the
hall or up or down the stairs. When he misses a step (which
he does surprisingly often), he lands flat on his back with stars
circling over his head until he recovers. His enemies, which
include spiders, pumas, giant lizards, carnivorous plants, and
Aztec guards, are strikingly animated. When the adventurer
moves from one screen to the next, the new cross section ap-

P3 pears almost instantaneously.
^ The adventurer can fight using either a pistol or a ma

chete. In the hands of a skilled player, he can be made to
f* move, thrust, and lunge in a very realistic-looking manner.
* Aztec does have its quirks. Treasure chests are often seen

floating in midair with no floor beneath them. Stairways may
P5 lead nowhere. Occasionally the adventurer can manage to slip

through a wall. In a few cases, he will find himself standing in
midair, only to fall the moment he takes a step.

95

r

Action Adventures

While most action adventures are set in mythical or an- -«J
cient realms, Castle Wolfenstein offers a more modern setting.
In this one, the player takes on the role of an American soldier mm
trying to escape from a Nazi prison. Firing bullets and throw- —'
ing grenades at guards provides most of the action, but occa
sionally the fugitive must open a chest to get more •«*
ammunition. This is a very time-consuming process, and he - -
has to hope no guards show up before he has it open.

In the world of noncomputer role-playing games, there
are two kinds of players. One kind wants, above all, a game
that is full of action and battles. What he enjoys most is the
challenge of being a master tactician or the intricate mechanics
of game combat or perhaps the pleasure of chopping an imagi
nary enemy's head off. The other kind prefers deep puzzles in
which the characters must go searching and spying—or just
ponder a situation until they can devise a way to approach it.

In computer games, action adventures appeal to the role-
playing game player whose first love is battles; text adventures
appeal to the problem solver. The two areas aren't mutually
exclusive; Apshai and the Ultima series offer challenges to the
problem solver, and many text adventures include battles with
monsters or villains. Nor are the two kinds of players mutu
ally exclusive; most people who enjoy one type of adventure
will enjoy at least an occasional fling with the other. But text
adventures and action adventures do generally require dif
ferent frames of mind if the quest is to be successful.

fiSBjl

96

jpSK|

very sort of game has its challenges, but text
adventures can be among the most frustrat
ing. Overcoming a game's difficulties isn't
just a matter of practicing until you get good
enough; it's more a matter of thinking about
the situation until the right idea finally hits
you. That gives a feeling of discovery and

achievement that is uniquely close to the satisfaction of solv
ing a real-life problem.

To achieve those successes, you have to learn method and
strategy. To a large extent, expertise at adventure gaming
comes only with experience. But if you take the right ap
proach, that experience can be much more profitable.

Take these guidelines as a starting point, not as rigid
rules. Your goal should be to develop a way of thinking that
lets you solve problems easily, not to learn a set procedure.
But if you come across an especially tough problem, the best
approach may be to go back to the guidelines given here (and
any that you may have added yourself) and to consider each
as a possible approach to a solution.

Draw a map. Some people consider it a point of honor to
go through an adventure without writing anything down, but
unless you have a photographic memory or a masochistic
streak, it makes more sense to map out the rooms of the
adventure.

In most adventures, the rooms are found on multiple
levels and are connected by passages that twist in unexpected
ways. So it's usually impractical to make a geographically
realistic map during the course of play. All that you really
need is a topologically correct map—that is, one that indicates
the correct connections between rooms. The simplest method
is to represent each room with a box and to indicate the pas
sages with connecting lines labeled with the appropriate direc
tion or movement command. Label each box with a short
name that matches the room's description. Figure 8-1 shows
part of a map from a typical adventure.

99

Field Guide for Adventurers

Figure 8-1. A Typical Adventure Map

Cave

Entrance

D

U

Long
Tunnel

s

N

sw
Tunnel

Fork
Maze

NE^
SE\

N\ w

w

N

Narrow

Passage
w

/
Intersection

E W Side

Chamber

s E/ s

Dead

End

N

Misty
Hall

W

/
Stalactite

Chamber

D I 3- Pit

N

D\

/
Golden

Cavern \
Stream

Bed

s, u

D

Tight
Squeezes V /w N<

/ /s
Muddy
Passage E

U NW

n/
Twisting
Passage/w

/
N /
Boulder /E High /

D, SE
rIOC>m u D Charnber

100

1I.WAA

Field Guide for Adventurers

After you've wandered through the labyrinth for a while,
you'll probably find your map getting messy, with lines going

P* over long distances as you discover unexpected connections
between rooms. You may want to stop at that point and make
a clean copy of the map. If you're geographically inclined, you

P may want to lay it out so that the rooms are positioned cor
rectly relative to each other. Don't count on the author to be
completely consistent about geography, though.

Map mazes by dropping objects. A feature found in
many adventures is a "maze of twisty passages" in which
every room has the same description and the connections fol
low no logical pattern at all. Going east and going east again
may take you back to the room you started from; going south
might not take you back to the room you left by going north.
If you just blunder around, you can be lost forever.

The way to handle a maze is to drop objects in the rooms,
making them distinguishable. This requires some cleverness,
since there are usually more rooms in the maze than objects in
your inventory. (And please, don't drop your lamp!) Get some
little scraps of paper and mark each one with the name of one
of the objects you can drop. When you enter a new room in
the maze, make an entry for it on the map and put the
corresponding scrap on that map entry.

Try moving in every possible direction from each room.
Mark the connections between rooms in the usual way; also
mark any directions for which you get a "you can't go that
way" response. Once you've run out ofobjects to drop, keep
trying to go back to the rooms that have objects in them and
learn where other directions from those rooms lead.

Once you've got these rooms mostly mapped out, you can
pick up some of the objects and move them to other rooms.
The map you've already made will usually be able to guide

F53 you around the rooms you had previously mapped, and you'll
be able to add the new rooms.

After a while you should go over your map and see if any
jmsb pairs Q£ rooms have suspiciously similar connections. Since
^ you can't drop objects everywhere at once, it may turn out

that what you thought were two different rooms were really
the same room. Comparing the dead-end directions from dif
ferent rooms is also very helpful; if, in each of two rooms, you
can't go north, south, or northeast, it's quite possible that
they're really the same room.

I3BB

101

Field Guide for Adventurers

Some adventures add complications to their mazes. In
Zork I, for instance, the Thief will pick up objects you've
dropped and later drop the worthless ones somewhere else.
But the same technique still applies. The only difference is that
you have to be willing to throw information out if it looks
misleading.

Figure 8-2 shows a full map of a hypothetical maze. Six
directions are allowed: north, south, east, west, up, and down.
As is typical for mazes, the compass direction is no help for
relating room positions, and some passages double back to the
room they came from. This maze is entered by going north
from the Side Chamber.

Figure 8-2. A Map of a Hypothetical Maze

pamrritil

Side

Chamber

N

W W IJ

E

D ur
N

E W

s
u

s

E w/^
D E,N

\W E

\\N

s

W

<•

/

N N f Treasure

Room

i u\

f \l

D

: n

uv

E w

E

D

D

W

>
w u

^nflijfa
S w W s D

102

fStt

Field Guide for Adventurers

Let's assume you have four objects that you can afford to
drop: an apple, a banana, a cherry, and a doughnut. Figure 8-3
shows the first steps to take in mapping the maze. Each time
you enter a new room of the maze, drop an object there and
mark it in on your map.

When you run outofobjects to drop, try to go back to the
rooms where you dropped objects and concentrate on filling in
the connections for these rooms (Figure 8-4). When you do
this, you'll probably map more rooms than there actually are,
since you won't know that the room entered by going east
from "Apple" is the same as the room reached by going west
from "Banana." Keep an eye out for such duplications, and be
ready to correct your map when you find one. A good eraser
is important when mapping mazes.

After you've gotten a fair number ofconnections mapped,
pick up an object from a room for which you've discovered
most of the connections and move it to a room without an ob
ject. In Figure 8-5, you've moved the banana to a different
room. This will help you to establish the connections from
that room; it will also quickly show if you've put that room
down more than once on your map.

By repeating this process several times, you can get the
maze fully mapped. While it isn't necessary to get every last
connection mapped, you should at least make sure you
haven't missed any exits into interesting rooms.

Figure 8-3. Maze Mapping, Step One

Side

Chamber

N

N

Apple

S

Banana Cherry
N

E

S

Doughnut

103

Field Guide for Adventurers

Figure 8*4. Maze Mapping, Step Two

104

Side

Chamber

Apple

Banana

Doughnut

WTJ7

Cherry

N.

U

rj

_ i

PWR

Field Guide for Adventurers

Figure 8-5. Maze Mapping, Step Three

u

w

Side
Chamber

Apple

Doughnut

w w

Banana

E, N

E

Cherry

u

105

Field Guide for Adventurers

Go everywhere. Missing a room that you need is one of
the major causes of frustration for adventurers. If you think
you've gone everywhere, double-check all rooms for exits that
you might not have tried. Room descriptions are often devious
and don't tell you outright where all the exits are. Watch for
any peculiarities in the description that might indicate a hid
den path.

Don't forget to try the diagonal directions if the adventure
includes them. If a room is described as having "exits in all
directions," try going northeast, northwest, southeast, and
southwest. Don't forget, too, that you may be able to walk
through certain walls; the worst you can get out of trying
something like this is a bruised nose!

For example:
>EXAMINE WALLS

The southern wall seems to shimmer.
>SOUTH

There is a wall there.
>WALK INTO WALL

The wall turns out to be insubstantial, and you easily pass
through it.

Examine everything. The EXAMINE command is one of
the most important commands in many adventures. Some
times this command is given as SEARCH or (in simple adven
tures) as LOOK. If this command is available, examine every
object you come across. Most of the time you'll get a non
committal message, such as "I see nothing special about it."
But in a few cases, you'll get information that is vital to solv
ing the adventure.

The information you get may seem obvious. But if you get
anything distinctive in response to EXAMINE, there's a good
chance you should pay attention to it. Suppose you examine a
statue and get back the response, "It's covered with half an
inch of dust." No big deal? Perhaps, but it may turn out that
when you DUST the statue or do something similar, an en
graved message will become visible, or some other exciting
event will occur.

Watch out for objects that seem to be there just for at
mosphere. They may be important to you. Suppose the room
is described as being "full of debris"; EXAMINE the debris
just in case there's something important in it. Maybe there's a
wandering junk collector around who'd like something from

106

GESwl

lUwrtfll

flfflM

Field Guide for Adventurers

the room, or maybe something valuable is buried amidst the
junk. Other verbs that may give you information about an ob-

f° ject include READ, TOUCH, and FEEL. Try them whenever
they seem applicable. It may save your life.

For example:
>EXAMINE BOOK

The title of the book is "Great Magic Spells."
>READ BOOK

The book seems to be a cookbook for preparing magic spells,
but it's too technical for you.

These responses might lead you to guess that the magic
book would interest a wizard (and that you might be able to
trade it for assistance later on). Maybe, with some help, you
could even use the spells yourself.

Think of possible uses for objects. Any object that you
can refer to by name stands a good chance of being useful,
even if it isn't valuable (worth points) in itself. It might be a
tool for doing a necessary job. It might be a source of light if
you can figure out how to turn it on or ignite it. It might have
something important hidden inside it.

If something is valuable, don't assume it's only good for
points. It may turn out to be useful in itself, or you may have
to trade it or even let it be stolen in order to achieve some
goal. Be especially wary if an object seems valuable but
doesn't add any points to your score.

For example:
>EXAMINE ROOM

There is a door at the end of the room, next to a shelf.
>EXAMINE SHELF

There is a diamond on the shelf.
>EXAMINE DIAMOND

The diamond is expertly cut, with a prominent knife edge.
P >EXAMINE DOOR

The door is held shut by a steel plate welded to it.
>CUT PLATE WITH DIAMOND

j""1 With great effort, you manage to cut the plate in half.
Watch for interactions between objects. Pairs of objects

often go together or conflict in interesting ways. A certain key
[™ may be needed to open a particular lock, or a special chip may

fit into a socket. In cases like this, watch for a key that has the
same color or material as the lock or for some other clue in-

f™ dicating that the two are a pair.

107

Field Guide for Adventurers

Pairs of objects can also conflict subtly or fatally. A bull
might react nastily if you carry a red cape into his presence.
Similarly, picking up a magnet and a reel of computer tape at
the same time could be a bad idea.

Figure out what you need to solve a problem. Figuring
out what a tool is good for is a useful approach. But equally
helpful is working from the other end—looking at a situation
and trying to decide what tool would be useful in it. Tools can
cover a lot of ground; the object you need might be a weapon
to fight an enemy, a gift to gain someone's cooperation, a
distraction to throw in a creature's way, a vehicle to help you
get to your destination, or an actual tool to perform some
mechanical operation.

The description of a situation will often give a hint about
what you need. If it doesn't, then trying to solve the problem
with the wrong tool (or none at all) may elicit a message that
will suggest the kind of tool you need.
>EXAMINE DOLL

The doll looks like a wind-up toy. It has a keyhole, but no key.
>EXAMINE KEYHOLE

The keyhole in the doll is about an eighth of an inch in diam
eter and one inch deep.

What will happen when you wind up the doll? You do
want to find out, don't you? It may turn out that the object
you need isn't actually a key, but something else that will fit
the keyhole. If you come across a nail, a pen, or anything else
that might do the job, give it a try. Trying the wrong object
might give a further indication of what you need.
>WIND DOLL WITH PEN

The pen is too wide to fit in the keyhole.
>WIND DOLL WITH NAIL

The nail works! The doll walks across the room, indicating a
spot on the wall.

Read descriptions carefully. Information is often in
tentionally buried in a long description. Read all the infor
mation that is given and pay special attention to anything that
seems odd. Trying to visualize the situation is often a great
help. If graphics are included, examine the pictures for items
that the text might not have mentioned.
>EXAMINE ROOM

You are in an office of the Pottsylvanian Embassy. As you

108

fp9fl

Field Guide for Adventurers

would expect of Pottsylvanian diplomats, the place is a general
mess. Several chairs are scattered about, and a large desk is lo
cated by the eastwall. This desk has an abundance of junkon
it, including an unwashed coffee cup, an ink-stained blotter,
and several loose papers. The floor is scratched and marred
and has obviously not been swept in several weeks .

>READ PAPERS
The papers are mostly unreadable from coffee stains, but on
one you can discern the message, "Boris will leave the keys in
Box 552."

In this case, the detail to watch for was the paper on the
desk, and all the clutter was just a distraction.

Make use of negative responses. Many times, an adven
ture won't let you do something justbecause the author didn't
consider it or didn't have room in the program to handle it.
This can lead to immense frustration when you try something
reasonable and the program keeps declaring, "You can't do
that." Still, finding out that you can't do something can be a
source of positive information. If you get a special negative re
sponse, rather than a standard one, such as "Don't be silly,"
then you should pay closer attention to it. The message may
call attention to something else that will work.
>EXAMINE GARDEN

You are in a garden behind the house.
There is a delicate flower growing here.

>PICK FLOWER
The flower resists yourattempt to pull it out of the ground.
Maybe the author of the adventure just didn't want to be

bothered with moving the flower around. But the fact that the
message is so specific suggests that you should look further.
Maybe you have to cut the flower, in which case you might
need a special tool for the job. Or maybe the flower would be

F™ a good thing to hang on to in a hurricane. It's an anomaly, so
'' keep it in mind.

Make use of the SAVE feature, if present. The better
f3 adventure programs provide a command to let you save the
^ state of the game on disk or tape. This has the obvious use of

letting you leave the computer and continue later. In addition,
*"° it can provide you with a safety belt before undertaking a
* risky action. If the action you try blows your character to

smithereens, it's much more satisfying just to be able to re-
#wa store the game where you were than it is to have to go

109

Field Guide for Adventurers

through all the actions again to get to the same point.
Using the SAVE command is especially important if you

have to take an action that you know may not work. In Scott
Adams's The Count, for instance, you have to take a certain
risky action several times during the adventure. Unless you
save the game before each attempt, you may go crazy trying
to get all the way through without breaking your neck.

Using SAVE with tape-based adventures is tedious, es
pecially since you should really erase the tape before reusing
it. Still, it's better to spend five minutes saving the game than
to have to spend half an hour repeating all your moves.

It's also a good idea to save the game periodically just on
general principles. In the course of the game, it's possible that
your character will get killed unexpectedly, or that you'll take
an action that irreversibly blocks your further progress. When
that happens, you'll probably want to go back to a recent
point rather than starting all over again.

Don't let SAVE become a crutch. It can be tempting to
save the game and then repeatedly try an action with a very
low probability of success until it works. But if you have to do
that, you almost certainly haven't discovered the right way to
solve the problem. SAVE allows you to return to life and cor
rect your errors. But don't abuse the privilege.
>EXAMINE BOTTLE

The bottle contains a clear fluid and is labeled with the words
DRINK ME.

>SAVE

[Whir, whir, whir....] File saved.
DRINK FLUID

You drink the fluid and die in horrible agony.

Since you had the presence of mind to save the game,
you can restart the adventure at the point where you were
examining the bottle. Your character, motivated by an acute
sense of danger, will then realize that he probably shouldn't
drink what's in the bottle.

If you're stumped on one problem, switch to another.
Switching to a different task for a while is good problem-
solving psychology. Besides, you may need to do something
else before it's possible to solve the problem. In most adven
tures, there is a more or less fixed order in which you have to
solve the problems. Getting the solution in one situation may
provide you with the means to handle the next one.

110

J

Field Guide for Adventurers

Answer rhetorical questions. A popular (if somewhat
dirty) trick in the original Adventure consists of responding to

I a command with a seemingly sarcastic question—which, if an
swered in the affirmative, lets you do something quite un-

_ expected! Several other adventures have copied this trick. So if
[the program asks you whether you really intend to do some

thing, try answering YES. It may work. (But be warned: In one
expanded version of Adventure, the program asks the same
rhetorical question at another point in the game—with disas
trous consequences if you answer YES. But those are the risks
an adventurer takes.)

There is a six-foot chasm to the north. Flames shoot up from
below.

>JUMP OVER CHASM
Are you really going to jump over a flaming chasm?

>YES
You made it! You are now on the north side of a flaming
chasm.

Experiment. Don't be afraid to try something dangerous.
If the game has a SAVE feature, then save the game so that ^
you can come back and take a different approach if you don't
make it. An unknown liquid in a bottle might be poisonous,
but it might also give you a magical power that you need to
finish your quest. You'll never know unless you try.

Even trying something that seems ridiculous might have
consequences. In two of the problems in Zork I, I found myself
reduced to desperation, so I just started trying every word I
could think of that had any bearing on the problem. In both
cases, I was pleasantly surprised when I finally got the semi-
magical word that solved the problem.

Just trying to do different things to objects will give you
an idea of how much the program will let you do. If it allows

P5 lots of options, you may need to know about all of them.
The eastern wall of the room has a large red heart painted on it.

«, >KICK HEART
[Why would anyone kick a heart?

>WHY NOT?
I don't understand that.

P >PUSH HEART
Pushing the heart doesn't do any good.

>PUSH WALL
f™ Pushing the wall doesn't do any good.

Ill

Field Guide for Adventurers

>BREAK HEART

Heartbroken, the wall collapses into a shower of tears.
>GROAN

I don't understand that.

Make full use of the command handler's capabilities.
Whenever you're playing an adventure that allows more than
two-word commands, try different combinations of words to
see just how much it will let you do. The instructions with the
adventure will often give examples of the kinds of commands
you can give. Try giving nonsensical commands to see how
the program reacts.

You are at the top of a mountain. A dwarf is sitting on a
wooden chest.

INVENTORY

You are carrying:
A lamp
A sack of coins
A lump of coal

>HELLO, DWARF
The dwarf ignores your greeting.

>GIVE COINS TO DWARF
The dwarf doesn't want the sack of coins.

>TAKE COINS FROM SACK
You can't take a sack of coins from a sack of coins.

>FEED DWARF

What do you want to feed the dwarf to?
>LUMP OF COAL

You can't feed a dwarf to a lump of coal.

You haven't made much progress with the dwarf, but
you've learned that the program accepts indirect objects, that
it lets you complete commands, and that it treats the sack of
coins as a single object rather than a container with an object
inside. Getting familiar with what the program can do will
make it much easier to give the right commands later on.

Don't overestimate the program's abilities. The other
side of knowing what the program can do is avoiding the mis
take of thinking the program is "smarter" than it is. Some
adventures will ignore extra words at the end of a command.
If you think the extra words are doing something, you may get
a false impression that will leave you confused for a long time.

You are in a room with doors on the north and south.
>LISTEN AT DOOR

You hear nothing.

112

C" Field Guide for Adventurers

* A naive player might decide from this that listening at
doors can provide a warning of danger in some cases. If you

f"* follow this theory, though, you may just be wasting a lot of
f effort, since the program might have taken just the word LIS

TEN as a command and ignored everything that followed it.
rTry this to see if it's really paying attention to the whole

command:

>LISTEN ZXCV
You hear nothing.

Now you know that for the LISTEN command, the pro
gram may ignore extra words. It's still possible that the pro
gram accepts the words AT DOOR but ignores nonsense; more
trial and error will be necessary to get a good idea of how it
handles your input. Check out other commands as well to see
if their objects make any difference.

If a command doesn't work, try rephrasing it. This is es
pecially important with adventures that handle complicated
commands, since they allow more possibilities. If a command
doesn't get a useful response, you may still be doing the right
thing; it's just a matter of stating what you want to do on the
program's terms.

In the northern wall of this cavern is a narrow hole, through
which you can see a small sack tied with a cord.

>TAKE SACK
The hole is too narrow.

INVENTORY
You are carrying:

A dagger
A lamp

>TAKE SACK WITH DAGGER
That doesn't work.

>HOOK SACK WITH DAGGER
pn You can't hook a sack.
/ >HOOK CORD WITH DAGGER

You catch the cord on the dagger and carefully lift the sack out.

p> Think of literary allusions. Many situations in adven-
t tures are drawn from mythology or from famous stories. If you

notice a situation that's similar to a story you know, think of
p« how something that happened in the story might apply. It
*• may even turn out that a key word from the story is all that

you need to make something happen.

113

Field Guide for Adventurers

This room contains a bust of Pallas on which a raven is sitting. '
>TAKE BUST

The raven snaps at you with its beak, and you pull your hand csra
back.)

>NEVERMORE

On hearing that ill-fated word, the raven takes to the airand ^
leaves the room. |
Get help. Although it's most satisfying to completely

solve an adventure without anyone's help, there may come a
time when you find yourself stuck. If this happens, you may
want to get a hint from a friend who's played the adventure
so that you can get through the difficulty and be able to do
the rest of the adventure.

If you can get your friend to give you a hint rather than
telling you outright what to do, then you can still have at least
part of the pleasure of solving the problem. There is an art to
devising subtle hints. Here are a few examples, based on earlier
situations in this chapter:
Q. I'm trapped in the shimmering room! Is there any way out?
A. Certainly. Just leave!

Q. Is there any way to get through the door with the steel plate?
A. I could come back with a cutting answer, but what you need is

hard to get.

Q. I'm getting nowhere rifling the Pottsylvanian Embassy. Is there
any way to get into the records room?

A. Don't believe everything that you read, but do read everything
that you find.

Other than people you know personally, one of the best
sources of help in adventure games can be found on the
CompuServe Information Service. One of the many bulletin
boards within the system belongs to the Game SIG (Special
Interest Group), which has a large population of adventurers.
Dropping off a message asking for specific help in an adven- \
ture will usually get you one or more useful responses, often
in the form of cryptic hints like those given here.

In addition, the Game SIG maintains a data base of re-]
views, hints, and even complete walk-throughs of a number of
adventures. The hints (which are often very cryptic) are good
for getting a gentle push in the right direction; the walk- "*]
throughs are a last resort when you've run out of patience.

114

I

I

Field Guide for Adventurers

Finally, the adventure publishers themselves often make
hints available. Sometimes these are packaged with the game;

p39 in other cases, you must buy them separately. Infocom's
"InvisiClues" are especially elaborate hint packages, delivered
with a special marker required to make the clues visible.

P But remember that you need never despair. Try all the
^ methods listed here, and add a few ofyour own to the list. If

all of them fail, then set the game aside and try later—or ask
for help without feeling ashamed, as long as you've given it
your best effort. Remember, very few adventures are intended
to be solved in a night.

115

' ill

How They Work
his chapter discusses the way adventure pro
grams actually do their work. The discussion
here will cover practically everything that
could go into a full-blown professional
adventure. But don't be intimidated by it.
Writing something in BASIC that handles a
reasonable number of commands and pro

vides treasure-hunting fun isn't nearly as onerous as writing
the equivalent of Zork.

But the same basic ideas are involved. If you go through
this chapter to get an idea of what's involved in what the pros
write, you'll get a feel for how to scale the concepts down to a
programming project ofa few weekends. Chapter 10 deals
specifically with that sort of project, but getting a broader pic
ture first is always helpful.

All adventure programs, simple or complex, have certain
basic features. A program need not be formally broken down
according to this list of features, nor do the names that I am
using here represent an industry standard. This breakdown is
simply intended to show what functions the program must
accomplish. These features are as follows:
• The command parser interprets the player's commands.
• Output routines tell the player what is going on.
• Action routines cause things to happen in the game world as

a direct result of the player's commands.
• Automatic routines cause things to happen because of the pas

sage of time or because of some event independent of the
player's actions.

These pieces of the program depend on an assortment of
F3 data structures. The major ones are listed below:

• Vocabulary lists give the words in the program's vocabulary,
grouped according to parts of speech.

P • The internal map itemizes locations that your character can
reach and the paths that allow access from one location to
another.

P^ • Object descriptors itemize various tools, treasures, and other
objects available to you. The descriptors indicate where the
objects are on the internal map, and they specify any distinc-

f3* tive characteristics the objects may have.

119

How They Work

• The character descriptor holds information about your charac
ter (such as location, inventory, and state of health).

The Parser
Any program that accepts free-format input has to have a
command parser. To parse a command means to break it down
into its word components and identify their syntactic
relationship.

Before going into the details of the parser, it's helpful to
review a little English grammar. A sentence has two parts: a
subject and a predicate. In a simple sentence like 'T go," J is
the subject and go is the predicate. In an imperative sentence,
which expresses a command, the subject is omitted. The sen
tence "Go!" is made up only of a predicate.

Not surprisingly, commands in an adventure program are
imperative sentences. This allows us to greatly simplify
grammatical structure and means that the program has to an
alyze only the predicate.

For the purposes of a game, the predicate can be consid
ered to have three parts: the verb, the direct object, and the
indirect object (or prepositional phrase). Take the sentence,
"Give me your gun." Give is the verb; gun is the direct object
(the thing being given), and me is the indirect object (the
recipient of the action).

You can also express the indirect object as a prepositional
phrase; the preceding example could have been expressed as
"Give your gun to me." The preposition to relates me to give.

An object (direct or indirect) or a prepositional phrase
consists of a noun, possibly modified by one or more adjec
tives. An adjective describes the thing named by the noun,
and—what is important for adventures—it can specify which
object you are talking about. If you say, "Give me the smoking
gun," then you are referring to one gun in particular (and not
the cold gun that might also be nearby).

There can be more than one object. Multiple objects can
be listed explicitly, one at a time; for instance, "Take the bell,
the book, and the candle." The word all or every can imply
multiple objects, as in "Take all the gems" or "Take
everything."

Just as a noun can be modified by adjectives, a verb can
be modified by adverbs. If you're afraid of being overheard,

120

How They Work

you might say (or whisper), "Give me the gun quietly." In that
case, quietly is the adverb modifying give.

r3 Beyond this basic structure, the only other grammatical
feature that an adventurer might encounter is a noun of ad
dress. This is just a noun added at the front to indicate whom

P" you're talking to; for instance, "Robot, fix the nuclear reactor."
This is enough grammar to get us where we want to go.

You won't be needing strange tenses, and you can ignore such
niceties as subordinate clauses. You don't have to care whether
there's a way to cleanly split an infinitive, or whether it's bad
to end a sentence with a preposition. If a parser can handle
the grammar described so far, it can do a very impressive job.

A parser operating on the command BURN RED BOOK,
for example, would do the work necessary to determine that
BURN is a verb, BOOK is the object of the verb, and RED is
an adjective modifying BOOK. It is also responsible for
recognizing meaningless input so that the program can com
plain to the player.

The parser takes the words of the command and converts
them to units of internal storage called tokens. The tokens are
passed to the action dispatcher, which calls appropriate action
routines, depending on what tokens it sees. The parser might
produce fewer tokens than the number of words it sees, since
it can throw words out or combine two words (for instance,
PICK UP) into one token.

The command parser is one of the most important parts
of an adventure program, since you can get frustrated very
quickly if you can't tell the program what you want to do. The
power of a command parser depends upon the size of its
vocabulary, the number of letters it uses per word, and the
complexity of the syntax it can handle.

The simplest sort of command parser has a list of verbs
f™ and a list of objects in its vocabulary. It simply checks to see if

the first word is a verb and the second word is an object, con
verts them to token form, and then calls the appropriate action

f™ routine. In fact, some programs dispense with syntax checking
altogether; in Pyramid 2000, for example, the verb and the ob
ject can occur anywhere in the command, together with any

f*3 number of noise words. Thus, you can say TAKE BOX or
L TAKE THE BOX or BOX THE TAKE with the same results.

Programs recognize a certain number of letters per word

v

121
7*153

How They Work

and usually just disregard the rest. Thus, if a particular pro
gram recognizes five-letter words, then INVENTORY, INVEN,
and INVENTION will all be equivalent. Truncating the words H
used keeps the size of the program down, since a smaller
number of bytes is necessary for every word in the vocabulary.
But if words are too short—and those with as few as three let- "^
ters are not uncommon—the parser can misinterpret them,
often with amusing or frustrating results. For instance, you
could drown if the program thought you were trying to SWing
an object when you were really trying to SWim.

Beyond the simple verb-object parser, it's possible to add
complexity a little at a time. A simple enhancement, found in
recent versions of Adventure, is using multiple objects with
certain verbs. This is particularly useful with the TAKE and
DROP verbs, since you will often want to pick up or drop sev
eral items at a time. This is just a matter of the parser
recognizing the conjunction and and expecting the word
following it to be another object, then constructing a list of
tokens to match the objects.

Other additions in recent versions of Adventure are the
uses of prepositional phrases and indirect objects. These allow
you to specify the object you want to use for an action (FIGHT
DEMON WITH PITCHFORK) or what your action will affect
(GIVE HAY TO HORSE).

The use of indirect objects and prepositional phrases be
gins to involve some sophisticated command handling, since
prepositions are among the trickiest elements of the language.
Consider the commands FEED SEED TO BIRD, FEED BIRD
WITH SEED, and FEED BIRD SEED. In the first two cases, the
parser has to recognize that the first noun is the direct object
and that the second one (the one after the preposition) is the
indirect object. It also has to record the preposition; otherwise
the action routines won't be able to tell whether you want the "^j
bird to eat the seed or the seed to devour the bird.

For the third case, the parser has to use the rule that
when a verb is followed by two nouns, the first one is the in- •"!
direct object and the second one is the direct object. It may
also create a token for WITH as the implied preposition.

Even trickier are the words that go with the verb to "^
change its meaning. In these cases, it makes sense to treat the
verb and the extra word as a single verb: for instance, KNOCK
ON, WAKE UP, PUT AWAY. The parser can remove the "1

122

|#AI

|p5U

How They Work

preposition and give the action dispatcher a single verb to
work with. WAKE UP becomes the same as WAKE; PUT

rAWAY can be translated to the equivalent verb STORE. The
parser has to be careful of word order, since PUT FUR COAT
ON and PUT ON FUR COAT both mean WEAR FUR COAT,

pa but PUT FUR ON COAT means something else entirely (al-
'- though I'm not sure what).

Adjectives are a little more straightforward, since they
normally precede the noun they modify. They can be strung
together (MOVE BIG UGLY RED BOX). But adjectives are use
ful only if nouns by themselves are ambiguous. If there is only
one box in the game, adjectives are unnecessary. But if there
are two boxes with different attributes, then the program must
determine whether BOX alone is sufficient. There might not be
any need for adjectives, since only one of the boxes might be
at your current location; but if both boxes are present, then an
adjective is required. The command parser can't determine by
itself whether the adjective is required; it's the job of the ac
tion routines to determine if the information was specific
enough.

Adverbs can be positioned at various places in a sentence.
If the adverb can be identified, it isn't too much of a problem
since it can be assumed to modify the verb. Adverbs modify
ing adjectives (MODERATELY HEAVY) would add a level of
subtlety that isn't likely to be needed. But some common ad
verbs look just like prepositions. This leads to such problems
as distinguishing between PUT SUIT ON and PUT SUIT ON
TABLE.

In general, the more parts of speech that the parser rec
ognizes, the more vulnerable it is to ambiguities. Zork HI, for
instance, includes a place mat among its objects. If you say
PLACE MAT ON TABLE, the program will complain that the

pa command doesn't contain a verb, since it regards PLACE as an
- adjective.

An example might help to bring all these points together.
r Consider a relatively complicated command, such as GIVE

THE LITTLE PIG TO THE BIG BAD WOLF QUICKLY. Let's
see how a parser might handle this command.

Assume that the parser doesn't allow anything to precede
the verb. This means that the first thing in the line has to be
the verb, or the command is invalid. The first step is easy,
then: GIVE is the verb of the command.

123

How They Work "^

Next, THE is just a noise word that the parser lets you
throw in to make your command look more like real English.
It just skips over it.

LITTLE is an adjective, so it has to modify a subsequent
noun. When PIG is found, the parser takes it as an object of
GIVE, with LITTLE modifying PIG. At this point, the parser
can't tell whether PIG is the direct or indirect object of GIVE;
if the sentence were GIVE THE LITTLE PIG SOME FOOD,
PIG would be the indirect object.

TO is a preposition, so what follows has to be the indirect
object or a prepositional phrase. Therefore, PIG can now be
identified as the direct object.

Throwing out another THE, the parser then finds the
adjectives BIG and BAD, followed by the noun WOLF. So
WOLF is the indirect object of GIVE, with BIG and BAD being
its modifying adjectives, and TO being the preposition that re
lates the indirect object to the verb.

Finally, QUICKLY is an adverb, and as such all it can do
is modify the verb. So the parser will create tokens for the
following elements:

• The verb (GIVE), modified by an adverb (QUICKLY).
• The object (PIG), modified by one adjective (LITTLE).
• The indirect object (WOLF), related to the verb by a prepo

sition (TO) and modified by two adjectives (BIG and BAD).
A common way to express the grammar of programming

languages is using the Backus Normal Form (BNF). Figure 9-1
shows how the grammar of an adventure could be expressed
in BNF. For those not familiar with the notation, a simple
example should help to give the idea. Take the definition:
basic-command ::= predicate object [adverb]

This line defines what a basic-command is. It tells us that
a command consists of a predicate followed by an object, op
tionally followed by an adverb. The brackets indicate that an
item is optional. An item in braces, such as {adjective}, can be
repeated any number of times or not used at all. A vertical bar
(I) is used to separate multiple alternative definitions of a term.

A strict BNF definition goes all the way down to defining
names in terms of their individual letters. The one used here
doesn't involve that much painstaking detail; completely de
fining the language would be contrary to the spirit of
adventuring anyway. Besides, most of the undefined terms

124

fssm]

r How They Work

Figure 9*1. Expressing Adventure Game Grammar in
BNF Form

command ::= basic-command [adverb]
basic-command ::= predicate object I

predicate indirect-object object I
predicate object preposition indirect-object

predicate :: = verb Iverb short-adverb
indirect-object ::= object
object ::= {adjective} noun Iobject AND {adjective} noun

should be self-evident; for instance, the term short-adverb in
dicates such words as UP, DOWN, AWAY, and so on, which
are used to change the meaning of a verb.

By simplifying or omitting definitions, you can create a sys
tem ofgrammar for simpler adventure programs. The simplest
grammar, and the most common, needs just one definition:
command ::= verb noun

This grammatical framework also makes further enhance
ments easy to manage. For instance, allowing multiple com
mands separated by the word THEN can be expressed by
adding the definition:
compound-command::= command {THEN command}

Putting a message on a terminal or screen is basically a
simple matter, but it is complicated by a couple of things.
First, it would be nice to keep players from cheating by dump
ing the program to a printer and looking for any obvious text
strings. Second, computer storage has to be used economically,
so it would be helpful to find a storage method that does bet
ter than using one byte per character.

In order to prevent cheating, the program may encrypt
p=» the output messages. There are many ways known to do this

that require little overhead. It may be possible to break the
encryption scheme, but if you're going to go to that much

ym work, you might as well solve the adventure legitimately.
(. Reducing storage requirements is a more complicated mat

ter. One way to do this is to pack three characters instead of
jnb two into two 8-bit bytes. The drawback to this method is that
/ it allows only 40 different character codes to be stored (com

pared with 256, if 8 bits per character are used). This doesn't
« give enough characters to distinguish upper- and lowercase.

125

How They Work

Another way to compact text is to take advantage of the
fact that only 128 of the 256 possible character codes in a byte
are defined in the ASCII character set. The remaining 128
codes can be used to represent common words or groups of
letters. These groups must be stored somewhere in the pro
gram so that it can translate the codes, but they need to be
stored only once rather than every time a message needs them.
This method can, of course, be combined with encryption.

Timing can also be a factor to consider in output routines.
Some adventures—for instance, Adventure International's
Strange Odyssey—make good use of programmed delays to add
suspense to an event or to call your attention to the fact that
something has slowed down.

Describing a World
Before seeing how an adventure program makes its simulated
world respond to your commands, it's worth taking a look at
the data structures that describe that world. The main parts of
the description are the internal map, object descriptors, and
character descriptor.

The main purposes of the internal map are to put an
identifying tag on each location and to keep track of the
connections among them. These locations are generally called
rooms even though they may not be constructed or even en
closed. An obvious way to store the connections is to have an
Xby Yarray of room numbers, with Xbeing the number of
rooms and Y being the number of different motion commands
(e.g., NORTH, UP, etc.). Then, CONN(20,3) would contain the
number of the room reached by going in direction 3 from
room 20.

For every room there is a text description and possibly a
graphic image to identify the room for you. Often there are
two descriptions: a long one that is given when you first enter
a room or when you type LOOK, and a short one when you
return to a room you've already visited.

Each room may have some internal descriptive infor
mation associated with it. Many adventures characterize rooms
by whether or not they are illuminated; the ones that aren't
won't be described to you (and may even be fatal!) unless you
bring your own light source. The room may also be under wa
ter (in which case you'd better not stay too long) or accessible
to certain creatures. And if the program is going to decide

126

How They Work

whether to give a long or a short description, it has to remem
ber if each room has been visited yet or not.

P Specific exits from a room may also have their own
characteristics. A passage may be too narrow to let you carry a
bulky object through. You may not be able to leave unless a

P door has been unlocked and opened. Using the exit may trig
ger a trap unless you've taken precautions.

The object descriptors indicate where an object is and
what its characteristics are. The most important characteristic
of an object is whether it is fixed or movable. If the object is
fixed, no power on earth can change its location; this fact can
be convenient for letting the program do certain things with it.
Saying that an object is movable, though, doesn't necessarily
mean that you can just pick it up and carry it off. The way to
move something may not be at all obvious.

Doors, gates, and the like are an interesting class of fixed
objects, since they are located between two locations rather
than in one of them. If you open, close, or lock a door, the
change in its state must be reported in the descriptions of both
rooms.

Objects may act as containers that hold other objects or as
surfaces that support them. This relationship can be carried
out on multiple levels; a table might support a box, which
contains a bag, which contains a book and a bookmark.
Realistically, a container has a limited capacity, so the program
must either consider the sizes of objects or else have a list of
specific objects that can go in a container. The number of ob
jects that a container can hold is also limited. Finally, two ob
jects can't contain or support each other.

Some objects present special problems because they aren't
in just one place at a time. Water is the most common ex
ample. A cave complex might contain a pool, a lake, and a

P stream, all of which contain water. But if you type TAKE
WATER in one of these places, it won't work for the program
to check to see if you're in a room that contains the object

P* WATER. Instead, it has to determine if the room contains a
" water source and, if it does, create the specific object WATER

(presumably in a container that you have handy). If you later
P type POUR WATER, you usually can't get it back into the bot

tle—so the specific object WATER has to be destroyed until
the next time you get it from a water source.

f33 Other characteristics of objects depend on the particular

127

How They Work

adventure. For instance, color, size, and so on can be used to —
distinguish otherwise similar objects. These characteristics
usually have no other effect on the game, unless you're wear- p
ing a red cape and enter a room housing a bull. The
characteristics of an object may also specify what you can do
with the object (whether you can eat it, drink it, open it, and p
so on). The action routines make use of these characteristics.

The remaining data structure to be considered is the
character descriptor. Two items are basic enough to be in
cluded in virtually every adventure: where your character is
and what he or she is carrying. Another common factor is the
state of the character's health, which determines how much
more hardship he can take before dying, and which may also
affect his current ability to take various actions.

There may be distinctions that specify how the character
is carrying an object. He may be wearing it (for instance, a
helmet), in which case it might not count against the number
of objects he can carry. In Empire of the Over-Mind, the charac
ter can hold only one object out of several that he is carrying.
The only one he can actively use is the object he is holding,
and he might not have time to reach for another one in a criti
cal situation.

If there is more than one character under your control (as
in Suspended), or if there are multiple players, each controlling
a character, there must be a character descriptor for each one.
Interaction between characters can occur when they are in the
same room.

Action Routines
Now we come to the heart of the matter: what happens in the
imaginary\world created by the program. The factors involved
are what your character does and what independent agents
and other forces in the game do. These correspond to the ac- P
Hon routines and automatic routines in the program.

As you may remember, the parser takes the words that
you type for your command and translates them into tokens. p
The action routines take these tokens and convert them into
action in the simulated world of the adventure; they, in turn,
invoke an output routine to tell you what has happened. For p
instance, if you type TAKE COIN—and nothing unusual is in
volved in this action—then the action routines will remove the

128

How They Work

object COIN from the list of objects in the room and add it to
your inventory. Other things may happen instead. The coin

P might not be in the room, in which case the action is impos
sible. You might be so heavily loaded that you can't carry an
other nickel, in which case it's again impossible (but with a

P different output message required to explain the reason). Or
the coin may be linked by a magic spell to another object in
your inventory, causing something entirely unexpected to
happen.

Action routines draw no clear-cut distinction between
valid and erroneous commands. Every command causes some
thing to happen, even if it's just putting out a message. Some
messages may be considered error messages (for example,
"Don't be ridiculous!"), but even an error message might give
useful information. If the action is impossible, the message
might explain why; or in the case of an EXAMINE or READ
command, getting a message might be the only reason you en
tered the command. The strongest distinction that can be
made is that some commands actually make something hap
pen, with permanent effect, while others just produce output.

The more complicated the commands are, the more
complicated the action routines have to get. In the case of a
simple verb-object adventure, command handling is fairly
straightforward.

The action routines are entered through a top level rou
tine that we can call the action dispatcher, which determines
what particular action routine to invoke. Usually, this depends
on the verb. But special circumstances may make the dis
patcher override the normal action routine for a verb (in Zork,
for instance, if the character is in a vehicle). This is, in effect, a
second dispatcher that determines what commands are al
lowed in the special situation. Some commands that are nor-

P mally allowed, such as JUMP, might be impossible or fatal in
the boat. Eventually, though, the program will call some ac
tion routine for the verb, whether it's the usual one or some-

P thing unique to the situation.
The action routine for a verb first has to check whether

the parser gave it an object in the command. If there isn't one,
P but one is required by the verb, then the action routine has to

issue an error report and takes no action. If the verb doesn't
need an object (for instance, WEST, SCREAM), it can go di-

P" rectly to determining what the effect of the action will be.

129
pm

How They Work

If there is an object, the action routine must determine if
you can get at the object. An object that has a specific location
must either be in the room with your character or in your in- p
ventory for you to be able to do anything with it. (For some
verbs, this might not be strictly true. It can make perfect sense
for you to EXAMINE or ASK ABOUT an object that you can p
see at a distance.) Other objects, such as air, are everywhere
and always available. So are directions, which are treated as
objects in giving commands (GO SOUTH).

The next step, once the object is determined to be legiti
mate, is to see how the verb applies to the object. This is often
just a matter of checking an appropriate entry in the object
descriptors. If the verb is EAT, the action routine must check
to determine if the object is designated as edible. For TAKE, it
must check to see if the object is movable. If the action is in
applicable, the result will be just a message.

The possibility of applying the verb to the object may de
pend on other circumstances, such as inventory and location.
Taking water requires a bottle; attacking an enemy is possible
only if you're carrying a weapon. The room itself may affect
the outcome of the action; waving a rod might have no effect
in one place but could release a magic spell somewhere else.

If the parser allows commands more complicated than just
a verb and an object, the action routines have to be able to
handle those complications. If adjectives are allowed, the rou
tine must determine if the command uniquely describes an ob
ject. If a room contains a short rope and a long rope, and the
player types TAKE ROPE, the routine has to ask for more
information.

Some programs take one of two short cuts with adjectives.
For instance, they may ignore local information in deciding
whether an adjective is needed. In Bedlam, there are a green
key and a red key. Even ifonly one of the keys is in sight, you P
have to tell it which key you mean. On the other hand, there
are programs like Empire of the Over-Mind that will make an
arbitrary choice if you don't give enough adjectives to indicate p
which object you mean. Asking for too much information is
the safer route, even if it's irritating; at least the program
won't do something you didn't want it to do. P

Infocom's adventures let you enter additional information
in ambiguous situations, rather than making you enter the
whole command over again. The dialogue might look like this: \tmm

130

lircsTO

ffflstb

How They Work

>TAKE ROPE
Which rope do you mean, the long rope or the short rope?

>LONG
Taken.

When multiple objects occur, the action must be repeated once
for each object specified. If the multiple object takes the form
of ALL (something), then the program has to check each avail
able item to see if it matches that "something."

If indirect objects and prepositional phrases are allowed,
the action routines have to check for the validity of both ob
jects. After that, the routine for the particular verb has to
determine if an indirect object or prepositional phrase is al
lowed, required, or forbidden.

A prepositional phrase is like an adjective in that it nar
rows down a possible range of choices. The difference is that it
affects the action itself rather than the object. For example, if
the command is FIGHT VAMPIRE, a prepositional phrase can
specify what weapon you want to use. If you have only one
weapon, no qualification is needed, so the routine should con
sider the two-word command sufficient. But if you're carrying
both a sword and a stake, for instance, it needs a prepositional
phrase to tell just what you want to do.

The preposition that introduces the object has to be
appropriate to the action. FIGHT VAMPIRE TO SWORD
makes no sense, and the routine for the verb FIGHT must re
spond accordingly. Usually, only a few prepositions make
sense with any given verb.

If the parser follows the model described in this chapter,
prepositions will always introduce an indirect object or phrase,
never a direct object. The reason for this is that the parser
takes any preposition before the direct object and makes it part
of the verb. In the command SWING OVER PIT WITH ROPE,
SWING OVER is the verb, and the parser gives it to the action
routine as a single unit.

Adverbs are similar to prepositional phrases in that they
change the meaning of verbs. If you type OPEN DOOR in a
murder mystery, the result might be, "Mr. Jenkins is in the
room." Typing OPEN DOOR QUIETLY might get you the
more useful response, "Mr. Jenkins, who has not noticed your
quiet approach, is writing in a pocket notebook."

131

How They Work

Automatic Routines
Further variations in the adventure are provided by events ae>
that are essentially out of your control. A lamp may run out of .. I
power after a certain amount of use. A bomb that you're try
ing to defuse may explode at a certain time, taking you with it, im
if you haven't accomplished your task by then. Another - I
character may be running around the dungeon trying to frus
trate you. These events are handled by automatic routines,
also known as daemons (a term that originated with the
Multics operating system to describe programs that run in
dependently of any user).

Daemons may be set in motion at the beginning of the
adventure, or they may be triggered by some action the
character performs (such as entering a certain room). They run
each time the player makes a move, although they may not
have any visible effect for some time. Asimple daemon might
just count moves that the player makes and cause something
to happen—perhaps making the sun set—after a certain num
ber of moves. A complicated one might change something
after each move.

One of the most complicated types of daemons is one that
manipulates an adversary character (maybe even a demon).
This almost requires keeping a complete second character
descriptor. The daemon has to keep track of where the ad
versary is and determine how he moves each turn. If the ad
versary is involved in combat, it must keep track of his state of
health. If he picks up objects from rooms or steals them from
you, it has to keep track of his inventory. If he enters your
presence, it has to tell you what he's doing. It may even let
you overhear him if he's in a nearby room.

Combat, Wounds, and Recovery m
In the borderland between the automatic routines and the ac- •
tion routines, your character will come into conflict with his
adversaries. When this happens, the program must determine
the outcome of the combat. Who will win—you or the mon
ster? (Following the terminology established by Dungeons and
Dragons, I'll use the word monster here to mean any creature,
human or otherwise, that opposes your character.)

Combat in adventures can be utterly simple or extremely
complicated. The simplest kind of combat is the kind in which

132

How They Work

you only need to give the right command to rout your oppo-
fm nent. Figuring out what the command is may be devilishly
1 difficult, but once you give the command, the program simply

eliminates the monster and congratulates you on your clever-
_ ness. For instance, if you meet the Wicked Witch of the West,
[it may be necessary only to THROW WATER (provided you

have some water) to wipe her out.
Unfortunately, the monster may be able to dispose of you

just as easily. You have to have some way to defeat him, of
course, or there's no point to the game. But it may happen
that if you don't defeat him immediately, or if you meet him
in a certain place, then he will determinedly rob, kill, or other
wise inconvenience you.

One step toward greater complexity is to add a random
factor. The correct command may be simply to FIGHT the
monster, but it may work only 50 percent of the time (and the
monster may fight back with a 30 percent chance of success).
This can allow a battle to go on for several rounds before only
one survivor remains.

Only a simple-minded view of combat would leave the
loser defeated and the winner unscratched. In any real fight,
even the winner should come out battered and bruised. One
way to simulate this is to assign each character a certain num
ber of "hit points" and to let each successful attack take one
or more hit points away. Then, the loser is the one whose hit
points fall to zero first.

Another way to make combat more realistic is to provide
an assortment of weapons, some of which are more effective
than others. An ax might have a low probability of hitting a
target but do a lot of damage when it does; a sword might be
more likely to hit but do less damage. The effectiveness of the
weapon might even vary with the monster it's being used

(against.
When you use a weapon in combat, you may run a small

^ risk of breaking or dropping it. In that case you must pick it
[up, switch to another weapon (if you have one), or get out in

a hurry.
If you survive the battle, you may find yourself tired and

[bleeding—in other words, down to a very few hit points. A
command such as DIAGNOSE or HEALTH will tell you just

p. how badly off you are. Then you have to recover from your
F" wounds. Recovery may simply be a matter of time, in which

JflSBBl
133

How They Work

case you just have to avoid fighting long enough to heal. On
the other hand, you may need to use a healing potion, invoke
a healing spell, or even journey to some place of healing—but
taking the necessary actions may require further travel and in
volve the risk of getting beaten up again.

But what happens to your foe while you're off licking **^
your wounds? The most realistic answer would be that your
adversary should heal in a manner similar to your own. Some
adventures provide that whenever you encounter a monster,
he is presumed in perfect health. You can wear him down as
long as you continue to fight—but if you leave and come
back, he will be fully recovered.

Language Considerations
Obviously, writing an adventure program can be a com
plicated task if the program is going to do much. This leads to
an important question: What is a reasonable language for writ
ing adventures?

The most popular language today, without question, is
BASIC. But BASIC has restrictions. The line numbers make it
difficult to expand a program in the middle or to treat one
piece separately from the rest. The organization of BASIC pro
grams into separate statements keeps programs from having
any readable structure; you can't, for example, have an IF-
THEN construction followed by more than a line's worth of
statements to be executed if the condition is true. And BASIC
has no way ofdescribing groups of data other than with arrays.

What are some of the alternatives? Broadly, there are two
classes: assembly language and higher-level languages.

In assembly language, the statements correspond to in
dividual machine instructions. Each instruction has a mne
monic that identifies its function. For example, the instruction ,—,
that adds two numbers might have the mnemonic ADD.]
Assembly language lets the programmer use the full power of
the computer. Programs written in assembly language will _
generally take up less memory and run faster than any other ^
programs.

But writing programs one machine instruction at a time is «
tedious, and it leaves lots of opportunities for programmers to ^
introduce bugs into their code accidentally. Also, an assembly
program can't be moved to a computer that uses a different „_
processor, but must be completely rewritten in the assembly j

134

CSf*3

L

How They Work

language of the new machine. For these reasons, an assort
ment of higher-level languages have been devised. Some, like
BASIC, use an interpreter to run programs. An interpreter is a
program that takes each line of the user's language and exe
cutes it. Others use a compiler to translate the user's program

P into machine language. Interpreted programs save the pro
grammer a step, since they don't have to be translated; on the
other hand, they run more slowly. Compiled programs can be
nearly as compact and as fast as assembly language programs
if the compiler is a good one. Any language can be either
interpreted or compiled, but most are designed for one use or
the other.

Popular compiler languages include Pascal, FORTRAN,
and C; newcomers that may soon gain equal popularity are
Ada and Modula-2. FORTRAN is the oldest living higher-level
language and is used mostly for scientific and mathematical
programming. It has little to recommend itself for text-inten
sive programs like adventures. Still, the original Adventure was
written in FORTRAN, and so was the translation of Zork called
Dungeon.

The other languages mentioned above all have certain
features in common. They allow programs to be organized into
subroutines and blocks, which lets the flow of a program
correspond to its readable structure. They provide facilities for
organizing data in logically related groups (called records in
Pascal and structures in C), even if the data are of different
types. These capabilities make the job ofwriting a complex
program much easier, since they allow breaking the program
and data into manageable pieces.

A more esoteric language, but one worth considering, is
LISP. LISP programs don't look at all like programs in most
other languages; to the uninitiated (and often to the initiated

P* as well) they look like masses of parentheses. But LISP has
'- some very distinctive features. Its basic data structure is the

list, which is simply a series of data items of any kind. A list
p"» can consist of lists, and programs themselves are lists. Items
(can be added to a list at any time; this is convenient for

describing variable sets of objects, such as the items in a room.
p Another useful feature of LISP is the property list, which lets
'• such properties as the adventurer's inventory and state of

health be associated with an item. LISP is usually an inter-
i-« preted language, but compilers have been written for it.

135

How They Work

The original Zork was written in MDL, a greatly extended
version of LISP. The resulting product is striking evidence of
how much the right language can help the programmer.

Trends
With the range of options being as wide as it is, you can easily
see why some adventures are much more sophisticated than
others in their ability to handle your commands and make
things happen around your character. An adventure that runs
in a small amount of memory just won't have room for that
much programming. But even if a lot of memory is available,
there's a trade-off between using that memory for the program
and using it for data structures.

For several reasons, we can expect to see future adven
tures grow in sophistication. The amount of memory in the
typical home computer is steadily growing. The 16K "stan
dard" main memory is giving way to 64K or even 128K—and
by the time you read this, even more memory may be the
norm. Increasingly powerful processors are also moving into
home computers, and compilers for programming languages
such as C and Modula-2 are becoming available as well. Better
processors and languages will ease the programmer's job in
creating fancier parsers and action routines. Floppy disk drives
are getting cheaper, making it more feasible to get away from
tape-loaded programs that have to fit everything into memory
at once.

Finally, buyers' expectations will rise. When players see
what Cyborg or Zork can do, they aren't likely to remain sat
isfied with adventures that limit them to two-word sentences.
The more complex an adventure program gets in terms of
what it can handle, the simpler the player's job will be. The
ideal would be a program that could handle any grammatical
command or question and come up with a reasonable re
sponse. If this sort of program existed, the player could deal
with it as easily and flexibly as with a human gamesmaster in
a Dungeons and Dragons game.

Getting to that point within the next century might be too
much to hope for. But you can be sure that the state of the art
will keep advancing. *•*)

136

C5SO

pSI

ipsa

Doing Your Own
f you enjoy playing adventure games and have
written a few computer programs yourself,
you might want to try writing one of your
own. It isn't that hard, particularly if you
limit your initial goals in a reasonable way.

Complex command handling is useful,
and you should expect it from the pro

fessionals, but you can go a long way with the classic two-
word format. Having a dozen events happening behind the
scenes makes the adventure seem more like real life, but not
every scenario needs such activity. What is important is to
have a series of challenges and events that will keep anyone
who plays your adventure working at it until it's solved.

The key to a good adventure is its puzzles. Puzzles that
are too easy, too hard, or outright arbitrary will leave the
player bored or frustrated. On the other hand, puzzles that the
player can solve after a reasonable amount of cogitation will
give him or her the satisfaction ofbeating a worthwhile
opponent.

The puzzles should be somehow interconnected. Other
wise, you don't have a single big game but a lot of little
games. The whole adventure should have some kind of
theme; it could be a search of an island, a quest for lost trea
sure, a murder mystery, or anything that relates all the puzzles
to a common idea. Some of the puzzles should provide tools
for solving other puzzles. In many of the best adventures,
everything leads to a single goal, and every puzzle solved
(except for a few possible false leads) is a step toward the ul
timate solution.

The player should have a sense of progress. If the adven
ture is a treasure hunt in which each treasure counts for
points, this comes naturally. But if the object of the adventure
is a single goal, the player needs some sense that he's getting
there. He should be able to see that he's narrowing down the
possibilities, getting close to the place he's trying to reach, or
otherwise making progress.

The command handling doesn't have to be spectacular,
but it shouldn't make the players want to pull out their hair
(or yours). An adventure that handles a good number of verbs

139

Doing Your Own

is much easier to get along with than one that doesn't. Pro
vide a few synonyms for common actions; some players might
find GET more natural than TAKE, or they might think of
MOVE rather than PUSH. Throw in a few verbs that do noth
ing but elicit a standard message (for instance, Eeeeeeek! as a ^
response to SCREAM). It doesn't take much programming ef- }
fort, and it gives the player a better chance of seeing a positive
response to his commands.

Adventure Programming
This chapter is aimed at people with some experience in com
puter programming. It assumes that you are familiar with
BASIC, that you have written a few programs, and that you
are familiar with concepts like strings, bits, and arrays.

Writing an adventure program requires the same kind of
skills and techniques as doing any other sort of computer
programming. While this isn't a book on the art of computer
programming, one point does need to be stressed: design first
and code afterwards. It's been said many times, but plunging
right into the code without a plan will make the job much
harder than it has to be. The limitless possibilities of an
adventure make this rule especially important.

Designing an adventure really begins with deciding what
you want the game to do. How many rooms will it have?
What objects will be in them? What verbs will the game
handle? You may change your mind about some of these
parameters once you see how easy or hard they are to code,
but you should start off with an initial version of how you
want the adventure to play.

Consider what special features you want. Are there other
characters in the adventure? If so, what will they do? Are
there different objects with the same name (such as buttons to ~
push in different rooms)? Does anything depend on how)
many turns have passed?

Next comes the design of the program itself. The classic «.
tool for program design is the flow chart, but my own pref-]
erence is to design by writing pseudocode. Pseudocode is a pro
gram description that uses the structures of a programming e^
language like Pascal or C, but fills out the structures with gen- j
eral statements of intent rather than program statements. A
piece of pseudocode for handling a room description might re- —
semble that shown in Figure 10-1. |

140 ___

B5n3^3

Doing Your Own

Figure 10-1. Pseudocode for a Room Description
if torch is lit or room is illuminated

{print room_description_array(room);
for each object

if item_location_array(object) = room
print object description;

else print "It's too dark to see."

This sample illustrates a few points about the pseudocode
style that will be used here. Long, explanatory variable names
are used. Braces are used to indicate blocks of code that are to
be treated as a unit. Indentation is used as a further guide to
how blocks of code are organized.

The program should be broken down into various modules,
with each one designed separately. This is especially true if
you're writing in BASIC, which has no built-in modular struc
ture. As a matter of mental economy, each piece of the pro
gram should be small enough for you to understand as a unit.

You should decide early in your design what variables
and data structures you need, since these are what hold all the
modules together. Group the variables and structures accord
ing to the major functions that they serve, such as map, object
descriptors, and so on.

Throughout this chapter, I'll be giving specific advice on
how to use BASIC for adventure writing. The reason for this is
simply that BASIC is the language most often available to
microcomputer users and the one that most users know. There
are definite advantages to writing adventures in a more struc
tured language, such as C, Pascal, or Modula-2, but if you're
using one of those languages, then you probably have enough
programming experience to translate the concepts from BASIC.
from BASIC.

Now let's take a look at the pieces of an adventure and
see how to design each one to create a simple but exciting
adventure.

The Main Loop
The program will consist of two parts: initialization code and
the main loop. The initialization section dimensions arrays,
reads data, and gives initial values to variables. Once that is
done, the main loop runs until the adventure ends one way or
another.

141

Doing Your Own

The major functions of the main loop are to present the
room descriptions, accept and parse a command, execute the ^,
appropriate action routines for the command, and execute any _J
automatic routines that are required. The overall flow of the
program is shown in pseudocode in Figure 10-2. ^

Figure 10-2. Overall Program Flow in Pseudocode
initialize;
while adventure not over

{if room description required
describe room;

input and parse command;
execute action routines for command;
execute automatic routines;
}

The Parser
If all that the program expects is a verb and an object, the
command parser is pretty simple. It has to take a line of input
and end up with two numbers, representing the verb and the
object. These numbers, called the verb token and the object
token, will be used for dispatching to action routines and
indexing into arrays.

The first step is to get a line of input and extract two
words from it. This job is easiest if your BASIC interpreter
supports the LINE INPUT statement. LINE INPUT accepts
anything the player types as a single string. INPUT might re
spond with unwanted messages, such as "Extra ignored," if
the player types in certain characters. The parser should be
flexible about spaces, letting the player type extra spaces be
tween words or at the end of the command. The pseudocode
is given in Figure 10-3.

The next step is to convert the two words into the verb }
and object tokens. To do this, the parser has to look up each
word in an array of recognized words. Let's call these arrays ,_,
the verb array and object array. To save space, you may want j
to truncate all commands to a fixed number of characters.
Truncation also saves the player some typing and provides a ~
few synonyms for free; for instance, if all commands are trun- ^
cated to five letters, then either STREAM or STREAMBED will
be recognized as the same word. In this case, the words in the

142

Doing Your Own

Figure 10-3. Parser Pseudocode
pa first_word = "";
I second—word = "";

flag = 1;
while characters remain to be processed

j*81 {get next character;
if character = space

{if first_word = ""
ignore character;

else if second_word = ""
{flag = 2;
second—word = character;

}
else exit;

}
else if flag = 1

append character to first—word;
else append character to second—word;

array must be stored in truncated form, and the parser must
chop off the words in the command to the same length.

After truncating the words of the command, the parser is
ready to look them up. The parser starts by going through the
verb array and comparing each string in turn to the first word.
If a match is found, this yields an index. This index is then
used as the index into another array, called the verb token
array, to get the number which is the verb token.

Suppose, for example that the verb is LOOK. The parser
goes through the verb array until it finds the string LOOK. If it
finds it as the fifth element in the verb array, then the fifth
element of the verb token array is the verb token.

Several different elements of the verb token array could
rhave the same value; this corresponds to having different

verbs that are treated identically. For instance, GET and TAKE
might lead to the same verb token. Suppose these are the

F" sixth and tenth elements of the verb array. Then the sixth and
' tenth elements of the verb token array would have the same

value. This permits the program to treat both verbs identically.
p3 The same thing happens with the second word. The pro-
• gram looks it up in the object array. This yields an index,

which it uses as an index into the object token array to obtain
pa the object token.

fSB*

143

Doing Your Own

It's possible, of course, that the command has only one
word in it. In this case, the object token should be set to a null
value, such as 0or -1, to indicate that there is no object. ^

If you're willing to do without synonyms, you can save a —
step and use the index into the verb array as the token, in
stead of using that index to look up the token in another
array. The "Tower of Mystery" program presented in this
book uses that shortcut with objects.

If either of the words isn't matched in the corresponding
array, then the command is invalid. At this point, the parser
should issue a message indicating which word it couldn't rec
ognize and then ask for another command.

Unrecognized objects might be acceptable, though, for
certain verbs. The verb SAY (or TYPE in the Tower program)
could legitimately be followed by anything. In this case, the
parser must set the object token to a value that stands for gen
eral nonsense. The pseudocode for getting from the two words
to the two tokens is shown in Figure 10-4.

Figure 10-4. Pseudocode for Getting Two Tokens from
Two Words

truncate first—word;
truncate second—word;
for i = 1 to length of verb_array

{if verb—array(i) = first—word
verb—token = verb—token_array(i);

if no match found
report error in first—word;

if second—word = ""
object—token = 0;

else {for i = 1 to length of object—array
{if object—array(i) = second—word

object—token = object_token_array(i);

if no match found
if verb accepts any object

object—token = nonsense value;
else report error in second—word;

SE!a

}
(fijfcss^

144

RffiSIQ

Doing Your Own

It may be tempting to try for more sophistication by
allowing three-word commands with adjectives. Certainly, it
would be simple enough to provide an adjective-token-look
up scheme along the lines of the treatment of the verb and ob
ject. The problem is that adjectives are useful only if the
program has multiple objects that can be referred to with the
same object name. Doing this would require a more sophis
ticated object-handling scheme than the one that's going to be
presented in this chapter.

Describing a World
Before getting into what to do with the commands, we have to
decide on some structures. These include the internal map,
which describes the rooms, and the object descriptors, which
describe the objects found there.

Rooms. The starting point is the collection of rooms. Each
room needs a number to identify it. Once you've drawn up a
map for your adventure, number the rooms from 1 to however
many rooms you have. Any order will do, but it's convenient
to use 1 for the room the character will start in. If some rooms
are going to have special properties, it would be a good idea
to give them low numbers for ease of reference.

To describe the rooms, the program needs an array of
room descriptions. If you're willing to limit these descriptions
to one line each, then an array of strings indexed by room
numbers will do the job. The obvious name for this array is
the room description array.

Another array is needed to describe the interconnections
among the rooms. Let's call this array the access array, since it
controls access to rooms. This is a two-dimensional array. The
first dimension is the number of rooms; the second dimension
is the number of different directions in which the character
can go.

In order to look up a direction in the access array, direc
tions have to be translated into numbers. Let's say that the
directions north, south, east, west, up, and down are num
bered respectively as 1, 2, 3, 4, 5, and 6. If the access array is
named AC, then AC(6,4) would be the number of the room
reached from room 6 by going west. If the character can't go
west, then this element would be 0.

Notice that this scheme allows one-way passages if the

145

Doing Your Own

game requires them. If room 9 is west of room 10 and the char
acter can go back and forth between them, then AC(9,3) would
be 10 and AC(10,4) would be 9. If AC(10,4) is changed to 0, *"]
though, the passage allows movement only from west to east.

Usually you will want to keep track of such conditions as
illumination that are true in some rooms but not in others. A ^J
useful structure for this purpose is a room flag array. A flag is
simply a bit that indicates whether or not some condition is
true. Most microcomputer systems can store 16 bits, and there
fore 16 different flags, in an integer. Individual flags can be
set, tested, and cleared in an integer by using the Boolean op
erators AND, OR, and NOT, provided these operators work
on a bit-by-bit basis in your system.

Some BASIC interpreters don't support bit-by-bit Boolean
operations. If yours doesn't, you'll have to use a separate array
for each different flag. If you aren't sure, type PRINT 15 AND
40. If the result is 8, then you're all set. If it's 1 or —1, then
you'll have to use one array per flag.

Suppose you need three flags to say, respectively, that the
room has its own light, that magic works in it, and that water
is present. These flags must all be powers of 2. Let's give them
values 1, 2, and 4 respectively. You should give names to
these flags, so that it's more obvious what references to them
mean. Somewhere near the top of your program, you would
have a line such as the following:
20 LT = 1:MG=2:WT=4

If the room flag array is called RF, then you would test for the
presence of water in room RM with the statement:
2660 IF RF(RM) AND WT THEN...

If the lights go on in the room, the appropriate statement
would be:

3220 RF(RM) = RF(RM) OR LT

And if magic suddenly becomes useless, the statement is:
4330 RF(RM) = RF(RM) AND NOT MG

One of the flags might indicate whether the character has
previously seen the room or not. This is useful if you have
two room description arrays, one with the full description and
one with just the name of the room. Checking the flag would
let the program give a long description the first time the

146

C5em&3

(355*1

Doing Your Own

'- character goes into the room and a short description after that.
In addition, you may need some special variables for

I"3 situations that apply to just one room. These might include
' the number of times the character has entered a certain room,

the presence of a hazard in another room, or whatever is
f° needed for the situation. There isn't much to be said about
• these; just use them as necessary. In some cases, treating the

condition as an "object" in the room might be the easiest way
to handle it. For instance, you could make a room noisy by
putting the object "noise" in it. This falls under the next topic,
though, so let's move on.

Objects. Once the rooms are taken care of, the other ma
jor set of data structures is the one that deals with objects. The
structures here will be arrays indexed by object tokens.

Objects include much more than simply things that can
be touched and picked up. The kinds of objects even a simple
adventure might deal with include the following:
• Objects that have a specific location and can be carried.
• Objects that have a specific location but are normally

immovable.
• Objects that have a specific location and can't be carried, but

may move and act on their own. These include nonplayer
characters and monsters.

• Objects that specify the action of a certain verb. Any word
following SAY or TYPE would fall into this category.

• Directions, such as NORTH and UP.
• Objects that can be ENTERed or CLIMBed to get to another

room.

The most fundamental distinction is whether or not the
object has a specific location. Objects with specific locations
are usually objects in the ordinary sense of the word. A lamp,
a boulder, a chair, or an ogre would fall into this category.

(Most verbs can be used with them; for example, the player
might reasonably try to pick them up, examine them, break
them, and so on. An object corresponding to a condition also

f"° falls into this class, even though physical actions don't have
any meaning when used with it. Let's use the word items to
refer to such objects.

Objects without specific locations don't correspond to
physical entities, so they can be used only with special-pur
pose verbs. There's no need to consider what happens when

[psSj

FmJ&a

147

Doing Your Own H

the player tries to eat, open, or kiss a SOUTH; a general mes
sage rejecting the very notion will do. Only GO, and perhaps
LOOK, can mean anything with that object.

For this reason, most object descriptors can be limited to
items. If object tokens are divided into two series, one for
items and one for all the rest, it makes separation easier. You
could do this by reserving the numbers 1 to 100 for items and
101 and above for other objects.

For items, two kinds of descriptions are needed. One is
the word found in the object array; the other is a slightly
longer description which is used when listing objects in a
room or in the character's inventory. The longer descriptions
are kept in an array, which can be called the item description
array. For instance, if the name of the object is BAG, the item
description array might have the text "Old leather bag."

Another structure gives the location of each item; let's call
it the item location array. There are three possibilities for an
item's location: (1) in a room, (2) in the character's inventory,
or (3) nowhere at all. The third case comes about when an
item has been destroyed or when it hasn't yet become acces
sible. A positive number in the item location array indicates
that the item is in the room with that number. For other
possibilities, use 0 for items in the character's inventory and
— 1 for items that aren't to be found.

This approach makes it simple to list items in a room, to
list the character's inventory, and to determine whether the
character is in the same room as an item. The first case just re
quires going through the item location array and noting the
indices of all elements that match the current room. The sec
ond requires looking for elements whose value is zero. The
third requires checking for values that equal either the current
room or zero. After all, any item that the character is carrying
is most likely in the room with him! _

Another array that will usually be needed is one that in- j
dicates whether certain conditions are true for each particular
item. Some items can be carried; others can't. Some items give
off light; others don't. These characteristics can be handled by J
an itemflag array, just as characteristics of rooms are handled
by the room flag array. The techniques discussed for rooms
work the same way here. Flags are tested with AND, set with {
OR, and cleared with AND NOT.

Other possibilities are optional. You might want to create

148

jipfflft

Doing Your Own

an array that gives the weight of each item. Doing this and
setting a limit on the weight the character can carry would
provide a more realistic inventory limit than just limiting the
total number of items carried.

What about items that move on their own—people, mon
sters, and robots? Fortunately, they don't need much extra in
the way of data structures; the complications arise mostly in
writing the automatic routines. A few extra flags may be
needed to indicate how they will react to the character—
whether they're alive or dead, whether the character has tried
to speak to them, and so on.

Summary. Selecting the right data structures is vital to
laying out the design of an adventure. Once you have them,
the rest will fall into place easily enough. To review, here are
the major structures that a simple adventure will typically
need:

• A verb array, consisting of all the words that could be the
first word of a command.

• An object array, consisting of all the words that could be the
second word of a command.

• A verb token array, which contains verb numbers (tokens)
corresponding to verbs. This array has as many elements as
the verb array.

• An object token array, which contains object numbers
corresponding to object names. This array has as many ele
ments as the object array.

• A room description array, which contains the text descriptions
of the rooms. This array has one element for each room.

• An access array, specifying the paths between rooms. The
two dimensions of this array are the number of rooms and
the number of possible directions.

• A room flag array, whose elements are integers in which each
bit corresponds to a condition that's true or false about a
room.

• An item description array, which contains the text description
of each item.

• An item location array, which tells where each item is.
• An item flag array, whose elements are integers in which

each bit corresponds to a condition that's true or false about
an item.

149

Doing Your Own T

The Description Section •'
The major output routine in a simple adventure is the section
of code that describes the room to the character. This code ^
does two things: it prints the room description and it lists any
visible items.

In the interest ofnot being too verbose, the description ^
section should be skipped if nothing has changed since the
last command. However, the description should be printed if
the character has moved or if the last command was LOOK.
The action routines can notify the description section of these
circumstances by setting the description request flag.

If the description request flag isn't set, the program simply
skips the description section and waits for another command.
If it is set, there may still be constraints on what the character
can see. The most common is that there may not be any light
in the room. Checking this may involve checking one of the
room flags (as well as another variable to indicate whether the

Figure 10*5. Room Description Pseudocode
if description—request—flag <> 0

{description—request—flag = 0;
if (room is not lit and

((item—location—array(lamp) <> 0 and
item—location—array(lamp) <> room) or

lamp is not lit))
{room_lit = FALSE;
print "It's too dark to see."
}

else {print room—description—array(room);
room-lit = TRUE;
flag = 0;
for i = 1 to number—of_items

{if item—location—array(i) = room «?
{if flag = 0 _ 1

{print "Visible items are:"
flag = 1; (-»
} J

print item—description—array(i);

}

150

JM

flPSSp

Doing Your Own

character is bearing his own light source). If these conditions
aren't satisfied, the description section only has to print a mes
sage, such as IT'S TOO DARK TO SEE, and go on to the com
mand input.

If all is well, the first thing to do is to print the appro
priate string from the room description array. Then the program
must check all items and print the names of the ones that are in
the current room. The pseudocode is shown in Figure 10-5.

Automatic Routines
After describing the room, the program has to take care of any
events that happen independently of the character. The po
sition of these routines in the loop is important. By putting
them after the room description but before the command in
put, the program insures that the player finds out what is in
the room before he is told what is happening there. It's only
fair that the player should know there's an ogre in the room
before he's told that it is attacking him.

The automatic routines are the part of the program where
you can really get imaginative. You could include moving
creatures, lamps that burn out after a while, rooms that col
lapse three turns after the adventurer tampers with something,
transitions from day to night, and much more.

The concept of time is important to many of these events.
For this reason, the first job of the automatic routines should
be to maintain a move counter. This counter is incremented
after every move.

Not every command should be considered a move, how
ever. If the parser can't recognize the words that were typed,
the program shouldn't act as if time passed. The same is true
of commands that the action routines can't make any sense of
(such as EAT NORTH). In these cases, the program should go
back to the command input rather than make things happen
while the player is figuring out what commands work.

A creature wandering around the dungeon can make life
f^ interesting for the adventurer. Assuming there are no special

restrictions on how the creature moves, this can be handled by
generating a random number from 1 to the number of possible

P* directions and having the creature attempt to move from its
current room to the appropriate room in the access array. An
other possibility is that the creature might follow the ad-

p3 venturer around. This is easily handled by setting the

151

Doing Your Own

creature's element in the item location array to the ad
venturer's current room. Remember, a creature is just an ani
mated item, so its location is found in the item location array. *"|

Suitable information should be given to the player. The
program should tell him about a change if it occurs in the
room he is occupying. Some events may be noticed even from """t
another room; for instance, the player may be told that, "You
hear an explosion in the distance," when a bomb goes off
elsewhere.

The pseudocode given in Figure 10-6 provides for an egg
that hatches on the thirtieth move of the game.

Figure 10-6. Pseudocode for Hatching an Egg
move—counter = move—counter + 1;
if move—counter = 30

{if item—location—array(egg) = 0
{print "The egg you are carrying hatches";
item—location—array(roc) = room;

else {item—location—array(roc) =
item—location—array(egg);

if item—location—array(egg) = room
print "The egg hatches into a baby roc";

}
item—location—array(egg) = —1;
}

Action Routines
Action routines allow the player's commands to cause some
thing to happen. The action routines in a complex adventure
can be thought of as a set of filters through which the com
mands pass. Each filter examines the command and may
handle it in whole or part, depending on the particular fea
tures of the command. One filter might look at an object and
decide whether it's accessible; another might look at the tool
used and cause special events to occur. Yet another filter could
make things happen according to the verb.

For simple adventures, the following three-step strategy
can be used:

1. Check the object and make preliminary decisions about it.
2. Call an action routine specific to the verb.
3. Do something, within the action routine, according to what

the object is.
152

iwvl

L Doing Your Own

^ Prefiltering. The reason for step 1 is to have a single
body of code that handles issues common to all verbs. For in-

P* stance, if an item isn't in the room, you probably can't do any-
- thing with it, and the command handling can stop right there.

This step is called prefiltering.
P3 Objects that aren't items usually make sense only when
' used with a limited number of verbs. The prefiltering process

should check for these objects and reject the command if it
uses objects with inappropriate verbs. It's difficult, for ex
ample, to do much with the objects NORTH, SOUTH, EAST,
and WEST except GO there.

The action routines can vary quite a bit from one adven
ture to another, so the pseudocode examples in this section
will be more in the way of examples than prescriptions. Typi
cal pseudocode for prefiltering is shown in Figure 10-7.
Figure 10-7. Prefiltering Pseudocode
if object—token is a direction

{if verb—token <> GO
{print 'That doesn't make sense/';
return;

}
}

else if object—token is a magic word
{if verb—token <> SAY

{print "I don't understand that.";
return;

i >
else if item—location—array(object—token) <> 0 and

item—location—array(object_token) <> room
{print "It isn't here.";
return;

}
p* call action routine for verb—token;
L Dispatching to action routines. If prefiltering reveals no

problems, the next step is to call the action routine for the
!*• particular verb token. In BASIC, this is done with one or more

ON-GOTO statements, using the verb token as the control
variable.

{•» Each action routine is different. Some verbs require an ob-
t ject, others can't use one, and for still others, it is optional. An

action may have side effects on the room, the character, or
items in the room.

Some actions are standard for nearly all adventures. These
153

r

Doing Your Own "1

include TAKE, DROP, INVENTORY, QUIT, LOOK, EXAMINE,
and the directional commands.

TAKE. This verb, if successful, transfers an object from ^
the room to the character's inventory. To be successful, the ~~
following conditions must be satisfied:
• The object must be an item.]
• It must be in the room, rather than already in the character's

inventory.
• It must be capable of being carried.
• The character must have some carrying capacity remaining.

We can assume that prefiltering has assured us that the
object is an item and that it is either in the inventory or in the
room.

Taking certain objects may have special results. Picking
up a booby-trapped item might kill the character. Taking one
item might reveal a previously concealed item. (This would
be handled by changing the location of the concealed item,
which was previously —1 [nowhere] to the number of the
room.) Picking up the right item might open a secret passage
way, thus changing the access array. Checking for special re
sults should come last, after the routine has established that
the character is capable of picking up the item.

Typical pseudocode for TAKE is shown in Figure 10-8.

Figure 10-8. Typical Pseudocode for TAKE
if item—location—array(object—token) = 0

print "You're already carrying it!"
else if (item—flag_array(object_token) AND carry—flag) = 0

print "You aren't able to do that."
else if items—carried = maximum

print "You're carrying too much already."
else {item—location—array(object—token) = 0;

items—carried = items—carried + 1; »
print "Taken."; J
handle side effects for object;
}

DROP. This command transfers an object from the in
ventory to the room. It is simpler than TAKE, since an object
that can be picked up can almost always be dropped. The ma
jor consideration is whether the item is in the inventory. As
with TAKE (and just about any other command), there could
be side effects. Typical pseudocode is shown in Figure 10-9.

i^En

154

Doing Your Own

Figure 10-9. Typical Pseudocode for DROP
if item—location—array(object_token) <> 0

\ print "You're not carrying it!"
else {item—location—array(object—token) = room;

print "Dropped.";
F33 items—carried = items—carried — 1;
' handle side effects for object;

}

INVENTORY. This is a straightforward command, which
simply lists all items whose location is 0 (that is, all items that
the character is carrying). If the character is carrying nothing,
the response should say so. Typical pseudocode is shown in
Figure 10-10.

Figure 10-10. Typical Pseudocode for INVENTORY
if items—carried = 0

print "You aren't carrying anything."
else {print "You are carrying:";

for i = 1 to number—of—items
if item—location—array(i) = 0

print item—description—array(i);
}
QUIT. This command is also straightforward. If ap

plicable, QUIT should report the player's score. Asking the
player for confirmation is generally a good idea. Figure 10-11
illustrates typical pseudocode.

Figure 10-11. Typical Pseudocode for QUIT
print current score;
print "Do you really want to quit now?"
input response;
if response = "Y" or "YES"

| exit program;

LOOK. This command does only one thing—it sets the
j*™ description request flag, which causes the description of the

room to be repeated before the program accepts the next com
mand. The pseudocode is straightforward:

|wrt^aj

description—request—flag = TRUE;

EXAMINE. Examining certain objects will provide extra
information about them. In some cases there could be other

155

Doing Your Own i

effects; for instance, examining one object could make another
one appear and examining a Gorgon's head could have
petrifying consequences. Otherwise, the program should print ^
a message like, "There's nothing special about it." Typical —
pseudocode is given in Figure 10-12.

Figure 10-12. Typical Pseudocode for EXAMINE '
if object—token is not an item

print "Huh?"
else if object—token = scroll

print "Something is written on it."
else if object—token = box and item—location—array(key) = -1

{print "There is a key in the box.";
item_location—array(key) = room;

else print "There's nothing special about it."

Directions. These are the commands NORTH, SOUTH,
EAST, WEST, UP, DOWN, and possibly more. The verb GO
followed by one of these words could serve the same purpose.
In either case, all the directional commands can go into the
same handler, after setting a variable to indicate which direc
tion was chosen. For instance, the command NORTH would
set the direction variable to 1, if the direction NORTH corre
sponds to an index of 1 in the access array.

If light is a factor, the direction commands must check for
its presence. If it's dark, the adventurer might be reduced to
bumping into walls until he can remedy the situation.

Figure 10-13. Typical Direction Pseudocode
if room—lit

{if access—array (room,direction) = 0
print "You can't go in that direction." „

else {room = access—array (room,direction); j
description—request—flag = TRUE;

else print "You stumble into a wall." '

Assuming there's no hindrance to movement, the direc- ^
tion routine has to check the access array, indexing it with the
current room and direction variables. If the corresponding ele
ment of the access array is 0, there is no way to go in that ^

156

sn

JpM

Doing Your Own

direction and the character is stuck where he is. Otherwise,
the value of that element is the number of the new room. The
description request flag must also be set so that the description
section will tell the player where he is. Pseudocode is given in
Figure 10-13.

When You're Writing More Than One
The information in this chapter, plus a good amount of
imagination, should be enough to let you write an adventure
that will keep your friends entertained for hours. Once you've
done this, don't be surprised when they come back for more.

Writing a second adventure will be less work than writing
the first one. A large part of the code—the parser, the room
description section, and many of the action routines—will
hardly change at all. Just create a new map, new puzzles, and
a few commands that are different from the last ones, and
your old adventure becomes a new one.

After you've done a couple of adventures and started
plans for several more, you might start wondering whether it
would make sense to write an adventure interpreter rather than
having a separate program for each adventure. An adventure
interpreter is a program that takes adventure descriptions and
runs them, just as a BASIC interpreter runs BASIC programs.
Once you have an interpreter, you would write your adven
tures in an adventure description language rather than a
general-purpose language like BASIC.

An adventure interpreter does make it easier to write new
adventures. It also is likely to use memory more efficiently
than an adventure written in BASIC. On the other hand, writ
ing the interpreter isn't simple. An adventure definition lan
guage that offers enough flexibility to be worthwhile must
include quite a few features. It has to be able to specify all the
data structures: the access array, the item descriptions, the flag
arrays, and so on. It has to let events be triggered by player
action, by random events, and by timers based on either of
these two.

An adventure interpreter is a project for the really am
bitious. If you write your adventures in a modular fashion, you
shouldn't find it difficult to churn out one adventure after an
other by modifying your initial program.

157

3

3

3

3

3

3

3

*fc?

>• Oi. i \ « H

ii«?^$V

®wmiy

ower of Mystery" is a BASIC program de
signed to illustrate some of the concepts of
adventure programming and to serve as a
starting point for writing your own adventure
programs. The object is to enter an old fac
tory building, where the world's only remain
ing copy of Adventure is reputed to be stored,

and to leave with a tape containing a copy of the program.
The focus is largely on a computer, which the player must
learn how to use in order to get the program onto the tape.
The player can even ask the computer to RUN ADVENTURE.
So not only is there a computer within the computer, there is
an adventure within the adventure!

Tower of Mystery will run on virtually every popular
home computer. Program 1 is in Microsoft BASIC; Program 2
gives modifications to the Microsoft version that will allow it
to run on the Atari computers. Program 3 is in TI BASIC.

To play the game on your computer, follow the directions
below:

Adam. Type in Program 1.
Apple. Type in Program 1.
Atari. Modify Program 1 by adding or changing the lines
shown in Program 2; then type in the modified version.
With cassette, at least 16K memory is required. With disk,
you'll need at least 24K memory. Note: On the Atari, all
commands must be completely spelled out (GO SOUTH,
LOOK, INVENTORY, and so on).
Commodore PET. Type in Program 1.
Commodore VIC-20. Type in Program 1. At least 8K memory
expansion is required.
Commodore 64. Type in Program 1.
IBM PC. Type in Program 1.
IBM PCjr. Type in Program 1.
Radio Shack TRS-80 Model 1. Type in Program 1.

161

Tower of Mystery

Radio Shack TRS-80 Model 3. Type in Program 1.
Radio Shack TRS-80 Model 4. Type in Program 1.
Radio Shack TRS-80 Color Computer. Type in Program 1. "^
The program requires almost 8K of memory and should -'
run on a machine with 8K or more; however, since the
disk drive uses 2K, you'll have to save the program to ^
cassette if yours is an 8K machine. With Extended BASIC,
type PCLEAR 1 before typing (or loading) the program.
That clears additional RAM normally allocated as video
RAM.

Texas Instruments TI-99/4A. Type in Program 3.
Like virtually every text adventure, Tower of Mystery does

not conform to every guideline given in the previous chapter.
As a result, it shows not only the basic principles but some of
the areas in which personal variation is possible.

If you would like to play Tower before being told all its
secrets, then stop here and type it in now. The rest of the
chapter will explain the adventure in detail.

Variables and Arrays
The following variables and arrays are used in Tower:
Constants

NR Number of rooms
NT Number of "things" or items
NP Number of pseudo-objects (all other objects)
NO Number of objects of all kinds
NV Number of verbs

Flags
CA Computer (the one in the adventure) is active
CD Computer is dead
LI Character is logged into computer
CP COPY program is running on computer b
MF Computer manual has been found]
CF Coin has been found
WD Room description request flag
RT Rats are troublesome
BT Bats are troublesome
CT Time since computer has been started

General Variables ^
C$ Command input
Cl$ First word of command
C2$ Second word of command "^
162

IpftmS

1

Tower of Mystery

Cl Verb token
C2 Object token
RM Room currently occupied

Arrays
AC(NR,6) Access array
VB$(NV) Verb array
OB$(NO) Object array
RM$(NR) Room description array
TD$(NT) Item description array
VN(NV) Verb token array
TL(NT) Item location array
TF(NT) Item flag array (only flag is whether item can be carried)

Program Sections
The program breaks down into several sections. Lines 200-399
contain the room description code, while the command parser
is located in lines 400-699. The action routines start at line
700 and continue up to the start of the completion messages at
line 8000.

The small amount of code that passes for automatic
routines is found in line 8200 to the end. Note that in this
adventure, the automatic routines are located after the com
mand input and action routines, rather than before them. This
lets the automatic events occur immediately when the charac
ter steps into a new room, as is appropriate for these particular
events.

At the highest level, the program runs in a loop that per
forms the following operations:

• Gives room description if the WD flag is set.
• Inputs a command and parses it into the verb token Cl and

the object token C2. If there is no object, C2 is set to 0.
• Does some preliminary checks, then dispatches to the han

dler for Cl.
• Performs the action specified in the handler.
• Performs any automatic actions required for the bats or the

computer.

The parser takes the raw input (C$) and extracts two
words (Cl$ and C2$) from it. If the player types extra words,
its action will be a bit erratic. It then translates these words
into the verb token (Cl) and the object token (C2). If only one
word was typed, C2 is 0.

163

Tower of Mystery

The program has a verb token array but no object token
array. This allows it to recognize synonyms for verbs, such as
GET and TAKE, but not for objects. For verbs, the index into "^
the array VB$ is translated into a verb token number by the
array VN. For objects, the index into OB$ is the object token
number. ^

The access array controls passage from one room to an
other. The six possible directions are translated into numbers
as follows:

1 North

2 South

3 East

4 West

5 Up
6 Down

To determine where the character goes when moving, the
program considers the current room RM and the direction D.
The room that will be reached is AC(RM,D). If movement in
direction D is impossible, then AC(RM,D) is 0.

The location of an item is determined by the array TL. A
value of 0 in the array indicates that the character is carrying
it; a value of —1 means that it cannot currently be found any
where. The item flag array TF indicates which items can be
carried; a nonzero value permits carrying. Because of the small
number of items in this adventure, there is no limit on how
much the character can carry.

There are two kinds of objects in addition to items: direc
tional words (NORTH, SOUTH, EAST, WEST, UP, and
DOWN) and commands to be typed into the computer.

Some of the most interesting activity is organized around
the computer. Once the player starts the computer, the counter
CT starts ticking; when it has reached its limit, the computer
will die (the flag CD is set) and the game is hopeless from that ^
point on.

In the few turns that it runs, the TYPE command lets the
player do a number of things with the computer, including ""I
logging on and off and running programs. In fact, TYPE will
accept any object at all, including total nonsense. The flags LI,
CP, and MT keep track of the state of the computer. LI is set ***}
when the character successfully logs on. CP is set when he runs
the COPY program, so that the next TYPE command will be

164
GSEm}

jjpto

Tower of Mystery

interpreted as input to COPY. MT is set to indicate that the tape
has been mounted on the computer, so that COPY will work.

A couple of objects have their descriptions changed dur
ing the course of the adventure, reflecting changes in their
state. This happens to the rats when they are fed and the com
puter when it dies. Another way to do this would have been
to remove the old object and insert a new object with a dif
ferent token number. Doing so, however, would require a way
to have the same word (RATS or COMPUTER) refer to dif
ferent objects at different times.

Building the Tower
Devising ideas for an adventure game can be as difficult as
writing the program. For what it may be worth to beginning
adventure writers, here is a rough description of how the
Tower of Mystery adventure took shape in my mind.

The starting point was the setting. The old factory of the
adventure is, in fact, a real building in Manchester, NH, which
now houses several high-tech companies. The computer room,
vending machine, manufacturing area, and clock tower all fol
lowed from the decision to use this building. This suggested
some obvious puzzles, such as how to get something from the
vending machine and how to start the computer.

The next step was to decide on an overall goal for the ad
venturer. The one that I chose was to get a "treasure" in the
form of a program from the computer. This gave an end point
to which everything had to lead.

What obstacles could I put in the way of getting this pro
gram? Three finally made it into the adventure: getting media
onto which to copy the program, turning on the computer,
and logging onto the system. Each of these provided a chain
of puzzles, tying in items which I had previously decided on.

The rats were introduced to make getting the media diffi
cult; the vending machine provided the candy to feed the rats.
The hidden coin made it possible to use the vending machine.
Logging on required finding a computer manual, which was
guarded by bats, and a noisy clock tower provided the way to
scare the bats away. For starting up the computer, I decided
not to introduce a chain of puzzles, but instead to make the
player try different actions until he found the right one. The
correct action—kicking the computer—seems almost natural
after the usual start-up techniques fail to do the job.

165

Tower of Mystery

A complete map of Tower of Mystery, along with the
commands you'll need to use in different places, is given in
Figure 11-1, located after the programs. Again, if you want to
try to complete the game without additional help, don't look
at the map! But if you're interested in seeing how the
programming makes the map come alive on your monitor, or
if you want to create adventures of your own, the map will be
helpful.

Program 1. Tower of Mystery, Microsoft BASIC Version
10 NR=14:NT=ll:NP=ll:NV=29:NO=NT+NP

20 DIM AC(NR,6),VB$(NV),OB$(NO),RM$(NR),TD$(NT),VN
(NV),TL(NT),TF(NT)

99 REM *INITIALIZATION*

100 RM=1:CT=0:CF=0:RT=-1:CA=0:MF=0:CD=0:WD=-1:LI=0
:BT=-1

120 FOR 1=1 TO NR:READ RM$(l):NEXT I
130 FOR 1=1 TO NV:READ VB$(I),VN(l):NEXT I
140 FOR 1=1 TO NO:READ OB$(l):NEXT I
150 FOR 1=1 TO NT:READ TD$(I),TL(I),TF(I):NEXT I
160 FOR 1=1 TO NRrREAD AC(I,1),AC(I,2),AC(I,3),AC(

I,4),AC(I,5),AC(I,6):NEXT I
199 REM *MAIN LOOP: ROOM DESCRIPTION*
200 IF WD=0 THEN 400
210 WD=0:PRINT RM$(RM)
220 K=0

230 FOR 1=1 TO NT

240 IF TL(I)<>RM THEN 270
250 IF K=0 THEN PRINT "YOU SEE:":K=1
260 PRINT TD$(I)
270 NEXT I

300 PRINT "EXITS ARE:"
310 FOR 1=1 TO 6

320 IF AC(RM,I)<>0 THEN PRINT VB$(l);" ";
330 NEXT I

340 PRINT bob

399 REM *MAIN LOOP: COMMAND INPUT AND PARSER* I
400 INPUT C$
410 L=LEN(C$):IF L=0 THEN 400
420 C1$=,,,,:C2$=,,,,:C2=0:X=0
430 FOR 1=1 TO L

440 A$=MID$(C$,I,1):A=ASC(AS):IF A>=97 AND A<=122
THEN A$=CHR$(A-32)

450 IF A$<>" " THEN 460
455 IF C2$<>"" THEN 500
457 X=l:GOTO 490

460 IF X=0 THEN C1$=C1$+A$:GOTO 490 ^

166

M9H

1MB

gum

I

|W8B

Tower of Mystery

470 C2$=C2$+A$
490 NEXT I

500 IF Cl$="" THEN PRINT "EXCUSE ME?":GOTO 400
510 C1$=LEFT$(Cl$,5):C2$=LEFT$(C2$,5)
520 FOR Cl=l TO NV

530 IF VB$(C1)=C1$ THEN C1=VN(C1):GOTO 600
540 NEXT Cl

550 PRINT "I DON'T KNOW THE VERB ";Cl$:GOTO 400
600 IF C2$="" THEN 700
610 FOR C2=l TO NO

620 IF OB$(C2)=C2$ THEN 700
630 NEXT C2

635 IF Cl=ll THEN C2=l:GOTO 700
640 PRINT "I DON'T KNOW THE OBJECT ";C2$:GOTO 400
699 REM *PRELIMINARY FILTERING OF COMMANDS*
700 IF C2>NT+5 AND Cl<>7 AND C1<>11 THEN 640
710 IF C2>NT AND C2<NT+5 THEN IF C1<>11 THEN 8010

720 IF C2>NT THEN 750

725 TL=TL(C2)
730 IF Cloll AND TLORM AND TL<>0 THEN PRINT "IT

ISN'T HERE.":GOTO 400

750 ON Cl GOTO 1000,1000,1000,1000,1000,1000,1100,
1200,1300,1400

760 ON Cl-10 GOTO 1500,1800,1900,2000,2100,2200,23
00,2400,2500,9999

770 ON Cl-20 GOTO 2600,2700,2800
999 REM *DIRECTIONS*
1000 IF AC(RM,C1)=0 THEN PRINT"YOU CAN'T GO THAT W

AY.":GOTO 200
1010 IF RM=4 AND RT<>0 AND Cl=3 THEN PRINT"THE RAT

S LOOK TOO FIERCE.":GOTO 8200
1020 RM=AC(RM,Cl):WD=-l:GOTO 8200
1099 REM *GO*
1100 IF C2=0 THEN 8050
1105 IF C2<=16 THEN 8040

1110 Cl=C2-16:GOTO 1000

1199 REM *EAT*
1200 IF C2<>6 THEN 8010
1210 TL(C2)=-1:PRINT"IT TASTES STALE.":GOTO 8200
1299 REM *KICK*

1300 IF C2=0 THEN 8050

1305 IF C2<>7 OR CD<>0 THEN 8020

1310 IF CA<>0 THEN CT=9:GOTO 8200

1320 PRINT "THE COMPUTER STARTS UP I"
1330 PRINT "THE CONSOLE DISPLAYS: 'PLEASE LOG IN.'

":CA=-l:GOTO 8200

1399 REM *INSERT*

1400 IF C2=0 THEN 8050

1410 IF C2<>5 THEN 8010

1420 IF RM<>6 THEN 8030

167

Tower of Mystery

1430 TL(5)=-1:TL(6)=RM:PRINT "A CANDY BAR COMES OU
T.":GOTO 8200

1499 REM *TYPE*

1500 IF C2=0 THEN 8050

1502 IF RM<>10 THEN 8030

1510 IF CA=0 THEN PRINT "THE COMPUTER ISN'T RUNNIN
G.":GOTO 8200

1520 IF LI<>0 THEN 1600

1530 IF C2<>12 THEN PRINT "'INVALID LOGIN ID.'":GO
TO 8200

1540 LI=-1:PRINT ""•;C2S;n LOGGED IN.'":GOTO 8200
1600 IF CP<>0 THEN 1700

1605 IF C2<=12 THEN PRINT "'INVALID COMMAND.'":GOT
O 8200

1610 IF C2=13 THEN PRINT "'COPY LOGOU ADVEN'":GOTO
8200

1620 IF C2=14 THEN PRINT "'WELCOME TO ADVENTURE 1 W
#ULD Y#$*'":CT=9:GOTO 8200

1630 IF C2=15 THEN PRINT "'MOUNT TAPE THEN TYPE FI
LE NAME.'":CP=-1:GOTO 8200

1640 PRINT "'LOGGED OUT.'":LI=0:GOTO 8200
1700 CP=0:IF C2<=12 THEN PRINT "'NO SUCH FILE.'":G

OTO 8200

1710 IF MT=0 THEN PRINT "'ERROR: TAPE NOT MOUNTED'
":GOTO 8200

1720 PRINT "THE TAPE SPINS...":FOR 1=1 TO 500:NEXT
I

1730 PRINT "'FILE COPIED.'"

1740 IF C2=14 THEN PRINT "CONGRATULATIONS, YOU'VE
DONE IT1":END

1750 GOTO 8200

1799 REM *TAKE*

1800 IF C2=0 THEN 8050

1805 IF TF(C2)=0 THEN PRINT "THAT'S BEYOND YOUR AB
ILITY.":GOTO 8200

1810 IF TL=0 THEN PRINT "YOU ALREADY HAVE ITl":GOT
O 200

1820 IF C2=4 AND CF=0 THEN PRINT"THERE WAS A COIN _
UNDER IT.":TL(5)=RM:CF=-1]

1825 IF C2=2 THEN MT=0

1830 TL(C2)=0:GOTO 8000
1899 REM *DROP* ^
1900 IF C2=0 THEN 8050 '
1905 IF TL<>0 THEN PRINT "YOU DON'T HAVE IT.":GOTO

200 ^
1910 TL(C2)=RM:IF RM<>4 OR C2<>6 THEN 8000 J
1920 PRINT "THE RATS DEVOUR THE CANDY AND GET SLEE

PY."

1930 TD$(1)="SLEEPY RATS":TL(6)=-l:RT=0 ««

168

rflfe

nSfei

/ITpSta

0B

psa

r

1940

1999

2000

2010

2020

2030

2040

2050

2099

2100

2110

2120

2130

2199

2200

2210

2220

2230

2240

2250

2299

2300

2399

2400

2410

2420

2499

2500

2510

2520

2530

2599

2600

2610

2699

2700

2710

2720

2730

2740

2799

2800

2810

Tower of Mystery

GOTO 8000

REM *INVENTORY*
K=0:PRINT "YOU ARE CARRYING:"
FOR 1=1 TO NT

IF TL(I)=0 THEN PRINT TD$(l):K=l
NEXT I

IF K=0 THEN PRINT "NOTHING."
GOTO 8200

REM *MOUNT*
IF C2=0 THEN 8050
IF C2<>2 THEN 8010

IF RM<>10 OR MT<>0 THEN 8030
TL(2)=RM:MT=-l:GOTO 8000
REM *READ*

IF C2=0 THEN 8050
IF C2=3 THEN PRINT "'INSERT COIN.'":GOTO 8200
IF C2<>10 THEN PRINT "NOTHING IS WRITTEN ON I

T.":GOTO 8200

PRINT "'...USER ID IS ROAD...'"
PRINT "'TYPE DIR FOR LIST OF COMMANDS...'"
PRINT"THE REST IS ILLEGIBLE.":GOTO 8200
REM *FIGHT*
PRINT "THAT WON'T WORK.":GOTO 8200
REM *START*
IF C2=0 THEN 8050
IF C2=7 THEN 8020

GOTO 8010

REM *OPEN*
IF C2=0 THEN 8050

IF C2<>9 THEN 8010
IF MF<>0 THEN PRINT "IT ALREADY IS.":GOTO 820
0

PRINT "INSIDE IT IS

l:GOTO 8200

REM *LOOK*
IF C2<>0 THEN 8040
WD=-l:GOTO 8200

REM *WIND*
IF C2<>11 THEN 8010
IF BT=0 THEN PRINT "IT'S FULLY WOUND.":GOTO 8
200
PRINT "THE CLOCK CHIMES DEAFENINGLY AND SOMET
HING FLIES PAST."
BT=0:TL(8)=-1
GOTO 8200

REM *EXAMINE*
IF C2=3 OR C2=10 THEN PRINT "SOMETHING IS WRI
TTEN THERE.":GOTO 8200
IF C2=9 AND MF=0 THEN PRINT "IT IS CLOSED.":G
OTO 8200

A MANUAL.":TL(10)=RM:MF=-

169

Tower of Mystery

2820 IF C2=4 THEN PRINT "IT LOOKS BEYOND REPAIR.":
GOTO 8200

2830 IF C2=7 THEN PRINT"THIS IS AN ANCIENT MAINFRA
ME WITH A CONSOLE.":GOTO 8200

2840 IFC2=11THENPRINT"THERE IS A LARGE HANDLE FOR
WINDING THE CLOCK.":GOTO 8200

2845 IF C2=2 AND MT<>0 THEN PRINT "IT TS MOUNTED O
N THE COMPUTER.":GOTO 8200

2850 PRINT "YOU SEE NOTHING SPECIAL.":GOTO 8200
7999 REM *COMPLETION MESSAGES*
8000 PRINT "OK.":GOTO 8200
8010 PRINT "THAT'S SILLY1":GOTO. 200
8020 PRINT "NOTHING HAPPENS.":GOTO 8200
8030 PRINT "YOU CAN'T DO THAT NOW.":GOTO 8200
8040 PRINT "WHO'S YOUR ENGLISH TEACHER?":GOTO 200
8050 PRINT "PLEASE GIVE AN OBJECT.":GOTO 200
8199 REM *COMPLETION ROUTINES*
8200 IF CA=0 THEN 8300
8210 CT=CT+1:IF CT<10 THEN 8300
8220 IF RM=10 THEN PRINT "THE COMPUTER DIES WITH A

LOUD POP."

8230 CD=-1:CA=0:TD$(7)="DEAD COMPUTER"
8300 IF RM=TL(8) THEN PRINT "A HORDE OF BATS CARRI

ES YOU OUT.":RM=l:WD=-l
8310 GOTO 200

9000 DATA YOU ARE IN FRONT OF AN OLD FACTORY WITH
A CLOCK TOWER.

9002 DATA YOU ARE AT THE BOTTOM OF A STAIRWELL.
9004 DATA YOU ARE AT THE TOP OF THE BASEMENT STEPS

9006

9008

9010

9012

9014

9016

9018

9020

9022

9024

9026

9050

9055

9060

9065

9100

170

DATA YOU ARE IN A DAMP CELLAR.
DATA YOU ARE IN A STOREROOM.
DATA YOU'RE IN THE CAFETERIA.
DATA YOU'RE AT A LANDING ON THE STAIRS.
DATA AROUND YOU IS A MANUFACTURING AREA.
DATA YOU'RE AT A LANDING ON THE THIRD FLOOR.
DATA YOU ARE IN THE COMPUTER ROOM.
DATA YOU ARE INSIDE THE CLOCK TOWER.
DATA YOU'RE AT THE TOP OF THE STAIRS.
DATA YOU ARE IN A LONG CORRIDOR GOING EAST.
DATA YOU'RE AT THE EAST END OF THE CORRIDOR.
DATA N,l,S,2,E,3,W,4,U,5,D,6,GO,7,EAT,8,KICK,
9,INSER,10,DEPOS,10,TYPE,11
DATA TAKE,12,GET,12,DROP,13,THROW,13,INVEN,14
,1,14,MOUNT,15,READ,16
DATA FIGHT,17,KILL,17,START,18,POWER,18,OPEN,
19,QUIT,20,LOOK,21
DATA WIND,22,EXAMI,23
DATA RATS,TAPE,MACHI,TERMI,COIN,CANDY,COMPU,B
ATS,DESK,MANUA,CLOCK,ROAD

(™s|)

MS*

/$!fiE|

Tower of Mystery

9105 DATA DIR,ADVEN,COPY,LOGOU,NORTH,SOUTH,EAST,WE
ST,UP,DOWN

9150 DATA HUNGRY RATS,4,0,COMPUTER TAPE,5,1,VENDIN
G MACHINE,6,0

9155 DATA BROKEN-DOWN TERMINAL,8,1,COIN,-l,1,CANDY
BAR,-1,1,COMPUTER,10,0

9160 DATA BATS,13,0,DESK,14,0,COMPUTER MANUAL,-1,1
,ELABORATE CLOCKWORK,11,0

9200 DATA 2,0,0,0,0,0
9205 DATA 3,1,0,0,7,0
9210 DATA 0,2,0,0,0,4
9215 DATA 0,0,5,0,3,0
9220 DATA 0,0,0,4,0,0
9225 DATA 0,0,7,0,0,0
9230 DATA 0,0,8,6,9,2
9235 DATA 0,0,0,7,0,0
9240 DATA 0,0,10,0,12,7
9245 DATA 0,0,0,9,0,0
9250 DATA 0,12,0,0,0,0
9255 DATA 11,0,13,0,0,9
9260 DATA 0,0,14,12,0,0*
9270 DATA 0,0,0,13,0,0

9999 END

Program 2. Tower of Mystery, Modifications For Atari
BASIC
Translation by Stephen Levy
2 GRAPHICS OsSETCOLOR 1fO,12iSETCOLOR 2,0,4:

SETCOLOR 4,0,4xPDKE 752,1
5 POKE 82,O:PRINT "PLEASE WAIT WHILE I BET R

EADY":PRINT :PRINT
15 DIM Cl*<10>,C2*<10),A*<41>,B*<10>,C*<15>
20 DIM AC(NR,6),VB*(NV*5>,QB*<N0*5>,RM*<NR*4

1),TD*<NT*20>,VN<NV),TL(NT),TF<NT)
30 RM*=M "|RM*<574)«=RM*:RM*<2)«RM*:VB*=RM*:0

B*»RM*:TD*=RM*

120 FOR 1=1 TO

AttNEXT I

130 FOR 1=1 TO NVsREAD
4,I*5>=A*tNEXT I

140 FOR I»l TO NO:READ

NEXT I

150 FOR I»l

20>=A

160 FOR 1=1

)=Q1

170 READ Q,Q1:AC<I,3)=Q:AC<I,4)=Q1
:AC<I,5)=Q:AC<I,6)»Q1:NEXT I

NRsREAD A«:RM*<I*41-40,I*41>=

A«,Q:VN(I)=Qs VB« <I*5-

A*sOB*(1*5-4,I*5)=A«:

TO NT:READ A*,Q,Ql:TD*(I*20-l9,I
TL(I)=Q:TF<I)=Q1:NEXT I
TO NR:READ Q,Ql:AC<I,1>=Q:AC<I,2

READ Q,Q1

171

Tower of Mystery

210 WD=0:PRINT RM*<RM*41-40,RM*41) J
260 PRINT TD*(I*20-19,1*20)
320 IF AC(RM,I)<>0 THEN PRINT VB*<I*5-4,I*5) «

I" "1 ' 1
400 POKE 752,0:INPUT C*
405 IF C*="INVENTORY" THEN 2000
406 IF C*="LOOK" THEN 2610 ^
440 A*=C*(I,I):A=ASC(A«):IF A>=97 AND A<=122 '

THEN A*=CHR*(A-32>

460 IF X=0 THEN Cl*(LEN(Cl*)+1)«A*:GOTO 490
470 TRAP 490:C2*(LEN(C2*)+1,LEN(C2*)+1)=A*:T

RAP 40000

510 Q=LEN(C1*>:IF Q=5 THEN 515

512 FOR Q1=Q+1 TO 5:Cl*(Ql,Ql)*" ":NEXT QlxC
1*=C1*(1,5)

515 Q»LEN(C2«):IF Q=5 THEN 520
517 FOR Q1=Q+1 TO 5:C2*(Ql,Ql)=" ":NEXT Q1:C

2*=C2*<1,5)
530 IF VB*<C1*5-4,C1*5)=C1* THEN C1«VN<C1):G

OTO 600

620 IF 0B*<C2*5-4,C2*5)=C2* THEN 700
1930 TD*<1,19)="SLEEPY RATS":TL<6)=-1:RT=0
2020 IF TL<I)=0 THEN PRINT TD*<I *19-18, I*19)

:K=1

8230 CD=-1:CA=0:TD*(115,133)="DEAD COMPUTER"

Program 3. Tower of Mystery, TI BASIC Version
Translation by Patrick Parrish

5 CALL CLEAR

10 NR=14

12 NT=11

14 NP=11

16 NV=29

18 NO=NT+NP

20 DIM AC(14,6>,VB*(29),0B*(22),RM*(14),TD*(
11),VN(29),TL<11),TF(11)

99 REM INITIALIZATION* ^
100 RM=1 1
102 CT=0

104 CF=0 _
106 RT=-1 "^
108 CA=0

110 MF=0

112 CD=0 M

114 WD=-1 I
116 LI=0

118 BT=-1

120 FOR 1=1 TO NR ™

172

^rcSfll

122 READ RM«(I)

124 NEXT I

130 FOR 1=1 TO NV

132 READ VB*(I),VN(I)
134 NEXT I

140 FOR 1=1 TO

142 READ OB«(I)

144 NEXT I

150 FOR 1=1 TO

152 READ TD*(I>,TL(I),TF(I>
154 NEXT I

160 FOR 1=1 TO NR

162 READ ACd, 1)
1,5) ,ACd, 6)

164 NEXT I

199 REM *MAIN LOOP: ROOM

200 IF WD=0 THEN 400

210 WD=0

212 PRINT RM*(RM)

220 K=0

230 FOR 1 = 1 TO NT
240 IF TL(I)ORM THEN 270

250 IF KO0 THEN 260

251 PRINT "YOU SEE:"

252 K=l

260 PRINT TD*d)

270 NEXT I

300 PRINT "EXITS ARE:"

310 FOR 1=1 TO 6

320 IF AC(RM,I)=0 THEN 330
322 PRINT VB*(I>;" "5
330 NEXT I

340 PRINT

399 REM *MAIN LOOP: COMMAND

*

400 INPUT C*

410 L=LEN(C«)

412 IF L=0 THEN 400

420 Cl*=""

422 C2*=""

424 C2=0

426 X=0

430 FOR 1=1 TO L

440 A*=SEG«(C«,I,1)
442 A=ASC(A«)

444 IF (A<97)-MA>122)THEN 450

446 A*«CHR*<A-32)

450 IF A*<>" " THEN 460

455 IF C2*<>"" THEN 500

NO

NT

TL(I)

Tower of Mystery

AC (I, 2) ,AC(I,3) ,ACd, 4) ,AC (

DESCRIPTION*

INPUT AND PARSER

173

Tower of Mystery

457 X=l ^
458 GOTO 490

460 IF XO0 THEN 470

461 C1*=C1*&A*

462 GOTO 490

470 C2*=C2*8cA*

490 NEXT I "^
500 IF Cl*<>"" THEN 510

501 PRINT "EXCUSE ME?"

502 GOTO 400

510 C1*=SE6*(C1*,1,5)
512 C2*=SEG*(C2«,1,5)
520 FOR Cl=l TO NV

530 IF VB*(C1X>C1* THEN 540
531 C1=VN(C1>

532 GOTO 600

540 NEXT Cl

550 PRINT "I DON'T KNOW THE VERB ";C1*
552 GOTO 400

600 IF C2*="" THEN 700

610 FOR C2=l TO NO

620 IF 0B*(C2)=C2* THEN 700
630 NEXT C2

635 IF ClOll THEN 640

636 C2=l

637 GOTO 700

640 PRINT "I DON'T KNOW THE OBJECT ";C2*
642 GOTO 400

699 REM *PRELIMINARY FILTERING OF COMMANDS*
700 IF (C2>NT+5) * (Cl<>7) *(CK>11)THEN 640
710 IF (C2>NT) * (C2<NT+5) * (ClOll)THEN 8010
720 IF C2>NT THEN 740

725 TLL=TL(C2)

730 IF (C1=11)+(TLL=RM)+(TLL=0)THEN 740
731 PRINT "IT ISN'T HERE."
732 GOTO 400

740 IF Cl>10 THEN 760

750 ON Cl GOTO 1000,1000,1000,1000,1000,1000 -_.
,1100,1200,1300,1400 ^

760 ON Cl-10 GOTO 1500,1800,1900,2000,2100,2
200,2300,2400,2500,9999,2600, 2700,2800

999 REM *DIRECTIONS* «*^
1000 IF AC(RM,C1)<>0 THEN 1010 I
1001 PRINT "YOU CAN'T GO THAT WAY."
1002 GOTO 200

1010 IF <RMO4) +(RT=0) +(C1O3)THEN 1020 ^
1011 PRINT "THE RATS LOOK TOO FIERCE."
1012 GOTO 8200

1020 RM=AC(RM,C1)

174

l Tower of Mystery

1022 WD=-1

1024 GOTO 8200

f™» 1099 REM *GO*
(1100 IF C2=0 THEN 8050

1105 IF C2<=16 THEN 8040

_ 1110 C1=C2-16
1112 GOTO 1000

1199 REM *EAT*

1200 IF C2<>6 THEN 8010

1210 TL(C2)=-1

1212 PRINT "IT TASTES STALE."

1214 GOTO 8200

1299 REM *KICK*

1300 IF C2=0 THEN 8050

1305 IF (C2O7) + (CDO0)THEN 8020

1310 IF CA=0 THEN 1320

1311 CT=9

1312 GOTO 8200

1320 PRINT "THE COMPUTER STARTS UP!"
1330 PRINT "THE CONSOLE DISPLAYS : 'PLEASE L

OG IN.'"

1332 CA=-1

1334 GOTO 8200

1399 REM *INSERT*

1400 IF C2=0 THEN 8050

1410 IF C2<>5 THEN 8010

1420 IF RM<>6 THEN 8030

1430 TL(5)=-1

1432 TL(6)=RM

1434 PRINT "A CANDY BAR COMES OUT."

1436 GOTO 8200

1499 REM *TYPE*

1500 IF C2=0 THEN 8050

1502 IF RMO10 THEN 8030

1510 IF CAO0 THEN 1520

1511 PRINT "THE COMPUTER ISN'T RUNNING."

1512 GOTO 8200

P1520 IF LIO0 THEN 1600

1530 IF C2=12 THEN 1540

1531 PRINT "'INVALID LOGIN ID.'"

1532 GOTO 8200

P 1540 LI=-1
r 1542 PRINT "'";C2*s" LOGGED IN.'"

1544 GOTO 8200

P1600 IF CPO0 THEN 1700

1605 IF C2>12 THEN 1610

1606 PRINT "'INVALID COMMAND.'"

1607 GOTO 8200

f3 1610 IF C2<>13 THEN 1620

/'PUSS

{

175

Tower of Mystery _J

1611 PRINT "'COPY LOGOU ADVEN'"
1612 GOTO 8200

1620 IF C2<>14 THEN 1630

1621 PRINT "'WELCOME TO ADVENTURE! W#ULD Y#*
*' "

1622 CT=9

1624 GOTO 8200

1630 IF C2<>15 THEN 1640

1631 PRINT "'MOUNT TAPE THEN TYPE FILE NAME.
* ii

1632 CP=-1

1634 GOTO 8200

1640 PRINT "'LOGGED OUT.'"
1642 LI=0

1644 GOTO 8200

1700 CP=0

1702 IF C2>12 THEN 1710

1703 PRINT "'NO SUCH FILE.'"
1704 GOTO 8200

1710 IF MTO0 THEN 1720

1711 PRINT "'ERROR: TAPE NOT MOUNTED.'"
1712 GOTO 8200

1720 PRINT "THE TAPE SPINS..."
1722 FOR 1=1 TO 500

1724 NEXT I

1730 PRINT "'FILE COPIED.'"

1740 IF C2<>14 THEN 8200

1741 PRINT "CONGRATULATIONS, YOU'VE DONE IT!
ii

1742 STOP

1799 REM *TAKE*

1800 IF C2=0 THEN 8050

1805 IF TF(C2)<>0 THEN 1810

1806 PRINT "THAT'S BEYOND YOUR ABILITY."
1807 GOTO 8200

1810 IF TLLO0 THEN 1820

1812 PRINT "YOU ALREADY HAVE IT!"
1814 GOTO 200

1820 IF (C2O4) + (CFO0)THEN 1825

1821 PRINT "THERE WAS A COIN UNDER IT."
1822 TL(5)=RM

1823 CF=-1

1825 IF C2<>2 THEN 1830
1826 MT=0

1830 TL(C2)=0

1832 GOTO 8000

1899 REM *DROP*

1900 IF C2=0 THEN 8050

1905 IF TLL=0 THEN 1910

176

I

f^-J

Tower of Mystery

1906 PRINT "YOU DON'T HAVE IT."

1907 GOTO 200

1910 TL(C2)=RM

1912 IF (RM04) + (C206)THEN 8000

1920 PRINT "THE RATS DEVOUR THE CANDY AND GE

T SLEEPY."

1930 TD*(1)="SLEEPY RATS"

1932 TL(6)=-1

1934 RT=0

1940 GOTO 8000

1999 REM *INVENTORY*

2000 K=0

2002 PRINT "YOU ARE CARRYING:"

2010 FOR 1=1 TO NT

2020 IF TL(I)<>0 THEN 2030

2022 PRINT TD*(I)

2024 K=l

2030 NEXT I

2040 IF KO0 THEN 8200

2042 PRINT "NOTHING."

2050 GOTO 8200

2099 REM *MOUNT*

2100 IF C2=0 THEN 8050

2110 IF C2<>2 THEN 8010

2120 IF (RMO10) + (MTO0)THEN 8030

2130 TL(2)=RM

2132 MT=-1

2134 GOTO 8000

2199 REM *READ*

2200 IF C2=0 THEN 8050

2210 IF C2<>3 THEN 2220

2212 PRINT "'INSERT COIN.'"

2214 GOTO 8200

2220 IF C2=10 THEN 2230

2222 PRINT "NOTHING IS WRITTEN ON IT."

2224 GOTO 8200

2230 PRINT "'...USER ID IS ROAD...'"

2240 PRINT "'TYPE DIR FOR LIST OF COMMANDS..

2250 PRINT "THE REST IS ILLEGIBLE

2252 GOTO 8200

2299 REM JFIGHT*

2300 PRINT "THAT

2302 GOTO 8200

2399 REM *START*

2400 IF C2=0 THEN

2410 IF C2=7 THEN

2420 GOTO 8010

2499 REM *OPEN*

WON'T WORK

8050

8020

177

Tower of Mystery

2500 IF C2=0 THEN 8050

2510 IF C2<>9 THEN 8010

2520 IF MF=0 THEN 2530

2522 PRINT "IT ALREADY IS."

2524 GOTO 8200

2530 PRINT "INSIDE IT IS A MANUAL

2532 TL(10)=RM

2534 MF=-1

2536 GOTO 8200

2599 REM *LOOK*

2600 IF C2O0 THEN 8040

2610 WD=-1

2612 GOTO 8200

2699 REM *WIND*

2700 IF C2<>11 THEN 8010

2710 IF BTO0 THEN 2720

2712 PRINT "IT'S FULLY WOUND."

2714 GOTO 8200

2720 PRINT "THE CLOCK CHIMES

SOMETHING FLIES PAST."

2730 BT=0

2732 TL(8)=-1

2740 GOTO 8200

2799 REM *EXAMINE*

2800 IF (C2<>3) * (C2O10)THEN 2810

2802 PRINT "SOMETHING IS WRITTEN THERE."
2804 GOTO 8200

2810 IF (C2<>9) + (MFO0) THEN 2820

2812 PRINT "IT IS CLOSED."

2814 GOTO 8200

2820 IF C2<>4 THEN 2830

2822 PRINT "IT LOOKS BEYOND REPAIR."

2824 GOTO 8200

2830 IF C2<>7 THEN 2840

2832 PRINT "THIS IS AN ANCIENT MAINFRAME WIT
H A CONSOLE."

2834 GOTO 8200

2840 IF C2<>11 THEN 2845

2842 PRINT "THERE IS A LARGE HANDLE FOR WIND

ING THE CLOCK."

2844 GOTO 8200

2845 IF <C2O2)-MMT= 0)THEN 2850

2846 PRINT "IT IS MOUNTED ON THE COMPUTER."
2847 GOTO 8200

2850 PRINT "YOU SEE NOTHING SPECIAL."
2852 GOTO 8200

7999 REM 4COMPLETION MESSAGES*

8000 PRINT "OK."

8002 GOTO 8200

DEAFENINGLY AND

178

e%>

rp^

Tower of Mystery

"THAT'S SILLY!"

200

"NOTHING HAPPENS."

8200

"YOU CAN'T DO THAT NOW."

8200

"WHO'S YOUR ENGLISH TEACHER?"

200

"PLEASE GIVE AN OBJECT."

200

COMPLETION ROUTINE*

=0 THEN 8300

+ 1

<10 THEN 8300

<>10 THEN 8230

"THE COMPUTER DIES WITH A LOUD PO

8010 PRINT

8012 GOTO

8020 PRINT

8022 GOTO

8030 PRINT

8032 GOTO

8040 PRINT

8042 GOTO

8050 PRINT

8052 GOTO

8199 REM *i

8200 IF CA

8210 CT=CT

8212 IF CT

8220 IF RM

8222 PRINT

P. "

8230 CD=-1

8232 CA=0

8234 TD* (7

8300 IF RM

8302 PRINT
M

8303 RM=1

8304 WD=-1

8310 GOTO

9000 DATA

WITH

9002 DATA

LL.

9004 DATA

STEP

9006 DATA

9008 DATA

9010 DATA

9012 DATA

9014 DATA

)="DEAD COMPUTER"

<>TL(8)THEN 200

"A HORDE OF BATS CARRIES YOU OUT

200

YOU ARE IN FRONT OF AN OLD FACTORY

A CLOCK TOWER.

YOU ARE AT THE BOTTOM OF A STAIRWE

YOU ARE AT THE TOP OF THE BASEMENT

S.

YOU ARE IN A DAMP CELLAR.

YOU ARE IN A STOREROOM.

YOU'RE IN THE CAFETERIA.

YOU'RE AT A LANDING ON THE STAIRS.

AROUND YOU IS A MANUFACTURING AREA

9016 DATA YOU'RE AT A LANDING ON THE THIRD F

LOOR.

9018 DATA YOU ARE IN THE COMPUTER ROOM.

9020 DATA YOU ARE INSIDE THE CLOCK TOWER.

9022 DATA YOU'RE AT THE TOP OF THE STAIRS.

9024 DATA YOU ARE IN A LONG CORRIDOR GOING E

AST.

9026 DATA YOU'RE AT THE EAST END OF THE CORR

I DOR.

9050 DATA N, 1,S,2,E,3, W,4,U,5,D,6,GO, 7j,EAT,8
,KICK,9,INSER,10,DEPOS,10,TYPE,11

179

Tower of Mystery

9055 DATA TAKE,12,GET,12,DROP,13,THROW,13,IN
VEN,14,1,14,MOUNT,15,READ,16

9060 DATA FIGHT,17,KILL,17,START,18,POWER,18
,OPEN,19,QUIT,20,LOOK,21

9065 DATA WIND,22,EXAMI,23
9100 DATA RATS,TAPE,MACHI,TERMI,COIN,CANDY,C

OMPU,BATS,DESK,MANUA,CLOCK,ROAD
9105 DATA DIR,ADVEN,COPY,LOGOU,NORTH,SOUTH,E

AST,WEST,UP,DOWN
9150 DATA HUNGRY RATS,4,0,COMPUTER TAPE,5,1,

VENDING MACHINE,6,0
9155 DATA BROKEN-DOWN TERMINAL,8,1,COIN,-1,1

,CANDY BAR,-1,1,COMPUTER,10,0
9160 DATA BATS,13,0,DESK,14,0,COMPUTER MANUA

ELABORATE CLOCKWORK,11,0
0, 0,0,0, 0

1,0,0,7,0
2,0,0,0,4
0, 5,0,3,0

0,0,4,0,0
0, 7,0,0,0
0,8,6,9,2
0, 0,7, 0, 0

0, 10,0, 12,7
0, 0,9, 0, 0
12,0,0,0,0
,0, 13,0,0,9
0, 14, 12,0,0
0,0,13,0,0

L,-l.-1,
9200 DATA 2,

9205 DATA 3,
9210 DATA #9
9215 DATA #>
9220 DATA 0,
9225 DATA 0>
9230 DATA 0>
9235 DATA 0,
9240 DATA 0,
9245 DATA 0,
9250 DATA 0,
9255 DATA 11

9260 DATA 0,
9270 DATA 0,
9999 END

180

i

fiB^)

ftpjsil

fp^fc

(pfflO

tpiS

Tower of Mystery

Figure 11-1. Map of Tower of Mystery

Inside

Clock

Tower

Top
of

Stairs

Landing
on

Third

Floor

(Examine Clock)
(Wind Clock)

E W

E W

Long
Corridor

Computer
Room

(Examine Desk)
(Open Desk)
(Get Manual)
(Examine Manual)
(Read Manual)

E W East End

of

Corridor

(Kick Computer)
(Type Road)
(Type Copy)
(Mount Tape)
(Type Adventure)

(Examine Machine)
(Read Machine)
(Insert Coin)
(Get Candy)

Cafeteria E W Landing E W
Manu

facturing
Area

Top of
Basement

Steps

S N
Bottom

of

Stairs

D s

u N

Storeroom
W E Damp

Cellar
Front of

Old

Factory

(Get Tape) (Drop Candy) •
Start

Here

(Examine Terminal)
(Get Terminal)
(Get Coin)

181

i^^f^j

/!|w^3

The Edge of the Future

e are standing at the beginning of a new fu
sion of technology and literature. The best
computer adventures that have appeared so
far will undoubtedly appear crude and prim
itive in years to come, as the art of interactive
computer storytelling advances. On the one
hand, more powerful computers will become

available for home use; on the other, authors will be able to
build on their experience and create more sophisticated
adventures.

Infocom's Stu Galley has aptly compared the present state
of computer adventures to the early days of movies. In those
days, the people who made the technology also made the
movies. They would film anything that moved—trains, crowds
of people, animals—and people would eagerly pay to see
these shows just for the novelty. Later came the division of la
bor between technologists and dramatists, which resulted in
the creation of movies that were worth seeing for their
content.

Computer adventures—interactive fiction, if you will—are
still in the process of moving toward that division of labor.
Michael Berlyn, author of Cyborg, Suspended, and Infidel, is a
pioneer in this area, being an adventure writer who is not also
a programmer. Infocom's Sea Quest, still under development as
this book is being written, involves a collaboration with a
writer of young people's books to create a story reminiscent of
the adventures of Tom Swift.

Well-known science-fiction writers have shown an interest
in the adventure game format. Larry Niven and Jerry
Pournelle made a start at devising an adventure based on their
novel Inferno, although they have said little about it recently.
Fred Saberhagen, author of the Berserker series of science-
fiction stories and novels, is cofounder of a business called
Berserker Works Limited, whose purpose is to convert well-
known science-fiction and fantasy works into computer games.
Again, as this is being written, nothing has actually reached
the public.

Advancing from the present state to quality literature,
though, will involve more than just better writing. Advances

185

The Edge of the Future

in technology are also needed. The first movie-maker might
have imagined filming a performance of Hamlet, but then he
would have realized the difficulties. First, there would be no
dialogue. Second, the presence and three-dimensionality of the
stage performance would be lost. Overcoming the first prob
lem required adding a new capability to film. Overcoming the
second required more imaginative use of the existing technol
ogy through editing, changing camera angles, and so on. It re
quired understanding how to use the medium effectively.

Similar advances will have to be made if computer adven
tures become serious plot vehicles. These advances will un
doubtedly include many trimmings to enhance the impact of
the events that are depicted. Graphics will advance to the
point of presenting real atmosphere and information. Sound
for both vocal and musical effects will undoubtedly follow.
(Imagine really having a "hollow voice" emerge from the
shadows of Adventure.)

The video disk may open the door to many of these ef
fects. Video disks have already provided the basis for several
games, and the potential of a computer-controlled laser disk
unit is enormous. The games so far have provided simple
multiple-choice alternatives (Murder, Anyone?) or joystick ac
tion (Dragon's Lair), neither of which leaves much scope for
the player's imagination. But the interactive format of adven
tures could put these images to a more complex use, showing
key scenes of the story in response to the player's commands.

Speech synthesis provides another path to enhanced spe
cial effects. Speech synthesis programs or peripherals are cur
rently available for many computers, and with a little help on
ambiguously pronounced words (like bow and live), such syn
thesis could add a great deal to adventure games.

Voice input is a little further off. Hardware is available to
day to let a computer recognize a few dozen words after it's
been "trained" to recognize a particular individual's pronunci
ation of them. But recognition of hundreds of words, spoken
by people with diverse voice qualities, intonations, and ac
cents, will require some major advances.

But once voice recognition and speech synthesis are fully
developed, the impact on adventure games could be tremen
dous. It will be possible for a player to have an actual di
alogue with the computer instead of going through the
keyboard and screen. The computer could assume the voices

186

1

JifiSB

The Edge of the Future

of the various actors; it could be polite, threatening, and
pleading in turn.

The Decision Tree
More than anything else, adventures need to grow in their
ability to interact with the player. If the current trends hold,
the most important features of computer adventures in coming
decades will be great flexibility in the alternatives available to
the player and great scope for the imagination.

Acquiring this flexibility and scope requires a huge de
cision tree. A decision tree is a set of alternatives that branch
out again and again at successive junctures. A simple game
like tic-tac-toe has a small decision tree: nine branches at the
root, eight (for the eight remaining empty spots) coming from
each of those nine branches, and so on. Chess has a larger de
cision tree, since dozens of different moves may be legal from
a given position.

Decision trees can be massive things. Even the simple tree
of tic-tac-toe has tens of thousands of possible paths; if you al
ways played to fill the grid, instead of stopping when some
one won, there would be 362,880 possible different games.
The chess decision tree is so large that if the whole universe
were a computer, with each atom storing a bit, it couldn't
store the whole tree. Yet the decision tree for an adventure
game is potentially even larger, since each possible command
on each turn represents a new branch. The only trouble is
that, because of computer limitations, most of these branches
don't lead to anything interesting.

The adventure of the future will explore more of its
potential tree. It will have more permissible actions, more cru
cial decisions, more things going on in the background, and
more posssible endings than anything feasible today. Maybe
this won't be true; maybe the market will decide that some
other feature is more important. But you have to start with
some assumptions, and this one is as reasonable as any. So
let's see what path might lead to this kind of super-adventure.

Will visual effects dominate the game? It's unlikely.
Recording every possible scene and action, either with actors
or in animated form, would take far too much memory capac
ity. The computer might be able to generate scenes on the fly
from stock picture elements, but it would take some really

187

The Edge of the Future

good processing to avoid the stiff-bodied quality of Saturday
morning cartoons.

Words are, and will always be, the best medium for
conveying a multiplicity of alternatives. This doesn't necessar
ily mean text; perhaps your grandchildren will use a micro
phone to instruct their character to "open the box with the
silver key." It does mean that words, in one form or another,
will remain important both for controlling the game and for
getting feedback from it.

Perhaps the main story line will be recorded visually, and
the player will conduct a dialogue with a robot to advance the
story. This robot would be argumentative, explaining to the
player why certain actions don't accomplish anything useful,
and would present the next scene only when the player gives
a command that materially changes his surroundings.

For now, let's concentrate on this robot. Whatever audio
visual aids are included, the quality of the game is limited by
its ability to interact with the player. So we can concentrate on
the dialogue and ask what it might be like in "Zork XV." Pos
sibly it would go something like this:
>GO NORTH

You are moving through a dense forest. Trees and shrubs of many
kinds grow around you, with oaks and maples dominating. There is
no clearly marked path here, so travel is slow.
[Pause]
You travel north for a couple of hundred yards and nothing
much changes. There are sounds of small animals moving
through the brush and of birds somewhere in the distance.
[Pause]
As you continue north, the forest begins to grow less dense.
To the west the brush is more brightly lit.
[You could keep watching the descriptions roll by indefinitely un
til you reached some obstacle. But at this point you decide to
change your course.]
>WEST

You go to the west about a hundred yards and come into a clearing
some 40 yards wide. In the middle of the clearing is a small log
house.

>WHAT IS THE HOUSE LIKE?
The house is built of logs, one story tall. It has several small win
dows of oiled paper. Smoke is rising from its chimney. It has an en
trance on the east side, a simple wooden door.

188

^fl

Gb£5J?1

BBBJ5?|

pi™*

P The Edge of the Future

[The program pauses at this point. If the player waited, he might get
more details in the description of the house, or something might start

P* happening. Rather than wait, he decides to...]
1 >KNOCK ON THE DOOR

The only sound in the area comes from the birds singing. A swallow
f53* flies over the house.

^ [Pause...but the player is patient]
At last the door swings open, and you see a gray-haired man, old
but not feeble, looking inquiringly at you. He is dressed in old, tat
tered garments. Beyond him, you can see a few pieces of simple
wooden furniture in the cabin.

"Greetings," says the man uncertainly. "Who are you, and why
are you passing through these woods?"
[Pause...and the player has let his mind wander.]
"Well, what do you want? Speak up!"
>I AM AN ADVENTURER, SEEKING THE LOST PALANTIR.
The man's eyebrows rise in amazement. "The Palantir? How did you
come to know of that ancient relic, and why are you looking here?
But I will ask for no long explanations. I need only one proof of your
good intentions before I will give you the information you need.
Leave your sword with me; you will have no further need of it until
you return."

Places for Growth
As this example shows, what is important is the way the pro
gram can interact with the player's commands. Increasing the
scope of future adventures will depend on making further
improvements in that area. What sort of advances can we look
for? Here are a few.

A more realistic presentation of the environment. A
most peculiar aspect of today's adventure programs is that
they invariably present a world divided up into rooms. That

po is, the character is always in one location, which he can leave
'- or enter only by discrete paths. He goes north and ends up in

the next room. Advancing just to the doorway is impossible,
r unless the doorway is marked as a room. In addition, each

room contains a fairly small number of indivisible objects and
nothing else.

p* In real life, you can move in any direction until you reach
1 some barrier; you can also go halfway there or walk in a circle

near the place you started. When you do this, you'll usually
i"*" find large numbers of objects that might be useful to you,

189

fBHfil

The Edge of the Future

depending on what you're doing. What's more, the objects ~
that are present don't normally call themselves to your atten
tion; instead, they might remain undiscovered until you do a ^
little searching. —'

Making the environment more of a continuum would re
quire quite a different approach from that of the current room- ^
based type of adventures. Rooms are convenient for a
computer representation because they allow binary decisions:
eitheran object is where you are, or it isn't, with no ambiguity
about what "where you are" means. Having things pinpointed
by spatial coordinates would require the program to do more
work in checking its data structure for objects that are near
enough to affect the character. Devising data structures that
make this operation reasonably efficient will be vital to
improving the adventurer's environment.

Adding this kind of realism is an area in which Infocom is
hard at work for its next generation of adventure programs.

An increased sense of continuous action. Action made
of separate turns also limits the realism of an adventure. Major
steps have already been taken in improving the time flow in
Deadline and Witness, and less obviously in Enchanter. In each
of these adventures, time passes in the game world according
to how long it takes to perform an action. The time to solve
the problem eventually runs out, or else night follows day,
and the demands of hunger and fatigue affect what the
character must do.

One way to get a more realistic time sense would be to
have the clock continue to tick whether the player enters com
mands or not. This wouldn't be the best approach, however. It
would put too great a sense of urgency on what should be a
relaxed activity; besides, game time shouldn't pass through in
teresting and uninteresting events at the same rate.

Another approach, as illustrated in the earlier example, ^
would be to let the character continue on a course of action -*
for some time, giving him descriptions until something im
portant happens or he stops the flow. Deadline does this with «R
the WAIT command, which makes the program describe on- -
going events and ask the player if he wants to keep waiting
after each event. This principle could be expanded to let the ^
player indicate a general course of action and stop it only
when he saw a reason to do something else.

GE^il

190

The Edge of the Future

Better simulation of characters. Computer pioneer A. M.
Turing said that people would agree that a computer could

P "think" if it could imitate a human being well enough to fool
people. Certainly, realistically simulating human behavior is
one of the toughest things to do on a computer. Covering the

f* full range of human action is too much to ask of any program
we're likely to see soon.

But it isn't beyond hope to expect future adventure pro
grams to include characters that can answer questions on a
limited range of subjects and can react to the player's charac
ter. It would be a major step forward to be able to ask charac
ters questions like, "Why did you invite me?" or "Do you
think Phong is lying?" Beyond that might come programs that
let the player make statements (such as, "I am seeking the
Palantir," or "You are in danger.") and then observe the re
action of the character he is addressing.

Characters in adventure games should also react to the
player's character—not just to one statement or action at a
time, but to what he shows himself to be. No adventure pro
gram to date has gone very far in making the player-character's
actions have a long-term effect on how the other characters
will respond to him. Suspects will answer the same question
four times in a row. An abusive detective will not find people
refusing to talk to him ten turns later, even if they walk out of
the room when he insults them.

Adding this sort of feature, on a primitive level, should
not be very difficult. The program could maintain an attitude
variable for each character, which is affected one way or the
other every time the player's character interacts with him.
Once this variable fell below a certain level, the character
would just become very uncooperative, answering all ques
tions with, "Figure it out yourself!" or the like. Having the

P3 value rise high enough could cause the character to volunteer
new information or offer help. This would force the player not
only to solve problems but to develop his character consis
tently, too.

A wider range of alternatives. Early adventures had only
one real ending. They could, of course, end unsuccessfully in
many ways; but these conclusions were just a matter of run
ning afoul of some hazard and getting killed. Unlike the true
ending, they didn't represent a culmination of events.

p9S

MB

191

The Edge of the Future 1

Deadline was the first adventure to provide a number of
well-developed alternative endings. The detective could arrest
the wrong suspect (or the right one without enough evidence), ^
and he would get a message explaining why the suspect was - '
not convicted at the trial. He could also exhaust the 12-hour
limit without making an arrest, in which case he would be "^
driven off into the sunset with nothing to show but a sense of *
dissatisfaction.

A further step would be to provide a variety of successful
conclusions to an adventure, each reached by a different path,
leaving to the player's judgment which of these endings is the
most satisfactory. All of the conclusions would represent solu
tions to the main problem of the story, but in different ways
and at different costs.

For instance, if the adventure gave the player the task of
getting revenge against an enemy, one set of choices might
lead not only to the death of the enemy but also of a friend.
Another path might lead to merely humiliating the enemy
while avoiding any tragic side effects. One ending might sug
gest the other, letting the player know that there are more
alternatives, something like this:
The next day, Pierre brings you the news that Maraud has left
France and abandoned his holdings. You feel a deep satisfaction at
having driven the imposter away, although you wish he had not es
caped with the ring. Perhaps you could have recovered it if you had
moved more decisively, yet such rashness might have turned to ill.
It's just as well, you decide, that people cannot go back and change
their past actions.

While future adventures will undoubtedly allow more
alternatives than present ones do, they will still run into the
fact that the world includes more possibilities than any com
puter could ever represent. Currently, the restrictions are often
very artificial. In Adventure, directions are distorted in the ^
wilderness, so you can never get very far from your starting —'
point. Infidel is set in the middle of an infinite desert. G.F.S.
Sorceress has a spaceship with automatic controls that can take ^
you only to certain planets. '

Dungeons and spaceships are convenient for today's
adventures, because they impose naturally restrictive environ- ^
ments. But if interactive stories are going to break the bounds -
of these settings, they will have to deal openly with the fact
that the player might reasonably want to do things that the ^

192

fpiA

The Edge of the Future

program can't handle. A minimum would be to say simply,
"I'm not programmed to handle that."

["" Afurther step would be to go into a different mode for
handling activities outside the program's map. For instance, if
the player tried to leave a house which is the scene of the
main activity, the program could put up a menu of activities
that are possible outside the house. These might include "Go
shopping," "Go home to sleep," "Quit," and so forth. The
range of alternatives in the menu might vary depending on the
player's situation. Some of the choices might even be to travel
to other areas where whole new maps are brought into play.

The more things that can happen in an adventure, the
greater the burden is on the author. It isn't just memory
limitations that keep every possible action from having a
reasonable result; the author's ability to anticipate is also in
volved. For instance, the player might try to use something in
a way the author never thought of but that might reasonably
do the job. Nothing will ever replace thorough testing by
imaginative players as a way to solve this problem. But if the
author has programming aids that let him concentrate on
these situations, then his job is much easier.

The key to letting the author be selective is the use ofde
fault actions. Even the simplest adventures use defaults, but
only in a simple way. Obvious examples are having an object
become part of your inventory when you pick it up or having
a door open when you give that command. But much more
than this is possible, at least in principle. The adventure pro
gram of the future will have to describe its world generically,
with the writer intervening only when something distinctive is
expected to happen. It will have to contain data about the
usual characteristics of common objects, so that doing ordinary
things with them will work.

The adventure writer of the future should be able, for in
stance, just to put a chair into a location and have the pro
gram recognize that it can be sat in, that only one person at a
time can usually sit in it, and that it's movable but not some
thing you can put in your pocket. Furnishing a room becomes
a simple matter, and letting the player rearrange the room re
quires no extra effort. This leaves him or her free to con
centrate on any unusual items in the room.

Handling items generically will, of course, have its limits.

/••fiTsEsi

/pm

193

The Edge of the Future T\

Anything described this way will lack the color and in
dividuality of objects that the author takes the trouble to de
scribe in detail; this can serve as aclue to the player about ""J
which objects are useful. But having a few well-described ob
jects and a lot of sketchily described ones would be a major
advance from today's room, which has only a few usable ob- ^
jects in it. Providing an adventure with more ordinary items
would help to round out the game's environment.

The Artist's Tools
The adventure writer of the future should not have to be a
programmer at all—at least, no more than the user of a good
data-base system has to be a programmer today. He will have
to understand the concept of a decision tree and sketch out his
story in appropriate terms. But from there, he will not have to
touch any programming language. If he is a free lancer, he
might first put his adventure on a home adventure-development
system. This system would not enable him to get in all the de
tails of a real, published adventure; but it would let him thor
oughly plot the story and all the significant alternatives.

Next, this writer might present his adventure to a publish
ing house for consideration. The editorial staff would look at
his home-developed version; if they liked it, they would buy it
and proceed to give it full development on their professional
system. The progression would be similar to that of turning a
screen play into a movie. The actual programming would not
be done for any particular adventure, but for the development
kit that allowed the writer to create adventures.

This kit would undoubtedly consist of several different
parts. One would let the writer create nonplayer characters.
He would give the characters names, indicate where they start
and how they move about, and define their roles. He would
create every line of dialogue that the characters might utter ^
and would specify the conditions that would prompt each line. "~~
These lines would include responses for general "don't know"
or "don't care" situations. He would indicate how the charac- ^
ters interact with each other.

Another part would deal with the map of the adventure.
Here, the author would define areas (not rooms) that the ""J
player's character can enter. He would include the description
of as many different points of view within the area as he cared
to. He might also include a number of throwaway lines, which ^

194
£51?

f" The Edge of the Future

the final program would use randomly within an area to de
scribe incidentals like birds singing or trucks going by. He

P would fully describe any events triggered by the character's
entry into a room.

Inanimate objects would also be taken care of. The writer
P would give their weight and size and provide a brief descrip-

tion. When applicable, he would state what predefined class
an object fell into. He would specify what actions would pro
duce unusual results—and, of course, he would give an exact
description of those results, both in text and in terms of its
effect in the game world.

The development kit would include a debug mode in
which the writer could play the adventure for a while, setting
up situations to try out, then go back into one of the stages to
change or add something. The final shape of the adventure
would be reached only after many cycles of playing and
reshaping. This should not require programming skills, but it
would, inevitably, require the ability to think logically and
imaginatively at the same time. But then so does any good
writing.

All the things discussed so far are possible with today's
computer technology and will be economically feasible in the
next several years. But what lies beyond that? What might
new scientific discoveries do for the descendants of Adventure?
Here we must enter the world of science fiction.

Vernor Vinge's novella True Names (published as half of
Dell's Binary Star #5) presents an intriguing view of this fu
ture. The main character is an author of computer "participa
tion novels." But the really intriguing part of Vinge's
speculation lies in the next step beyond those novels: the Por
tals. These are described as data bases that are accessed with
electroencephalograph (EEG) terminals, which provide sensory

P cues that let the user experience a complete environment with
which he or she interacts. The adventurer, with a certain
amount of help from his imagination, actually experiences

p traveling on paths, facing monsters, and dealing with the
personas of other participants. A programming language
(called Psylisp) allows the computer to present characters that

p are difficult to distinguish from real people.
Dream Park, by Larry Niven and Steven Barnes, suggests

that in the next century, computer programs, holography
P (projection of 3-D images), and live acting will be combined to

195

The Edge of the Future

let players participate in adventures with an entire environ
ment set up for them. The game as presented is closer to Dun
geons and Dragons than to computer adventure. However, the
use of computers to control realistic sound and visual effects
suggests the extent to which they may someday put players
"in the story" even without using props and actors.

All these speculations about the future will undoubtedly
be proved wrong in many details. But, barring global catas
trophe, one thing is certain; the computer games of the future
are going to be so advanced that they will make today's best
efforts look feeble by comparison.

Before the 1950s, the only computers were experimental
models that cost fortunes and could be used only by special
ists. Until the sixties, no one considered the idea of interacting
with a computer for entertainment; computer time was just too
expensive. By the end of the decade, though, students were
using the machines to play a wide assortment of board
games—and in the seventies things really got going. Between
1975 and 1980 came personal computers, Adventure, Zork, the
first Scott Adams adventures, and Infocom's first personal
computer adventures. No science-fiction writer would ever
have dared to suppose that a completely new form of enter
tainment would leap so far forward in just five years, when the
technology for it didn't even exist at the startof that period.

The eighties, so far, haven't yielded advances to match
that sudden period of growth. Infocom has continued to refine
its game system, but the rest of the industry hasn't produced
much in the way of technical advances, aside from better use
of graphics.

Another burst may be coming soon, however, as serious
writers begin to take notice of the format. It may not be long
before computer games cross over the threshold of literature—
before the first computer adventure is written that stands up
not only as a game, but as a story worth experiencing as a
story. Such a work will really deserve to be called an inter
active novel. It will be the first literary work in history to de
mand the reader's active involvement and to provide the main
character with the ability to make genuine choices. In a novel
or play, the writer makes all the choices for the characters.
Experimental theatrical productions have tried to give actors
choices and involve the audience; but when this is done on
anything but a very limited basis, the result is chaos. Books

196

KSffl

The Edge of the Future

that instruct the reader to turn to one of several possible pages
do provide a choice, but not active involvement. The reader is
limited to the alternatives that are spelled out, and he has no
chance to think of a course of action on his own.

The interactive novel will create a new kind of rapport be
tween the author and the reader. It will let the reader say, in
effect, "Yes, but what if the character did this?"—and see the
author's answer. It will impose a new burden on the author in
the process; he or she will have to spell out the consequences
of not just one set of actions, but a multitude of choices that
the main character might make.

When will this happen? That's a dangerous question. But
there is one safe answer: sooner than you think.

197

3

3

3

^TO>

Suggested Reading
Adams, Scott. "Pirate's Adventure." Byte, December 1980.
Addams, Shay. "The Wizards of Infocom." Computer

Games, February 1984.
"Call Yourself Ishmael: Micros Get the Literary Itch."

Softline, September-October 1983. (Includes short articles by
Fred Saberhagen, Robert Lafore, Scott Prussing, Redmond
Simonsen, Marc Blank, and Michael Berlyn on text adventures
and interactive fiction.)

Dacosta, Frank. Writing Basic Adventure Programs for the
TRS-80. Tab Books, Inc., 1982.

Holmes, J. Eric, M.D. Fantasy Role Playing Games. Hippo-
crene Books, 1981.

Lebling, P. David, Marc S. Blank, and Timothy A. Ander
son. "Zork: A Computerized Fantasy Simulation Game." Com
puter, April 1979.

Lebling, P. David. "Zork and the Future of Computerized
Fantasy Simulations." Byte, December 1980.

McClung, M.M. "Is It Fun? An Interview with Infocom's
Michael Berlyn and Marc Blank." SoftSide, #44, September
1983.

Peterson, Dale. Genesis II: Creation and Recreation with
Computers. Reston Publishing Company, 1983.

Strehlo, Kevin. "Getting into Adventure Games." Personal
Software, February 1984.

Weizenbaum, Joseph. "Eliza—A Computer Program for
the Study of Natural Language Communication Between Man
and Machine." Communications of the ACM, Volume 9, No. 1,
January 1966.

Winston, Patrick. Artificial Intelligence. Addison-Wesley,
1977.

199

»I

/u?3SH

Index

Aardvark Systems Ltd. 80
action dispatcher. See action routines
action routines 119, 128-31, 152-57
actions

standard for most games 153-57. See
also action routines

Adams, Alexis 48
Adams, Scott 9-10, 46, 47, 49, 50, 51, 52,

53,55
review of adventure games 45-56

adventure games
action adventures 91-96
basic programming features 119-36.

See also action routines; automatic
routines; Backus Normal Form;
command parser; data structures;
output routines; programming
languages, use of in adventure
games

designing your own 139-57.
See also action routines; arrays;

automatic routines; command
parser; commands, commonly
used; commands, directional;
data structures; flags; loops;
output routines

evaluation of 19-23
graphic adventures 59-66
guidelines for playing 99-115
SAVE feature 4, 109-110
text adventures 3, 4, 5, 91-93
trends of the future 136, 185-97.Sec

also interaction, with the player
use of graphics 21

Adventure vii, 5-6, 7-8, 69-70, 122
Adventure International 45-46, 78, 82,

83,85
adventure interpreter 157
Adventureland 46
Adventure #3 47-48

Anderson, Tim 7
Arnstein, Robert 81
ARPAnet vii, 5
arrays 142-43, 145-49, 152, 154-57
artificial intelligence (AI) 11, 14-15, 191
assembly language. See programming lan

guages, use of in adventure games
Asylum 70-71
Asylum 11 71-72
automatic routines 119, 128, 132, 151-52
Aztec 95

Backus Normal Form (BNF) 124-25
illustrations of 124, 125

BASIC. See programming languages, use
of in adventure games

BASIC interpreter. Seeprogramming lan
guages, use of in adventure games

Bedlam 72

Berlyn, Michael 35, 41, 73
Blade of Blackpool 73
Blank, Marc 7, 29, 31, 32, 33, 38
"Book of Hints" 46. See also Adams,

Scott, review of adventure games
C. See programming languages, use of in

adventure games
Castle Wolfenstein 96
character descriptor 120, 126, 128, 141
combat, in adventure games 132-34
command parser 119, 120-25, 142-44
commands

commonly used 106-7, 154-57. See
also actions

directional 156-57. See also actions
grammatical rules and usage 3, 4, 8,

27-28, 106-7, 112, 113, 120-25,
130-31, 139-40

vocabulary 20
compiler languages. See programming

languages, use of in adventure games
Count, The 49
Cranston Manor 62-63

Crowther, Will vii, 5
Cullum, Michael G. 76
Cyborg 73-74
daemons. See automatic routines

Daniels, Bruce 7
DarkCrystal 66
Datamost 95

data structures 119, 126-28, 141, 145,
147-49, 190. See also character descrip
tor; internal map; object descriptors

Deadline 33
decision tree. See interaction, with the

player
Demas, William 55
Denman, William F., Jr. 71
DeWitz, Harold 62
Digital Equipment Corporation Users

Society 69, 74
DOWN. See commands, directional
DROP. See commands, commonly used
Dungeon 74-75

201

Dungeons and Dragons 6-7
EAST. See commands, directional
Eliza 11-13, 14. See also interaction, with

the player
Empire of the Over-Mind 75
Enchanter 38-39

Epyx 93, 95
error handling, of an adventure game 20.

See also commands
EXAMINE. Seecommands, commonly

used

flags 146-47, 148-49, 150-51
FORTRAN. See programminglanguages,

use of in adventure games
Galley, Stu 36
G.F.S. Sorceress 76-77
Ghost Town 52-53
Golden Voyage 55-56
graphics 10-11, 13-14, 21

characteristics of hi-res games 59
future use of 186-89
See also adventure games, graphics

adventures
Haunted House 77
higher-level languages. See programming

languages, use of in adventure games
Infidel 41-42
Infocom viii, 9

review of adventure games 27-42
INPUT. See command parser
interaction, with the player 187, 188-89
Interactive Fantasies 79
internal map 119, 126-27, 141, 145
INVENTORY. See commands, commonly

used

"Invisiclues" 29, 115. See also Infocom,
review of adventure games

Lebling, Dave 7, 29, 31, 32, 34, 38
limitless inventory, in an adventure game

60

linearity, in an adventure game 60
LISP. See programming languages, use of

in adventure games
LOOK. See commands, commonly used
loops 141-42. See also adventure games,

designing your own
Lords of Karma 77-78
maps 99-102, 194-95

202

illustrations of 100, 102
"Tower of Mystery" 181

mazes 101-5

illustrations of 102, 103, 104, 105
mapping of 103-5

Med Systems Software 71
Meretzky, Steve 37, 39
Merlin's Treasure 78-79

messages. See commands; output routines
Microcomputer Games, Inc. 75, 76, 77
Microsoft 69
Mullich, David 79
Mystery Fun House 50-51
Mystery House 60-61
The New Zork Times 29

NORTH. See commands, directional
object descriptors 119, 126, 127-28, 141,

145, 147-49
Original Systems, Inc. 94
output routines 119, 125-26, 150-51

encryption of messages 125, 126
reduction of storage requirements

125-26

parse. See command parser
Pascal. See programming languages, use

of in adventure games
Pirate's Adventure 46-47
Planetfall 37-38
prefiltering. See action routines
Prisoner 2 79-80

programming languages, use of in adven
ture games 134-36, 141

pseudocode 140-56
illustrations of 141, 142, 143, 144, 150,

152, 153, 154, 155, 156
puzzles, use of in adventure games 4,

21-22, 139
Pyramid 80-81
Pyramid of Doom 51-52
QUIT. See commands, commonly used
Raaka-Tu 81-82

Radio Shack 72, 77, 81, 86
Rogue 94-95
role-playing games. See Dungeons and

Dragons
rooms. See internal map
Savage Island 53-55
Schrag, Roger Jonathan 82, 83, 85

(JPBS

(0S9

Sentient Software 73
SHRDLU 13-14. See also graphics
Sierra On-Line

review of adventures 59-66
characteristics of adventure games

59-60

Sirius Software 73
Sledge of Rahmul, The 82-83
Sorcerer 39-41

SOUTH. See commands, directional
speed, in an adventure game 21
Spook House 83
standard screen format, of an adventure

game 10
Starcross 34-35
Stone of Sisyphus 83-85
Strange Odyssey 50
Suspended 35-36
Sword of Fargoal 95
TAKE. See commands, commonly used
Temple of Apshai 93-94
Time Zone 64-65
tokens. See command parser
"Tower of Mystery" 161-66

Microsoft BASIC version 166-71
modifications for Atari 171-72

TI BASIC version 172-80
Toxic Dumpsite 85-86
Ultima 94

Ultima U 94
Ulysses and the Golden Fleece 63-64
UP. See commands, directional
variables 141. See adventure games,

designing your own
Voodoo Castle 48-49

Weizenbaum, Joseph 11
WEST. See commands, directional
Wile, Michael D. 78
Willen, David C. 70
Williams, Ken 60, 61, 62
Williams, Roberta 60, 61, 64
Wilson, Tim 73
Winograd, T. 13
Witness 36-37

The Wizard and The Princess 59, 61-62
Woods, Don vii, 5
Xenos 86-87

Zork 7-9, 10, 11
Zork 1: The Great Underground Empire

29-31

Zork 11: The Wizard of Frobozz 31-32
Zork III: The Dungeon Master 32

203

3

3

Notes

r

r

F"

Notes

r

I Notes

r

r

r

1

Notes

l

1

if : Notes

r

r

Notes

G^S?

1

If you've enjoyed the articles in this book you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!.

For Fastest Service,
Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
PO Box 5406
Greensboro NC 27403

My Computer Is:
• Commodore 64 •TI-99/4A • Timex/Sinclair DVIC-20 • PET
• Radio Shack Color Computer • Apple • Atari • Other
• Don't yet have one...

• $24 One Year US Subscription
• $45 Two Year US Subscription
• $65 Three Year US Subscription
Subscription rates outside the US:

• $30 Canada
• $42 Europe, Australia. New Zealand/Air Delivery
• $52 Middle East, North Africa, Central America/Air Mail
• $72 Elsewhere/Air Mail
• $30 International Surface Mail (lengthy, unreliable delivery)

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank; International Money
Order, or charge card
• Payment Enclosed • VISA
• MasterCard • American Express
Ace t. No. Expires /

COMPUTE! Books
P.O. Box 5406 Greensboro. NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out, order directly from COMPUTE!

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868
In NC call 919-275-9809

Quantity Title Price Total

The Beginner's Guide ToBuying A Personal
Computer $ 3.95*

COMPUTEI'sFirstBook of Atari $12.95t

Inside Atari DOS $19.95t

COMPUTEI's FirstBook of PET/CBM $12.95t

Programming the PET/CBM 24.95

Every Kid's FirstBook of Robots and
Computers $ 4.95*

COMPUTEI's Second Book of Atari $12.95t

COMPUTEI'sFirstBook of VIC $12.95*

COMPUTEI's FirstBook of VICGames $12.95t

COMPUTEI's FirstBook of Atari Graphics $12.95t

Mapping the Atari $14.95t
Home Energy Applications On Your
Personal Computer $14.95t

Machine Language for Beginners $12.95t
• Add $1shipping and handling. Outside USadd $5 air mail; $2

surface mail

t Add $2 shipping and handling Outside USadd $5 air mail: $2
surface mail.

t Add S3 shipping and handling Outside USadd $10air mail; S3
surface mail.

Please add shipping and handling for each book
ordered.

Total enclosed or to be charged.

All orders must be prepaid (money order, check or charge). All
payments must be in US funds. NC residents add 4% sales tax.
• Payment enclosed Please charge my: • VISA • MasterCard
• American Express Acc't. No. Expires /

Name

Address

City State Zip

Country
Allow 4 5 weeks for delivery

If you've enjoyed the articles in this book you'll find
the same style and quality in every monthly issue of
COMPUTEI's Gazette for Commodore.

For Fastest Service
Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

computei's wMmmwwm
P.O. Box 5406
Greensboro, NC 27403

My computer is:
• Commodore 64 • VIC-20 •Other

• $20 One Year US Subscription
• $36 Two Year US Subscription
• $54 Three Year US Subscription

Subscription rates outside the US:

• $25 Canada
• $45 Air Mail Delivery
• $25 International Surface Mail

Name

Address

City

Country

State Zip

Payment must be in US Funds drawn on a US Bank, International Money
Order, or charge card. Your subscription will begin with the next avail
able issue. Please allow 4-6 weeks for delivery of first issue. Subscription
prices subject to change at any time.

• Payment Enclosed
• MasterCard

Acct. No.

• VISA
• American Express

Expires

The COMPUTEI's Gazette subscriber listismade available to carefully screened organiza
tions with a product or service which may be of Interest to our readers. Ifyou prefer not to
receive such mailings, please check this box•.

	front-cover
	Binder1
	chapter000
	content000
	chapter001
	content001
	chapter002
	content002
	chapter003
	content003
	chapter004
	content004
	chapter005
	content005
	chapter006
	content006
	chapter007
	content007
	chapter008
	content008
	chapter009
	content009
	chapter010
	content010
	chapter011
	content011
	chapter012
	content012

	back-cover

