C for yourself

Norman Rokke

	When C99 first became available at the user group I got a copy with the intention of learning about C. However, when I couldn’t get a running program from the sample programs, I put it aside and concentrated on other programming interests. Some years later I took a course in C but I never returned to C99. Recently I had an idea for a program I wanted to write and began writing it in Extended BASIC. I got a portion of the program written but it became obvious that Extended BASIC was not the most appropriate language.

	One of the problems was speed. Because of this and other deficiencies of Extended BASIC which I won’t go into now, I decided to take another look at C99. Again, when I tried to get running programs from some of the sample programs, I experienced difficulties. This time however I finally managed to figure out what I was doing wrong and was able to get the sample programs to run. I have been able to code a considerable portion of my program in C99 and am very pleased with the language.

	In this article I want to explain how C99 can be used to create a simple program, just to show the overall process from start to finish. This process consists of four steps.

	1. Using an editor to create the C99 program.

	2. Using the C99 compiler to compile the C99 program and produce assembly

	language source code.

	3. Using the assembler to produce executable code (EA option 3).

	4. Creating EA option 5 executable code.

	Let’s look at a simple C99 program that prints Hello world on the screen. I’ve read that one of the developers of C wrote a program to do this as the first program ever written in the language.

	As I describe how to carry out each step I’ll assume you have the set of C99 disks offered by Vern Jensen in Micropendium. I’ll also assume that you have a two disk drive system and that the Funnelweb disk is in drive 1 and that you will save your C99 programs and any other necessary files on drive 2.

	To create a C99 program you use an editor. From the menu choose 1 PROGRAM ED. This editor is essentially the TI-Writer or Funnelweb editor modified so that it does not cause problems with the C99 compiler. I assume that you are familiar with the basic commands of the editor. Use the editor to type in the following program.

	extern grf1(),printf();

	main()

		{

		grf1();

		printf(“Hello world”);

		}

	After you have typed the program in, save it with the file name DSK2.HELLO;C using SF. The ;C ending of the filename is a convention to make it easy to recognize this file as a file which contains C99 program code. Then leave the editor and go to the menu screen.

	Before describing how the program is compiled, I’d like to briefly explain the above program. The first line

	extern grf1(),printf();

provides the compiler with information it needs to properly handle the program you are writing. Much of C99 is contained in functions which are stored in library files. grf1() and printf() are two such functions. The code for providing the capabilities of these two functions is in separate files which are part of the C99 package. The grf1() function puts the computer in graphics mode (24 rows, 32 columns) rather than the default text mode (24 rows, 40 columns). The printf function works much like the PRINT statement of Extended BASIC. In order to use these functions in our program, we must tell the compiler that we are going to be using these functions which are outside of or external to our program. This statement also requires that at the appropriate time we must provide the necessary library files so that everything will work properly. We’ll see later when and how that is done.

	Every C99 program consists of one or more functions. These functions are like subprograms in Extended BASIC. The second line

	main()

identifies the one function which must be present in every C99 program, a function whose name is main. The parentheses after the name identify it as a function.

	The other functions in a program are either library functions or functions created by the programmer. This program does not use any of the latter. The most important thing to know about the function main is that the program begins by executing the statements in this function.

	The { on the next line marks the beginning of a block of code for the function main.

	The next line

	grf1();

sets the computer in graphics mode. Note that statements in C99 end with a semicolon. This applies to the extern declaration statement above also.

	The next line

	printf(“Hello world.”);

uses the printf function to print something on the screen.

	The } on the last line marks the end of the block of code for the function main.

	Now let’s compile the program we’ve written. Choose 4 C-COMPILER from the menu. Press ENTER to accept the default values for each of the three questions. Next press ENTER to accept HELLO;C as the input file. Change the name of the output file to DSK2.HELLO;S and press ENTER. The ;S ending of the file name is a convention to help you recognize this file as an assembly language source file. Now press FCTN-6 to start the compilation process. Type N in response to the question of whether you want to compile again.

	If the compilation completes and the message indicates zero errors, you are ready to go on to the next step. However, if there are errors, you must go back to step one and edit the C99 program to correct the errors. If errors are reported use PROGRAM ED and make sure your program is identical to the one above. Then save the file and try the compilation again. If your file is exactly like the program above it will compile successfully.

	The third step involves assembling the code produced by the compiler. Choose 2 ASSEMBLER from the main menu. Press ENTER twice to accept DSK2.HELLO;S as the source file and DSK2.HELLO;O as the object file to be created. The ;O ending is a convention to help you recognize the file as an Editor Assembler option 3 object code file. You can press ENTER twice more to accept the default values for the last two prompts also. Press FCTN-6 to begin assembly. The assembly should go without a hitch and you should get a report of no errors. Press ENTER to go back to the main menu.

	Finally we have a program that we can run. To be more precise, it will run if we load the additional files which are necessary. Every C99 program needs the file CSUP in order to run. This file contains code which sets up the default text mode before the program runs. It also contains code to cleanly end the program when the program is finished. Copy the file CSUP from the C99-LIBS disk onto the disk containing the program files we have been working with.

	Since we used library functions in our program, we also need to supply the files that contain those library functions. the function grf1() in is the library file GRF1 and printf() is in the file PRINTF. Both of these files are on C99-LIBS. Copy both of them to the disk with the program files and CSUP.

	Now we are ready to run the program. Choose 3 LOADERS from the menu. Then choose 4 LOAD/RUN (E/A). Enter DSK2.HELLO;O as the filename and press ENTER. When the cursor returns press FCTN-3 and enter the filename DSK2.CSUP and press ENTER. When the cursor returns press FCTN-3 and enter the filename DSK2.GRF1 and press ENTER. When the cursor returns press FCTN-3 and enter the filename DSK2.PRINTF and press ENTER. When the cursor returns press FCTN-3 and press ENTER.

	You will see a screen filled with DEF Table entries. Use FCTN-D to place the cursor on the S of START. Then press FCTN-6 and the program will run. Although the program doesn’t do anything impressive it should be satisfying to see that what you have written actually produces a result. As far as I know there is no way back to the main menu from here so press FCTN-=.

	As satisfying as it may be to get the program running, I’m sure you will agree that there has to be an easier way to run the program than what we just went through. There is.! What we must do is create an E/A option 5 program. In order to do this we need three more files on our program disk. Copy the files C99PFI, C99PFF, and SAVE from the C99-LIBS disk to your program disk.

	C99PFI contains the DEFs SLOAD and SFIRST which are needed by the E/A SAVE utility. C99PFF contains the SLAST DEF also needed by SAVE. SAVE is the E/A utility program used for creating program image (E/A option 5) files.

	Choose 3 LOADERS from the main menu and then choose 4 LOAD/RUN (E/A). The order in which the files are entered is critical so enter them just as listed below.

	Enter filename DSK2.C99PFI and press ENTER. When the cursor returns press FCTN-3 and enter filename DSK2.HELLO;O and press ENTER. When the cursor returns press FCTN-3 and enter filename DSK2.CSUP and press ENTER. When the cursor returns press FCTN-3 and enter filename DSK2.GRF1 and press ENTER. When the cursor returns press FCTN-3 and enter filename DSK2.PRINTF and press ENTER. When the cursor returns press FCTN-3 and enter filename DSK2.C99PFF and press ENTER. When the cursor returns press FCTN-3 and enter filename DSK2.SAVE and press ENTER. When the cursor returns press FCTN-3 and press ENTER.

	You will now see a screen filled with DEF Table entries. The entry we want is SAVE and it is not on this screen. Press ENTER to get another screen of DEF Table entries. SAVE isn’t on this screen either. Press ENTER to get to the third screen of DEF Table entries. SAVE is the last entry. Use FCTN-D to position the cursor over the S of SAVE. Then press FCTN-6.

	At the prompt for the filename enter DSK2.HELLO. Then press ENTER and let the SAVE utility do its work.

	When the program finishes press FCTN-9 to go back to the LOADERS menu. Select 3 PROGRAM (E/A). Enter DSK2.HELLO and press ENTER. You now have your simple C99 program in a much more easily runnable form.

	I use the E/A option 3 program to test for errors I don’t make a program image file until the program is rather well debugged.

	I hope that you find this introduction to C99 useful. That’s all for now. C you next time.

	

	User groups may reproduce this article provided they include the name of the author and acknowledge the West Penn 99er’s Newsletter as the original source.	

