C for yourself

part 3

Norman Rokke

	

	Things got very hectic at the time that the last newsletter was published and I didn’t get an article done. I can’t guarantee that I’ll have an article every month, but I’ll do my best as long as I have something to write.

	Last time I said that we would look at writing a C99 program for providing character definitions for centered text of odd length. Before getting to the code for doing this, let’s consider how this can be done.

	Let’s use “ODD”, the same text string that we used last time. We saw that the patterns for these three text characters would look like this.

	

0�0�0�0�0�0��7�C�7�8�7�8��4�4�2�4�2�4��4�4�2�4�2�4��4�4�2�4�2�4��4�4�2�4�2�4��4�4�2�4�2�4��7�C�7�8�7�8��

	We also saw that the patterns for the four characters which we wanted to produce would look like this.

0�0�0�0�0�0�0�0��0�7�C�7�8�7�8�0��0�4�4�2�4�2�4�0��0�4�4�2�4�2�4�0��0�4�4�2�4�2�4�0��0�4�4�2�4�2�4�0��0�4�4�2�4�2�4�0��0�7�C�7�8�7�8�0��	

	Let’s think of the first collection of patterns as a string with 48 hex characters numbered from 0 to 47. The reason for starting at 0 will be explained a bit later.

0�1�16�17�32�33��2�3�18�19�34�35��4�5�20�21�36�37��6�7�22�23�38�39��8�9�24�25�40�41��10�11�26�27�42�43��12�13�28�29�44�45��14�15�30�31�46�47��

	Likewise, the collection of patterns for the redefined characters can be thought of as a string of 64 hex characters numbered from 0 to 63.

0�1�16�17�32�33�48�49��2�3�18�19�34�35�50�51��4�5�20�21�36�37�52�53��6�7�22�23�38�39�54�55��8�9�24�25�40�41�56�57��10�11�26�27�42�43�58�59��12�13�28�29�44�45�60�61��14�15�30�31�46�47�62�63��

	If you look carefully you can see that the hex characters which are in even numbered positions in the first grid are in odd numbered positions in the second grid. More specifically, each hex character in an even position of our original string is moved forward 1 position. The character at position 0 winds up at 1, the character at 2 winds up at 3, the character at 16 winds up at 17 and so on.

	What happens to the characters at odd positions? Well, the character at 1 winds up at 16, the character at 3 winds up at 18 and so on. Each character in an odd position in the original string winds up at a position 15 higher in the second string.

	One last detail must be noted. The first 8 even positions of the second string must be assigned the hex character 0 as must the last 8 odd positions in this string.

	This gives us the method for doing the conversion. Starting with the original text string, get the hex string for each text character in order, and join all of these together into one long hex character string.

	Then, create a new hex string by moving the characters at even positions in the original string one position forward in the new string. Move characters in odd positions 15 positions forward in the new string. Fill the first 8 even positions of the new hex string with character 0 and do the same with the last 8 odd positions.

	Then break up the new hex string up into 16 character strings to be used for redefining characters.

	Now that we have a method for accomplishing our task, we can turn our attention to the code. When we do that we encounter a problem. In C99 there is not an available function which does what CALL CHARPAT does in XB. Well I guess that does it for this column.

	Wait a minute. I could run an XB program and print out each of the character definition strings obtained from CALL CHARPAT and type them in this article. Well, I could. But I’d probably make at least one mistake, and you might also make a mistake when typing from this article. That doesn’t sound like a very good solution.

	Hey! I just had another idea. We can get the character definition strings from XB. The C99 program that needs them is a DV80 file. We can produce a DV80 file from an XB program. Let’s just write an XB program to produce a DV80 file with the C99 code needed to bring in the character definitions.

	Below is an XB program that will do this. Type this program in and run it. Notice that the C99 program file will be produced on DSK2. If you want produce it on another drive, change line 100. I’ll discuss how the C99 code works a little later.

100 OPEN #1:”DSK2.CENTODD2;C

”,OUTPUT,DISPLAY ,VARIABLE 8

0

110 CH=32

120 CALL CHARPAT(CH,A$)

130 CALL CHARPAT(CH+1,B$)

140 CALL CHARPAT(CH+2,C$)

150 CALL CHARPAT(CH+3,D$)

160 PRINT #1:“ strcpy(cd,”&

CHR$(34)&A$&B$&C$&D$&CHR$(34

)&”);”

170 FOR CH = 36 TO 124 STEP 4

180 CALL CHARPAT(CH,A$)

190 CALL CHARPAT(CH+1,B$)

200 CALL CHARPAT(CH+2,C$)

210 CALL CHARPAT(CH+3,D$)

220 PRINT #1:” strcat(cd,”&

CHR$(34)&A$&B$&C$&D$&CHR$(34

)&”);”

230 NEXT CH

240 CLOSE #1

	Before we look at the rest of the C99 program, you may want to copy to the program disk the other files that will be needed. These include CSUP, GRF1, and PRINTF from the libraries disk. You will also need STRINGFNS from that disk. From the utilities disk you will need SEGSTR/O.

	Below is the C program. Load the file CENTODD2;C into the editor and add the additional lines to what was produced by the XB program. The bold text is the code to be added.

#define NULL 0

extern grf1(),printf(),chrdef(),hchar(),segstr();

main()

 {

 int length,i,j,k,offset;

 char cd[1537];

 char text1[32],text2[33],hex1[513];

 char hex2[529],str[17];

 grf1();

 strcpy(cd,”0000000000...

 ...

 ...

 ...

 strcat(cd,”0010101000...

 strcpy(text1,”ODD”);

 length = 3;

 i=0;

 for(j=0;j<length,j=j+1)

 {

 offset=16*(text1[j]-32);

 for(k=0;k<16;k=k+1)

 {

 hex1[i]=cd[offset+k];

 i=i+1;

 }

 }

 hex1[i]=NULL;

 hex2[i+16]=NULL;

 for(i=0;i<16*length;i=i+1)

 {

 hex2[i+1]=hex1[i];

 i=i+1;

 hex2[i+15]=hex1[i];

 }

 for(i=0;i<16;i=i+2)

 hex2[i]=’0’;

 for(i=length*16+1;i<16*(length+1);i=i+2)

 hex2[i]=’0’;

 strcpy(text2,”chrdef(nnn,\””);

 for(i=0;i<=length;i=i+1)

 {

 segstr(hex2,str,16*i,16);

 chrdef(128+i,str);

 text2[12]=NULL;

 strcat(text2,str);

 strcat(text2,”\”);”);

 locate(i+3,1);

 printf(text2);

 }

 for(i=0;i<=length;i=i+1)

 hchar(1,15+i,128+i,1);

 locate(2,15);

 printf(”EVEN”);

 locate(23,1);

 }

#include ”DSK2.STRNGFNS”

	After saving the program you may want to create the file for the C-Loader. This file would contain the following.

DSK2.CENTODD2;O

DSK2.CSUP

DSK2.GRF1

DSK2.PRINTF

DSK2.SEGSTR/O

	When you compile this program you need to choose y for the third option Assume long jump for it to compile and assemble properly.

	Now let’s look at the code. The first line provides information to the compiler. It instructs the compiler to replace the text string NULL with the value which follows in the #define directive, namely ‘\0’. This value represents the character whose ASCII code is zero.. In C, individual characters are designated by enclosure between single quotes. The backslash followed by a number is used for those characters which can not be readily typed from the keyboard.

	We are going to use the ASCII zero character in our program and NULL is also used in the code in file STRINGFNS which we will use.

	In the extern statement, we see some new functions. The segstr() function is from Bruce Harrison’s utility programs and provides the same capability as SEG$ in XB. The function hchar() works like CALL HCHAR in XB. Both of these are in GRF1.

	The first four lines in main() are variable declarations. In C there is only one rule for naming variables. The name must start with a letter and the remaining characters may be either letters or digits. You can not tell the type of data stored in a variable based on its name as you can in XB. You must associate each of your variables with one of the available data type.

	In C99 the available data types are integer, character and pointer. Integer variables can contain any whole number in the range from -32768 to 32767.A character variable can contain any individual character (letter, digit, punctuation etc.) with ASCII value from 0 to 255. We will not discuss pointer variables at this time.

	You may also work with arrays of integers or characters. In C99 arrays are limited to one or two dimensions.

	In our program we are declaring 5 integer variables. All of these are listed in the same type declaration. We also need several character array variables. In C character arrays are used to represent string values.

	In C strings are terminated by an ASCII zero character. When setting the size of a character array to be used for string data, you must remember to leave room for the ASCII zero. The variable cd is a character array we will use to store the hex string for defining all of the characters from 32 to 127. This requires 16*96 or 1536 characters. We must set the size of the array at 1537 to allow for the ASCII zero. The variable text1 will be used to store the string of text characters to be centered (an odd number of characters with maximum of 31). We will use hex1 to store the hex definition strings of the characters in text1 (maximum 512 characters). In hex2 we will store we will store the hex definitions of the redefined characters. The hex definition of a single character will be temporarily stored in str. Variable text2 will be used to hold and print on screen the C99 character definition statements needed for the redefined characters.

	When using arrays in C it is important to remember that the first position in the array always has index 0. This is why we started numbering the cells in the grids at zero. For example str would have valid indexes in the range from 0 to 16. The number inside brackets in the declaration is the number of values that can be stored.

	It is also important that you realize that the compiler does not check to see that array indexes are in the proper range. For example a reference to str[37] would not prevent your program from compiling and assembling. However, it probably would cause some problem somewhere and worst of all the problem would show up as something totally unrelated to the source of the problem making it very difficult to debug.

	C puts a lot of responsibility on the programmer to handle details that can be ignored in XB. The advantages of the language don’t come without cost.

	We begin by putting the computer in graphics mode. Next we come to the code produced by the XB program. This code creates the string cd. The function strcpy() performs the same task that CD$=“ABC” would do in XB. It lets us assign a value to a string variable. It provides the ASCII 0 for string termination also. The strcat() function does what CD$ = CD$&”DEF” would do in XB. It also takes care of the ASCII 0 terminator. The result is that the string cd contains the hex character definitions of all of the characters from 32 to 127.

	Next we assign “ODD” to text1 and set length to 3. Note that assignment of a value to an integer variable is done just as in XB.

	Now we need to get the character definitions for each of the characters in text1. This is done by a nested pair of for loops. We use i as an index to the position in the hex string hex1. This is set to zero before the loops.

	The for statement is followed by three expressions separated by semicolons. The first expression gives an initial value to the loop control variable. The second expression is used to determine when to stop the loop. As long as this expression is true, the loop continues. When it becomes false, the loop ends. The last expression is performed at the end of each pass through the loop. In this case the loop starts with j=0 and continues for all values of j up to length-1. These we use as index positions to all of the characters in text1 which actually have data (0 to 2). The last expression takes care of increasing j by one each time through the loop.

	For those of you who may know some C, I know that the incrementating of the loop control variable is not typically done like I have done it here. However, I wanted to keep things as simple as possible at the beginning. I will discuss the more typical way of doing this in a latter article.

	Variable j is an index to a position in the string text1. The outer loop takes us through each of the positions in the string in text1.

	Character data is stored as ASCII code values so text1[j] will be the ASCII code of one of the characters in the string we want to center. If j is 0, text[j] will be 79 (for ‘O’). By subtracting 32 (ASCII code for the space character), we determine how many characters come before the one we are dealing with. Multiplying by 16 gives us the position in cd where the definition of the current character begins.

	The inner loop runs from k=0 to k=15 to get each of the 16 hex characters that define the current text character. Inside the loop we also increment i.

	Also notice the use of curly brackets to create a block of statements , all of which are done each time through the loop. Indentation also is used to make it easier to tell what is done inside the loop.

	Next we put the ASCII zero character into hex1 and hex2. Variable hex2 is 16 characters longer because it defines one more text character than hex1. Since we are not creating these strings by using string functions, we are responsible for making sure the ASCII zero is in the proper place.

	The next loop moves each character in hex1 to its proper position in hex2 as we discussed earlier. Characters at even indexes are moved ahead 1 position and characters at odd indexes are moved ahead 15 positions in the new hex string (hex2).

	The next loop fills the first 8 even index positions in hex2 with ‘0’. Then the next loop fills the last 8 odd index positions in hex2 with ‘0’. Note that this is the character ‘0’ (the same as “0” in XB) and not ‘\0’.

	Next we redefine characters and print the appropriate C99 statements to do this on the screen. Outside the loop we define the first part of the line of text to display on the screen. Note the \” in the string that is to be assigned to text2. This is how we can put the “ character inside a quoted string. The \” becomes only one character. It’s comparable to using double quotes in XB to get one quote character.

	 Inside the loop we use segstr() to get individual character definition strings from cd. Then we redefine a character. Next we put the ASCII zero at the end of text2. The first time through the loop it will already be there since we used strcpy() outside the loop. Inside the loop we’re going to add to the string. After the first time through the loop the ASCII zero will not be in this position so we have to put it there so we can add to the same basic string each time through the loop.

	Next we add to text2 the hex string character definition. Then we add “); to the end of the string. Using the locate() function which we saw last time we position the cursor at column 1 of a particular row and then print the chrdef statement to the screen.

	In the next loop we display the four redefined characters centered on the first row of the screen. I have not been able to use printf to deal with characters above 127 so I used the hchar() function. This is a function included in GRF1 which works much like CALL HCHAR in XB. The only difference is that you must supply the fourth argument (number of times to repeat character) even if it is 1 as in this case.

	Then we print a centered line of text containing an even number of characters for comparison. The last locate statement positions the cursor at the bottom of the screen for printing the exit rerun? message when the program ends.

	The #include compiler directive tells the compiler to deal with the text in the file STRINGFNS as if it were right here in this program. The file STRINGFNS contains the code for strcpy() and strcat() as well as for other functions which we don’t use. Since the code for strcpy() and strcat() will be compiled when we compile our program we do not need extern statements for these functions.

	While this program works, it leaves much to be desired. We really need a program that will let us enter the text we want to center. Also the program would be improved if we could write the character redefinition statements directly to a DV80 file so that they could be used directly in a C99 program without copying from the screen and typing.

	In We’ll look at how we can make these improvements in future articles. C you next time.

	Users groups may reproduce this article provided that they acknowledge the author and indicate that the article appeared originally in the West Penn 99er’s Newsletter.

