C For Yourself

Part 4

Norman Rokke

	At the end of the last article I mentioned some improvements that could be made to the program we have been working on. When I wrote that I hadn’t yet written the programs to accomplish those improvements. The bad news is that I still haven’t written the programs. The good news is that this failure is caused by lack of time to write the programs rather than being unable to make a program work.

	Rather than skip a month I thought it might be useful to look a bit more closely at how C lets us use code which is somewhere other than in our own program. The term library functions is used to refer to this kind of code and the files which contain these library functions are called library files.

	We have used a number of library functions in previous articles. Functions such as locate, printf, chrdef, hchar, strcpy, strcat, and segstr are examples. Although they are all library functions, there are some differences in how they are used.

	Let’s start by looking at the function locate. The code for this function is in the file CSUP. This file is a DF80 file which contains already assembled code. We have seen how we include this file in our program at the appropriate time. We have also seen that this file must be included in every C99 program we write.

	Because CSUP must be used with every program that we write, the compiler knows about everything that is in CSUP. Therefore, we do not need to tell the compiler about locate by using an extern declaration because the compiler already knows about it.

	The files PRINTF, GRF1, and SEGSTR/O also contain already assembled code for library functions that we can use. These files do not need to be used with every program that we write and so the compiler does not know anything about functions like printf, chrdef, hchar, or segstr. In order to use these functions in our programs we use the extern declaration to tell the compiler about these functions that are somewhere else outside our program.

	In the example programs of previous articles I used extern declarations including only those library functions which would be used in the program. Another way to supply this information is to use what is called a header file. This is a file which contains extern declarations containing all of the library functions in a particular library file.

	The file GRF1;H is an example of such a file. This file contains extern declarations listing all of the functions in GRF1 including many which we didn’t use such as screen, clear, vchar, and many others. If we put the compiler directive

	#include DSKn.GRF1;H

at the beginning of our program we can use any of the library functions in GRF1 with no worry. The #include directive tells the compiler to find the file GRF1;H on the specified drive and treat the contents of that file just as if they were typed in our program at the point of the #include directive.

	I prefer not to use the header file. I like to be able to look at the program code and know what library functions are being used and I can do that when the extern declarations are present in the program. When the header file is used, you can’t determine which functions are used unless you examine the code in detail. On the positive side the use of the header file simplifies things and prevents misspelling of function names which would lead to compilation errors. Ultimately, it comes down to a matter of personal preference.

	Before we leave library functions which are in DF80 files, let’s consider some advantages and disadvantages of these types of library functions. First the advantage of these functions is that we never have to wait for the code which performs these actions to be compiled or assembled. The code is ready to execute and we simply add the necessary library file(s) after we have compiled and assembled our own program.

	The possible disadvantage of this method can best be explained by considering the GRF1 library file. As we have seen the functions grf1, chrdef, and hchar are included in this file. However there are also many other functions such as screen, chrset, clear, key, as well as numerous sprite functions in GRF1.

	When we add the file GRF1 to our program we get the code for these functions as well even though we don’t use them. This code takes up memory which is not available for code which we might actually need. This makes the program larger than it needs to be with no benefit. In a very large program we might not have enough memory for our program code because of the memory wasted in storing functions we don’t use.

	This disadvantage does not apply to all DF80 library files. The files PRINTF and SEGSTR/O each contain only one function (printf and segstr respectively) and the use of these functions results in no wasted memory.

	Before continuing, I’d like to make it clear that I’m not knocking anyone associated with the creation of DF80 library files for C99. I’m simply trying to point out some pros and cons connected with use of these files.

	I realize that there may have been some efficiency gained from different library functions in GRF1 using the same code. Also the prospect of having individual files for each of the functions in GRF1 (over 20 in number) is not appealing.

	The other type of library file that we can use is a DV80 file which contains C99 code. This code can be added to our program by means of a #include directive. We used this method in Part 3 to add the functions strcpy and strcat to our program.

	These code for these functions is in the file STRINGFNS. This code is C99 code. The #include directive causes the compiler to treat this code just as if it were part of our program file and compile it along with the rest of our program. This means we don’t have to go to the effort of retyping this code in our program in order to use it. We simply tell the compiler where to find the code and it does the rest.

	Since the code for these two functions is really part of our program we do not have to use extern. These functions are part of our program. The code just happens to be in a separate file.

	Now let’s look at the advantages and disadvantages of this type of library function. In this case we are not dealing with code that is ready to be executed. The code for these functions must be compiled and assembled along with the rest of our program. Our program will take longer to compile and assemble than it would if we had these functions in DF80 format.

	Another possible problem when using these types of library functions is that they may contain symbolic constants such as NULL in the library that we used. When I first tried to use this library, everything went well when I compiled the program but an error occurred when I tried to assemble the program.

	When I checked the line that produced the problem, the only thing that looked unusual was the label NULL. I knew that I hadn’t used this in any of my code so I checked the file STRINGFNS. In order to use the library functions I needed to know that the symbolic constant needed to be defined with a #define directive. I also needed to know what value needed to be assigned to NULL to make things work properly. Without this knowledge the library functions would be unusable.

	It would be very helpful if those who supply library functions containing symbolic constants would include a comment indicating the appropriate #define directive needed to use the library.

	Yet another problem with this type of library function is that the library may contain functions that we do not need. That is true of STRINGFNS. We only need 2 of the several functions in this file. Not only do we get executable code which contains code that we never use, but we have to wait for this unused code to be compiled and assembled.

	This points to the biggest advantage of this type of library function. We don’t have to put up with this wastefulness. Rather than using the entire file STRINGFNS, we can create a file which contains only the code for the functions we need.

	To do this load the file STRINGFNS into the editor. We want to save lines 89 to 124 as a separate file. We can do this as follows. Choose SF. Use FCTN 2 to insert 89 124 before the filename and change the filename to CAT+CPY. The line should look like this:

89 124 DSK2.CAT+CPY

When it does press ENTER to save the file.

	We are not quite finished. The file CAT+CPY also contains the code for stncat which we do not need. Load in the file CAT+CPY and erase the lines starting with stncat(through the line above strcat(. Then save the file.

	Now if we change the last line of CENTODD2;C to

#include “DSK2.CAT+CPY”

we will be using only the functions that we need. When you make this change the E/A option 3 program that results is 30 sectors. The file using STRINGFNS was 35 sectors long.

C you next time.

	Users groups may reproduce this article provided that they acknowledge the author and indicate that the article appeared originally in the West Penn 99er’s Newsletter

