0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

Cover Copys A comprehensive guide to every commandy
statement, and function in TI-99/2 BASIC.

Basic Computer 99/2
Book 4: BASIC Reference Guide

Copyright ¢ 1983 Texas Instruments Incorporated

R. BRSIC Reference Section
1., Introductiaon
2. Commands A 5 66
3. General Program Statements”
4., Input/Output Statements ES &4
5. Built—in Numeric Functionk ~ 6?
&. Huilt-in String Functions — P q
7. Array Statements
8. Subroutine Statewents
?. File Processing Statements

‘ 10. Built-in Subpragrams

B. Appendices

C. Glossary

D. Index

Page 1

0319P TI-99/2 Book 4 BASIC Reference Lulde (FINAL DRAFT)H
Book 4: BASIC Reference Guide

8. BASIC Reference Section

1. Introductiaon

2. Commands
NEW
BYE
LIST
RUN
EDIT N
NUMBER '
RESERUENCE
oL
SAVE
DELETE
BREAK
LiNBREAK
CONTINUE
TRACE
UNTRACE

3. General Program Statements
LET
REM
END
goTo
ON GDTO
IF THEN ELSE
FOR TO STEP
NEXT

4. Input/Output Statements
INPUT
READ
DATA
RESTORE
DISPLAY
PRINT

§. Built-in Numeric Functions
ABS
ATN
cas
£EXP
INT
LoG
RANDOMIZE
RND
SGN
SIN
SGR

- TAN

Page 2

0319F TI-99/¢

6‘ B

7« R

8. S

?. F

10.8

8., Appendices
C. Glossary
D. Index

Book 4 BASIC Reference Guide (FINAL DRAFT)

uilt-in String Functions
RSC

CHRS

LEN

POS

SEGS

STR$

VAL

rray Statements
OPTION BASE

DIM

ubroutine Statements
GosUB

RETURN

sSTOP

ON GDSUB

ile Processing Statements
OPEN

INPUT

PRINT

CLOSE

RESTORE

uilt-in Subprograms
CALL CLEAR

CALL HCHAR

CALL VCHAR

CALLL GCHAR

CALL KEY

CALL PEEX

CALL POKE

CALL MCHL

Page 3

0319 TI-99/2 Book BASIC Reference Luide (FINAL DRAF)
INTRODUCTION

This manual provides a comelete explanation of all the commands, statements,
and functions in the TI-99/8 BRSIC language built inte vour computer. Af ter
you've gained proficiency in programming, this guide serves as your primary
reference for TI-99/2 BASIC commands, statements, ard functions.

Notational Canventions

The discussion for each command, ztatement, or functiion begins with a line
that shows its general format, following these notational conventions.

38 &3 Braces indicate a choice of items. You may use only one of the items
enclosed in braces. '

[1 Brackets indicate optional items . You may use the items if you
wish, but they are not required. '

- An ellipsis indicates that the preceding item may be repeated as many
times as you desire.)

jtalics Italicized words indicate the kind of item or items to be uséd.
Enter vour own choice in place of the italicized words vhen you enter
the statement or command.

Examples

For each statement or command in this manual, program examples are shown on
the follawing page. Each line that vyou must enter is indicated by the prompt
character () to the left of the liney just as it appears on the screen.

Lines which the computer places on the screen do not show the pramet character.

Page 4

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

COMMANDS

When the prompt and cursor appear in the lower-left-hand corner of the screeny
your Basic Computer 99/2 is in Command (Immediate) Mode, and you may enter a

command. Commands are not preceded by line numbers; the computer performs the .

task immediately.

Some commands may also be used as statements in programss as noted in the
discussions.

NEW

NEW

The NEW command erases the program that is currently stored in memory'and
cancels any BREAK or TRACE command in effect. NEW also closes any open files
and erases all variable values and the table in which variable names are
stared.

After the NEW command is performed, the screen is cleared and ithe message

TI-99/2 BASIC READY is displayed on the screen. The prompt and flashing
cursor (>_) indicate that you may enter another command or a program line.

" BYE
8YE

The BYE command closes all open files, erases the program and all variables in
mamary, and resets the computer, causing the master title sCreen to reappear.
To leave TI-99/2 BASIC, always use the BYE command instead of the QUIT ke
combination because QUIT does not close open files. -

Page 5

0319PF TI-99/2 bBook 4 BRSIC Reference Luide FINAL ORAF L)

NEW

{The screen is clearedy and the following appears at the bottom of the
screen.’)

TI-29/2 BASIC RERDY

#NEW

»100 X$="HELLO, GENIUS!'®
»110 PRINT X$

>RUN

HELLD, GENIUS!

CLoa DONE %

»BYE

(The master title screen appears.)

Page 4

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)
LIST

LIST {lipe-listl
L.IST "HEXBUS.device-pumber“[:lipe-list)

The LIST command is used to print or display the program lines in memory. If
you enter the LIST command without a lipe-list, then the entire program is
printed or displayed. The program lines are always listed in ascending order,
without unnecessary blank spaces.

If vou anter HEXBUS.device-oumber, the program lines are printed on the
™

specified device. Device-pumbers for HEX-BUS reripherals are listed on

page XX,

If you enter a lipe-lists it may consist of a single number, a single number
preceded by a hypheny, a single number followed by a hyphen, or a hyphenated
range of l1ine numbers.

Coumand Lines Diselaved or_Prinied

LIST All program lines

LIST x Program line number x

LIST x-y Program lines between x and y, inclusive
LIST x- Program lines greater than or equal to x
LIST -y Program lines less than or equal to vy

You can stop any listing by pressing BREGK or CLEAR.

If there is a program in memory and the line—-list seecifies a line number that
is not in the program, the following conventians apply.

-~

lol For line numbers greater than any in the program—--the
highest-numbered program line is listed.

'o! For line numbers less than any in the program—the lowest-numbered
program line is listed.

ot | For line nunbers'betueen lines in the progras——the next
higher-numbered line is displaved.

You can use LIST to direct output to a peripheral device. Fdr example,
LIST “HEXBUS.10"

éauses your program to be printed, i% the Printer/Plotter iz attached, and
LIST "HEXBUS.20":100-200 /

outputs program lines 100 through 200 to the RS232 Interface. Note that
HEXBUS and the rumber of the device must be enclosed in quotation marks. For
more information about device-nymbers used with the LIST command, refer to the
owner's marnual that comes with the peripheral device.

Page 7

0319P T1-99/2 Book 4 BRSIC Reference Guide \F INAL DRAFT)
NEW

»100 A=279.3
»120 PRINT A;8B
»110 B=-456.8
SLIGT
100 A=27%.3
110 B=-454.8
120 PRINT A;B

»LIST 110
110 B=-454.8

=LIST 90-120
100 A=279.3
110 B=-456.8
120 PRINT A;3B

*LIST 110-
110 B=-456.8
120 PRINT A;EB

SLIST -110
100 A=279.3
110 B=-484.8

*LIST 150~
120 PRINT A3B

»LIST -90 ' .
100 A=277.3

SLIST 105
110 B=-454.8

If you enter a LIST conmand and spacifv a line number that is less than 1 or
greater than 32767, the message BRD LINE NUMBER is displayed.

1f vou specify a line number which is not an integer, the message INCORRECT
STATEMENT is displayed.

If no program is in memory when you enter a LIST command, the meszage CAN'T DO
JHAT is displaved. s "

Page 8

0319F TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)
RUN

RUN [lipe-pumber!

The RUN command causes the computer to begin executing the program stored in
mewmory. Before the program starts running, the computer

'lo! sats the values of all numeric variables to zero

ol sets the values of all string variables to a null string (one
containing no characters)

'o! checks for certain program arrors {see Appendix XX)

'at closes any open files.

If no lipe—-pumher is specified when the RUN command iz entered, the computer
starts program execution at the lowesti-numbered line in the program.

If yod gpecify a line-number, the program starts running at the specified
program line. Note in this example that because the program begins running at

line 110, the value of A remains zero.

If you specify a lipe-nuaber that is not in the program, the message BAD LINE
NUMBER is displaved.

If you enter a RUN command when there is no program in memory, the message
. CAN'T DO THAT is displavyed.

Page 9

-

0319P TI-99/2 Book 4 BASIC Reference UGuide (FINAL DRAFD)

+NEW
=100 A=-16
>110 B=25
=120 PRINT A3B
+RUN

-146 25

#% DONE %%
>RUN 110

o 25

%% DONE ¥

Page 10

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

ECIT

EDIT lipe-number
lipg-pumber FCTN E
lipe-pumber SHIFT E
lipeznumber FCTN X
lipe~pumber SHIFT X

You can change existing program lines in Edit Mode. To enter Edit Mode, type
the EDIT command followed by a lipe-pumberr or type a lipe-oumber followed by
ECTN E (UP ARROW) or ECIN X (DOWN ARBOW). SHIEI can be substituted for ECIN
in these operations. If you specify a lipe-opumber that is not in the program,
the message BAD LINE NUMBER is displaved.

Entering Edit Mode displays the line specified by the line-pusber. The prowmet
character (>} iz not displavyed. The cursor is positioned in the second
character position to the right of the line number. You can change any
character on the line {(except the line number} by using the special keys
described below and typing over the characters you wish to change.

ECIN_S or SHIEI S (LEEI AERROW)--The LEEI ABBOW (backspace) key wmoves the
cursor one position to the left. When the cursor moves over a

character, it does not delete or change the character.

ECIN B or SHIEI_D (RIGHT AQRRCM)-~The RIGHI ARROW (forwardspace) key moves the
cursor one position to the right. UWhen the cursor moves over a
character, it does not change or delete the character.

ECIN_2 (INS)~-The INSert key works the same in Edit Mode as it does in Command
Mode. See "Taur of the Keyboard" in Hook 1.

ECIN_1 (DEL)~-The DELete key works the same in Edit Mode as it does in Command
Mode. See "Tour of the Kevyboard" in Book 1.

FCIN 4 (CLEAR)~-The CLEAR key scrolls the current line up on the screen and
leaves the program line unchanged. The computer then leaves Edit Mode.

ECIN_3 (ERASE)-~The ERASE key erases the entire text of the program line
currently displayed. The line number is not erased.

- ENIER—-The ENIER key replaces the program line in memory with the edited

S (displayed) line, and the computer leaves Edit Mode. Note that the
cursor does not have ta be at the end of the line for the antire line
to be entered. If you erase the entire text of the program line and
then press ENIER, the program line is deleted,

ECIN.E or SHIEI_E (UP BRROK) --The UP SRROM key replaces the program line in
pemory with the edited (displaved) line and then displays the next

- lower-numbered line in the program. If no lower-numbered program line

- exists, the computer leaves the Edit Mode. Note that the cursor does
not have to be at the end of the line for the entire line to be entered

by the UP ARROM key.

Page 11

0319P TI-99.2 Book 4 BASIC Reterence Uuide (FINAL DRAF1)

ECIN.X or SHIET_X (DOWN ARROW)--The DOWN wi..uW key replaces the program line
in memory with the edited (displayed; line and then displays the next
higher-numbered line in the pragrawm. If no higher-numbered program
line exists, the computer leaves the Edit Mode. Note that the cursar
does not have to be at the end of the line for the entire line to be
entered by the DOWN ARROW key.

Page 1°

Q319P TI-79/2 Buok 4 BASIC Reterence Guide (FINAL DRAFT)
NUMBER

NUMBER
(ipitial-lipel[,increment]
NUM

When vou enter the NUMBER command, the computer enters the Number Mode and
automatically generates line numbers for your program. If no ioitial=line and
no iptrement are specified, the ipitial-line is 100 and the increment is 10.

If you include an ipitial-lipe and an ipcremept, the first line number
displayed is the specified jipitial-lipe. Succeeding line numbers are
generated by adding the specified ipcrement to the current line number.

If you specify only an ipitial-line, 10 is used as the increment.

If you specify only an increment, 100 is used as the igitial-lipe. Note the
comma before the § in the example} to specify only an ipcremeni, precede the
jocrement with a cosma.

To stop the automatic generation of line numbers and leave Number Hode, press
ENIER immediately after the generated line mumber is displayed. The empty
line is not added to the program.

If a line number generated by the NUMBER command is already a line in the
program, the existing program line is displayed with the line number. The
prompt character () is not shown to the left of the line number, indicating
that the line is an existing program line and you may edit the line. If you
'do not want to change the existing line, press ENIER when the line is
displayed. The line is entered as is, and the next line number is generated.

If vyou enter a program line with an error, the apprapriate error message is
displayedy and the same line number is displayed again. Retype the line
correctly and then enter it again.

If the next line number to be generated in Number Mode is greater than 32747,
the computer lesaves Number Mode.)

Page 1.:3

0319F TI-99/2 Book 4 BAS1C Reterence Guide

FNEW

= NUM

100 Bg="HELLO!'"

=110 PRINT B%

~120 (Press EMIER to gexit Number Mode.)

*NEW

“NUMBER 1045

»10 C=38.2

158 D=16.7

+20 PRINT C3D

=08 (Press ENTER to exit Number Mode.)
»LIST

+10 C=38.2

+15 D=16.7

»20 PRINT C3D

»NEW a
“NUMBER 50

+50 C$='HI!‘
=40 PRINT C$
70 (Press ENIER to exit Number Mode.)

FHEW
PNUM 55

»100 Z=99.7
»105 PRINT Z

}119p§9ress ENIER to exit Number Mode.)

~NEW

=100 A=37.1
»110 B8=49.4
“NUMBER 110
»110 B=49.4
»120 PRINT A3B
130 (Press ENIER to exit Number Mode.)
LIST
100 A=37.1
110 B=49.6
120 PRINT Aj}B

Page 14

{F IHAL DRAFT)

0319P TI-99./2 Book 4 BASIC Reference Guide (FINAL DRAFT)
Editina in Number Mode

In Number Mode, all of the editing keys may be used whether you are entering .
naW lines or changing existing program lines. Some of the keys work
differently in Number Mode than in Command Mode.

ENTER

to! If you press ENIER immediately after a new line number is generated, the
computer leaves Mumber Mode.

o! If you type a statement after the line number is gererated and then press
ENIER, the new line is added to the program. The next line number is then
generated.

fo! If you do not edit a program line before pressing ENTERy the line remains
the same in the program. The next line number is then generated.

'o! If'you erase the entire text of ap existing program line (leaving only the
line number an the screen? and then press ENIERy the computer leaves
Number Made. The program line is not removed from the program.

lo! If you edit an existing program line and then press ENIEBR, the existing
program line is replaced by the edited line. The next line number is then
generated.

ECIN & or SHIEI £ (UB ARROW>—The UP ABRON key works exactly the same as the
ENTIER key in Number Mode.

ECIN X or SHIET X ¢DOWN ARROW)--The DOWN ARROW key works exactly the same as
the ENIER key in Number Mode. '

ECIN 8 or SHIET S ¢<LEEI &RROW)--The LEET BBROW key moves the cursor to the
left. When the cursor moves over a character it does not delete or
thange the character. ; -

ECIN O or SHIEI @ (RIGHY ARROW)--The RIGHI ARROW key moves the cursor to the
right. When the cursor moves over a character, it does not delete or

change the character.

CECIN.2 (INS)--The INSert key works the same in Number Mode as it does in
Command Mode. See “"Tour of the Keyboard* in Book 1.

ECIN.1 (DEL)--The DELete key works the same in Number Mode as it does in
Command Mode. See "Tour of the Keyboard® in Book 1.

ECIN 4 (CLEAR)~~The CLEAR key scrolls th& current line and leaves the program
line unchanged. The computer then leaves Number Mode. Any changes that
were made on the line before you pressed CLEABR are ignaréd.

-

e

ECIN_3 (ERASE)--The ERASE key erases the entire text of the displaved program
line. The line number is still displayed.

Page 15

0319P TI-99°2 Book 4 BASIC Retference Guide \FINAL DRAFD)
RESEQUENCE

RESEQUENCE
linitial-linel(,ipgcremept]
RES

When you enter the RESEGUENCE commandy all lines in the prog?au are aszigned
new line numbers according to the specified ipitial-lipe and ipcrement. If no
ipitial-line and ipcremept are specified, the initial:-line is 100 and the
increment is 10.

The new line number of the first line in the program is the specified
initial~line. Succeeding line numbers are aisigned using the specified
incrementa

If you specify only an ipitial=lipes, 10 is used as the in;:amani‘

If you specify only an incremeni, 100 is used as the initial-line. Note the
comma before the § in the example; to specify enly an increment, precede the
increment with a comma.

All line-number references contained in the program (such as GOTO line-number)
are changed to the new line numbers. Any 1.ne rumbers wentioned in a REM

statement are not changed, because they are nbt essential to the executian of
the program.

Both the initial=lipg and incresent must be positive integers.

Page 14

0319P TI-99/2 Book 4 BARSIC Reference Guide

NEW

»100 A=27.9
110 B=34.1
+120 PRINT A8
+RESEQUENCE 20,5
~LIST

20 A=27.%?

25 B=34.1

30 PRINT A;B

~RES 50

HLIST
50 A=27.9
&0 B=34.1
70 PRINT A;8

>NEW

+100 REM THE VALUE OF “A" IS
PRINTED IN LINE 120

»110 A=Atl :

. +120 PRINT A

+130 GOTO 110

>RES 10, §

#LIST
10 REM THE VALLE OF “A“ IS
PRINTED IN LINE 120
15 A=At1
20 PRINT A
25 GOTO 15

Page 17

(FINAL DRAFT)

0319P TI-99/2 bBook 4. BASIC Refer-uce Guide (FINAL DRHF ()

If an invalid line-number refer.nce is used in & program Tiney the RESERQUENCE
command changes the line number reference . 32767. No e ror me: e op
warning is given.

If vyou enter a value for the ipitial-lipe or ipcrement that creates line
numbers greater than 32747, the message BAD LINE NUMBER is displayed. If this

error occurs, no line numbers in the program are changed.

If you enter a RESEGUENCE command with no program in wemory, the message CAN'T
DO THAT is displayed.

Page 18

031%9P TI-99/2 Book 4
=NEW

¥100 Z=Z42
110 PRINT Z
+120 IF Z=50 THEN 150
»130 GOTO 100
~RES 10,5
YLIST
10 Z=Z42
15 PRINT Z
20 IF Z=50 THEN 32747
25 GOTO 10

»RES 326004100
% BAD LINE NUMBER
HIST o
10 Z=Z42
15 PRINT Z
20 IF Z=50 THEN 32747
25 6070 10

eNEW

~RES

* CAN'T DO THAT

BASIC Reference Guide

Page 19

(FINAL DRAFT)

0319P TI-29/2 Book 4 Hrull Reterwio. Luide iFINAL ORAL)
SAVE

SAVE (S1
SAVE HEXBUS.device-pumber.filename

The SAVE command copies the program in the computer’'s memory to a starage
device. The saved program can later be loaded back into the computer's memory
with the 0OLD command.

To save a program to a cassette recorder, position the tape to a blank
section, enter SAVE CB81, and the computer displays instructions for you to
follow. The screen goes blank during the recording process.

After the program has been copied. you have the option of checking whether
your program was recorded correctly. It is recommended that you do so to
~ensure the accuracy of your tape for future use.

* CHECK TAPE (Y OR N)?

1f you press Ny the cursor appears at the left of the screen. You may then
enter NEW to clear the computer's memoOry. If you press Yy directions for
activating the recarder reappear. The screen goes blank during the checking

Process. -

If the check verifies that the data were successfully stored, the message DATA
0K is displayved. If an error is detected, an error message appears. You may
choose one of these three options:

gt Press R to record your program again. The same instructions listed
praviously are displayed.

'o! Press to repeat the checking procedures. At this point, you may wish
to adjust the recorder valume and/or tone controls.

'o! Press £ to exit from the recording procedure.

-

Follow the instructions that appear on the screen. If an additional error
message appears indicating that the computar did not properly save your
programy follow the dizplayed instructions, referring to the "Error Messages"
section of this hook to identify the error involved.

e oo™ y
To save a program to a HEX-BUS peripheral, you must enter the
device-oumber of the peripheral and ghe filepage to which the program is
stored. For example, the statement '

SAVE HEXBUS.1.MYFILE
copies from memory the program stored on peripheral device 1 (the
- ™ N
Wafertape peripheral) in MYFILE. Refer to the peripheral manuals for the
device code for each peripheral and for specific information about filepame.

When the SAVE command is performed, the program remains in the memory of the
computer, whether or not an error occurred in recording.

Page 20

Q319P TI-99/2 Book 4 BASIC Reference Guide

>BAVE (81

* REWIND CASSETTE TAPE
THEN PRESS ENTER

¥ PRESS CASSETTE RECORD
THEN PRESS ENTER

{The écreen goes blank while
the computer records the program.)

¥ PRESS CASSETTE STOP
THEN PRESS ENTER

* CHECK TAPE (Y OR N)? Y

* REWIND CASSETTE TAPE
THEN PRESS ENTER

* PRESS CASSETTE PLAY
THEN PRESS ENTER

(The screen goes blank while
the computer checks the program.)

(The computer displays one of three messages.)

* DATA OK Tﬁ
% PRESS CASSETTE STOP
* THEN PRESS ENTER

or)

®* ERROR - NO DATA FOUND
PRESS R TO RECORD
PRESS C TO CHECK
PRESS E TO EXIT

(Or)

* ERROR IN DATA DETECTED
PRESS R TO RECORD

PRESS C TO CHECK
- PRESS E TO EXIT

e

% I1/0 ERROR &4

Page 21

(FINAL DRAFT)

03197 TI-99/2 Bowk 4 BASIC Reterence Guide F IHAL DRAFT)
aLp

OLD CSi .
OLD HEXBUS.device-oumber.filepname

The OLLD command closas all oepen files, erases the current program in memary,
and reads and loads & previously saved proaram iLnto the computer's wemory.
You can then run, list, or edit the sprogram.

To load a program stored on A cassette recorder, enter OLD CS1 and the
computer displays instructions for you to follow. The screen goes blank
during the reading and loading process.

If the computer does not successfully read your program into memory, the
computer prints either ERROR - NO DATA FOUND or ERROR TN DATA DETECTED. You
then may choose from these options.

in! Press B to repeat the reading/loading procedure. Be sure to check the
items listed in the XX "Cassette Interface" section in Book 1.

io! Press C to check that the data in memory and on the tape are the same.
At this point, you may wish to adjust the volume and tone controls.
Refer to your peripheral manual or to "Tane and Volume Contral Settings"
in Book 1.

1ot Press E to exit from the procedure.

Follow the instructions that appear on the screen. If an additional error
message appears indicating that the computer did not properly load your
program into memory, follow the displayed irstructions, referring to the
"Error Messages" section of this book to i:. ntify the error involved.

™
To load a program that is stored on a HEX-Bl: peripheral, you must enter
the device-pumber of the peripheral and the filename to which the program is
stored. For example, the statement

OLD HEXBUS.1.MYFILE

™

. loads into wemory the program stored on peripheral device 1 (the Wafertiape

' peripheral) in MYFILE. Refer to the peripheral manuals for the device code
for each peripheral and for specific information about filepame.

To execute a program that has been loaded into memory, enter the RUN command
when the cursor appears. You can also list the program lines by entering the
LIST command.

-

-

Page 22

0319P TI-99/2 Book 4 BASIC Reference Guide

>0LD €s1
% REWIND CASSETTE TAPE
THEN PRESS ENTER

* PRESS CASSETTE PLAY
THEN PRESS ENTER

({The screen goes bhlank while
the capputer reads the program.)

({The computer displays one of two messages.)
* DATA 0K

% PRESS CASSETTE STOP CSi
- THEN PRESS ENTER

(ar)
ERROR - NO DATA FOUND
PRESS R TO REARD

PRESS C TO CHECK
PRESS £ TO EXIT

* I/0 ERROR 546

Page 23

(FINRL DRAFT)

0319P TI-99/2 Hook 4 BASIC Reference Guide {F INAL DRAFT)
DELETE
DELETE “HEXBUS.device-number.filepane”
The DELETE command enables you to remove a prQgram or a data file from a mass
™

storage medium on a HEX-BUS reripheral such as the TI Wafertape drive.
flthough the actual file is not deleted, the space it occupies becomes
available the next time a file is saved.
The DELETE command must include the device-pumber of the peripheral and the
filepame of the file. The filepame is a string expressionj if a string
constant is used, you must enclose it in quotes.
The statement

DELETE “HEXBUS.1.DARTA"
deletas the file stored on device 1 under the name DATA.
You may also remove files stored on some peripheral devices by using the
keyword DELETE in the CLOSE statement. The gction performed depends on the

device used.

+500 CLOSE #7:"HEXBUS.1.":DELETE

The DELETE command does not delete programs or files stored on audio cassettes.

Page 24

0319P TI-99/2 Baok 4 BASIC Reference Guide (FINAL DRAFT)

BREAK

BREAK lipe-list

The BREAK command is used to set breakpoints in a praogram to cause the
computer to halt or to stop executing the program. When the computer stops at
a breakpoint, the message BREAKPOINT AT lips-pumber is displaved. . You may
then enter any command or any statement that can be used as a command.

BREAK can be entered as a statement in a program with no lipe-list. When the
BREAK statement is encountered, the computer stops running the program.

BREAK can also be entered as a statement in a program with a lipe-list. BREAK
entered as a command wust have a line—list. When BREAK is entered with a
line-list, breakpoints are set immediately before the lines specified in the
line-list. These breakpoints cause the computer to halt before performing
each atatement in the lipe-list.

The lipe:lisi can be a single line number or & list of line numbers separated
by commas.

You can resume program execution (beginning with the line where the breakpaint
was set) by entering the CONTINUE command.

A breakpoint does not cause any change in the value of any variables in your

program unless you enter a statement that assigns a new value. Note that in

this example, C still equals zero because the assigrment in statement 110 has
. not been performed.

You cannot enter the CONTINUE command after you have edited the progran
(added, deleted, or changed program lines). Otherwise, errors could result
from resuming execution of a revised program. If you enter a CONTINUE command
after you have edited the program, the message CAN'T CONTINUE is displayed on
the screen.

Page 25

0319P TI-9%/2 bBook 4

»NEW

»100 A=R4.7
*110 C=19.3
»115 BREAK
»120 PRINT A{C
*+RUN

* BREAKPOINT AT 115

+100 BRERK 120,130
+110 X=10

»120 ¥=20

130 Z=30

=140 PRINT X4Y+Z

> RUN

% BREAKPOINT AT 120

»100 BREAK 120,130
»110 X=10

>120 Y=20

#130 Z=30

140 PRINT XtY4Z
*BREAK 140

>RUMN

* BREAKPOINT AT 120

100 BREAK 120,130
=110 X=10

»120 Y=20

+130 Z=30

=140 PRINT X+v+4Z
»RUN

% BREAKPOINT AT 120
$CONTINUE

* BREAKPOINT AT 130
FCONTINUE

40

-%% DONE %%

s

BHS1LC Reterence Luide

Page 24

oF EHML DRAKF 1)

0319P TI-99/2 Book 4

100 BREARK 120,130
»110 X=10

+120 ¥y=20

»130 Z=30

#1490 PRINT Xtv+iZ
»RUN

¥ BREAKPOINT AT 120

*PRINT X3Y3Z
10 0 0

+100 BREAK 120
#110 X=10

+120 ¥=20

+130 Z=30

»140 PRINT XtY+Z
»#RUN

* BREAKPOINT AT 120
2110 X=30

>CONTINUE
¥ CAN'T CONTINUE

BASIC Reterence bu1dé

Page 27

(FINAL DRAFT)

03i9p TI-99/2 Book 4 BASIC Reference Uuide LF INARL DRAF T
When & breakpoint occurs, the breakpoint at that lina is remnved.

Breakpoints set immediately before program lines can be removed by using the
UNBREQK command. These breakpoints are also remaved when the line is deleted.

Note that the breakpoint at 110 in the example was removed when the breakpoint
occurred, but the breakpaint at 130 was removed by the UNBREAK command.

Breakpoints are removed from all program lines when a SAVE comme .d or a NEUW
command is entered.

If the lipe-list specifies a line number less than 1 or greater than 32767,
the message BAD LINE MUMBER is displayed and the BREAK command or statement is
ignored (no breakpoints are set at any line specified in the lipe-list).

.If the lipe-lisi srecifies a line number that is a valid line number but is
not a line in the program, the message WARNING: BAD LINE MNUMBER is displayed.
Breakpoints are set at the specifiad valid line numbers.

Page 28

0319P TI-99/2 Book 4

*110 X=10

+120 Y=20

+130 Z=30

=135 BREAK

140 PRINT X+Y+4Z
»180 GOTO 13§
>BREAK 110,120

#RUN

* BREAKPOINT AT 110
~UNBRERK

FLONTTINUE

% BREAKPOINT AT 135
+CONTINUE
&0

* BREAKPOLNT AT 136

>110 X=10

2120 vY=20

»130 Z=30

+140 PRINT Xtv+Z
~BREAK 110,120130

* BAD LINE NUMBER
»110 X=10
»120 Y=20
»130 Z=30
»140 PRINT X{v+2
»BREAK 125,130

*® WARNING:
BAD LINE NUMBER

RN

% BREAKPOINT AT 130
»CONTINUE

40

% DONE #

-

BASIC Reference Guide

Page 29

(FINAL DRAFT)

0319P TI-99/2 Book 4 BRSIC Reference ULuide (F INAL DRAFY
UNBREAK XX CHECK TEXT AND EXAMPLES WITH SAQUIRREL XX

UNBREAK [lipe=listl

The UNBRERK command is used to remove breakpoints from program lines that are
listed in the line-lisi of a BREAK command or stateonant, UNBREAK does naot
remove the breakpoints that occur when a BREAK stal.seni with ne lipe=list is
encountered (for examele, 115 BREAK).

The optional lipe-list following UNBREAK can be a single line number or a list
of line numbers, separated by commas, from which you want to remove
breakpoints.

The UNBREAK command can also be used as a statement. If an UMBREAK statewent
is entered with no lipe=lisir all breakpoints are removed. An UNBRERK
statement that contains a lipezlist removes only those breakpoints at the
1ines specified in that lipe-list.

Page 30

0319P TI-99/2 Book 4
=MNEW
#110 X=10
*115 BREAK
+120 Y=20
#1300 Z=30
»140 PRINT Xiv+4Z
+BREAK 120,130
HINBRERK
»RUN
¥ BREAKPOINT AT 118

»CONTINUE
&0

*% DONE #%

~NEW ’

*110 X=10

»120 ¥Y=20

»130 Z=30 .
#3140 PRINT X{v{2

. >BREAK 120,130,140

>RLUN

* BREAKPOINT AT 120
+UNBRERK 130

>+CONTINUE

* BREAKFOINT AT 140
+CONTINUE

&0

e DONE W

BASIC Reference Guide

Page 31

(FINAL. DRAFT)

Q319P TI-v#/2 Book 4 BRSIC Reterence Guide LFINAL DRAFT)

If the lipe-list seecifies a line number las:z than one or greates than 32747,
the message BAD LINE NUMBER 1s displayed, and the command is ignored (no
breakpoints are removed at any specified line).

If the lipe-list specifies a line number that is a valid line number but is
not a line in the pragram, the warning BAD LINE NUMBER is displaved.
Breakpoints are removed at the valid line numbers specified.

Page 32

0318P TI-99/2 Book 3 Advanced BARSIC Programming
Understanding Subroutines--G0SUB, RETURN. and STOP

A subroutine is a group of lines of programming that performs a specialized
routine, Its purpose is to avoid unnecessary duplication of program lines.
The lines of a subroutine are written only once in a programs but you can
branch to that set of statements as many times as you desire from selected
points in the program.

You can branch to a subroutine by means of a GOSUB statement (short for GOto
SUBroutine). The GOSUB statement includes the word GOSUB followed by a line
number. When a GOSUB statement iz encountered, control is transferred to the
specified line number. The GOSUB statement is said to "call™ the subroutine.

A subroutine can terminate only when it encounters a RETURN statement.
Therefore, each subroutine must contain at least one RETURN statement. When a
RETURN statement is encountered, control is transferred to the line following
the GOSUB statement that called the subroutine.

Subroutines are normally written at the end of a program. A program should
have either a STOP statement or some unconditional branching statement
immediately before the subroutine(s) sa that the computer won't accidentally
execute, or "fall into," the subroutines.

When control is transferred to a line withip & subroutiney that line and the
lines succeeding it are executed.

The srogram on the right uses a subroutine to print a filler in between
printed lines. By using the subroutine to print the filler, you do not have
‘to type lines 230, 240, and 250 sach time you wish to print the filler. The
filler is printed by simply using a GOSUB statement.

Page 39 -

03199 TI-9%/2 Book 4

~QREAK 120
=UNBREAK 130, 110150

¥ WARNING:
BAD LINE NUMBER

RUN
26.7

% BREAKPOINT AT 130

+CONTINUE
19.3

*% DONE **
+BREAK 130
*UNBREAK 130, 105

¥ WARNING:
BAD LINE NUMBER

+RUN
6.7
19.3

%% DONE %

BASIC Kketerence (uide

Page 33

(FINAL. DRAFT)

0319P T1-99/2 Book 4 BRSIC Reference Guide (F ANAL. DRAF 1)
CONTINUE

CONTINUE
CON

The CONTIMUE command may be entered when the program stoes running because of

a breakpoint. For an explanation of breakpoints and how they are set, see the
BREAK. command. Remember that a breakpoint also occurs when BREAK or CLEBE 1s

pressed while the program is running.

You cannot enter the CONTINUE command if you have edited the program (added,
deleted, or changed program lines) during a breakpoint. Otherwise, errors
could result from starting a revised program in the middle. If you enter a
CONTINUE command after you have edited the program, the message CAN'T CONTINUE
is displayed on the screen.

Page 34

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)
*NEW
=100 A=9.6

»110 PRINT A
#BRERK 110

RUN

* BREAKPOINT AT 110
*CONTINUE
2.4

k% DONE %
*BREAK 110
+RUN

* BREAKPOINT AT 110
»110 A=10.1

+CON
* CAN'T CONTINUE

Page 35

03198 T1-99/2 Book d BASIC Reterence Luide W INRL DRAF)

TRACE

TRACE

The TRACE command enables you to see the order in which the computer performs
statements as it runs a program. After you enter the TRACE command, the line
number of each program line is displaved before the statement is performed.

The TROCE command iz most often used to help find errors (such as unwanted
infinite loops) in a program.

The TRACE command may also be placed as a statement in a program. The effect
af tha TRACE command or statement is cancelled when a NEW command or UNTRACE
command or statement is performed.

" UNTRACE
UNTRACE

The UNTRACE command cancels the effect of the TRACE command. The UNTRACE
cosmand may alsoc be used as a statement in a program.

Page 3&

0319p TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)
NEW

+100 PRINT “HI"
=110 8=27.9
»120 PRINT :8
>TRACE.

>RUN
21003 HI
110%x<1202
27.9

%% DONE #*%

+UNTRACE

105 TRACE
*RUN
HI
L1105, <120
27.9

*% DONE %%

*NEW

>100 FOR K=1 T0 2
*110 PRINT K
»120 NEXT K
=TRACE

»RUN
{100x<1105 1
<120><110>» 2
{120

% DONE %%

SUNTRACE
>RUN
1

2
%% DONE %%

Page 3

0319P TI-99/2 Book 4 EBASIC Reterence Uuide vHANRL DRAF T

GENERAL PROGRAM STATEMENTS

General program statements do not serve an input-output function. They
inciude the LET statement, which enables you to assign values to variables,
the STOP, END, REMark, and program—-control statements.

Program control statements, including the GOTO, the ON GOTQ, the IF THEN ELSE,
the FOR TO STEPy and the NEXT statements enable you to program loops and
conditional and unconditional branches.

LET

[LET] yapiable=exprassion

The LET statement enables you to assign values to variables in your program.
The computer evaluates the expression to the right of the equals sign and puts
its value into the variahle specified to the left of the equals sign. Note
that the keyword LET wmay be opitted from the asgigmnment statement.

The variable and thengnrgssiQn must correspond in type: numeric expressions
must be assigned to numeric variables, and string expressions must be assigned

to string vaciables.

The rules governing overflow and underflow in evaluating a nuweric gxecessioo
apply to the LET statement. (See "Numeric Constants™ (XX) for mare
information.) If the length of an evaluated string expressiqn exceeds 255
charactersy the string is trumcated on the right, and the program continues.
No warning is given.

You may use the relational operators in numeric and string exrcessioos. The
result of a relational operator is <1 if the relationship is true and is 0 if
the relationship is false. ¢

Page 38

0319P TI-99/2 Book 4
MEW

»100 LET M=1000
»110 LET C=186000
»120 E=M*C"2
»130 PRINT E
~RUN

3.4594E+13

®*% DOME %%

=NEW

»100 X$="HELLQ, "
110 NAME$="GENIUS!'"
=120 PRINT X$;NAMES
»RUN

HELLO, GENIUS!®

#% DONE *#

> NEW

>100 LET A=20
3110 B=10
'»120 LET C=A>B
»130 PRINT R3B;C
>140 C=A<B
»150 PRINT A;B3;C
*RUN

20 10 -1

20 10 0

»% DONE #%

BASTC Reference Guide

Page 39

(FINAL. DRAFT)

Q0319P TI“??/é Book 4 BASIC Reterence Guide (FINAL DRAFI)

REMark

REM remark

The REMark statement enables you to explain and document your program by
inserting comments in the program itself. When the computer encounters a3
REMark statement while running your program, it takes no action but praceeds
to the next statement.

You may use any printable character in a REMark statement. The length of the
REMark statement is limitad by the length of the input line (112 characters or
four lines on the screen). If you do not wish to break a word in the middle,
press the SPACE B8AR repeatedly until the cursor returns to the left side of
the screen, and then begin typing again.

END
END

The END statement terminates your program when this statement is executed,
END may be used interchangeably with the STOP statement in TI-99/2 BASIC.
Although the END statement can appear anywhere in the program, it is normally
placed in the last line number of the program to end the program both
physically and logically. In contrast, the STOP statement is generally used
-if you want other termination points in your program.

In TI-99/2 BASIC you are not require<n rlace an END statemant in the

progran. The program automatically stops after it executes the
highest-numbered line.

Page 40

0319P TI-99/2 Book 4 BRASIC Reference Guide

» NEW
»100 REM COUNTING FROM 1 TO 1

Q

»110 FOR X=1 TO 10

»120 PRINT Xj

»130 MNEXT X

SRUN
12 3 45 &6 7 8 9
10

%% DONE #%

FNEW

100 A=742

»110 B=425

»120 REM NOW PRINT THE SuM OF
A AND. B

130 PRINT A48

*RUN
1187

*% DONE **

*NEW

»100 A=10
»110 B=20
120 C=ikd
»130 PRINT C
140 END
#RUN

200

o x4 DONE #%

Page 41

(FINAL DRAFT)

0319P TI-99/2 Book 4 BASIC Reference Uuide CFiNAL DRRET)
GOTO

GOTO
lipe-pumber
G0 TO

The GOTO statement enables you to transfer control to a speéified line within
a program. When the computer reaches a GOTO statement, it jumps to the
statement specified by the line-oumber. This is called an unconditional
branch.

In the program on the right, lipe 170 is an upconditional branchi the computer
always skips to line 140 at this point. Line 160 is a conditional branch (see
IF THEN ELSE); the computer jumps to line 180 only if COUNT and DAYS are equal.

If the specified line-pumber does not exist in your programs the proaram stops
and prints the message BAD LINE NUMBER.

Note that the space between the words G0 and TO is optional.

ON GOTO

ON pumerin-execessian 60TO0
lipe-puaber [,lipe-pusbec)i._a.al

'ON pumeric-sxpressiop GO TO

The ON GOTOC statement tells the computer to jump to one of several program
lines, depending on the value of the pumeric-expression.

The computer first evaluatee the numecic-eszpressioa and rounds the result to
an integer. This integer becomes a pointer for the computer, indicating which
program line in the ON GOTD statement to perform next. If the value of the
pumeric-expression is 1, the computer proceeds to the statement specified by
the first lipe-pumber. If the value is 2, the computer proceeds to the
statement specified by the secand lipe-pumbers and so ona

If the rounded value of the pumeric-expression is less than 1 or greater than
- the number of lipe—pumbecs listed in the ON GOTO statement, the program stops
and prints BAD VALUE IN line-pumber. -If the line-number you specify is
outside the range of line numbers in your program, the wmessage B8AD LINE NUMBER
is displayed and the program stops running.

Page 42

0319¢f TI-99/2 Book 4 8ASIC Reterence Guide

>100 K=10
+110 PRINT "K= "jK
+120 K=K%*2
>130° GOTO 1190
~RUN
10
20
30

(Press BREAK to stop the proaram.)

FNEW

~100 INPUT X
>110 ON X GOTO 120,140,140,18
C,200

¥120 PRINT "X=1"
»130 60TO 100
#14Q PRINT "X=2"
*150 GOTO 100
»160 PRINT "X=3"
»170 GOTO 100
»180 PRINT "X=4*
»190 GOTQ 100
>200 END

L VALUE IN 110

Page 43

(FINAL DRAFT)

031%9P TI-99. 2 Book 4 BASIC Reterence Guide (FINAL DRRFT)
IF THEN ELSE
IF copditiop THEN lipel [(ELSE lineg)

The IF THEN ELSE statement enables you to change the normal sequence of
program execution by using a conditional branch.

The computer evaluates the gonditiop included in the statement as either true
ar false.

IT the cpnditiopn is true, the computer jumps to linel, the line number
following the word THEN.

If the condition is false and the ELSE option is used, the computer
jumps to lipe2y the line number following the word ELSE.

If the condition is false and ELSE is omitted, the computer continuas
with the next program line.

The condition being tested can be a relational expression or a numeric
expression. Relational expressions evaluate to either true or false. Numeric
#xpressions evaluate to 0 or nonzero values) only a Zero value is considered
false.

In relational expressions, numeric expressions must be compared to numeric
expressions and string-expressions to string expressions.

Numeric~expressions are compared alaebraically.

String-axpressions are compared left~to-right, character by character,
using the ASCII character codes. A character with a lower ASCII code
is considered less than one with a higher ASCII code. Thus, you can
sort strings into numeric or alphabetic order. If one string is longer
than the other, the comparison is wmade for each character in the
shorter string. If there is no difference, the computer considers the
longer string to be greater.

The condition can be a logical expression by using multiplication for a
logsical AND and addition fer a logical OR. The copdition in the examrle,

IF (5<3)%(3<4) THEN 150 [IF (5<3)AND{(3<4) THEN 180]

is false. The product of (5¢3)%#(3<4) is zerc (false) becauss one of its
factors is zero (false).
Ld

The condition in the example,
IF ¢5<3)+(3<4) THEN 150 . {IF (5<3)0R(3<4) THEN 1501

4 trua (has a nonzero value) because even though 543 is false and has a value
of zero (0)y 3€4 is true and has a nonzero value, which when added tp zero
produces a nonzero result.

Page 44

0319F TI-99/2 Book 4 8ASIC Reference Guide

FNEW

»100 INPUT “HOW MANY VALUES?"IN
>110 INPUT "VALLER":iR
#120 L=R
»130 N=N-1

+140 IF N0 THEN 170

+180 INPUT “VALUE?":A

»160 IF LA THEN 130 ELSE 120
+170 PRINT L;"“IS THE LARGEST"
#RUN

HOW MANY VALUES?3

VALUE?456

VALUE?3E1

VALUE?292

456 IS THE LARGEST

¥% DONE %n
FNEW

>100 INPUT A% IS ":A$
»110 INPUT *B$ IS “:B%
»120 IF A$=B$ THEN 1460
+130 IF A$<B$ THEN 180
»140 PRINT "8% IS LESS"
»150 GATO 190
»160 PRINT "A$=B$*
»170 GOTO 190
»180 PRINT *B$ IS GREATER"
>190 END
»RUN

A% IS TEXAS

8% IS TEX

B} IS LESS

*% DONE #%

+RUN

A% IS TAXES
_B$ IS TEX

8% IS GREATER

¥ DONE %%
FNEW

»100 INPUT "R IS "IR

+¥10 INPUT “B IS "IB

%20 IF AtB THEN 180

»130 PRINT “RESULT IS ZERO, E
XPRESSION FALSE"

»>140 GOTO 100

»150 PRINT “RESULT IS NON-ZER
0, EXPRESSION TRUE®

¥160 GOTQ 100

*RUN
AIS 2
B IS 3 .
RESULT IS MON-ZERQ, EXPRESSION TRUE
AlIS 2 :
B IS -2

(FINAL DRAFT)

{(Press BREAK to end loop.?

Page 45

0319P TI-99/2 Book 4 BASIC Reference Gu.de (FINAL DRAFT)
FOR TO STEP

FOR conirol-variable=ipitial-value TO lim.t (STEP incrementl

The FOR TO STEP statement and the NEXT statement are used together to form a
FOR-NEXT loop, which may be used for programming repetitive processes.

The values you assisgn to the ipitial-valus, liwit, and incremant determine how
many times the loop is repeated. The gopirol-variable is a numeric variable
that acts as a counter for the loop. When the FOR TO STEP statement is

performed, the control-variable is set to the jipitial-value. The computer
then performs program statements until it encounters a NEXT statement.

When the NEXT statewent is encountered, the computer adds the opti-nal STEP
ipcremept to the cantrgl-varciable. If STEP is omitted, the computer uses an
increment of +1. (If the iocremept is a negative value, the capirgl-vaciable
is reduced by the STEP amount.) The computer then compares the
coptral-variable to the value of the limii. If the gopirel-vaciable does not
yet exceed the limit, the computer repeats the statements following the FDR TO
STEP statement until the NEXT statement is again encountered, If ‘the new.
value for the coptrol-variable is greater than the limit (or less, if the
increment is negative), the computer leaves the loop and continues with the
program statement following the NEXT statement. The value of the
control-variable is not changed when the computer leaves the FOR-NEXT loop.

The limit and the STEP increment are mimeric expressions that are evaluated
once during a loop performance {(when the FUR TO STEP statement is first
encountered) and rewmain in effect until the loop is finished. Any changes
made in these values while a loop is in progress have no effect on the number
of times the loop is performed.

Page 44

0319P TI-992 Book 4 BRSIC Reterence UGuide
FNEW

~100 REM COMPUTING SIMPLE INT
EREST FOR 10 YEARS
»110 INPUT "PRINCIPLE? ":P
+120 INPUT "RATE? "“IR
=130 FOR YEARS=1 70 10
140 P=P+(P*R)
#1850 NEXT YEARS
»160 P=INT(P%100+.5)/100
»170 PRINT P
~RUN

PRINCIPLE? 100

RATE? 0775

210.95

#% DONE %%

*NEW

»100 REM EXAMPLE OF FRACTIONA
L INCREMENT
#110 FOR X=.1 TO 1 STEP .2
#120 PRINT X; '
»130 NEXT X
+»140 PRINT X
>RUN
.1 .a IS '? l?

1.1
k% DONE **

SNEW

>100 L=6
»110 FOR K=1 TQ L
»120 L=20

- »130 PRINT L3K

>140 NEXT K
#RUN
20
20
20
0
+ 20

o B«

%% DONE %%

Page 47

FIHAL DRAFT)

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

If you change the value of the canical-variable while the loop is beiﬁg
perfaormed, the number of times the loop i3 repeated is changed.

In TI-99/2 BASIC the expressions for igitial-valugr limit, and ilpcremept are
evaluated before the initial-value is assigned to the cantrol-variable. Thus,
in line 110 of the program on the right, the value 5 is assigned to the limit
hefors the cantrol-variahle K is assianed a value. The loop is repeated five
times, not just once.

The sian of the copirol-vaciable can change during the performance of a
FOR—NEXT loop. ’

If the ipnitial-value is greater than the limit (or less than the limit for a
negative inccement), the loop is skipped and the program continues with the
statement following the NEXT statement.

" If ‘the value of the inc:eméni is zeray the computer displays the error message
BAD VALUE IN lipe-ounber and the program stops running.

After you enter a RUN command, but before your program is performed, the
computer verifies that you have the same mnumber of FOR TO STEP and NEXT
statements. If you do not have the same number, the message FOR-NEXT ERROR is

displayed and the program is not run..

-

Page 48

0319P TI-99/2 Book 4

»NEW

>100 FOR K=1 TO 10
=110 K=K+
»120 PRINT K
+130 NEXT K
=140 PRINT K
*RUN .

2

4

&

8

10

1]

%% DONE ¥

*NEW
+100 M=5
>110 FOR K=1 TO M
»120 PRINT Kj
»130 NEXT K
ZRUN

12 3 465

¥4 DONE e

>NEUW

BASIC Reference Guide

>»100 FOR K=2 TO -3 STEP -1

+110 PRINT Kj
»120 NEXT K
~RUN
21 0-1-2-3

% DONE #

SNEW

EAT

>110 FOR K=46 TO &
#120 PRINT K
#130 NEXT K
>RUN

L X% DONE %

e

. »100-REM INITIAL VALUE TOO GR

Page 49

FINAL DRRFI)

0319F T1-99/2 Book 4 BASIC Reterence Guidé (FINRL DRAFT)

FOR T} STEP

FOR-NEXT loops may ba "nested*; that is, one FOR-NEXT loop may be contained
wholly within another. Be careful, however, to observe the following -
conventions:

"Each FOR TO STEP statement must be ralred with a NEXT statement.
Different capntcol-vaciables must be used for each nested FOR-NEXT loop.

If a FOR-MNEXT loop contains any portion of another FOR-NEXT loop, it
must contain all of that FOR-NEXT looe. Otherwise, the computer stops
running the program and prints the error message CAN'T DO THAT IN
lipe-nuwber.

You may branch out of a FOR-NEXT loop using GOTQ, ON GOTO, or IF THEN ELSE
statements, but you may not branch into a FOR-NEXT loop using thece
statements. You may, however, use GOSUB or ON GOSUB statements to leave a
FOR-NEXT loop and then return to the looep. Be sure that you do not use the
same conirol-variable for any FOR-NEXT loops you may have in subroutines.

-

Page 50

0319P TI-99/2 Book 4 BASIC Relerence Guide (F Iitnl DRAF)

“NEW

»100 REM FIND THE LOWEST THRE
€ DIGIT NUMBER EQUAL TO THE
SUM OF THE CUBES OF ITS DIGI
TS

»110 FOR HUND=1 TO ¢

+120 FOR TENS=D TO @

»130 FOR UNITS=0 TO 9

#1840 SUM=100%HUND}10% TENSHUNI
TS

»150 IF SUM<CHUND"I+TENS"3HUN
ITS"3 THEN 180

#1460 PRINT SUM

»170 GO TO 210

»180 NEXT UNITS

>190 NEXT TENS

>200 NEXT HUND

>210 END

#RUN

1E3

% DONE %%

>NEW

>100 FOR k=1 TQ 3
>110 PRINT K
+120 GOSUB 140
»130 NEXT K

>140 FOR K=1 TO &
»150 PRINT K;
>160 NEXT K

>170 RETURN

OBRUN.

1
12 3 435
% CAN'T DO THAT IN 130

Page Si

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)
NEXT .

NEXT copirol-varciable

The NEXT statement is always paired with the FOR TO STEP statement. The

contral-variable is the same one that appears in the corresponding FOR TO STEP
statement.

The NEXT statement actually controls whether the computer repeats the loop or
exits to the program line following the NEXT statement. When a NEXT statenent
is performed, the computer adds the previously evaluated increment in the STEP
to the copirel-variable and then tests the control-vaciahla to sae if it
axceeds the previously evaluated limit specified in the FOR TD STEF

statement. If the contral-variahle does not exceed the limit, the laop is
repeated.

Page &0

0319P TI-9?9/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

FNEW

»100 FOR X=1 TO 10
+110 PRINT X3
120 NEXT X
+RUN
1 2 3 45 467 89 10

% DONE ¢

>NEW

>100 REM ROCKET CRUNTDOWN
»110 CALL CLEAR

»120 FOR K=10 TO 1 STEP -1
»130 PRINT K

»140 FOR DELAY=1 TQ 400
+150 NEXT DELAY

»160 CALL CLEAR

>170 NEXT K

#180 PRINT "BLAST OFF!"

. >RUN

(Computer fiashes countdawn.)
BLAST OFF!

% DONE %%

Page 53

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)
INPUT-QUIPUT _SIRIEMENIS

INPUT-OUTPUT statements (PRINT, DISPLAY, INPUT, READ, DATA, RESTORE) enable
you to transfer data in and out aof your program.

Data can be input to your program from three types of sources:

'o! frow the keyboard--using the INPUT statement

‘o! internally from the program itself-—using the READ, DATA, and
RESTORE statewments

'o! from files stored on peripheral devices-—using the INPUT statement

Data can be output to two types of devices:

‘o! the screen-—using the PRINT and DISPLAY statements
lo! files stored on peripheral devices--using the PRINT statement

Refer to the *File Processing" section of this manual for information on using
input-qutput statements with peripheral devices.

Page 54

Q319P T1-99/2 book 4 BASLD Keterence Luide ok LNAL URHr ()
INPUT

INPUT [ippui-erompi:l yvariable—lisi

(For information on the use aof the INPUT statement with a file, see the "File
frocessing" section.)

This form of the INPUT statement is used when vou enter data via the
keyboard. The INPUT statement causes the program to pause until valid data
are entered.

Although the computer usually accepts up to ane input line (4 lines an your
screen) for each INPUT statements a long list aof values may be rejected by the
computer, If you receive the message LINE TOO LONG after entering an input
liney divide the lengthy line into at least twd separate INPUT statements.

Enteripa_the Input Staiemept

When an input-prompt is usedy it wmust be followed by a colon. The
ipeut-pcomet is a string expression (constant or variable) that can be used to
prompt for values to be entered from the keyboard (if a string constant is
used, it must be enclosed in quotation marks). The INPUT statement displays
the inpui-prompi message and waits for data to be entered.

When an ipnput~-prompt is not used, the computer displays a question mark (%)
followed by a space and waits for data to be entered.

The variable-list contains one or more variables that are agsigned values whan
the INPUT statement is performed. The variables may be numeric and/or string
variables. If the variable-list contains two or more variables, they must be
. separated by commas. The values to be assigned to these variable names must

also be separated by commas.

Page S5

O31%P TI-99/2 Book 4 BASIC Reference.Guide. (FINRL ORAFT)

FNEW

>100 INPUT B
>110 PRINT B
>RUN

? 25

25

#% DONE **

ZNEW
»100 INPUT *COST OF CAR: ":B
»110 A$="TAX: *
#1820 INPUT A$:C
»>130 INPUT "SALES "&A$:X
»140 PRINT B3CiX
»RUN
CQST OF CAR: 5500
| TAX: 500
SALES TAX: 500
8800 &S00 500

*5% DQNE e

SNEW

»100 INPUT R,B$,
»110 PRINT A:B$:
»RUN
? 10,HELLO,25,3.2
10 ‘
HELLD
25
3.2

D

Cy
C:D

#% DONE *®

Page S&

0319P TI-99/2 Book 4 BASIC Reterence Guide VFLNAL URRAF ()
INPUT

Respooding 1o _an Ipeut Statement

When an INPUT statement with more than one variable in the variable-list is
performed, the values corresponding to the variables must be entered in the
same order as they are listed in the INPUT statement. Al]l the values must be
entered in one input 1ine (up to 4 screen lines? and must be separated by
commas. When entering string values, you may enclose the string in quotes,
although the quotation marks are not required. Howevery a string that
contains a comma, a4 quotation mark, or leading or trailing spaces myust be
enclosed in quotes.

Variables are assigned values from left to right in the variable-list. Thus,
subscript expressions in the variable-lisi are not evaluated until variables
to the left have been assigned values.

Page 5}

0319P TI-99/2 Book 4 BHSIL Reterence Gulde

>NEW

»100 INPUT A
»110 PRINT A$::
»120 INPUT 8%
130 PRINT B$::
*140 INPUT C$
»150 PRINT C$::
>140 INPUT D$
»170 X=500
»180 PRINT D§;3Xst
>RUN
? “IONES, MARY"
JONES, MARY

? MWOHELLQ THERE""
"HELLO THERE"®

? “"JAMES B. SMITH, JR.*
JAMES B. SMITH, JR.

? “SELLING PRICE IS *
SELLING PRICE IS 500

% DONE *%

NEW

>100 INPUT K,A(K)
»110 PRINT K:iR(K)
>RUN

? 37

3

7

% DONE ¥*

Page 59

(FiNRL DRet 1)

0319F TI-99/2 Hook 4 BHSIC Reference Guide (F INAL DRAFV)
INPUT

When you enter information in response to an INPUT statement, the information
is validated by the computer. If the input data are invalid, the message

% WARNTNG:

INPUT ERROR IN lipe-pumber
TRY AGAIN:Z

appears on the screeny and vou wmust reenter the data. The computer determines
the following input to be invalid:

'o! Data that contain more or fewer values than requested by the INPUT
statamant. :

'n! A string constant entered when a number is required. (Note: A number
is a valid string, so you may enter a number when a string constant is
required.)

If you enter a number that causes an overflow, the message

* WARNING:

NUMBER TQO BIG IN line—numbher
TRY AGAIN:

appears on the screen and you nust reenter the data. If you enter a rwmber
that causes an underflows, the value is replaced by zero. No warning nessage
is given.

f
: -

Page 5?

0319P TI-99/2 Baok 4

FNEW

100 INPUT A,B$
»110 PRINT A3B$
>+ RUN

? 12,HL,3

* WARNING:
INPUT ERROR IN 100
TRY AGAIN: HI,3

% LARNING:
INPUT ERROR IN 100
TRY RGAIN: 23,HI
23 HI

%% DONE W

>NEW

#10C¢ INPUT R
#3110 PRINT A
»RUN

7 23139

* WARNINGS
NUMBER T0O BIG IN 100
TRY AGAIN: 23E-139
0

% DONE w

BASIC Reference Guide

Page &0

(FINAL DRAFT)

0319P TI-99/2 Baok 4 BASLC Reterence Guide FANAL DRAF1)
READ
REARD wariable-list

The READ statement enables you to read data stored inside your program in DATA |

statements. The variable-lisi specifies those variables that are to be
assigned values. Variable names in the variable-lisi may include numeric
variables and/or string variables.

The computer reads each DATA statement sequentially from left to right and
asscigne values to the variables in the variable-list from left to right.
Subscript expressions in the m:.ahle_hs_t are not evaluated until variables
to the left have been assigned.

Each time a READ statewent is perforwed, the variables in its variable-lisi
are assigned values from a DATA statement. If a DATA statement does not
contain enough values to assign to the variables, the READ statewment assigns
the values in the next DATA statement until all the variables have been
assigned a value. If a READ statement does not assign all the values in a
DATA statement, the next READ statement performed assigns the next unread. data
value(s}.

DATA statements are normally read in line-number order. You can override this
sequencingy however, by using the RESTORE statement.

. By following the program on the right, you can see how the READ, DATA, and

RESTORE statements interact. In line’ 120, the computer beging assigning
values to A and B from the DATA statement with the lowest line number, line
180. The first READ, therafare, assigns A=2 and 8=4. The next performance of
the READ statement still takes data from line 180 and assigns A=4, B=B. The
third READ statement assigns the last itewm in line 180 to the variable A and
the first item in line 190 to the variable By, so that A=10 and B=12. The
fourth READ, the last in the J-loop, continues to get data from line 190, so
that A=14 and B=16. Before going through the K-loop agaj.n, however, the
computer encounters & RESTORE statement in line 160, which directs it to get
data from the beginning of line 190 for the next READ statement. The computer
then completas the program by reading the data from line 190 and then from
line 209.

Page 61

0319P TiI-99/2 Book 4 BAn L Reference Guide

+NEW

>100 FOR K=1 TO 3

*110 READ X,V

»120 PRINT X3V

*130 NEXT K

>140 DATA 22,15,36,52,48,96.5

*RUN
g2 1§
34 582
48 96.5

% DONE *%

*NEW

100 READ K,ACK)
»110 DATA 2,35
7120 PRINT R(K)
#RUN

'35

#% DONE #%

~NEW

;]

»100 FOR K=1 YO 2
»>110 FOR J=1 TO 4
»120 READ A,8
~130 PRINT RA;Bj
2140 NEXT J
+150 PRINT
»140 RESTORE 190
»170 NEXT K
>180 DATA 2,4,4,8,10
- »190 DATA 12,14,16,18
»200 DATA 20,22,24,26
>RUN

2 4 & 8 10 12 14 16

12 14 15 18 20 22 24
L, 06

%% DONE *

Page é&c

(FINAL DRAFT)

0319P TI-99/2 Book 4 BASIC Reference Guide {(FLINRL DRAFT)
READ

When data are read from a DATA statement, the type of data in the data list
and the type of variables to which the values are assigned must correspond.
If you try to assign a string value to a numeric variable, the message DATA
ERROR IN lipe-pumber of the READ statement where the error occurs appears on
the screen, and the program stops running. Remember that a number is a valid
string, so numbers way be assigned to ejther string or numeric variables.

'Hhen a READ statement is performed, if thare are more names in the
variable=list than values remaining in DATA statements, a DATA ERROR message
is displayed on the screen and the program stops running.

I1f a numeric constant that causes an underflow is read, its value is rceplacad
by zero--no wWarning is given——and the program continues running normally. If
a numeric constant that causes an overflow is read, its value is replaced by
the appropriate computer limit, the message WARNING: NUMBER T0O0 BIG IN
lipe-pusber is displayed on the screen, and the program continues. For
information on underflows overflow, and numeric limits, see "Nuweric
Constants.”

Page &3

0319F TI-99/2 Book 4 BASIC Reference Guide
=NEW

>100 READ A,8

>110 DATA 12,HELLO

»120 PRINT A38

*RUN

¥ DATA ERROR IN 100

>NEW

»100 READ A,B
>110 DATA 12E-13§
>120 DATA 34E142
130 PRINT :A:B
140 READ C
SRUN

* WARNING:
NUMBER TDO BIG IN 100

0
9. 9999E |

* DATA ERROR IN 140

Page 64

(FINAL DRAFT)

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRRHT)
DATA

DATA data-list

The DATA statement enables you to stors data within your program. The
data-list contains values assigned to the variables specified in the variable
lict of a READ statement. The values are assigned when the RERD statemwent is
parformed. Items in the data-lisi are separated by commas. When the computer
encounters a DATA statement, it proceeds to the next statement with no other

effect.

DATA statements may appear anywhere in a program, but the order in which they

appear is important. Data from the data-lisis are read saquentially,
beginning with the first item in the first DATA statement. If your program
includes more than one DATA statement, the DATA statements are read in
ascending line-number order unless otherwise specified by a RESTORE
statement. Thus, the order in which the data apepear within the data-list and
the order of the DATA statements within the program normally determine the
order in which the data are read.

Each value in the gata-list must correspond to the type of the variable to
which it is assigned. Thus, if a numeric variable is specified in the READ
statement, a rumeric constant must be in the corresponding place in the DATA
statement. Remember that a number is a valid string, so you wmay have a number
in the corresponding place in the DATA statement when a string copstant is
required.)

In a DATA statement, string constants that contain a comma, a quotation marks
or leading or trailing spaces must be enclosed in quotation marks. If a
string constant does not contain one of these characters, you may omit the

. quotation marks.

1f a DATA statement contains adjacent commas, the computer assigns a null
string (a string with no characters) to the variable being assigned. In the
example on the right, the DATA statement in line 110 contains two adjacent,
commas. Thus, a null string is assigned to BS. '

Page &5

0519P TL 9972 Boon . BHSIL heserenie wuide

SNEW

»100 FOR K=1 TO &
»110 READ A+B

>120 PRINT A3B

»130 NEXT K

»140 DATA 254+6:7,8
»150 DATA 1,2,3¢%:5
*RUN

£ oo
m -~ R

%% DONE ¢
“NEW

100 READ A$,B$,C,D
110 PRINT R$:B8$:C:D
120 DRTA HELLO,"JONES, MARY"

28,3.1416
>RUN

HELLO

JONES, MRRY

28

3.1416

#% DONE ¥

FNEMW

»100 READ A$,B%,C
110 DATA HI,s2
%120 PRINT "A$ IS “iA$
136G PRINT "8% IS ":B$
»140 PRINT “C IS *;C
RUN

A$ IS HI

B$ IS
v - -

% DONE W

Pageléé

[B Y 3 [Ry T SN T

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

RESTORE

RESTORE {)lipe—pumherl

(See the “File Processimg” section for information about using RESTORE in file
processing.)

This .-form of the RESTORE statement tells your program which DATA statement to
use with the next READ statement.

When RESTORE is used with no lipe-number», the next READ statement performed
agssigns values beginning with the first value in the first DATA statement in
thae program.

When RESTORE is followed by the line-oumher of a DATA statement, the next READ
statement performed assigns values beginning with the first value in the DATA

statement specified by the lipe-number.

§

If the lipe-pusber specified in a RESTORE statement is neither a DAYA
statement nor a program lipe-number, the next READ statement perforwmed starts
at the first DATA statewment whose line-number is greater than the one
specified. If there is no DATA statement with a line-quubec greater than or

- equal to the one specified and a READ statement is performed, the error
‘measage DATA ERROR is displayed. If the lipe-numberc specified is greater than
the higheat lipe-pumbec in the program, the program stops running and the
message DATA ERROR IN lipne~pumher is displaved.

Page &7

0319P TI-99/2 Book 4 BASIC Reference Guide

>100 FOR K=1 TO 2
#110 FOR J=1 70 4
120 READ A
»130 PRINT A;
»140 NEXT 7
»160 RESTORE 180
»160 NEXT K .
»170 DATA 12,33,41,246,42,50
»180 DATA 10,20,30,40,50
»RUN
12 33 41 26 10 20 30
40

%% DONE, W&
+NEW

»100 FOR K=1 TO 5
»110 READ X
»120 RESTORE
»130 PRINT X;
>140 MEXT K
»150 DATA 10!20 ;30
FRUN
10 10 10 10 10

RE DOME e
- PNEW

»10G READ A,B
»110 RESTORE 130
»120 PRINT AjB
»130 READ C,D
»140 PRINT C;D.
»180 DATA 26.9,34.47
>RUN
26.9 34.67
26.9 34.&7

%% DONE %
»110 RESTORE 145
»RUN

26.9 34.67
26.9 34.67

#% DONE #*

~»110 RESTORE 155
>RUN
26.9 34.67

- % DATA ERROR IN 110

Page 68

(FINAL DRAF1)

0319P TI-99/2 Book 4 BRSIC Reference Guide (FINAL DRAFT)

pISPLAY

DISPLAY [prini-list)

The DISPLAY statement is identical to the PRINT statement uhen you use it to
print items on the screen. The DISPLAY statement cannat be used to write to
any device except the screen. For a complete discussion of how to use this
statement, zee the instructions for the PRINT statement.

Page &%

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

*NEW

»100 A =358.4

»110 BE="HI'!'"
»120 C=49.7

»130 PRINT B$:A;C
»140 DISPLAY B$:IR;C

=RUN
HI!!
35.6 4%9.7
HI'!
36.6 49.7
%% DONE %

Page 70

0319P TI-99/2 Book 4 BASIC Reterence Guide (FINAL DRAFI)

PRINT

PRINT {print-list]

(For information on using the PRINT statement with files, see the "File
Processing”" section.)

The PRINT statement lets you print numbers and strings on the screen. The
print-list consists of

lo! print itemsz—numeric expressions and string expressions to be printed
on the screen and TAB functions that control print positioning
(similar to the TAB key on the typewriter).

‘o! grint separators--the punctuation (commas, semicolons, and colons)
petween print items serving to indicate the positioning of the data on
the print line.

When the computer performs a PRINT statement, the values of the expressions in
the print-list are displayed on the screen in order from left to right, as
specified by the print separators and TAB functions.

Printipns. Sicinas

String expressions in the peini-list are evaluated to produce a string
result. There are no blank spaces inserted before or after a string. If vou

“wish to print a blank space before or after a string, you wust include the
space in the string or insert it separately within quotation marks.

Numeric expressions in the print-list are avaluated to produce a numeric
result. Paositive numbers are printed with a leading space (instead of a plus
sign)y and negative numbers are printed with a leading minus sign. All
numeric values are printed with a trailing space.

Page 71

0319P TI-99/2 Book 4 BASIC Reference Guide

»NEW

=100 A=10
+110 B=R0
120 STRING$="TI COMPUTER"
130 PRINT A;B:STRINGS
»140 PRINT "HELLO, FRIEND"
»RUN

10 20

T1 COMPUTER

HELLO FRIEND

*% DONE **

SNEW

»100 N$="JOAN"
»110 M$=“HI"

120 PRINT Me;N$
%130 PRINT M$&" “&N$
%140 PRINT "HELLO "iN$
>RUN

HIJOAN

HI JOAN

HELLD JOAN

%% DONE %%

SNEW

¥100 LET f=10.2.
»110 B=-30.5
»120 C=14.7
»130 PRINT A;BiC
>140 PRINT AB

FRUN :
10-2 -3°n5 16-
- ‘80-3
*¥% DONE e

Page 72

(FINAL DRRFT)

0319P TI-99/2 Book 4 BASIL Reterence Luide Ak INAL UKHE i

PRINT

The PRINT statement displays numbers in either pormal decimal focw or
scientific potatiop» according to these rules:

1.

2.

All numbers with 10 or fewer digits are printed in normal decimal form.

Integer numbers with more than 10 digits are printed in scientific
notation.

Non-integer numbers with more than 10 digits are printed in scientific
notation only if they can be presented with more significant digits in
scientific notation than in normal decimal form. If printed in nofrmal
decimal form, all digits bevond the tenth digit are omitted.

If numbers are printed in normal decimal forms the following conventions are
cbserved:

10! Integers are printed without decimal points.

lo! Mon-integers are printed with decimal points in proper position.

Trailing zeros after the decimal point are omitted. If the rnumber has

more than 10 digits, it is rounded to 10 digits.

st A 0 (zero) is not pr]ﬂted by itself to the left of the decimal.

If numbers are printed in scientific notation, the format isl

maptissa E exponent

and the following rules apply?

‘o! The wantissa is printed with six or fewer digits, with one digit tao
the left of the decimal peoint.

- ip! Trailing zeros are omitted after the decimal point of the mantissa.

int If there are more than five digits after the decimal paint in the
mantissa, the fifth digit is rounded.

'a! The exponent is a two-digit number displayed with a plus or minus sign.

tao! If you attempt to print a rumber with an exponent greater than +99 or
1ess than ~99, the computer prints ** following the sign of the
exponent. /

Page 73

0319P T1-99/2 Boow 4

»PRINT =-1057.1
-10 7.1

»+PRINT 93427485127
9.34277E410

*PRINT 1E-10
. 0000000001

»PRINT 1.2E-1C
1.26~10

*PRINT .000000000246
2.46E-10

SPRINT 183-3
18 -3

SPRINT 3.3503-46.1
3.35 -44.1

SPRINT 791.123454789
791.1234548

*PRINT -12.7E-330.44
-.0127 .64

FPRINT .0CO0000001978531
1.97853E-10

=PRINT -98.77E81

T -9.877€22

SPRINT 736.400E10
7. 364EH2

*PRINT 12.36587E-15
1.23659E-14

»PRINT 1.28E-9;-43.56E12

»PRINT .76E126381E-115
7404 B {E-#%

BASIC Reference Guide

Page 74

(FINRL DRAFT)

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAF1)

PRINT

Pript Separators

Each screen line used with the PRINT statement has 28 character positions
numbered from left to right (1 through 28). Each line is divided into two
14-character print zones. By using the print separators and the TAB function,
you can control the position of the print items displaved on the screen.

There are three types of print separators: semicolons {3}, coleons (%), and
commas ¢(,}. At lepast one print separator must be placed between adjacent
print items in the print-list. Multiple print separators may be used side by
side and are evaluated from left to right.

The semicolon print separator (3) causes the next print item to print
immediately after the previous item printed, with no extra spaces. In the
program on the right, the spaces after the numbers appear only because all
numbers are printed with a trailing space regardless of the type of print
separator used.

The colon print separator (i) causes the next print item to print at the
beginning of the next line. Each extra colon causes one blank line to appear;
the colon's function is similar to that of a typewriter carriage return.

The comma print separatar (,) causes the next print item to print at the
beginning of the next print zone. Print lines are divided into two zones.
The first zone begins in column 1 on-the screen and the second beg1nﬁ in
eolumn 15. If the first print zone is already full whem a comma print
separator is evaluated, the next print item begins on the next line.

Page 75

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

>NEW

»100 A=-26

»110 B=-33

»120 C$="HELLO"
»130 PRINT A;B;C$
»*RUN

-26 ~-33 HELLO

x4 DONE %

*PRINT. "A"2:"B"
R

FNEW

»100 A=-26
»110 B$="HELLO"
»120 PRINT A:8$
SRUN

HELLO

®E DONE ¥

*NEW

>100 A$="ZONE 1"
»110 B$="ZONE 2"
»120 PRINT R$,B%
- »130 PRINT A$:,B%,R$

RUN -
ZONE 1 ZONE 2
Z0NE 1
ZONE 2
ZO0NE 1
*% DONE %%

w >

Page 74

0319P TI-99/2 Hook 4 BASIC Reterence Guide {FINAL DRAFT)
PRINT

IA8_Fupciion

The TAB function specifies the starting position on the print line for the
next print item. Note that the TAB function cannot be used with INTERNAL type
files. The format of the TAB function is:

TAB(pumeric-expression)

The gumeric-expression is evaluated and rounded to the nearest integer g. If
p is less than 1, its value is replaced by 1. If p is greater than 28, n is
repeatedly reduced by 28 until 1 £ p $ 28. If the number of characters
already printed on the current line is less than or equal to g, the next print
item is printed on the same line beginning in position p. If the number of
characters already printed on the current line is greater than py the next
item is printed on the naext line beginning in pasitian n.

. Note that the TAB function is a print item and thus must be preceded by a
print separators except when it is the first item in the pript-list. The
print separator before a TAB function is evaluated before the TRB functiony
and the erint separator following the TAB function is evaluated after the TAB
function.

In the program on the right, the computer does the following: ; .

o' line 120--prints A, moves to column 17, prints B.

to! line 130--prints A, moves to the next print zone, prints B.

10! line i40-—erints Ay moves to column 20, moves to the next print zone
because of the comma (in this case column 1 of the next screen line),
prints B. s .

Io! line 150--moves to column 5, prints A, moves to column & of the next
line (because column & of the current line was passed when A was
printed), prints B.

ia! line 160--prints A, subtracts 28 from 43 to begin the TAB function
within the allowable character positions, moves to position 15
(43-28218), prints B.

Page 77

0319P TI-99/2 Book 4 BASIC Reterence Guide

>NEW

»100 A=23.5
>110 B=48.4
»120 MSG$="HELLOD"
»130 PRINT TAB(S);MSGS; TAB(33
) iMSGS
»140 PRINT A3;TAB(10};8
»150 PRINT TRB{3);A;TAB(3);B
»RUN
HELLD
HELLD
23.5 ¢ 48.6
23.5
48.4

#% DONE ¥
>NEW
»100 A=326
»110 8=79
»120 PRINT AjTRB(1/);8
. ¥130 PRINT A,B
»140 PRINT A;TAB(20),B
¥150 PRINT TAB(S)JAITAB(S) 5B

»1460 PRINT A;TAB(43);8
>RUN

324 79
326 79
3a2é

79

326

o 79

3R 7%
#% DONE ¥

Page ?Q

(F INAL UKHFT)

0319P TI-929/2 Book 4 BASIC Retference Guide (FINAL DRAFT)
PRINT

A print item following a TAB is not split between two screen lines unless the
print item is a string with more than twenty-eight characters. In that case,
the string always begins on a new line. If a numeric print item can be
printed on the current line without its trailing space, the number is printed
an the current line. If the entire number itself will not fit on the current
liney, it is printed on the next line.

The print-list may end with a print separator. If it does, the print
sepirator is evaluated and the first print item in the next PRINT statement
(line 1460} starts in the position indicated by the print zeparator.

If the pript-list is not terminated by a print separator (line 130}, the
computer considers the current line complete when all the print items are
printed. In this case the first print item in the next PRINT statement (line
"140) always begins on a new line.

-

You may use a PRINT statemaent with ne priptzlist. When such a PRINT statement
is performedy the computer advances to the first character position of the
next screen line, This has the effect of skipping a line if the preceding
PRINT statement does not end with a print separator.

Page 7?

0319P TI-99/2 Book 4 BASLL Reierence Lulde

+NEW

»100 A=R3767

»110 B=79858

»120 C=AtB

»130 D=B-R

»140 PRINT A;B;C3D

+150 PRINT "A="j3Aj"B=";8;"C="
;C;uD‘=n;D

+RUN
23747 798584 1034623 56089
A= 23747 B= 79856 C= 103423
D= 54089

%% DONE %
#NEW

+100 A=23
»110 B=597
#120 PRINT Ay
»130 PRINT B
»140 PRINT ARj8;
»1580 C=448
»140 PRINT C
»RUN
23 597
23 597 448

%% DQNE e
»NEW

#1000 =20
>110 PRINT A
»120 PRINT
»130 8=16
140 PRINT B
~RUN

20

+15

*% DONE %%

Page 80

(YR (TSR] VTR

0319P TI-99/2 Book 4 . BASIC Reterence Guide (kLNAL DRAFI)

BUILT~IN NUMERIC FUNCTIONS

The numeric functions described in this section are built into TI-99/¢ BASIC
and perform some of the frequently used arithwetic operations. These
functions eliminate a large amount of programming necessary to obtain
equivalent results.) s

The built-in functions that are used with strings are discussed in the
“Built-in String Functions" section. i

Page 91

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)
ABS—-Absolute Value

ABS (numeric-exeression)

The ABSolute value function returns the absolute value of the argument. The
argument is the value abtained when the pumecic-expressiqn is evaluated. The
normal rules for evaluating numeric expressions are used.

If the argument is positive, ABS returns the argument itself. If the argument
is negative, ABS returns the negative of the argument. Thus, for the argument
Xy ’

1a! If X»=0, ABS(X)=X

ot If X<0, RBS(X)=-X
(i.0.y ABS(-3)=~(-3)=3

ATN--Arctangent

ATN(puseric-expressian)

The arctangent function (ATN) returns the arctangent of the argument. The
argument is the value obtained when the pumeric-expressiop is evaluated. The
normal rules for evaluating numeric sxpressions are used.

ATNCX) returns the angle (in radians) whose tangent is X. To express the
angle in degrees, multiply the answer by (180/{4#ATN(1})) or 57.295779513079,
which is 1B80/pi.

The value given for ARTN is always betweern -pi/2 and pi/c.

Page L2

0319P TI-99/2 Baok 4 BASLL Reterence Luide

SNEW

>100 A=-27.34

#1106 B=9.7

>120 PRINT ABS(R);ABS(B)
»130 PRINT ABS(3.8)3ABS{-4.5)

#140 PRINT RBS(-3*2)
»150 PRINT ABS{A%(B-3.2))
PRUN

27.36 9.7

3.8 4.5

4

177.84

#% DONE **

NEW

>100 PRINT ATN(.44)
»110 PRINT ATN(1E127)
+120 PRINT ATNC1E-129)3ATN(O)

>130 PRINT ATN(.3)#87,2957795
13079

- »140 PRINT ATN(.3)%(180/(4%AT

N(1))) -
»RUN
»4145048746
1.570796327
o ©
16.69924423
16.469924423

-

v x#€ DONE ¥

Page 83

(I LHAL URAF 1)

0319P T1-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

COS—--Cosine

COS(pumeric-expression)

The COSine function returns the cosine of the argument X, where X is an angle .
in radians. The argument is the value abtained when the pumecic-exprassion is
svaluated. The normal rules for evaluating numeric expressions are used.

If the angle is in degrees, multiply the degrees by pi/180 to find the
equivalent angle in radians. You may use (G*ATN{(1})/180 or 0.01745329051994
for pi/180. Note that if you enter a value of X where

10
X1 =1,57079463266375%10 , the message BAD ARGUMENT is diselayed and the
program stops running.

EXP—Exponential
EXP(pumecic-expression’

The EXPonential function returns the value of @ raised to the pbwer of the
X
argument X (e , where @=2.718081828). The argument is the value obtained
when the pumeric-expression is evaluated. The normal rules for the evaluation
of numeric expressions are used. .

EXP is the inverse of the natural legarithm function (LOG). Thus,
X=EXPCLOG(X)) . :

Page B84

0319P T1-99/2 Book 4 BASIC Reference Uuide

+NEW

»100 A=1.0471975811%6

>110 B=60

+120 C=.01745329251994

130 PRINT COS(R)JCOG(B*C)
140 PRINT COS(B*(4¥ATN(1))/1

80)
SRUN

.5 .5

.5
*% DONE *% -

~PRINT COS(2.2E11)

BAD ARGUMENT

>NEW

»>100 A=3.79
»110 PRINT EXP{A};EXP{?}
»120 PRINT EXP(A*2)
»130 PRINT EXP(LOG(2))
»RUN
44.75440028 B8103.083928
1958. 46208965
2 .

®% DONE »%

Page 85

(b LNHL LRKE L)

0319P TI-99/2 Book 4 BRSIC Refgrence Cuide ~ (FINAL DRAFT)

IMT --Intager

INT(numeric-gexpression)

The INTeger function returns the largest integer that is not greater than the
argument. The argument is the value obtai =»d when the pumecic-eipression is
evaluated. The normal rules for evaluating numeric expressions are used.

If yad specify an integer as the argument, the same integer is returned by INT.

For nonintegerss INT returns the integer closest an the number line ta the
left of the specified number. Thus, for positive numbers, the decimal portion
is dropped; for negative numbers, the next smallest integer is used (i.e.,
INT(~-2.3)=-3).

(number line graphic)

LOG—Matural Logarithm

LOG (pumeric-exgresaian)

The natural LOGarithm function returns the natural logarithm of the number
specified by the argument. The argument is the value obtained when the
sumeric-expression is evaluated. The normal rules for the evaluation of
numeric expressions are used.

The natural logarithm of X is usually shown as log (x). LOG is the inverse
[
of the exponential function (EXP); thus, X=LOG(EXP(X)).

The argument of LOG must be greater than zero. If you specify a value less
~than or equal to zero, the message BAD ARGUMENT is displayed, and the program
- atops running. :

To find the logarithm of a number in annther base B, use the formula,

log (X)=log (X)/log (B}
B e e

For example, log (3)=log (3)/log (1d)
- 10 e e N

Page B&

0319P T1-99/2 Book 4 BASLC Reterence Guide (F INHL UREF 1)

>NEW

»100 B=,678

»110 R=INT(B¥100%,5)/100
>120 PRINT A3INT(B)

»130 PRINT INT(-2.3);INT(2.2)

~RUN
.58 0
-3 @2

%% DONE %%

>NEW
#100 A=3.5
>110 PRINT LOGC(A);LOG(A%*2)
>120 PRINT LOG(EXP(2))
PRUN
1.252762968 1.945910149
a-

%% DUNE %

*PRINT LOG(-3)

*BAD ARGUMENT

<PRINT LOG(3)}A0G(10) I')
T 4771212547

Page 87

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)
ROANDOMIZE

RANDOMIZE (seed]

The RRNDDHIZE statement is used in conjunctiaon with the random-mnumber function
(RND). The sped may be any numeric expressic:.

It you use the RANDOMIZE statement with a gewd specified, the sequence of
random numbers generated by RND depends upon the value of the geed. If the
same sggd is used each time the program is run, the same seguence of numbers
is genarated} if a different seed is used each time the program is run, a
different sequence of numbers is generated.

When the RANDOMIZE statement is used without a seed, a different and
unpredictable sequence of random numbers is generated by RND each time the

progaram is run.

When the RANDOMIZE statement is not usedy RMD generates the same sequence of
pseudo-random numbers e&ach time a program is run.

The computer may generate the same sequence of numbers even if yau specify
different numeric expressions for the segd. The number actually used for the
seed is the first two hytes of the internal representation of the number. For
example, the first two bytes of the internal representation of 10060 and 1099
are the same and thus they will produce the same seed, which will, in turn,
produce the same sequence of numbers. (See "Accuracy Inforwmation® in Appendix

XXX for more ipfornation.)

Fage 89

0319P TI-99/2 Book 4

»NEW

+100 RANDOMIZE 23
»110 FOR K=1 TO §
%120 PRINT INT(10%RND)+1
130 NEXT K
“»RUN
4
4
3
8
|

%% DONE #

+

BASILC Reterence Uuide

Page B9

(FLNAL DRAET)

Nad ot [N SRR [TV Padd e dvm e et . - i em
RND--Random Number

RND

The randor—number function (RND) returns the next pseudo-random number in the
current sequence of pseudo-random numbers. The random number generated is
greater than or equal to zero and less than 1.

The same sequence of random numbers is generated by RND every time the same
program is run unless the RANDOMIZE statement appears in the program.

To obtain random integers from value A through value B (where A<B), use this
formula?

INT((B-A$1)*RND) HA

Page 20

0319PF TI-99/2 Bock 4 BRSIC Reterence Guide (FINAL DRAFY)

+NEW

»100 FOR K=1 TO &
»110 RRINT RND
+120 NEXT K
~RUN
LOXXXXX CHECK W/ SGUIRREL XXX
4
)
.q
«3

®% DONE ##

»NEW

>100 FOR K=1 T0 §
+110 C=INT(20%RND)+1
%120 PRINT C

130 NEXT K

#RUN
S

a .

11

8 .

é

% DONE %

Page 91

0319P TI-99/2 Book 4 BASIC Reference Cuide (FINAL DRAFT)
SGN--Signum (Sign)
SGN(numecic-exeressian)

The signum function (SGN} returns a value representing the algebraic sign of
the value specifiad by the argument. The argument is thz value obtained when

the pumecic-sxpressian is evaluated. The normal rules for the evaluation of
numeri; expressions are used.

SGN gives different values depending on the value of the argument; for the
argument X,

X<0ySGN(X)=-1
X=0ySGN(X)=0

X0y SGN(X)=1

SIN~-Bine
SIN(pumeric-expression)

" The SINe function returns the sine of the argument X, where X is &n angle .in
radians. The argument is the wvalue cbtained when the aumeric-eipression is
evaluated. The normal rules for evaluating numeric expressions are used.

If the ansle is given in degrees, multiply the degrees by pi/180 to find the
equivalent angle in radians. You may use (4%ATN(1))/180 or 0.01745329251744
. for-pi/180. MNote that if you enter a value of X, where

' 10 -
P11 . 5707963066375%10 , the message BAD ARGUMENT is displayed, and the
program stops running.

Page 72

0319P TI-99/2 Book 4 BASIC Reference Guide

»NEW

2100 A=-23.7

#1100 B=6

>120 PRINT SGN(A);SGNCO)3SGN(
B)

»130 PRINT SGN(~-3%3)7SGN(BR2)

»RUN
-1 0 1
-1 1

*% DONE **

>NEW

»100 A=.5235987755982
»110 8=30
»120 C=.01745329251994
>130 PRINT SINCR);SIN(B*C)
»140 PRINT SIN(B*(4%ATN(1))/1
B8O
>RUN
' .-5 -5
W5

%% DONE %%

»PRINT SIN(1.9E12)

% BAD ARGUMENT

Pase 93

FINAL DR&F 1)

QulYk Tl-yv/2 ok 4 bri..o Kelerance Guide (P INHL Urau s
SQR--Square Root
SQR(pumericr-expression)

The square root function (SGR) returns the positive square root of the value
specified by the argument. The argument is the value obtained when the

pumeric-expressigo is evaluated. The normal rules for the evaluation of
numeric expressions are usad.

SAR(X) is equivalent to X"(1/2).

If the value spacifiad by the argument is negative, the message BAD ARGUMENT
is displayed, and the program stops running.

TaN—--Tangent
TAN(puneric-exeression)

The TANgent function returns the tangent of the argument X, where K is an
angle in radians. The argument is the value obtained when the
ouperic-eipression is evaluated. The normal rules for evaluating numeric
expressions are used.

If the angle is given in degrees, multiply the degrees by »i/180 to find the
equivalent angle in radians. VYou may use (4¥ATN(1))/180 or 0.01745329251994
‘for 9i/180. Note that if you enter a value of X where
10
X121 ,57079432466375%10 , the message BAD ARGUMENT is displayed, and the
program stops running.

Page 94 B

Q319PF TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

BUILI-IN STIRING EUNCTIONS

String functions manipulate strings to produce either a numeric result or a
string result. As you use your computer, you will find many ways to use the
string functions described. Note that any string function with a name that
ends with a dollar sign (for example, CHR%) aluways returns a string result and
therefore cannot be usad in numeric expressions.

Page T4

0319P TI-99/2 Book 4 BRSIC Reterence Uuide

*NEW

»100 PRINT S5QR(4)347(1/2)
»110 PRINT SGR(10)
*RUN

2 2

3.16887766

%% DONE %%

»PRINT SQR(-5)
* BAD ARGUMENT

3

#NEW

»100 A=.7853781633973

110 B=45

»12¢ C=.01745309E2517794

»130 PRINT TAN(A)FTAN(D*C)

»140 PRINT TAN(B®(4¥ATN(1))/1
80>

»RUN

’ _‘-1—'- - 1-

1

*% DONE %

»PRINT TAN(1.74E10)

.

«* BAD ARGUMENT

Page 95

(FINAL, DRAFT)

Q0319F TI-99/2 bBoek 4 BRS1C Reterence Uuide W LNHL WRHE 1)
AsC-~ASCII Value

ASC (string-eseressian’

The ASCIT value function {(ASC) returns the ASCII character code corresponding
to the first character in the siripa-expressiop. A list of the ASCII
character codes for each character in the standard character set is given in
the Appendix XX.

CHR$—Character

CHR$ (pumeric-exeression)

The character function (CHR$) returns the character corresponding to the RSCII
character code specified in the argument. The argument is the value obtained
when the pumeric-exeressiop is evaluated. The normal rules for the evaluation
of mnumeric expressions are used.)

If the argument is not an integer, it is rounded to an integer.

An argument from 32 through 187 gives the standard ASCII character
corresponding to that value. Other values give the special graphics symhols.
Refer to Appendiz XX for a list of the ASCII character codes and their :
assigned characters.

If a character code is not defined, the character given is whatever is in
~ memory at that location at that time. Any argument that is outside the ASCII
‘character code range is repeatedly reduced by 256 until it is less than 256.

An argument less than zero or greater than 32767 causes the message 8AD VALUE
to be displayed, and the program.stops running.

Page '?7'

Q319P TI-99/2 Book 4 BHail. Reference Guide

*NEW

+100 A$="HELLO"
»110 C$="JACK SPRAT"
120 BP="THE ASCII VALUE OF *“
»130 PRINT B$3“H IS"3ASC(AS)
>140 PRINT 88;"J IS";ASC(CH)
»180 PRINT B8$;“N IS";ASC("NAM
E")
»160 PRINT B$3"1 IS";ARSC("1")
>170 PRINT CHR$(ASC(AS))
#RUN
THE ASCII VALUE OF H IS 72
THE ASCII VALUE OF J IS 74
THE ASCII VALUE OF N IS 78
THE ASCII VALUE OF 1 IS 49
H

%% DONE #**

NEW

»100 A$=CHR$(72)&CHRS(73)&CHR
$(33)

»110 PRINT A$
»120 PRINT CHR$(3%14)

»130 PRINT CHR$CRSC("$*))
>RUN

HI!

%

t
%% DONE #*

»PRINT CHR$(33010)

* BAD VALUE

Page 99

(FINAL DRAFT)

Q317P TI-99/2 Book 4 BRSIC Reterence uulde CHANRL URAFL)
LEN-~Length

LEN(siripa-expression)

The LENgth function returns the number of characters in the string specified
by the argument. The argument is the string value obtained when the
siring-expressign is evaluated. The normal rules for the evaluation of string
eXPressions are used.

The length of a mull string is zero. Bear in mind that a space is a character
and counts as part of the langth.

POS—Position
POS(siripal,sicipagd,pumeric-exprassion)

The POSition function finds the first occurrence of string? within stripal.
Both sicipgl and sicipgf are string expressions. The pumeric-ezpressign is
evaluated and rounded, if necessary, to the nearest integer, N. The normal
rules for the evaluation of string expressions and numeric expressions are
used.

The search for siring begins at the Nth character of siripal.

If sirinag is found, the character position within stringl of the first
‘character of sicing? is given.

It string2 is not found, a value of zero is given.

The position of the first character in stripal is position ocne. If N is
greater than the number of characters in siripal, a value of zerg is given.
If Nis less than zero, the message BAD VALUE is displayed, and the program
stops running.

e

Page 99”_

0319P TI~-99/2 Book 4 BARSIC Reterence Guide (FINAL DRAFT)

>NEW

»100 NAMIZS="CATHY"
»110 CITY$="NEW YORK"
»120 MSG$="HELLD "&"THERE'™“
»130 PRINT NAMES:LEN(NAMES)
+140 PRINT CITY$FLENCCITYS)
»150 PRINT MSG$;LEN(MSGS)
160 PRINT LEN(NAMES&ZCITYS)
=170 PRINT LENC(YHI'™)
»RUN
CATHY §
NEW YORK 8
HELLO THERE' 12

13

3

%% DONE ¥**

>NEW

»100 MSG$="HELLO THERE! HOW A
RE YOU?*

»110 PRINT "H";POS(MSGS,"H"s1
)

»>120 C$="RE"

#130 PRINT C$;POS(MSGS,CHr175
POS(MSGS,C8,12)

»140 PRINT "HI";POS(MSGS, "HI"
Y1)

»RUN

RE 10 19

HI O

i DONE ¢

Page 100

0319P TI-99/2 Book 4 BASIC Reterence Guide (FINAL DRAF1)
SEG$~--String Segment

SEG${siring—expressionsnumeric-expressionlsoueeric-expressiond)

The string SEGment function returns a portion {substring) of the string
desighated by the strina-execession. The normal rules for the evaluation of
numeric expressions and string expressions are used.

Nuperic-expressionl specifies the position of the character in the
string-expressign that is to be the first character of the substring. The
position of the first character in the siripa-expressiqp is position one.
Numeric-expressiond specifies the length of the substring.

In this example, A$ is sfcing-expressions X is pumecic-exeressionls and Y is
pumeric-ezprassiong. If you specify either a value for X grsater than the
length of A$ (line 1i0) or a value of zero for Y (line 120), the program
returns a null string. If vou specify a value for Y greater than the
remaining length in A$ starting.at the position specified by X (line 130}, the
substring is the remainder of A$ from position X on.

-

1f X is less than or equal to zero or if Y is less than zero, the message BAD
VALUE is displayed, and the program stops running.

Page 10}

03199 TI-99/2 Book 4 BASIC Reference Guide

“NEW

»100 MSG$="HELLO THERE! HOW A
RE YOU?"

»110 REM SUBSTRING BEGINS IN
POSITION 14 AND HARS A LENGTH
of 1i2.

»120 PRINT SEG$(MSGS,14,12)

*RUN
HOW ARE YOU?

% DONE *%
SNEW
5100 MSG$="1 AM A COMPUTER.”
%110 PRINT SEGS(MSGS$,20,1)
»120 PRINT SEGS (56,100
130 PRINT SEG$(MSGS,8,20)
“RUN

' COMPUTER.

%% DONE e

»~PRINT SEG$(MSG$,-1,10)

* HAD VALUE

Pay.: 102

(FINAL DRAFT)

0319P TI-99/2 Book 4 BASIC Reterence Guide (F LNAL. DRAF T
STR$=-String—Nuymber

STR$ (pumeric-exeressinn)

The STRing-number function returns the string representation of the number
specified by the argument. The argument is the value obtained when the
numeric-expression is evaluated. The normal rules for the evaluation of
numeric expressions are used.

When the number is converted into a string, the string is a valid
representation of a numeric constant with no leading or trailing spaces. For
example, if 8=49.5, the STR$(B) is the string "67.5". Only string operations
may be performed on the strings created using STRS.

The STR$ is the inverse of the value function (VAL).

valL—Valuye

VAL (string-exeression’

The VAlue function returns the numeric constant that results when the
strinpg-expression is converted to a number. For exanple, VAL converts the
string "49.5* to the numeric constant 69.5. The normal rules for the
evaluation of string expressions are used. .

If the string-expressian is not a valid representation of a number or if the
strina-expression is of zero length, the wessage BAD ARGUMENT is displayed and
the program stops running. If the siripg-exeressiqn is longer than 255
characters, the message BRD ARGUMENT is diselayed and the program execution
stops.

VAL is the inverse of the string-number function (STR$).

Page 103

0319P TI-99/2 Book -+ wHSIC Refe ence Guide

HNEW

»100 A=-26.3

¥110 PRINT STRECAI3* *3A
120 PRINT 15.73STR$(15.7)
»130 PRINT STRE(VAL("34.8"))
»RUN :

~26.3 -26.3
15.7 15.7

34.8

®% DONE e

HNEW

100 P$="23.6"

#1100 N$="-4.7Y
=120 PRINT VAL(P$);VALING)
»130 PRINT VAL("52"8".5%)
»140 PRINT VAL(NS&"E"&"12°}
»150 PRINT STR$(VAL(PE))
>RUN
23.6 -4.7
52.5
-4.7e412
23.6

%% DONE *%*

R§99'104

U LNAL ORAFY)

0319P Ti-99/2 Book 4 BRSIC Reterence Guide (FINAL DRAFT)
USER DEF INED FUNCTIONS

In addition to the built-in functions described in the two previous sections,
TI-99/2 BASIC enables you to define your own functions to use within a
program. User-defined functions can simplify programming by avoiding repeated
use of complicated expressions. Once a function has been defined using the
DEF statement, it may be used anywhere in the program by referencing the name
you gave to the function.

Page 105

0319P TI-99/2 Book 4 BRSIC Reference Guide (FINAL DRAET)
DEF £up:iinn:namef<eacam=3ec)l = gxpression

The DEFine statement enables you to define vour own functions to use within a
program. The function-pame may be any valid variable name; it is assigned the
value of the gxpressigp. If the gxpression evaluates to a string, the
fupciiop-pame must be a string-variable name (one that ends with §).

The parameter 1s used to pass information to the DEF statement. If a
parameter is specified, it must be a valii variable name enclosed in
parentheses following the fupciign-pame.

The fqnciiﬂﬂ:name, like any variable or built-in function, can be usad in
expressions. However, the funciion-pame is assigned a value only when an
expression that contains function-pape is =2valuated.

When a fupction-pane is defined in the DEF statement with no parapeier, the
funciion-pame is assigned the value of exeressions using the current values of
the variables that appear in the gxpression.

When a ' functiop—name is defined in the DEF statement with a pacameter, an
argument enclosed in parentheses wust follow the fupction-pame. The parameter
is assigned the value of the argument. The expression is then evaluated using
the newly assigned value of the parametsr and the current values of any other
variables in the DEF statement.

The variable name used for a pacameter is local to the DEF statement in which
it is used. Therefare, if a variable in the program has the same name as a
parameier, the value of the variable is not affected when the parameter is
assigned the value of the argument.

When the computer encounters a DEF statement, it takes no action but proceeds
to the next statement. :

A DEF statement may appear anywhere in a program, but it must be executed to
define & function before you can call that function. .

-

A DEF statewent can reference other defined functions (line 170).

InLé bEF statement, the iuﬁgiinn;namé‘ﬁay not reference itself either directly
{e.9. DEF B=B¥2) or indirectly {e.g. DEF F=G; DEF G=F).

The parameter cannct be an array name. You can use an array element in a DEF
statement if that element does not have the same name as the parameter.

Page 104

0319P TI1-99/2 Book 4 BASIC Reterence Guide

FNEW

»100 DEF PI=4%QTN(1)
»110 PRINT COS(&0%P1/180)
~RUN

5

%% DONE #3%

»NEW

>100 REM EVALUATE Y=X*(X~3)
»110 DEF Y=X¥({X-3)
¥120 PRINT * X Y*
»130 FOR X=-2 TO 5
140 PRINT XV
»150 NEXT X
SRUN

X v

-2 10

-1 4

0 0

1 -2

2 -2

3 0

4 4

5 10

DONE »

=NEW

»100 REM TAKE A NAME AND PRIN
T IT BACKWARDS

>110 DEF BACKS(X)=SEGS(NAMES,
X,1)

>120 INPUT "NAME? ":NAMES

>130 FOR J=LEN(NARME$)} TO 1 ST

_EP -1

2140 BNAMES=BNAMESABACKS(J)

»180 NEXT J

+160 PRINT NAMES:BNAMES

>RUN

NAME? ROBOT
ROBOT

TOBOR

F% DONE ==

Page 107

(FINAL DRAFT)

O319p TI-99/2 Book 4 BASIC Reference Guide {FINAL DRAFT)
FNEW

100 DEF FUNC(A)=A%*(A{B-5)
*110 A=6.9
+120 B=13
%130 PRINT “B="3;Bi"FUNC(3)="}
FUNC(3):“A="3A

+RUN

B= 13

FUNC(3)= 33

A= 6.9

%% DONE #%

>NEW

»100 REM FIND F'(X) USING NUM
ERICAL APPROXIMATION

»110 INPUT “X=? "X

+120 IF ABS(X)>.01 THEN 150

»130 H=.00001

»140 GOTO 180¢

¥150 H=.001*ABS(X)

»160 DEF F(Z)=3%Z"3-2%Z}1

»170 DEF DER(X)=(F (X+H)-F(X-H
3 /(ERH)

>180 PRINT "F'("3STRE(X);")="
$DER(X)

>RUN
X=? .1
F'(.1)= -1.90999997

%% DONE #¢

*NEW

+100 DEF GX(X)=GX(2)¥X
»110 PRINT GX(3)
CBRUN

% MEMORY FULL IN 110

-100 DEF GX(A)=A(3)"2
. RUN

* NAME CONFLICT IN 100

-

- >

SNEW

»100 DEF SQUARE(X)=X*X
»110 PRINT SQUARE
*»RUN

* NﬁHE'CDNFLICT IN 110
+100 DEF PI=3.141é

»110 PRINT PI(2
»RUN -

0326P T1-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

ARRAYS

Arrays are collections of variables that are arranged for easy use in a
computer program. The most common use of an array is to store values that are
in a list; a one-dimensional array is used for a list. A two-dimensional
array can be uysed to store the values of a table.

You can uge arrays with one, two, or three dimensions in T1-9%/2 BASIC.

Each variable in the array is called an element. The size of an array is
limited only by the amount of memory available.

By using the array capabilities of TI-29/2 BASIC, you can do many useful
things such as erinting the elements forward or backward, rearranging them,
adding them together, multiplying them, or processing selected elements.

0326P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

OPTION BASE [0 or 11

The OPTION BASE statewent enables you to set the lower limit of array
subscripts at 1 instead of 0. You can omit the OPTION BRSE statament if you
want the lower liwit of the subscripts to be 0.

If you include an OPTION BASE statement in your program, you must give it a
lower line number than any DIMension statement or any reference to an element
in any array. You may have anly one OPTION BASE statement in a programy and
it applies to all array subscripts in your program. Therefore, you cannot
have one array subscript beginning with 0 and another beginning with 1 in the
same program.

If you use some integer other than 1 or ¢ in. the OPTION BASE statement, the
computer stops the program and prints INCOPRECT STATEMENT.

0326P TI-99/2 Hook 4 BASIC Reterence uuide

FNEW

»100 CRTION BASE 1
»110 DIM ¥(&,E5,5)
»120 X(1,0,1)=3
130 PRINT X{1,0,1)
>RUN

* BAD SUBSCRIPT IN 120
»100 (Press ENIER to delete line 100.)
>RUN

3

*¥ DONE W%

(FINAL DRAFT}

0326P TI-99/2 Book 4 BASIC Reference Guide (FINRL DRAFT)

DIMension

DIM array-name (iniegerll,ipteser2)(yipnteaecdl)l,acraz-pame « . .1

The DIMension statewent reserves space for both numeric and string arrays.
Once used, an arcay—name cannot appear in another DIM statement in the same
program.

A DIM statement is required for any array used in a program and must apeear in
the sroaram befare any other reference to the arrar-name. An arcay-nase must
be a valid variable name. Multiple accay-pameg in a DIM statement must be
separated by commas.

You may use one-, two-, or three-dimensional arrays in TI-99/2 BAGIC. The
number of integers in parentheses following the array—pame tells the computer
how many dimensions the array has.

A one~-dimensional arravy—-pame is followed by one integer, which specifies
the number of values in the array.

i two-dimensional array-pame is followed by two integers, which define the
nueber of rows and columns in the array.

A three-dimensional arcay-pame is followed by three integerss which define
the number of rowsy columns, and pages in the array.

ThUS'

'on! DIM A(4)—-describes a one~dimensional array
'o! DIM A(1R2y3)—describes a two-dimensional array
'o! DIM A(5y2,11)—describes a three-dimensional array

]
* -

An array is allocated space after you enter the RUN command but bafore the
program is actually run, However, until you place values in an array, each
element in a string array is a null string and each =2lement in a numeric array
has a value of zero.

If .your computer cannot regerve space for an array with the dimensions you
specify, a MEMORY FULL message is displayed, and your program will not run.

0324P TI-99/C Book 4 BRSIC Reterence Guide

~DIM AC12),B(5)

>NEW

>100 DIM X(1i5)
»110 FOR K=1 TO 15
»120 READ X(K)
>130 NEXT K
>140 REM PRINT LOOP
>»150 FOR K=15 TO 1 STEP -1
160 PRINT X(K)3
»170 NEXT K
»180 DATA 1,2,3,49516+7:+8,9,1
0y11412513414,415
>RUN :
15 14 13 12 11 190 ¢
. 8 7 6 5 4 3 2 1
% DmE“

(FLINAL DRAFT

0326P TI-?9/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

DIM

Subscriptiina_fo.8cray

To reference an array in a program, vou must specify which element in the
array the computer is to use. You can specify the element by using a
subscript. Subscripts are enclosed in parentheses immediately following the
name of the array. A subscriept must be a valid numeric expression that
evaluates to a non-negative result. This result is rounded to the nearest

integer, if necessary.

The number of elements reserved for an array determines the magimum value of
each subscript for that array.

The example on the right assumes that the array begins with element 1 (OPTIODN
BASE 1 on line 120):

to! line 130—--This line defines T as a1 one-dimensional array with 285
elemants.

1a! line 140--The numeric variable I subscripts 7. Whatever value I
contains at this time is used to point to an element of T. If I=3,
the third element aof T is added.

ig! line 200--The subscript 14 tells the computer to print the fourteenth
element of T.

10! line 220--The computer evaluates the mumeric expression NfE. If N=15
at this time, the seventeenth elewment of 7 is printed.

If you access an array with a subscript greater than the maximum number of
elements defined for that array, or if a subscript has a 0 value and you have
used an OPTION BASE 1| statement, a BAD SUBSCRIPT message is displgyed, and the

program ends.

0326P TI-99/2 Book 4 BRSIC Reterence Guide

ANEW

100 REM DEMO OF DIM AND SUBS
CRIPTS

»110 §=100

»>120 OPTION BASE 1

»130 DIM T(25)

»140 FOR K=1 T0 2%

»150 READ T(K)

»160 A=SHT(K}

»170 PRINT A3

»180 NEXT K

»190 PRINT::

200 PRINT T(1i4)

%210 INPUT "ENTER A NUMBER BE
TWEEN 1 AND 23:"iN

=220 PRINT TI(N{2)

%230 DATA 12,13,43,8565¢7657
8,98,54,34,23,21,100,333,222
,111,444,666,543,234,89,745,
90,101,345

- »RUN ‘ -

‘112 113 143 145 145

174 178 198 156 134

123 121 200 433 32

211 544 764 643 334

189 8&5 190 £O1 445

. 333

. ENTER A NUMBER BETWEEN 1 AND
23:14
111

*% DONE %

(FINAL DRAFT)

(TR [v L e e e

SUBRQUIINE STATEMENIS

Subroutines may be thought of as separate, seif-contained programs within a
main program. Subroutines perform tasks, such as printing information,
performing calculations, or reading valuas into an array. Using a subroutine
enables you to typa a set of statements only once and then access it (with a
GOSUB statement) at any point in the program.

0326P TI-99/2 Book 4 BASIC Reterence Guide (FINAL. DRAFT)

Gasus

GOsuB

lipe-pumber
GO SuB

The GOSUB statement is used with the RETURN statement to branch to a
subreutine, parform the steps in the subroutine, and return to the next
program line following the GOSUB statement. When the computer performs the
GOSUB statement, it stores the next line rumber of the main program; the
computer returns to that point when it encounters a RETURN statement in the
subroutine.

0326P TI-99/2 Book 4 wi.u RElerence Lulde

PNEW

+100
»110
120
*130
+140
=150
#1860
+170
>180
»190
~RUN
=]
=0
=3
=4
=8
=4
=7
=g
=9
=1

XXX)‘(XKXXXX

®% DONE %

FOR X=1 TO 10

GOSUB 150

PRINT "X =“iX;"S0 X IS “iA$
NEXT X

STOP

IF X/2=INT(X/2) THEN 180
Ag="00D"

RETURN

A$="EVEN"

RETURN

80
)
S0
50
S0
S0
S0

IS 0DD
18 EVEN
Is abb -
1S EVEN
I8 0DD
IS EVEN
IS 0DD
S0 X IS EVEN
S0 X IS 00D
0 SO X IS EVEN

D DL M M M DC P XK

L Lk

Diedn 12

0324P TI-99/2 Book 4 BﬁSIC Reference Guide (FINAL DRAFT)

Within a subroutine, the computer can jump to another subroutine, perform it,
return to the first subroutine, finish its stepsy and then return to the wain
srogram at the point where the original branch occurred. GOSUB and RETURN
statements must be properly paired; be sure to exercise care in designing
subroutines go that the computar will not lose its place.

In the example on the right, the main program jumps to subroutine 1 when it
reaches line 500. In subroutine 1, when the program reaches line 730, it
jumps to subroutine 2. When the RETURN in subroutine 2 is encountered (line
850), the computer returns to subroutine 1 at line 740, finishes the
subroutine, returns to the main program, and completes it through line 400.

If the GOSUB statewment transfers program control to a lips-ousber not in the
programs the program ends and the message BAD LINE NUMBER is displayed. If
the GOSUB transfers the program control to its oun lipa-pumbaer. the program
stops and the message MEMORY FULL is displayed

Vocolb

+NEW

»100
>110

»500
+510

>&00
»700

~730
»740

>790
»>B0G

~850

NEW

+100
110
120
»130
140
150
160
170
- PRUN

11-9Y/¢ Book bl Keteence uuldé

REM NESTED SUBROUTINES
REM MAIN PROGRAM

« (Program lines . . .)

GasuB 700

sT0P
REM SUBROUTINE1

Gosus 800

RETURN
REM SUBROUTINE2

RETURN

X=1g

=23

GOSUB 120
PRINT 2

sTop

REM SUBRCUTINE
Z=X$Y%¥120/5
RETURN

* MEMORY FULL IN 120

»120
+RUN

| 564

Gosug 150

THE DONE *%

CE Litne URHE L)

0326F TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

RETURN

The RETURN statement is used with the GOSUB statement to provide a
branch-and-return structure. When the computer encounters a RETURN statement,
it takes program control back to the program line immadiately following the
GOSUB statement that transferred the computer to that particular subroutine.

Yau can develop programs with subroutines that jump to other subroutines and
back again, if you make sure that each GOSUB leads the computer to a RETURN

statement.

If the computer encounters a RETURM statement before performing a ROSuUB
instruction, the program stops, and the message CAN'T DO THAT appears.

STOP
STQP

The STOP statement terminates the program that is running. STOP can be used
interchangeably with END. You can place one or ware STOP statements anywhere
in your program. Normally, the STOP statement is used when there are several
ending points in a prosram and the END statement is used when there is only
one ending point. '

JRereny - P e e e

~NEW

+100 FOR K=1 TO 3
+110 GOSUB 150
»120 PRINT "K="3K
»130 NEXT K

+140 STOP

»150 REM SUBROUTINE
=160 FOR X=1 T0 2
#1700 PRINT “"X="3;X
»180 NEXT X

#190 RETURN

»RUN

1]
W00
N

*# DONE %%

NEW

»100 A=5
»110 B$="TEXAS INSTRUMENTS"
»120 PRINT B$;A
+130 STOP
>RUN
TEXAS INSTRUMENTS S

#% DONE *»

03246P TI-99/2 Book 4 BASLU Reference Guide tFLINRL. DRAFT)

ON GOSUB

Gosue

ON pumeric-expression lipe-oumber [:line-pumberl . . .
GO sue

The ON GOSUB statement instructs the computer to perform a subroutine,
depending on the value of the pumeric-gxepressioo. The computer first
evaluates the pumeric-expression and converts the result to an integer,
rournding if necessary.

'o! If the integer is 1, the computer branches to the first
lipe-oumber listed in the ON-GOSUB statement.

lo! If the integer is 2, the computer branches to the second
line-punber listed, and so on.

The coﬁputer saves the number of the line following the ON GOSUB statement and
returns to thiz point after performing the subroutine. The subroutine must

contain a RETURN statement to signal the computer to go back to the saved line
number and continue the program from that statement.

1f the subroutine does not contain a RETURN statement, the program continues
as if a GOTO had been performed instead of a GOSUB.

If ‘the rounded value of the pumecic-expressian is less than i or greater than
the number of lipe—pumbers in the ON GOSUB statement, the program stops, and

the message BAD VALUE IN lipe-pumber appears. In the examele, the original
Yine 130 transfers control to the END statement if a 9 is input for CODE,
allowing the program to end Without an error message. >

If & lipe-pupberc in the ON GOSUB statement is not a valid program line, the
message BAD LINE NUMBER is displayed. :

Vocar [S TN [4TUTWII | Lihas se 2 L b W

>NEW

»100 INPUT *CODE=?":CODE
110 IF CODE=9 THEN 290
»120 INPUT “HOURS=?":IHOURS
»130 ON CODE GOSUB 170,200,823
0,260
140 PAY=RATEXHOURSHBASEPAY
150 PRINT "PAY IS $“;PAY
»160 GOTO 100
170 RATE=3.10
180 BASEPAY=5
#190 RETURN
200 RATE=4.25
210 BASEPAY=25
*220 RETURN
>230 RATE=10
»240 BRSEPAY=50
>250 RETURN
260 RATE=RS
870 BASEPAY=100
>280 RETURN
290 END
>RUN
CODE=?4
HOURS=740
_PAY IS § 1100
CODE=72
HOURS=?37
PAY IS $ 182.25
CODE=?3
HOURS=73&8.758
PAY IS $ 407.5
CODE=?1
HOURS=?40
PAY IS § 129
CODE=79

"% DONE *%

SRUN
CODE=2%
HOURS=?40

¥ BAD VALUE IN 130

»130 ON CODE GOSUB 170,200,23
0,600

RUN

CODE=74

HOURS=?40

* BAD LINE NUMBER IN 130

032&4P TI-Y9/2 Book 4 BRASIC Reference Guide (FINAL. DRAFTY)

FILE_PROCESDING STATEMENTS

Your computer has the ability to store both programs and data on peripheral
(accessory) devices. You can later load and use these files with your
computer as often as you wish and delete them when you no longer need them.

With the file-processing capability of your computer, you can save important
information, create procedures to update data, and avoid retyping your
programs. TI-99/2 BASIC provides an extensive range of file-processing
features, including sequential and relative file organization and processing,
fixed and variable length recordss and display and internal formats for data.

The connecting device between the Basic Computer 9972 and the family of
™
HEX-=BUS peripherals is the HEX-HUS interface that is built into the
computer itself. The HEX-BUS peripherals include the Texas Instruments
o T™
Wafectaeg Disital Tape Drive, the Printer/Plotter, and the RS232
Interface/Parallel Part. The computer identifies these peripherals by the
device numbers listed below.

Revice Qevice Number
™

Wafectace Orive 1~8

Printer/Plotter 10—-17

RS232 Interface 20--27

Parallel Output Port 50—-51

4

-

Other HEX-BUS peripherals will be available in the future. Check with your
dealer for a complete list of HEX-BUS peripherals.

Q0326P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

OPEN

OPEN #file—pumber: °*HEXBUS.device-number.filspame"” [,open-nodel

llCSI H

[sfile-typel (,file-oraanizationl {,record-ivpel [.fila-life)

The OPEN statement enables a BASIC program to process a file. OPEN assigns a
file-pumbher to a file on a peripheral, thereby establishing the link between
that file and its file-pumbher; this number is used by all Input/Output
statements that refer to the file.

ig! File-pumber-—The file-pumher is a numeric expression that, when
evaluated and rounded, wmust be a number from 1 through 255. The
. file—number nust be preceded by a number sign {(#). All programs that
access files must use the OPEN statement to assign a file-pumber to a
file or device.

File-pumber ¢ refers to the keyboard and screen of your computer and
is always accessible. You cannot open or close file-pumber 0.

Each file in your program must have its own separate number. If a
file-numbac specifies a file that is already openy an error ocours.,

Usipa_ihe OPEN Statement with HEX-BUS Peripberals

OPEN assaciates a file-pumber with the specified fileapame on a peripherals
therefore, when an Input/Dutput statement uses a file-number, the computer
knows which file to access. Before a statement can use a file-pumber to
access a file on a HEX-BUS peripheral, an OPEN statement must have first _
assigned that file-oumber to the filepame.

The QPEN statement describes a file's characteristics so that your program can
create or process the file. The keyword HEXBUS must be included in any OPEN
™
-statement that refers to HEX-BUS peripherals. When you open an existing
"“file on a HEX-BUS peripherdl, the computer checks to see if the file or device
characteristics match the information specified in the OPEN statement for that
file. If thay do not match, the file is not opened, and an 1/0 error wessage
is displayed. If the computer cannot find a file that is to be opened in
INPUT mode, an I/0 error message is displaved.

‘0! Device-pumber--The device-pumber is a number from 1 through 255 by
. which the computer identifies a peripheral. For example, 20 is the
- device-pumber for the RS232 Interfare peripheral.

0! Eilepame—-A filepame supplies information to the peripheral device for
the OPEN statement. For exampley with an external storage device,
filepame specifies the name of the file. With other devices, the
filename specifies options such as parity, baud rate, etc. If you use
a string constant as a filepame, you must enclose it in quotation
marks.

Refer to the individual HEX-BUS peripheral wmanuals for more information about
the device-pumber and for specific information about the form of a filename.

0326P TI-99/2 Book 4 BRSIC Reterence Guide (FLIMNAL DRAHT)

OPEN

XX 100 OPEN #2:"CS1",SEQUENTIAL
» INTERNAL , INPUT,FIXED 128,PE
RMANENT

XX Need examples for opening HEX-BUS peripherals.xX

»100 OPEN #25:"CS1",SEQUENTIA
Ly INTERNAL. ¢ INPUT o FIXED, PERMA
NENT

>110 X=100

>120 N=2

»130 OPEN #122:"CS"88TRE(N),S
EGUENTIAL, INTERNAL ,QUTPUT,FI
XED, PERMANENT

0326P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

OPEN

The characteristics listed below may be In an? order or may be omitted. When
a characteristic is omitted, the computer azsumes standard characteristics
called defaults.

10! gpep-made~--This entry specifies in which of the following modes the

computer is to process the file. If the gpen-mode is omitted, the
computer opens the file in UPDATE mode.

INPUT--The computer can only read from the file.
QUTPUT--The computer can only write to the file.
UPDATE-—The computer can both read from and write to the file.

APPEND--The computer can write data only at the end of the filej the
records already on the file cannot be accessed.

t file~-type—-This specification designates the farmat of the data stared

on the file. Data stored in ASCII characters (the kind displayed on
the screen) are called DISPLAY. Each DISPLAY record usually
corresponds to one gprint lipe.

Data stored in the internal machine format (binary code) are called
INTERNAL. The INTERNAL format is more efficient for recording data on
mass storage devices; it requires less space and less processing time
becayse the computer performs fewer conversions between formats.

1f the file-type is omitted, the computer assumes DISPLAY format.

' file-argaanization--Files can be organized either sequentially or

randomly. Records on a SEQUENTIAL file are read or written one a{ter
the ather in sequence from beginning to end. Note that files on the
™

Wafertape peripheral must have SEQUENTIAL organization.
Random—access files (called RELATIVE in TI-99/2 BRSIC) can be read or
weitten in any record orderj they can alsoc be processed sequantially.

To indicate the.orgénization‘pf a file, specify either SEQUENTIAL or
RELATIVE in the OPEN =tatement. If fileznrgapization is omitted, the
computer assumes SEQUENTIAL organization.

You may optionally include the initial rumber of records on a file by
following the word SEQUENTIAL or RELATIVE with a UMEric expression.

! paeord-type~—-This entry specifiea whether the records on the file are

all the same length (FIXED) or vary in length (VARIABLE). The kayword
FIXED or VARIABLE may be followed by a numeric expression specifying
the maximum length of a record. The waximum length of a record varias
with the device used.

oGl bd et e FSTIUY N T2 I N PR I TS BN S TUE R NIV P 1y B A T S N T I

™
In the example on the right, the file MYFILE on device 1 (a Wafertape
drive) is opened as file rnumber 4. Data can only be written to the file. If
the file does not already exist, the file is created with the characteristics
created in the OPEN statement. If the file already exists, the
characteristics of the file are compared with those given in the OPEN
statement.

XXXXThis example illustrates opening the file NAME$S on device 100 (that is
assumed to supporti relative files) with the file number 10. The file can anly

be read.

, FILEQ.in this example is opened on deviee 1 as file mumber 12. Data can only
be written at the end of the file. The computer assumes SEQUENTIAL
organization and DISPLAY data format.

The file NAME$ on device 1 in UPDATE mode with file number 53. If the file
does not already existy the file is created with the characteristics created

. in the OPEN statement. If the file already exists, the characteristics of the
file are compared with those given in the OPEN statement.

The file NAMES is opened on device 1 with the file number 11. The file can
be read only.

0326F TI-99/2 BHook 4 BASIC Rerference Guide (FINAL. DRAF T}

100 OPEN #4:1"HEXBUS.1.MYFILE
*yQUTPUT, INTERNAL

XXXX HEX-BUS_pecipherals.do_pot. suepart_relative files XXXX
=120 OPEN #10% "MEXBUS.100.NA
ME$", RELATIVE, INPUT, INTERNAL

»100 OPEN #12:"HEX8US.1.FILE2
*,ARPEND,FIXED

»>100 OPEN #53:"HEXBUS.1.NAME
$* ,FIXED, INTERNAL

»>100 OPEN #11:"HEXBUS. 1. NAME
S$", INPUT, INTERNAL , SEQUENTT
ALyVARIABLE 100

03246P TI-99/2 Book 4 BRASIC Reference Guide (FINAL DRAFT)

Usipg._ the QPEN_Statemept with_the II. Praar w_Recorder or_a Comeatible facardec

OPEN associates a file-pumber with the Program Recorder; it does not link
file-number with a specific file. You must locate that file on the device.
Refer to Book 1 for instructions on locatinag programs or data on an audio
cassette tape. Hefore a statement can use a file-pumber to access a cassette
device, an OPEN statement must have first associated that file-pumber with the
cassette device.

“"(081" must be included in the OPEN statement. The following characteristics
may be in any order, but certain of them are required.

lo! agpen-made (required)—-This entry specifies in which of the following
modes the computer is to process the file.

INPUT The computer can only read from the file.
QUTPUT The computer can only write to the file.

‘ol file-type (optional)--This specification designates the format of the
data or how the data are recorded on the file.

When data are stored in ASCII characters (the kind displayed on the
screen), the data format is called DISPLAY. A DISPLAY recard usually
corresponds to one print line.

When data are stored in the internal machine format (binary code), the
data format is called INTERNAL. INTERMNAL format is more efficient for
recording data on mass-storage devices; it requires less space and
less processing time because the computer performs fewer conversions
batween formats.

If the file-type is omitted, the computer assumes DISPLAY format.

'o! file-organization (optional)--Files on a cassette recorder must have
SELWENTIAL organization} this specification may be ommitted, because
the computer assumes SEQUENTIAL organization.

1o pecord-type (required)--You must specify FIXED. This entry indicates
‘ that all the records on the file are the same length (FIXED). The
keyword FIXED may be followad by a numeric expression apacifying the
maximum length of a record. You may specify any length up to 192
positions. If the length specification is omitted, the computer
assumes a length of 44 positions.

ol file-lifa (optional)--Files you create with your Tl Computer are
- considered PERMANENT, not temporary; if this entry is omitted, the
- computer assumez a PERMANENT fils-life. :

0326P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

»OPEN #75:“CS1*,0UTPUT, FIXED

The file located at the current position of the cassette tape is opened as
file number 7E. Data can only be written to the file. The computer assumes a

SEQUENTIAL file in DISPLAY format with a FIXED length of 44 characters.

The file lecated at the current position of the cassette tape is opened as
file number 2. When the computer performs the DPEN statement, the
instructions for activating a cassette recorder device are displayed.

+NEW

»100 OPEN #2:“CS1", INTERNAL,I
NPUT,FIXED

. (Program lines . . .)

>300 CLDSE #2
*RUN

* REWIND CASSETTE TAPE (51
THEN PRESS ENTER

* PRESS CASSETTE PLAY cs1
"THEN PRESS ENTER

(Rest of program run.)

Kes = =

PRESS CASSETTE STOP CS1 - . .
THEN PRESS ENTER |

#% DONE %

0326P TI-99/2 Book 4 BASIC Rerference Guide (FINAL. DRAFT)
INPUT

INPUT #file-pumbar{.REC pumeric-expressionllivaciable-list]

{(See also the "Input-Qutput Statements" sectian)

This form of the INPUT statement enables you to read data from a peripheral
device. The INPUT statement can be used only with files opened in INPUT or
UPDATE mode.

The file-numher must be the file—pumber of a currently open file. (See the
OPEN statement.) FEile—pumber ¢ is the keyboard and may always be used. If
you use file-pumber O, the INPUT statement is performed as described in
“Input-Outpyt Statements, " except that you cannot specify an input-prompt,.

The variahle=list contains variahlee that are assignad valuss when the INPUT
statement is performed. Variable names in the variable-list are separated by
commas and may be numeric and/or string variables.

Filling the yariable-list

When the computer reads records from a file, it stores each complete record
internally in a temporary storage area callad an input/output (I/0) buffer. A
separate buffer is provided for each open file-oumber. Values are assigned to
variables in the vaciahle-list from left to right, using the data in this
buffer. When a yariable-list has been filled with corresponding walues, any
data items left in the buffer are discarded unless the INPUT statement ends
with a trailing comma, which creates a "pending” input condition (see "Using
Pending Inputs®).

If the vaciable-list is longer than the numher of data items in the current
record being processed, the computer gets the next record from the file and
uses its data items to complete the vaciable:list, as shown on the right.

bl
e

0324P TI-99/2 8Book 4 BRSIC Reference Luide (FINAL DRAFT)

FINEW

»100 OPEN #13:°CS1",SEQUENTIR
LsDISPLAYy INPUT,FIXED

»110 INPUT #13:R,8,C$,08: XY,
z$

»120 IF A=99 THEN 150

»130 PRINT AjBiC3:D$,X,Y:Z$

»140 GOTO 110

»150 CLOSE #13

+RUN

(The data stored on tape are printed on the screen.)

% DONE ®*

>NEW

»100 OPEN #13:“CSi",SEQUENTIA
L.,DISPLAY, INPUT,FIXED &4
»110 INPUT #13:A,8,C,0

« (Program lines .-. o)

300 CLOSE #13
»RUMN

(First INPUT RECORD=22,77,56,%2.
Resultsi)

A=22 B=77 (=56 D=92
#% DONE %%
»NEW

»100 OPEN #13:*CS1",SEQUENTIA
© . LyDISPLAY, INPUT,FIXED &4
»110 INPUT #13:R,8,C D,E,F,6

+CLOSE #13

>RUN

(1st INPUT RECORD=22,33.5
2nd INPUT RECORD=405,92
3rd INPUT RECORD=22,11023
Jth INPUT RECORD=99,100

RESULTS?)

A=22 B=33.5 C=405 0=92
E=22 F=11023 6=

%% DONE *%¢ °

vadal L i~Y7: C Blin . RS~ T N F TN) vhoardbil. LN 0

INPUT

The computer interprets DISPLAY and INTERMAL data differently.

DISPLAY data have the same form as data entered f m the kevyboard. The
computer knows the length of each data item in a L ISPLAY record by the comma
separators placed between items., Leading and trailing spaceds are ignored
unless they are enclosed in quotation marks in a string value. When the
computer encounters two adjacent commas, a null string is assigned to the
variable.

Each value is checked to ensure that numeric values are placed in numeric
variables, as shown on the right in Record 1. If the value (as in Record 2 on
the risght, JG) is not a numeric valua, an IMPUT ERROR occurs and the program
stops.

INTERNAL data have the foll.wing form:

Numecic Iiews: (insert graphic on page 1I-12&)
designates length of item (always 8) value of item

Sirigs Iiems: (insert graphic on page I1I-1248)
désignates length of item value of itewm

The computer determings the length of each INTERNAL data item by interpreting
the one-position length indicator at the beginning of each item. . .

Limited validation of INTERNAL data items is performed. All numeric items
nust be 9 positions long (8 digits plus one position that specifies the
length) and must be valid representations of floating-point numbers.
Otherwise, an INPUT ERROR occursy and the program stops.

~ For FIXED-length INTERNAL records, reading beyond the actual data recorded in
each record causes padding characters (binary zeros) to be read. If you
attempt to assign these characters to a numeric variable, an INPUT ERROR
occurs. If strings are being ready, a null string is assigned to the string
variable.

0324P TI-99/2 Book 4 BASLIC Reference Luide (FItkL GRAFTS

+NEW

=100 OPEN #13:“CS1"SEQUENTIAL
yDISPLAY, INPUT,FIXED 44

»110 INPUT $13:A,B,STATES,DS,
Xs¥

(INPUT RECORD 1 = 22,97.6»TEXAS, "AUTOD LIbENSE".EEOOO;-.O?

INPUT RECORD 2 = JG,22,TEXAS,PROPERTY TAX,42,15)

0326P TI-99/2 book 4 BASLC Reteience LGulde (FINAL DRAFT)

-

INPUT

Usipa. INPUT. with RELOTIVE Eiles

{See the OFEN statewent for a description of RELATIVF file-organization.)

You can read RELATIVE files either sequentially or randomly. The compruter
sete up an internal counter that indicates the record that is to be processed
next. The first recard in a file is record 0. Thus, the counter begins at
zero and is incremented by 1 after every access to the file (whether that
access reads or writes a record). Ian the example on the right, the statements
direct the computer to read the file sequentially.

The internal counter can be changed by using the REC clause. The
pusercic-gipressiaor following the keyword REC is evaluated to designate a
specific record number on the file. When the computer performs an INPUT
statement with & REC clause, it reads the specified record from the designated
file and places it in the I/0 buffer. The REC clause can appear only in
statements referencing RELATIVE files. The axample on the right illustrates
accessing a RELATIVE file randomly, using the REC clause.

'If you read and write recards on the same file within a program, be sure to
use the REC clause. The same internal counter is incremented when records are
either read from or written to the same files you wmay skip some records and
write over others if REC is not used, as =hown in the example on the right.

If the internal counter indicates a record beyond the limits of the file that
the computer tries to access, the program stops, and an INPUT ERROR message
aPPEéI“S .

0324P TI-99/2 Book 4 BASIC Reference Guide (FINRL DRAFT)

NEW

»100 DPEN #4:"HEXBUS.1.NRME
$*, INTERNAL, INPUT,FIXED 44

5110 INPUT #4:R,B,C$%y0$,X

. (Program lines . . .)

+200 CLOSE #4

+NEW

»100 OPEN #6:"HEXBUS.1.NAMES
", INTERNAL ,UPDATE,FIXED 72

»110 INPUT K

»120 INPUT #6,REC K:R,B,C$,D$

. (Program lines . . .)

»300 CLOSE &6

#NEW

»100 OPEN #3:*HEXBUS.1.NAMES
“, INTERNAL ,UPDATE , FIXED

»110 FOR K=1 T0 10

»120 INPUT #3:0%,B3,C8:X,Y

» (Program lines . . .)
30 PRINT #3:R%,88,C8,XsY
»240 PRINT NEXT K o
»25Q0 CLOSE #3
(LINE 120—-Reads records 042,4+6+48...

LINE 230—Writes records 1,3,5,79%...)

VdEer 1L-YY e BOUK 4 b e Rilel wiler LuLde (RN ERIE W TR

INPUT

Usina Pending_Inputs

A pending input condition occurs when an INPUT statement ends with a trailing
comma. When the computer encounters the next INPUT statement using that file,
one of the following actions occurs:

If the next INPUT statement has no REC clausey the computer uses the
data in the 1/0 buffer beginnins where the previous INPUT statement
stopped.

If the next INPUT statement includes a REC clauses the computer
terminates the pending input condition and reads the specified record
into the file's 1/0 buffer.

If you uea a pending input with file-pumber O, the error message INCORRECT
STATEMENT is displayed, and the program stops running.

ﬁ

EOF—-End-of -file

EOF (file-pumher)

& -
In sequential processingy the End-Of-File function (EOF) can be used to
determine whether you have reached the end of a file. If you attempt to read
past the end of a file, an error occurs.

The file-pumber is a mnumeric-expression that evaluates to the number used in
the OPEN statement to open that file. The normal rules for the evaluation of
numeric expressions are uysed. T

The EOF function can be used in an IF THEN statement before an INPUT statement
reads that file. The EOF function is used to determine if any data remain in
the file. The value returned by EOF depends on the position of the file.

Value Position

- 0 Not end-of-file ¥)
+1 Logical end-of-file ,
-1 Physical end-of-file

A file is positioned at the logical end-of-file when all records on the file
have been accessed. A file is positioned at a physical end-of -file when no
more space is available for the file.

03246P TI-9%/2 Book 4 BASLIC Reterence Uuide

>NEW

>10Q INPUT #0:RyB,
»110 PRINT A;8B
»120 GOTO 100
2RUN

2

* INCORRECT STRTEMENT
IN 100

»NEW

»100 DPEN #5:"HEXBUS.1.NAMES
, SEQUENTIAL » INTERNAL , INPUT
»FIXED

>110 IF EOF(5) THEN 150

»120 INPUT #5:A.8

»130 PRINT A3B

>140 GOTO 110

»150 CLOSE #5

(FIHAL DRAFT)

Wt VA

INPUT

The EOF function cannot be used with RELATIVE files or with some peripheral
devices (cassette recorders). In these cases, you can create your own method
for determining if the end-of-file has been reached.

One common end-of-file technique is to create a last record an the file that
serves as an end-of-file indicator. This is called a “dumay" record because
the data it contains are usad enly ta mark the end of the file. For axampla,
it could be filled with 9's. When the computer inputs a recordy you can check
if the record is equal to 9's. If so, the computer has reached the end of the
file and can skip to a closing routine.

The f;rst example on the right creates a dummy record. In the next example,
the computer checks for the dummy record as its end-of-file technique.

0326P TI-99/2 Book 4 BASIC Reference Guirde

~NEW

»100 OPEN #2:"CS1",SEQUENTIA
L FIXED,OUTPUT, INTERNAL

>110 READ A,8,C

»120 IF A=999999 THEN 180

130 E=A1B+C

=140 PRINT A;8;C;5E

+180 PRINT #2:A,8,0,E

~»160 GOTO 110

»170 DATA 5,10,15,10,20,30,10
02009300, 99997297

»180 PRINT $2:999999,999999,99999%,999999
»190 CLOSE #2

*RUN

REWIND CASSETTE TAPE (S1
THEN PRESS ENTER

* PRESS CASSETTE RECORD CSi
THEN PRESS ENTER

£ 10 15 30
16 20 30 &0
. 100 200 300 400

*PRESS CASSETTE STOP 4
THEN PRESS ENTER

*% DONE #%

>NEW

>100 OPEN #13"CS1", INTERNAL, I
NPUT,FIXED

»110 INPUT #1:A,B,CyE

»120 IF A=99 THEN 160

»130 F=A%E N

»140 PRINT A;8;C3ESF

»150 GOTO 110

+140 CLOSE #1

>RUN

¥ REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

had

®* PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

6§ 10 15 30 150

10 20 30 4C &00

100 200 300 400 48000

%PRESS CASSETTE STOP CS1
THEN PRESS ENTER
%% DONE %

(FLNAL ORAFT)

gaehaPk 11-99/2 Bous 4 BRbLL Reterence Uulde. CE LML, DRHE)
PRINT

PRINT #filg-pumbec(,REC pumericsexeressionlf{iprintzlistl

(For & description of the PRINT format for printing on the screen, see the
“Tanput-Output Statements" section.)

This form of the PRINT statement enables you to write data to a peripheral
device. The PRINT statement can be used to write only to files opened in
OUTPUTs UPDATE, or APPEND node.

The file-pumber must be the file-number of a currently open file. GSee the
OPEN statement.

When the computer performs a PRINT statement, it stores the data in a
temporary storage area called an input/output (I/0) buffer. A separate buffer
is provided for each open fils-—pumber. If the PRINT ztatoment does not end
with a print-separator (comma, semicolon, or cclon), the record is immediately
Written to the file from the I/0 buffer. If the PRINT statement ends with a
print-separator, the data are retained in the buffer and a "pending® print
condition occurs (see "Using Pending Prints" in this section.)

Usina_PRINI_with INTERNEL Data

The prini-list consists of numeric and string expressions separated by commas,
colons, or semicolons. All print separators in a prinizlist have the same

effect with INTERNAL data;j they only separate the items from eachwther and do
not indicate spacing or character positions in a record. ' :

0324P TI-99/2 Hook 4 BASIC Reference Guide

#NEW

»100 OPEN #5:“CS1",SEQUENTIAL
» INTERNAL , OQUTPUT,FIXED

. ¢(Program lines . . .)

»170 PRINT #5:R,B,C$,D$

. f(Program lines . . «)

»200 CLOSE #5

+NEW

»100 OPEN #6:“CS1",SEQUENTIAL
+DISPLAY,OUTPUT,F IXED

. (Program lines . . .}

5470 PRINT #4:A3",";B;",";C$;
n,u;Ds

. (Program lines . . .)

#200 CLOSE #6

(FINAL DRAFT)

PRINT

The pripnt-list items written to a peripheral mass—storage device in INTERNAL
format have the following characteristics:

Numeric Items: (insert the graphic an page II-132)

designates lengtih of item (always 8) value of item
Sirina Iiems: (insert the graphic on page II-132)

designates length of item value of item

In the example an the right, the total length of the data recarded in INTERNAL
format is 71 positions. Each numeric variable uses 9 positions. A3 (line 110)
is 18 characters long plus 1 pasition to record the length of the string. 8%

(lire 120} is 15 characters plus 1, If the values of A$ and B$ change during

the program, their lengths written to the file are the values present when the
record is written.

When designing your records, study the data each variable might contain, and
plan your records to allow for the greatest length possible.

For FIXED-length records, the computer pads 2ach INTERNAL record with binary
zerosy when necessaryy to make each record the specified length.

A record cannot be longer than the length specified in the OPEN statement (or
the default lenath for the device when the record length has not been
specified in the OPEN statement). If the data in a print-list exceed the
record length, the program stops, and the message FILE ERROR IN line-pumber
appears.

0324P TI-99/2 bHook 4 BASIC Reference Guide

ANEW

»100 OPEN #5:%CS1",SEQUENTIAL
s INTERNAL , OUTPUT,FIXED 128

>110 AE="TEXAS INSTRUMENTS"

*120 B$="COMPUTER" -

»130 READ X,Y.Z

»140 IF X=99 THEN 190

»150 A=X¥YRZ

»160 PRINT #5:A$,X,YsZyB3,R

*170 GOTO 130

»180 DATA 53897 919293:10520,3

'IO!EO!4°l6°l1-5]2.3,7-6'99!99
+99

»190 CLOSE #5

»RUN

#REWIND CASSEYTE TAPE CS1
THEN PRESS ENTER

#PRESS CASSETTE RECORD CS1
THEN PRESS ENTER

(Data written on tape.)
*PRESS CASSETTE STOP €S1

" THEN PRESS ENTER "
%% DONE ##

(FINAL DRAF D

PRINT

Usipa PRINT with RIGPLAY DRafa

Althaugh it is hest to store INTERNAL data on mass storage devices, you may
occasionally need to use DISPLAY data. There are several important
considerations you must observe when using DISPLAY format.

XX ? print-list of screen and how records are set up-—are not discussed hera??
and are they the same?? Alsoc check that how records are set up is included in
IMTERMNAL section.!!li!

Records are created according to the specifications found in the PRINT
statement of the "Input--Output Statements” section.

If a data item from the prini-list causes the record to be longer than
the specified record length (or the default length), the item is written
ags the first item in the next record. If any single item is longer than
the record length, the item itself is split into as many records as are
required to store it. Normally, the program continues running and no
warning is given.

The computer can read DISPLAY data only if they are in the same format
az data entered from the keyboard. UWhen yvou write a record to a file
that the computer will later read, you wmust explicitly intlude the comma
separators and quatation marks needed by the INPUT statement. Thase
punctuation marks are not automatically inserted when the PRINT
statement is perforwmed. They must be included as items in the
print-list, as shown in line 170 on the right.

Nungric items do not have a fixed length. The length of a numeric item
is the same a9 if it were displayed on the acreen by the PRINT ar
DISPLLAY statement (i. e., includes sign, decimal point, exponent,
“trailing space, etc.). For example, the number of positions requirad to

print 1.35E-10 is ten.

0326P TI-99/2 Book 4 BASIC Reference Guide

>NEW

»100 OPEN #10:"CS1i",SEQUENTIR
L,DISPLAY,QUTPUT,FIXED 128

"« program lines

>170 PRINT #103"“““jR$1"""y"j
x;u'u;Y;u'l;z:u’ntll;Bs;unu'u
H)

.« Program lines

»300 CLOSE #10

(FINRL DRAET)

0324 TI-99/2 Book 4 BASIC Reference Guida (FINAL. DRAFT)

PRINT

Usina PRINT with BELAIIVE Files

(See the OPEN statement for a description of RELATIVE file-organization.)

RELATIVE file records can be processed randomly or in sesuence. The internal
counter points to the next recard to be processed. The first record in a4 Tile
is record 0. Thus, the counter begins at zero and is incremented by 41 after
each file access (whether the access read or writes a record). In the example
on the righty the PRINT statement directs the computer to write the file '
sequentially. Note that the file can later be processed either randomly or in
sequence.

The internal counter can be changed by using the REC clause. The keyword REC
must be followed by a puperic-expressiop whose value specifies the position to
which the racord is to be written. When the computer performs a PRINT
statement with a REC clause, it begins building an output record in the 1/0
buffer. When this record is written to the file, it is placed at the location
specified by REC. You may use the REC option only with RELATIVE files.

The example on the right illustrates writing records randomly.

Be sure to use the REC clause if you read and write records on thé same file
within a program. The same internal counter is incremented when records are
either read from or wreitten to the same filej if REC is not used, you could
skip some records and write over others, as shown in the example on the right.

MNote that files written on cassette tape must be accessed in sequential order.

0326P T11-99/2 Book 4 BASIC Reterence Guide

»NEW

100 DPEN #3:"HEXBUS.1.NAMES"
» RELATIVE, INTERNAL , OUTPUT,FI
XED 128

. (Program lines . . .)

»150 PRINT #3:A%,8%,C$,X,Y,Z

. (Program lines . . .}

»200 CLOSE 43
>NEW

»100 OPEN #3:"HEXBUS.1.NAMES"
s RELATIVE, INTERNAL yUPDATE,FI
XED 128

»>110 INPUT K

»120 PRINT #3,REC K:2A$,B$,CS,

. XstZ

. (Program lines . . .)

»300 CLOSE 3

+NEW

»100 DPEN #3: *HEXBUS.1.NAMES"
» RELATIVE, INTERNAL ,UPDRTE,F 1
XED

»110 FOR K=1 TO 10

120 INPUT #3:A$,B3,C8)XsY

>140 NEXT ¥
»150 CLOSE 43

(LINE 120 reads records 0,2,4,46,8

LINE 130 writes records 1,3,547,%)

-

e

(FINAL DRAET)

0324P TI-99/2 Book 4 BASIC Reference Guide (FINARL DRAFT)
PRINT

Usina Pendipa Prinis

XX %% are prints discussed earlier?? Do we need thi first sentence??

A record is written to a file when the computer perfurﬁ5 a PRINT statement
that does not end with ‘a trailing separator.

A pending print occurs when a PRINT statement ends with a trailing print
separator. When the next PRINT statement using the file is encountered, one

of the following actions occurs:

‘n! 1f the next PRINT statement has no REC clause, the computer places
the data in the I/0 buffer immediately following the data already
there.

In! If the next PRINT staiement has a REC clause, the computer writes

the pending print record to the file at the pasition indicated by
the internal counter and (¥¥¥¥gr writes the record at the position
specified by REC®¥¥) perfarms the new PRINT statement as usual.

1f a pending print condition exists and an INPUT statement for the same file
. is encountered, the pending print record is written to the file at the
position indicated by the internal counter, and the internal counter is
incremented. The INPUT statement is then perforsed. If a pending print
condition exists and a CLOSE or RESTORE statement accesses the file, the
pending print record is written before the file is closed or restored.

0326P TI-99/2 bBook 4 HBASIC Reference Lulde (FINAL WReF L)

CLOSE
CLUSE #file-pumbert :DELETE]

The CLOSE statement closes or discontinues the association between a file and
a program. After the CLOSE statement is perfaormed, the closed file cannot be
accessed by your program because the computer no longer associates the file
with the file-pumber you specified. You can then reassign that particular
file~-pumbher to any file.

The DELETE option can be used on only certain peripherals. Refer to the
peripheral manuals for information on usinag the DELETE option in a CLOSE
statement.

If you attempt to CLOSE a file that is not open, the computer stops the
program and displays a FILE ERROR message.

To protect your files, the computer automatically clases any open files when
it finds an error that stops a program. When the BREGK command or the BREQK
ar CLEAR key causes a breakpoint in a program, all open files are closed gnly
if one of the following occurs:

fo! you edit the program

lg! you leave TI-99/2 BASIC with the BYE command

1o! you run the program again

fo! you enter a NEW command
If you use the QULIT command to leave your program, the computer will NOT close
any open files, and you could lose the data on these files. To exit before

the normal end of a program that uses files, follow these directions to
protect your files: ¢ -

o' Press CLEAR until the computer displays BREAKPOINT AT
lipe-number. <{(This may take several seconds.)

'p! Enter BYE when the cursor reappears on the screen.

wader 11 VYA R wean L1 R s b e w

XX REWRITE PROGRAM~-2 CASSETTE RECORDERS ARE HSED HERE XX
+NEW

»100 OPEN #6:"CS1",SEQUENTIAL
s INTERNAL , INPUT, F IXED

=110 OPEN #25:"CS2",SEQUENTIA
Ly INTERNAL ,OUTPUT ,FIXED

. (Program lines . . .)

+200 CLOSE #6:DELETE
»210 CLOSE #25

QBé6P TI-99/¢ Houk 4 BHSIU Reference Uu:de‘ CPLINHL DRAb 1)

CLOSE
Cassetie Becorder lnformation

When the computer performs the CLOSE =mtatement for a cassette tape device, the
screen displays instructions for operating the recorder, as shown on the right.

If you use the DELETE option with cassette recorders, no action heybnd the
closing of the file takes place.

At [V S SR 4 Uil M W s B L et e N N RV TS TV PR

* NEW

»100 OPEN #19:"CS1", INTERMAL ,
OUTPUT,FIXED

« (Program lines . . ?

210 CLOSE #19
>RUN

* REWIND CASSETTE TAPE CSi
THEN PRESS ENTER

¥ PRESS CASSETTE PLAY CSst
THEN PRESS ENTER

« (Program runs . .)

¥ PRESS CASSETTE STOP CS1
THEN PRESS ENTER

#% DONE %

03246P TI-99/2 Book 4 BRSIC Reference Luide {(FInAL DRAFT)

RESTORE

RESTORE #fila-pumber(,REC nuneric-exsressianl

The RESTORE statement repositions an open file to its beginning record (see
the first exanple aoan the right) or at a specific record if the file is a
RELATIVE one (see the second example on the right).

If the file-pumber specified in a RESTORE statement is not already openp the
program stops, and the message FILE ERROR IN lioe-pumber appears.

You may use the REC aption only with a RELATIVE file. The computer evaluates
the pumeric-expressicon following REC and uses the value as a pointer to a
specific record on the file. If you restore a RELATIVE file and do not use
the REC option, the file is set to record 0.

If there is a pending print record, the record is written to the file before
the RESTORE is perforwed. If there is pending INPUT, the data in the I/0

buffer are discarded.

0324P TI-99/2 Boock 4 BRSIC Reference Guide

*NEW

»100 OPEN #2:"CS1",SEQUENTIAL
y INTERNAL , INPUT,FIXED &4
+110 INPUT #2:A,B,C$,D8,X

.« (Program lines . . .)

400 RESTORE #2
=410 INPUT #238,8,C$508 X

« CProgram 1lines « « .}

»800 CLOSE #2

FNEW

+100 OPEN #4: "HEXBUS.1.NAMES"
» INTERNAL , UFDATE, FIXED 128
>110 INPUT #4:A.+B,C

. {(Program lines . . .)

5200 PRINT $4:A,8,C

. (Program lines . . .)

- »300 RESTORE #4,REC 10
>310 INPUT #4:8,8,C

. (Program lines . .)

»400 CLOSE #4

(FINAL DRAFT)

03e&P TI-99/2 Hook 4 BASIC Reterence Guide (FINAL DRAFT)

SUBPROGRANS

A subprogram is a predefined sequence of instructions built into BASIC to
perform special tasks. Subprograms are accessed in a program line by the

keyword CALL followed by the subprogram name. Subprograms can also be
accessed in a command.

Information can be passed to a subprogram for it to use and, in return, the
subprogram can return information. This information is passed to and received
from a subprogram through constants, variables, and/or expressions that are
called parameters. Parameters are included in parentheses after the name of
the suberogram.

An example of accessing the subprogram HCHAR from a program is shown below.
10 CALL HCHAR(12,14,5,1)

HCHAR Ean also be accessed from a command by deleting the line number.

0324P TI-99/2 Book 4 BASIC Referen.s Guide (FINAL DRl 1)

CLERR subprogram
CALL CLEARR
The CLEAR subprogram is used to clear (erase) the entire screen. When the

CLEAR subeprogram is called, the space character (code 32) is placed in all
positions on the screen.

When the program on the right runs, the screen is cleared before the computer
performs the PRINT statements.

0324P TI-99/2 Boak 4 BASIC Reference Guide (FINRL DRAFT)

»PRINT "HELLO THERE!"
HELLO THERE!
»CALL CLEAR

(The screen clears.?

=NEW
»100 CALL CLEAR
»110 PRINT "HELLO THERE'"
=120 PRINT “HOW ARE YOU?*®
*RUN

(The screen clears.)

HELLD THERE!
HOW ARE YOU?

x4 DONE **

Maoe Of e 41 ot O T

HCHAR subprogram
(Horizontal Character Repetition)

CALL HCHAR{pow-pumber,column-pumber,chac-codel,pumber-of~repetitionsl?

The HCHAR subprogram places a character anywhere on the screen and,
optionally, repeats i1 horizontally. The rowsnuumber and columnznuuber locate
the starting position on the screen. The cow-oumber, column-pumber.,
charc-code, and pumber-of-repetitions are nuweric expressions.

If the evaluation of any of the numeric expressions results in a non-integer
value, the result is rounded to the nearest integer. The valid ranges are
given below:

Value Range

Row—pumber 1-24, inclusive
Colunn-number 1-32, inclusive
Char-tode 0-32767, inclusive

Number-of -repetitions 0-32747, inclusive

093264 TI-99/2 Book 4 BRASLC Reterence Uuide - (FLINAL Dknb 1)

»CALL CLEAR
(The screen clears.)

#CALL HCHAR(10,41,72,50)

' ’ (graphic of screen on page I1I-80
XX

+NEW

»100 CALL CLEAR

5110 CHR=40

»120 FOR X=8 TO 22

»130 CALL VCHAR(4,X,CHR,15)
140 CALL HCHAR(X-4,8,CHR,15)

150 CHR=CHR+8
»160 NEXT X
>170 GOTO 110
FRUN

(The screen clears.?

(The screen displays a pattern.)

(Press BREQK to stop the program.)

WALl kTS L Loaah ™ UhHad 0 v il wWaaug PURRFRE V"R 1 2 YR

HCHAR subprogram

A value of 1 for the cow-oumber indicates the top of the screen. A value of 1
for the column-number indicates the left side of the screen. The screen can
be thought of as a Ygrid" as shown here.

(graphic of screen grid on page II-81)

A character may not appear on your screen in columns 1, 2, 31, ar 32;
therefore, you may want to use only columt-pumbers 3 through 30.

Charc-caode can be from 0 through 32767; however, the computer will repeatedly
reduce the value by 256 until it is less than 256. Character codes 32 through
127 are defined as the standard ASCII character codes. Character codes Q
through 31 are defined as special graphics characters.

If you specify a chac—code for an undefined character, whatever is in that
memary location at that time is displayed.

Number—-of-repetitions is the number of times the specified charactier is
repeated. The comeuter displays the character beginning at the specified
starting position and contirnuing to the right side of the next line. If the
bottom of the screen is reached, the display continues on the top line of the
screen.

To fill all 24 rows and 32 columns, use 748 for pumberc-of-repetitiops. Using
a number larger than 748 unnecessarily extends the time required to perform
this statement.

0326P TI-99/2 Boak 4 BASIC Reterence Uuide (FINAL. DRAF [

»CALL HCHAR(24,14,29752)
8

»CALLL HCHAR(24,14,35)
$

»CALL HCHAR(24,14,132)
(The displayed character depends on what iz now in MEWOrY .)

>NEW

>100 CALL CLERR

2110 FOR K=% TO 15

»120 CALL HCHAR(Ky13,36+6)
>130 NEXT K

»140 GOTO 140

»RUN

{The screen clears.)

(graphic of screen on page II-82)

{(Press BREAX to stop the program.)

YCHAR subprogram
{(Vertical character repetition)

CALL VCHRR(row-pumber,column-pupberchac-cadel,oumber-of-repetitionsg]?

The VCHAR subprogram places a character anywhere . the screen and,
opticnally, repeats it vertically. The row=pumber and colump-punber locate
the starting ‘position on the screen. The pow-pumber, colump=ouBLec:
char=code, and gumber-of-repetitions are numeric expressions.

If the evaluation of any of the numeric expressions results in a non-integer
valué, the result is rounded to the nearest integer. The valid ranges are
given below?

Value Bamae

- Row=-pumber 1-24, inclusive
Column-number 1-32, inclusive
Char-code 0-32767 inclusive

Number—of -repetitions 0-32747, inclusive

0324P TI-99/2 Book 4 BRSIC Reference Luide (FINAL DRAF1)

VCHAR subprogram

A value of 1 for row-oumber indicates the top of the screen. R value of 1 for
the colump-pumber indicates the left side of the screen. The screen can be
thought of as a "grid" as shown here.

(graphic of screen grid on page II-81)

A character might not appear an your screen in columns i, 2, 31, or 32. This
is not due to a faulty television set. Many wmanufacturers build “overscan"
into their picture tubes to compensate for increasingly narrower pictures
sometimes found on aging television sets. Therefore, you may want to use only

coluap-puwbers 3 through 30.

Chac-cgode can be from 0 through 32747; howaver, the computer will repeatedly
reduce the value by 256 until it is less than 254. Character codes 32 through
127 are defined as the standard ASCII character codes. Character codes 0
through 31 are defined as special graphics characters.

If you specify a char=code for an undefinaed character, whatever is in that
menmory location at that time is displayed..

Nupber-af-repetitiops is the number of times the specified character is
repeated. The computer displays the character beginning at the specified
starting position and continuing down the screen. If the bottom gf the screen
is reached, the display continues at the top of the next column to the right.
If the right edge of the screen is reached, the display continues at the left

edge.

To fill all 24 rows and 32 columns, use 768 for pumhec—of-reeetifiapns. Using
. a number larger than 768 unnecessarily extends the tiwe required to perform
“thisg statement. o e

*CALL CLEAR
{The screen clears.)

>CALL VCHAR(2,10,B84,13)

{graphic of first screen on page II-83)

~NEW

#1000 CALL CLEAR

»110 FOR K=13 TO 18

2120 CALL VCHAR(P, K364 6)
»130 NEXT K

»140 60TQ 140

>RUN

. {The screen clears.)

{graphic of second screen on page I1I-83)

&Press HREBK to stop the program.) .

0326P TI-¥9/2 Book 4 BASIC Retference Uuide (FINAL DRAFT)

GCHAR subprogram
(Get character)

CALL GCHAR(rcow-pumber,column-number,suneric-variable)

The GCHAR subprogram enables you to read the character that is located at any
position on the screen. The positicon of the character is described by
rov-ounher and colump-pumbec. The ASCII numeric code of the requested
character is stored in the pumecic-variable vyou specify in the CALL GCHGR
statement.

The row—pumber and cglumn-pumber are numeric expressions. If the evaluation
of either numeric expression results in a non-integer value, the value is
rasnded to the nearest integer. £ value of 1 for cpw-gumber indicates the top
of the screen. A value of 1 for calump-oumber specifies the left side of the
screen. The screen can be thought of as a "grid" asz shown here.

3

{graphic of screen grid on page II-B84&)

Qadel 1i-vy/8 BooK 4wkl RKeie aow v L0

+NEW
»100 CALL CLEAR

»110 CALL HCHAR(1,1,364748)
>120 CALL GCHAR(S,10,X) '

»130 CALL CLEAR
»140 PRINT X
»RUN
(The screen clears.)

(The screen fills with $'s, code 34.)

]

(The screen clears.)}
34

#% DONE W%

M

i o

0326P 11-99/2 Book 4 BRSIC Reference Guide (FINRL DRAFT)

KEY subprogram
CALL KEY(key-unit,ceturn-variablerstaius-variable’

The XEY subprogram enables vou to determine when a key on the console is
pressed. The character corresponding to the pressed key is input to your
program. CALL KEY eliminates the need for an INPUT statement, and because the
character represented by the key pressed is not displaved on the screen, the
information already on the screen is not disturbed.

The key-upit is a numeric expression that must have a value of zercy which
indicates that the keyboard is the input device.

The return—vaciable is the numeric variable where the computer places the
numeric character code corresponding to the key(s) pressed. The numeric
character code is a number from O through 127. Refer to appendix XX for a
list of the character codes.

The status—vaciable is a numeric variable. The computer places in
status-vaciahle one of the following codes:

o! 1 means a new key was pressed since the last CALL KEY was
performed .

gl =1 means the same key was pressed as was returned in the last CALL
KEY.

‘o! 0 means no key was pressed.

O3246P TI-Y9 /¢ poak 4 dHsSlL Reterence ﬁuxdé vEITNALL LRAFT)

>NEM

~100 CALL CLEAR

»110 FOR R=1 TO 24
+120 FOR C=3 TO 30
+130 CALL HCHAR(R,C,17)
>140 CALL KEY(0,K,S)
~180 IF K32 THEN 140
+160 NEXT C

#1700 NEXT R

»RUN

{Solid box appears at row 1, column 3 of screen. Press SPACE HAR to display
more boxes. When screen is filled, the program ends. Press BREAK to end
pragram earlier.)

0324P TI-99/2 Book 4 BRSIC Reterence Guide (FLINAL DRAFT)

PEEX subprogram
CALL PEEK(addresspumeric—variablell,pumeric-vaciablefra_a_al?

The PEEK subprogram is used to read the contents of memory locations.
Starting at the memory location specified by address, the value of that hyte
of memary is assigned to pumeric-vaciahlel, the value of the next byte to
nuperic-variable2, and so forth. The number of variables listed after the
address determines how wmany bytes are read.

Address must be a numeric expression from 0 to 65535. The values assigned to
the variables are in the range 0 throush 255.

POKE suberogram

CALL POKE(addressrbyiell,byimBra_a_a))

The POKE subprogram is used to write data into wmemory locations. Tha value of
bhytel is stored in the memory location specified by address, the value of
byte? is stored in the next memory location, and so forth.

The value of each data byte can be from O through 255. If the value is
greater than 255, it is repeatedly reduced by 256 until it is less than 254,
Using a byte value greater than 32767 causes an error.

Indiscriminate use of this statement may destroy the program currgntly in
memory and require that the computer be reset to continue. *

»100 CALL PEEK(2096,X1,X2,X3,
xq)

Returns the values in locations 2094, 209/, 2098, and 2099 and assians
variables X1, X2, X3, and X4, respectively.

>+100 CALL POKE(B50,142,10,17)

Places the values 162, 10, and 17 in the locations BS50, 851, and 852,
respettively.

them to

0326F 11-99/2 Book 4 HASLC Rererence Luide (FLNAL DRAFT)

MaCHine l.anguage subprogram
Call MCHL (address)

This subprogram enables experienced programmers to run assembly language
programsé. For more information on the assembly language used by the THS?995
microprocessor, refer to the appropriate manuals.

Before using this command, you must reserve an area of wewmory for the assembly
language progam and enter the program. The area you reserve should be
immediately below the memory used for your BASIC program. The bottom of this
memory is at the location specified at address -4084. You reserve the memary
by finding the value at that address, adding the number of bytes your assembly
language program needs, and putting the new value back into the address.

The following program segment reserves an area of memory for an assembly
language programy assuming that the number of bytes of memory needed has been
praviously assigned to the variable MEMROD.

>140 CALL PEEK(-4086,HEX1,HEX2)
»150 DECIMAL=HEX1*25&+HEX2

»140 NEWDECIMAL=DEC IMAL+MEMRGD

»170 HEXNEWL=INT(NEWOECIMAL/256)
»180 HEXNEW2=NEWDECIMAL-HEXNEW1X254
»190 CALL POKE(____ yHEXNEW1yHEXNEWR)

After the area has been reservedy put your assembly language program into
memory using POKE statements, starting at tha address that was previously the
bottam of memory. HAssembly language programs should start on an even-numbered
address byte.

»200 DECIMAL=INT((DECIMAL+1)/2)%2
»@10 CALL POKE(DECIMAL$1,value) :
»220 CALL POKE(DECIMAL12,value)

. {(Program lines . . .}
»290 CALL POKE (DECIMAL+MEMRADyvalue)

To'run the assembly language program, enter CALL MCHL(address) as a program
line, uwhere address is the entpry ‘paint of the program.

»300 CALL MCHL{(address)

The computer executes the routine. When the assembly language program ends,
assuming the wachine language program does not alter any pointers or other
items used by BASIC, program execution resumes at the line after, CALL MCHL.

bl h

0326F TI-99/2 Baok 4 BASIC Reference Guide (FINAL DRAFT)

GLOSSARY
fccessory Devices-—See Pecipheral Devices.

Beray--A collection of numeric or string variabl~> arranged in a list or
matrix for processing by the computer. Each element in an array is referenced
by a subscript describing its position in the list.

A5CII--The fmerican Standard Code for Information Interchange, the code
structure used internally in most personal computers to reprasent letters,
numbers, and special chacaclers.

BASIC--(Beginners All-purpose Symbolic Instruction Code}—An easy-to-use
popular programming language used in most personal computers. It was
developed at Dartmouth College in the 40's.

Baud--The transmission rate, in bits per sacond, of data over a communication
line, such as batween a computer and a peripheral. 300 baud indicates
aperoximately 300 bits of information are being transmitted serially every
second.

Bipacy——The two-digit (bit) mnumber system based on ¢ and 1. Computers
recognize the binary bits 0 and 1 by using gates. Gates are electronic
circuits that are either off or on, representing ¢ or 1, respectively.

Bit--A binagy digit (0 or 1).

Brapch——A diparture from the sequential performance of program statements. An
unconditional branch causes the computer to jump to a gspacified program line
every time the branching statement is encountered. fi conditional branch
transfers program control contingent on the result of some arithmetic or

logical operation.

%
Breakeoint—-A point in a program specified by the BREAK command at which °
program execution is suspended. During a breakpoint, you can perform
operations in the Immediate Mode to help vou locate program errors. Program
execution can be resumed with a CONTINUE command, unless the program was
edited during the break.

Buiieb—-nn area- of canputeﬁ memory used for temparary storage af an input ar
output record.

Bug—An error in the hardwace or sqftware of a computer that causes an
intended operation to be performed incorrectly.

Byte-—A string of bipacy digits (bits) treated as a unit, of ten representing
dne data charactec. The computer's memory capacity is often expressed as the
fumber of bytes available. For example, a camputer with> “16K* has about
16,000 bytes of memory available for storing programs and data.

03246P TI-99/2 BDoak 4 BASIC Reference Guide (FINAL DRAHT)

Cassette—~A standard audio cassette tape that is used to store programs and
ather dataj the same type of tape commonly used to record music. (Use of
"metal” tapes is pot recommended.)

Central Processina_Unit (CPU)--The nerve center of a computer; the network of
electronic circuits that interprets programs and tells a computer how to carry

them out.

Charactier-—A letter, number, punctuation sywmbol, or apecial sraphics symbol,
usually equivalent to one byte.

Chip—-Tiny silicon slices used to make electronic memories and other
circuits. A simgle chip may have as many as 30,000 electrenic parts.

Circuit. Board--A rigid fiberglass or phenclic card on which various
electronic parts are mounted. Printed or etched copper tracks connect the
various parts to one another.

Command——An instruction that the computer performs immediately. Commands are
not a part of a pragram and thus are entered with no preceding line number.
Examples: NEW, LIST, RUN, CALL CLERR.

Computer—-A network of electronic switches and memories that processes data.

LConcatenation—The linking of two or more strinag to wake a longer string.
The "&" is the concatenation operator.

consiant--A numeric real number {such as 1.2 or -9054) or a string of
characters (any combination of up to 112 characters enclosed in quotes, such
as“HELLD THERE" or "275 FIRST ST.™)

CPU-—See Cepiral Processing LUpit.

Cursor-—A flashing underline or rectangle that indicatas where a typed N
charcacter appears,

Data——-Basic elements of information that are processed or produced by the
computer. The sinsular form seldom used is datum.

Default—A standard characteristic or value that the computer assumes if
certain specifications are omitted within a statement or program.

Risplay—As a noun, the video screen; as a verb, to cause characters to appear
on the screen.

Edit_Mode-~The mode used to change existing program lines. The EDIT mode is
entered by using the Edit Command aor by entering the line number followed by
SHIEI E (UP ARROW KEY) or SHIEY X (ROWN ARROW KEY). The line specified is

displayed on the screen and changes can be made to any character (except the

line-number) using the editing keys.

End-af-file (EOF)~-~The condition indicating that all data have been read from
a file.

Execute~~To run a program} to perform the task spec1f1ed by a statemepi or
coamand. '

0324P TI-99/2 Oook 4 BHSIC Rererence uulde (FIMAL DRAFT?

Expanapt--A rumber indicating the power ta which a number or expressiaon is to
be raised, usually written to the right and above the number.

8
For example: 2 =2x2x2x2x2x2x2x2. In TI-?9/2 BASIC, the exponent is entered
following the " symbol or following the letter "E" in scientific notation.

8 25
For example: 2 =2"87 1.3 X 10 =1.3E25 (or 1.3E425).

Expopential botatiaon——See scigotific oaialico.

Expressinn—-A combination of constants, variables, and opecators that can be
evaluatad to a single result}) expressions can be numeriec, string, relational.
or logical.

Eile-—f collection of related data records stored on a peripheral devices
also used interchangeably with "device" for input/output equipment that cannot
use multiple files, such as a line printer.

Eized-lengsth. recaords--File records that are all the same length. If a file
has fixed-length records of 95 characters, each record is allocated 95 byies
even if the data occupy only 746 positions. The computer adds padding
characters on the right to ensure that the record has the specified length.

Fubpctiop--A feature that enables you to specify as “"single" operations a
variety of procedures, each of which actually contains a ramber of steps; for
example, a procedure to calculate square rocts via a simple reference name.

Gate--8 very simple electronic circuit that is always either on ar off.
Clusters of gates can manipulate binary numbers (0 = off, 1 = on). They can
also county do arithmetic, make decisions, and store binary numbers. Gates
are the basic building blocks of computers.

Hardware--The various devices that comprise a computer system, inﬁluding
memorys the keyboard, the screen, data storage/retrieval devices, line N
printers, etc.

Hertz--A unit of frequency;} one Hertz = ane cycle per second.

Hexadecimal--A base 16 number system using 16 symbals, 0-9 and A-F. It is
" used as a convenient “"shorthand” way to express binary code; far example, 1010
in binary is A in hexadecimal} 11111111 in binary is FF in hexadecimal.

Impediate Mode--A conputer mode in which commands are entered directly into
the computer without a line numberj such cowmands are executed immediately.
fflso called Command Mode,

Ipcrement--A positive or negative value that is used to modify a yvapiable.
Input-—As a noun, data entered into memory to be processed; as a verb, the
process of transferring data into memory. :

Ipput_lipe-~The amount of data that can be entered at one time; in TI-9%/2
BASIC, 112 characters.

0324PF TI-99/2 Book 4 BASIC Reterence Guide (FINAL. DRAFT)

Ipternal_data_format-——-Data in the form usaed directly by the computer.
Internal numeric data are 8 byies lons plus 1 byte that specifies the lengthj
the length for internal string data is one byte per character in the gicing
plus one length—-byte.

Integer——A whole numbery either positive, negatives or zero.

Interpreter—The program stored inside a computer that converts or translates
TI-99/2 BASIL statements into the computer's machine language.

Input/Quiput (I/0)--Usually refers to a device function; 1/0 is uysed for
communication between the computer and other devices (e.g.s keyboard, Proaram
Recorder).

Itecatign——The technique of repeating a group of program statements; one
repetition of such a group. See Lopg.

. 10
K-——Short for *kilos* wmeaning “thousand®y 1K of memory is actually 1024 (2
bytes. Thus, a 4K memory has approximately 4,000 storage elements.

Lipe-—~See ipput line, print line, or program lina.

Lipe_oumber-—A rnumber identifying a statement in a program} line numbers
determine the arder in which a computer executes the commands of a prparam.

‘Logp—f group of consecutive prog lines repeatedly performed, usually a
specified number of times.

naﬂiissa—*The base-number portion of a number éxpressed in scientific
notatiop; in 3.264E44, the mantissa is 3.264.

Mass-storage. device~-R peripheral_device (such as the Program Recorder or
™ ¢

-

dafartape Drive}) that stores programs or data for later use by the
computer.

Memgry~—See seu. ROM, and mass storase device.

n;:nnncncassnnw-The central process1ng unit of a computer assembled on a
single silicon chip.

Null string—A siripg that contains no characters and has zero length.

Number_mode--The wmode in which the computer autowmatically generates prodaram
lipe numbers for antering or changing statements.

ﬂégnatnn—-ﬁ symbal used in calculatioﬁs (arithmetic operators},in comparisons
{relational operators), and string concatenation (linkage). The arithmetic
LS

operators are +, -y %, /, and . The relational operators are >, %y =y >=,
<=y and <». The string operator is &.

Qutput--As a noun, information supplied by the computeri as a verb, the .
process of transferring information from the computer's memory to a pecieheral
devicey such as a screen, printery, or mass-siorage_device.

0324P T1-99/2 Book 4 BRSIC Reference Guide (FINAL DRAFT?

Overflow—-The candition that accurs when a rounded value greater than
9_9999999999999E127 or less than -9.9999999999999E127 is entered or computed.
When an overflow occurs, the value is replaced by the computer's limit, a
warning is displayed, and the program continues.

Parameter--A value that affects the output of a siaiement or funciion.

Peripheral Devices--Equipment that attaches to the computer to extend its
functions and capabilities; these units send, receivey or store data. They
are often called simply peripherals.

Pripi_lipe——A OB-position line used by the PRINT and DISPLAY statements.

Proaram-—A set of statements that tells the computer how to perform a complete
task.

Proarap_line- A line containing a single stitement, the maximum length of
which is 112 characiers.

Promet~~A symbol (>) that marks the beginning of each command or proacam lines
a symbol or phrase that requests input from the user.

Pseudo-random_pupher—A number produced by a set of calculations (an
algorithm), sufficiently random for most applications. A truly random number
is obtained entirely by chance.

Radiz-100--A number systewm based on 1007 see "Accuracy Information.®

ROM--Random-access memory; the memory where program statements and data are
stared during program execution. New programs and data can be read in
accessed, and changed in RAM. Data stored in RAM are erased when the power is
turped off or BASIC is exited.

Record—-A collection of related data, such as an individual's payroll ° .
information or a student's test scores; a group of similar records, such as a
company's payroll recordsy is called a file.

Resecved ward—-—A special word with a predefined meaning in programming

. languages. A reserved word wmust be spelled precisely, appear in its proper

¢ position in a siatement or command, have one space preceding and following it,
and must not be used as a variahle name. :

ROM--Read-only memory; the memary where certain instructions for the computer
are permanently stored} ROM can be read but cannaot be changed. ROM is not
erased when electrical power is turned off.

fup_Mode--The mode in which the computer executes a program. gun Mode is
~terminated when program execution endsy either normally.or abnormally. To
leave Run Mode, press CLEAR during program execution (see Bpeakpoint).

0326F TL1-9972 Book 4 BRSLC Reference Guide F LHAL. DRAFT)

Scieptific Notatinn——A method of expressing very large or very small numbers
by using a base number {(mantigsa) times 10 raised to some rower (expanent).
To represent scientific notation in TI-29/2 BRSIC, enter the mantissa
(preceded by the minus sign if negative), the letter E, and the power of 10
{preceded by a minus sign if negative). For example, 3.244E4} -2.47E-17.
This special format of scientific notation is called exponential nqtaticn.

Scroll--Movement of text on the screen to display additional information.

Sof tware--Programs that are executed by the computer, including praograms built
into the computer, programs on cassettes or wafersy and programs entered by
the user.

Statement--An instruction (preceded by a line number) in a program. In
TI-99/2 8ASIC, only aone statement is allowed in a groaram lipe.

Sininnj-n series of lettgrs. numbers, and symbols treated as a unit.

Suberoaran-—R predefined, general-purpose procedure accessible to the user
through the CALL statement in TI-99/2 BASIC. Subprograms extend the
capability of BRSIC.

Subroutine-—A program segment that can be used wore than once during the
execution of a program to perform a special task (e.g., a set of calculations
ar a print routine). In TI-99/2 BASIC, a subroutine is accessed by a GDSUB

statement and terminated with a RETURN statement.

Subscript--A meric expression that specifies a particular item in an apray)
in TI-99/2 BASIC, the subscript is written in parentheses immediately
following the array name.

Icace——A command that lists the order in which the computer performs program
statements; tracing line numbers can help you find errars in a program.

-

Underflow—The condition that occurs when the computer generates a numeric
value greater than -1E-128, less than 1E-128, and not zero. When an underflaw
occurs, the value is replaced by zero.

Variable--A value that may vary during program execution. A variable is
. stored in a mnemory locatxon and can be replaced by new values during program
execution,

Variable-lenatb_records-—-Records in 4 file that vary in length depending on
the amount of data rer recocd. Using variable-length records conserves space
on a file. Variable—-length records must be accessed sequentially.

GAE2EP 11 9Yse Dedub 1 wttudle BaGl i G daduse e TR

APPENDIX XX ASCII CHARACTER CODES

The following is a liat of the ASCII character codes in decimal notation and
their corresponding characters. Graphics symbols are assigned to codes 0
through 31. The Basic Computer 99/2 uses standard ASCII characters for codes
32 through 127. The cursgr is assigned to conde XX and the sdage character is
assigned to cade XX.

Note that the characters corresponding to codes 98 through 127 cannot be
displayed when entered from the keyboard. You may, however, display them with
either HCHAR or VCHAR.

ASCII
CODE CHARACTER
00 GS
01 GS
o2 GS
03 65
04 &GS
05 0S5
06 GS
07 GS
08 GS
09 GS
10 GS
11 G5
iz GS
13 G&
i4 GS
15 G8
is GS
17 GS
18 GS .
1?2 GS
20 B6S
21 GS
22 GS
23 GS
24 GS
25 G5 : -
2& GS
27 65,
28 GS
29 68§
30 GS
31 GS
< 3 {space) '
« 33 ' (exclamation point> >
34 " (quote) ;
35 (number or pound sign)
36 {daullar)
¥ (percent)
38 {ampersand)
a9 (apostrophe)

- N ds

OGesP

40
41
42
43

485
46
47
a8
49
50
51
s2
53
54
513
86
&7
58
59
60
&1
42

63

b

44

46
&7

&9

70
71
72
73
74
75
76
77
78

7%

80
81
82
83
84
85

86

as

AN ECCHNMDO OO ZTEIMNXIATONMMOODDM@ D% H Aw e BN BRLIN - O

JI-99/2 Book 4 BASIC Reference Luide

e = %~ ~

(open parenthesis)
(close parenthesis)
(asterisk)

{plus)

(comma)

(minus)

(period)

(slant)

{colon)
(semicolon)
(less than)
{equals)
{(greater than)
(question mark)
(at)

CFLARL DRAE [

vadéf V-2 buwn % Dol Kelerelhve udidge (YR AL TR T P TSI

20 Zz
?1 [(open bracket)
2 (reverse slant)

93] (close bracket)
?4 " (caret)

25 (underline)

24 {grave)

97
98
92
100
101
102
103
104
108
104
107
108
109
110
111
112
113
1i4
115
114
117
116
119
120
121
122
i3 § (left brace)

i24 {(vertical line)

128 § (right brace)

124 {tilde)

127 DEL (appears on screen as a blank)

N x £ C VM0 0D0228 XG0 0 0OoOoow

O326P TI-99/2 Book 4 BASIC Retference Luide (FINRL DRAK)
FUNCTION KEY CODES

The function keys are assigned the following codes. These codes are returned

by the CALL KEY subprogram when the corresponding keys are pressed.

KEY COOE Function Name Function Key
1 AID ECIN 2

2 CLEAR ECIN &

3 DELete ECIN 1

4 INSert ECIN 2

5 T ECTN =

é REDO ECIN 8

7 ERASE . ECIN 3

8- LEFT ARROW ECIN g

9 : RIGHT ARROW ECIN D . .
10 DOWN_ ARROM ECIN X
13 " UP ARROW ECIN E
12 PROC'D ECIN 6

13 . ENTER ENTER

14 BEGIN , ECIN &

15 BACK : ECIN 2

ERROR MESSAGES

1.

*

FRRORS FOUND WHEN ENTERING A LINE

BAD LINE NUMBER
'n! Line number or line number referenced is less than 1 or greater than
38767,

15! RESEQUENCE specifications generate a line number greater than 327647.

BAD NAME
in! The variable name has more than 15 characters.

CaN'T CONTINUE
10! CONTINUE was entered with no previous breakpoint or program was edited
af ter a breakpoint occurred.

CAN'T D0 THAT

'o! Attempted use of the following program statements as commands: DATA,
DEF. FOR, GDTO, GOSUB, IF, INPUT, NEXT, ON, OPTION, RETURN.

o' Attempted use of the fallowing commands as program statements (entered
with a line number): BYE, CONTINUE, EDIT, LIST, NEW, NUMBER, OLD, RUN,
SAVE.

‘o' Entering LIST, RUNs or SAVE with no pragram in wemory.

INCORRECT STATEMENT

10! Two variable names in a row with no valid separator betusen them (ASB).

inp! A numeric constant immediately following a variable with no valid
separator between them (N 257).

tg! A quoted string with no closing quota mark.

1! Invalid erint separator between numbers in the LIST, NUMBER, or

RESEQUENCE commands.
o' Invalid characters following CONTIMUE, LIST, NUMBER, RESEQUENCE, or
RUN commands.
to! Command keyword not the first word in a line.
io! Colon not following the device name in a LIST command.

t

LINE TOD LONG
‘! Input line too long for the input buffer.

HEHQRY FULL

“19! Entering an edit line that exceeds available memory.

int A line added to a program that causes the program to exceed available
Menory.

Q326P TiI-9¥9/2 Hoak 4 BASIC Reterence Guide (FINAL LkrET)

I1. ERRORS FOUND WHEN SYMBOL TABLE IS GENERATED

After RUN is entered but before any program lines are performed, the computer
scans the prosram to establish a symbal table. A symbol table is an area of

memory where the variables, arrays, functions, etc. for a program are stored.
A program does not run until its symbol table is generated.

During the scanning process, the computer recognizes certain types of arrors.
If an error is detected during the scanning praocess, no program lines are
performed and all the values in the symbol table are zero (for numbers) or
null (for strings).

The error message displayed contains the line number of the statement which
caused the error. The message BAD VALUE IN 100 informs you that line 100
contains a bad value. The error list below contains more information on the
cause of the errars.

* BAD VAL UE
‘s A dimension Tfor an array sgreater than 387467.

o' O dimension for an array of 0 when OPTION BASE = 1.

* CAN'T DO THAT
1n! More than one OPTION BASE statement in your program.
10! The OPTION BASE statement with a higher line number than an array
definition.

‘® FDR-NEXT ERROR
to! Mismatching of FOR and NEXYT statements.

% INCORRECT STATEMENT
DEF

o' No closing parenthesis ")" after a parameter in a DEF statement.
H

to! Equals sign (=) missing in DEF statement. .
'g! Invalid variable neame for parameter in DEF statement.

lo! DIM statement with no dimensions or with more than three
dimensions.

10! A dimension in a DIM statement not a number.

ol A dimension in a DIM statement not followed by a comma or a
closing ")".

10! The array-name in a DIM statement not a valid variable name.

1a! The closing ")* missing for array subscripts.

OPTION BASE
'o! OPTION nnot followed by BRSE.
'o! OPTION BASE not followed by O or 1.

* MEMORY FULL ;
'o' Array size too large.
'n! Not enough memory to allocate a variable or function.

0326P TI-99/2 Book 4 BASIC Reference Guide (FINAL. DRAFT)

* NAME CONFLICT

ol
'a!
o}
‘o!

The same name assigned to more than one array, e.8., DIM ACE), A(2,7).
The same name assigned to an array and a simple variable.

The same name assigned to a variable and a function. .
Refarences to an array have a different number of dimensions for the
arrayy e.9.y B=A(2,7)42,PRINT A(5).

UJdcar 1LY e BOOK 4 oHbLL RKelelelive uu.iac' vioLiHb LRHE LS

III.ERRORS FOUND WHEN A PROGRAM IS RUNNING

When a program is running and the computer encounters a statement that it
cannot performs an error message is printed. The program terminates unless
the error is only a warning. All variables in the program have the values
assigned when the error occurrad. The number of the line containing the error
is printed with the @rror message (for example, CAN'T DO THAT IM 210¢).

* BAD ARGUMENT
Io! A built-in function with a bad argument.
'o! String expression for either ASC or VAL with a zero length (null
string).
In! String expression in VAL not a valid representation of a numeric
constant.

* BAD LINE NWRMBER
‘o! Specified line number in branching statement (GOTO, GOSUB, IF THEN, IF

. THEN ELSE, ON GOTO, ON GOSUB) nonexistent.
lo! Spacified line number in BREAK or UMBREAK nonexistent (warning only).

* BAD NAME
'o! Invalid subprogram name in a CALL statement.

¥ BAD SUBSCRIPT
‘o! Subscript not an integer.
'n! Subscript with a value greater than the specified or allowed
dimensions of an array.
'n! Sybscript 0 used when OPTION BASE 1 specified.

¥ BAD vALLE
CHAR ‘
‘ot Character—code in CHAR statement out of range.
io! Imvalid character in pattern—identifier in CHAR statement.
3

CHRS
'a! Argument in CHR$ negative or larger than 32787,

EXPONENTIATION (™)
'a' Attempt to raise a negative number to a fractional power.

- FOR . .
'g! Step increment of zero in FOR TDO STEP statement.

HCHAR, VCHAR, or GCHAR
's! Row or column number in HCHRR, UCHQR. or GCHAR statement out of

range.

KEY
b p! Key unit in KEY statement out of rarge.

ON
'o! Numeric expression indexing a4 line number out of range.

Page 109

03246PF TI-99/2 Book 4 BASIC Reference Guide (FINAL. DRAFT)

OPEN, CLOSE, INPUT, PRINT, RESTORE
'o! File number negative or greater than 285,
'o! Number of records in the SEQUENTIAL option of an OPEN statement
non-pumeric or greatar than 32767.

'o! Record-length greater than 22747 in the FIXED option of an OPEN
statement.

POS
'o! Numeric expression that is negative, zero, or larger than 32767 in
the POS ztatement.

SEGS
'n! The value of numeric-expressionl (character position) or

numeric-expression2 (length of substring) negative or 1arger than
32767.

TAB

ig! The value of the character position in the TAB function greater
than 32747.

¥ CAN'T DO THAT
'o! RETURN with no previous GOSUB statoment.,
'o! NEXT with no previous matching FOR statement.
'n! The control-variable in a NEXT statement not matched with the
control-variable in the previous FOR statement.
'o! BREAK command with no line number.

* DATA ERROR

o' No comma between items in DATA statement.

to! Variable~list in READ statement not filled but no more DATA statements
availahlie.

'n! READ statement with no DATA statement remaining.

‘o! Assigned a string value to a numeric variable in a READ gtatement.

la' Line-number in RESTORE statement greater than the highest line aumber .
in the program.

* FILE ERROR
‘o' Attempt to CLOSE, INPUT, PRINT, or RESTORE a file nut currently open.
0! Attempt to INPUT records from a file opened in OUTPUT or APPEND mode.
" ipt Attempt to PRINT records to - a file opened in INPUT mode.
ig! Attenpt to OPEN a file that is already open.

*® INCORRECT STATEMENT

General
'o! Open parenthesis, "(", close parenthesis, ")", or both missing.
'‘o! Comma missing.

: ig! No line number where expected in a BRERK, UNBREAK, or RESTORE

- (BREAK 100,).

to! "4* opr "-* not followed by a numeric expression.

'p! Expressions used with arithmetic operators not numeric. -

'o! Fxpressians used with relational operators not the same type.

o! Attempt to use a string expression as a subscript.

Io! Attempt to assign a value to a function.

'o! Reserved word cut of order.

o Unexpected arithmetic or relational operator present.

'o! Expected arithmetic or relational operator missing.

Page 110

0326P TI-99/2 Book 4 BRSIC Reference Guide (FINAL DRAKT?

Built-in Subprograms

in!
io!
'of

The key-status in KEY not a numeric variable.
The third specification in GCHAR not a numeric variable.
CALL not followed by a subprogram name.

File Processing-Input/Output Statements

'n!

‘o!

Missing number sign <%) or colon (%) in file-number specification
for OPEN, CLOSE, INPUT, PRINT, or RESTORE.

Filepame in OPEN or DELETE not & string expression.

Keyword in OPEN statement that is invalid or appears wmore than
once.

t The numbar of recorde lass than zero or greater than 255 in the

SEQUENTIAL option of an OPEN statement.

t A record length of less than zero or greater than 255 in the FIXED

option of an OPEN statement.

' A colon (&) in the CLOSE statement not followed by the keyword

DELETE.

Required print separator (comma, semicolon, colon) missing in the
PRINT statewment.
Filename in SAVE or OLD command not a valid string expression.

General Program Statements

FOR

1o! The keyword FOR not followad by a numeric variable.

to! The control-variable in a FOR statement not followed by an
equals sign (=).

'n! The keyword TO missing in a FOR statement.

ol The limit in a FOR statement not fulloued by the end of line
or the keyword STEP.

Page 111

0324P TI-99/2 Book 4 BRSIC Referencs Guide (FINAL DRAFT)

IF
0! The keyword THEN missing or not followed by a line number.

LET
'o! Equals sign (=) missing.

NEXT
'o! The keyword NEXT not followed by control variable.

ON-GOTQ, ON-GOSUB
‘o! ON not followed by a valid numeric expression.

RETURN
'a! RETURM followed by an unexpected word or character,

User~Defined Functions
'g! Mismatch between the rumber of function arguments and the
nunber of parameters for a user—defined function.

% INPUT ERROR

'o! Input data too long for Input/OQutpui buffer (only a warning when data

are entered from the keyboard} data can be re-entered).

'o! Mismatch between number of variables in the variable-list and number
of data items input from keyboard or data file (only a warning if from

keyboard).

'a! Non—-numeric data INPUT for a numeric variable (this condition could be
caused by readins padded characters on a file recordy only a warning

if from keyboard).
int Numeric INPUT data causing an overflow (only a warning if from
keyhoard}.

* I/0 ERROR~-This condition generates an accompanying error code as follows:

A two-digit error code (XY) is displayed with the message

* 1/0 ERROR XY IN lins-puwber

where the first digit (X) indicates which 1.0 operation caused the error

‘“ahd the second digit (¥) indicates the kind of error that occurred as
shown below.

X Valuye Operation

4
NOOUDLWRR O

QPEN

CLOSE

INPUT : .
PRINT :
RESTORE

oLD

SAVE

DELETE

Page 112

OdcaP 1l-yY. ¢ bLOUk 4 BHLIL Kelerence uulos VAT, WEHE §

Y Value Error Type

Q Device name not found (invalid device or file name in DELETE,

LIST, OLD, or SAVE command).

Device write-protected (attempted to write to a protected file).

Bad QPEN attribute (one aor wmare OPEN options were illegal or did

not match the file characteristics).

Illegal operation (input/output command not valid).

Dut of space (attempt to write with insufficient space remaining

on the storage medium).

End of file {attempted to read past the end of a file).

Device error {device damaged or not connected} this error can

occur during file processing if a peripheral device is

accidentally disconnected while the program is running).

7 File error (the indicated file does not exist or the file type
does not match).

o (n B m

¥ MEMORY FULL
'o! GOSUB statement branching to its own line—number.
0! Too many pending subroutine branches with no RETURN performed.
'o! Too many user-defined functiorms that refer to other user-defined
functions.
'n! Relational, string, or nuwmeric expression too long.
'o! User~defined function referencing itszelf.

* NUMBER TOO BIG (only a warning}j value is replaced by the computer linit as
: shown below).
'o! A nunmeric operation producimg an overflow {(value greater than
P I79979P99FIFPELR7 or less than -7.9997999999979EICY).
'n! A READ statement attempt to assign an overflow value to a numeric
variable.
'o! An INPUT statement attempt to assign an overflow value to a numeric
variable.
t
* STRING-MUMBER MISMATCH '
'o! A non—-numeric argusent specified for & built-in function, TAR
function, ar exponentiation operation.
'o! A non-numeric value in a specification requiring a numeric value.
'o! A non-string value in a specification requiring a string value.
.. 'o! Function argument and paraneter for a user—defined function disagree

in type.
'o! File-number in OPEN, CLOSE, INPUT' PRINTy or RESTORE not numeric.

'o! Attempt to assign a string to a numeric variable.
o' Attempt to assign a number to a string variable.

Note: Additional error codes may occur when youy use per1pherals, such as the
* ™

HEX-BUS devices. Consult the appropriate peripheral owner's manual for
more information on these error codes. :

Page 113

03e4P TI-99/2 Book 4 BASIC Reference Guide {FINRL DRAFT)

IV. ERROR RETURNED WHEN AN OLD COMMAND IS MNT SUCCESSFUL

% CHECK PROGRAM IN MEMORY
The OLD command does not clear program memory unless the loading operation
is successful. If an OLD command fails or is interrupted, however, any
program currently in memory may be partially or completely overwritten by
the program being loaded. LIST the program in memory befare proceeding.

Page 114

04P T1-99/2 Book 4 BASIC Reterence Luide (FINAL DRAFY)

ACCURACY INFORMATION

Displayed Results_Versus. Ocouracy

The Basic Computer 99/2, like all other computers, operates under a fixed set
of rules within preset limits.

The mathematical tolerance of the computer is controlled by the number of
digits it uses for calculations. The cumputer appears to use 10 digits az
shown by the display, but actually uses more to perform all calculations.
When rounded for display purposesy these extra digits help maintain the
accuracy of the values presented. Example:

1/3%3 = .999999999%9 (inaccurate)

The example shows that 1/3 = .3333333333, when multiplied. by 3y produces an
inaccurate answer. Howevery a 13-digit string of nines, when rounded to 10
places, is 1.0000000000.

The higher-order mathematical functions use iterative and polynomial
calculations. The cumulative rounding error is usually kept beyond the tenth
digit so that displayed values are accurate.

Normally, there is no need to consider the undisplayed digits. With certain
calculationss however, these digits may appear as an ansuar when not
expected. The mathematical limits of a fipite operation (word length,
truncation, and rounding errors) do not allow these digits to be always
completely accurate. Therefore, when subtracting two expressions that are
mathematically equal, the computer may display a nonzero result.
Examples

X=R/3-1/3-1/3

PRINT X

1E-14

t

The final result indicates a discrepancy in the fourteenth digit.

Such possible discrepancies in the least significant digits of a calculated
result are important when testing if a calculated result is equal to another
~value. For the previous example, the statement shown below can he used to
irdncate the undisplayed digits of the variable X, leaving only the roynded
digplay valuye. ’

X=1E~10%(INT (X®¥1E10))

Interpal Numeric_Reereseniation :
The TI-99/2 Computer uses radix-100 format for internal calculations. A
single radix-100 digit has a range of value from 0 to 99 in basg 10.

The computer uses a 7-digit mantissa, which results in 13 to 14 digits of
decimal precision. A radix-100 exponent ranges in value from -44 to 463,

128 124 :
which yield decimal exponents from 10- to 10+ . The exponent and the
7-digit mantissa combine to provide a decimal range from -9 FPFFIFIPIPIPIELRY
theough ~1.0000000000000E-128; zero; and then +1.0000000000000E-128 through
19.9999999999999€127.

Page 115

LN TRy b S ke e J O S R P v I

The internal representation of the radix 100 format requires eight bytes. The
first byte contains the exponent and the algebraic sign of the entire
floating-point number. The exponent is a 7-bit hevadecimal value offset or
biased by 40 (the 16 subscript indicates hexadecimal values in this

14
appendix). The correspondence between exponent values is shown below.

Biased hexadecimal value 00 to 40 to 7F
14 14 1é

Radix—100 value -&4 to 0 to $463

Decimal value ~-1268 to 0 to 126

1f the floating-point number is negative, the first byte (the exponent valua}
is inverted (1's complement)., Each byte of the mantissa contains a radix-100
digit from 0 to 99 reprasented in binary coded decimal (BCD) form. 1In other
words, the wost significant four bits of each byte represent a decimal digit
from ¢ to 9 and the least significant four bits represent a decimal digit from
0 to ?. The first byte of the mantissa contains the wmost significant digit of
the radix-100 number. The number is normalized so that the decimal point
immediately follows the most significant radix-100 digit.

Page 11§

03264F TI1-99/2 Book 4 BASIC Rererence Uuide (FIfAL URAKT?

The following examples shown some decimal values and their internal

representations.

Decimal

Number Internal Value

127 41 01 18 00 00 00 00 00
10

0.5 aF i 4 00 0¢ 00 00 00 00
10

u/2 40 61 39 o7 &0 20 43 SF

-u/2 BF FF 39 07 ﬁ 50 20 43 SF

Pase 117.

vaior ba el Lreoon vt P T S A S NI K TV O F R T N IR TR Y TR

RESERVED WORDS

The following iz a complete list of all reserved word in TI-99/2 BASIC.
Reserved words are words that are reserved for use by TI-99/2 BASIC and may
not be used as variable names. However, vou may use a reserved word as part
of a variable name (for example,y ALEN and LENGTH are allowed).

ABS
APPEND
ASC

ATN

BASE
BRERK
BYE

CALL
CHRS
CLEAR
CLOSE
CON
CONTINUE
oS

DATA

DEF
DELETE
DIN
DISPLAY
EDIT
ELSE
END

EOF

EXP
FTXED
FOR
GCHAR l
GO
GOSUB
GOTO
HCHAR

IF
INPUT
CINE
INTERNAL
KEY

LEN

LET

LIST
LDG

NEW : .
NEXT >
NUM
NUMBER

Page 118

vacar 1l-vrsc

oLD
ON

QPEN
OPTION
QuTPUT
PEEK
PERMANENT
POKE

POS

PRINT
RANDOMIZE
READ

REC
RELATIVE
REM

RES
RESEQUENCE
RESTORE
RETLRN
RND

RUN

SAVE
SEG$
SEQUENTIAL
SGN

SIN

SQR

STEP
sTOP
STRS

SuUs

TAR

TAN

THEN

TO

TRACE
UNBREAK
UNTRACE
UPDATE
VAL

" VARIABLE
UCHAR

UOOk

bBHI L helegnle uuaué

Page 119

NP EETETN

LEHE LS

Blank Spaces

In general, a blank space can occur almost anywhere in a program without
affecting the execuation of the program. However, any extra blank spaces you
put in that are not required will be deleted when the program line is
displayed by the EDIT, NUM, or LIST command. Th-:re are some places where
blank spaces must not appear, specifically:

(1) within a line number

(2) within a reserved word
{3) within a numeric constant
(4) within a variable name

The following are some examples of incorrect use of blank spaces. The correct
line appears in the column at the right.

(1) 1 00 PRINT“HELLO"

(2 110 PR INT"HQW ARE YOU?*
(3> 120 LET A=1 00

(4) 130 LET CO ST=24.95

A1l reserved words in a program should be immediately preceded and followed by
one of the following:

a blank space

an arithmetic operator ({ - * / ™)

the string operator (&)

a special character used in a particular statewent format (<=x() 338
end of line (ENIER key)

Examples:

>100 PRINT "HELLO

»110 PRINT "HOW ARE YOU?"
»120 LET A=100

»130 LET COST=24.95

Page 120

vac ol Pa 77T/ LUOKR 9 DHOLL N B EiLE Luluw AL WA

Line Numbers

Each program is comprised of a sequence of BASIC language program lines
ordered by line number. The line number serves as a label for the program
line. Each line in the program begins with a line number which must be an
integer between 1 and 32747, inclusive. Leading zeroes may be used but are
ignored by the computer. For examplet 033 and 33 will be read as 33. You
need not enter lines sequential order; they will be automatically placed that
way by the computer.

When you run the programy the program lines are performed in ascending
sequential order until:

(1) a branch instruction is performed {see “General Program Statements")

(2) an arror occurs which causes the program to stop running (see “Error
Messages”)

(3) the user interrupts the running of the program with a BREAK command or by
using the BREAK key {(or CLEAR)

(4) a STOP statement or END statement is performed

(8) the statement with the largest line number is performed

If you enter a program line with & line number less than 1 or greater than

32767, the nessage BAD LINE NUMBER will be displayed and the line will not be
entered into wemory.

_ Page 121 g

0326P TI-99/2 Book 4 BASIC Reference Guide

+NEW

»100 A=27.9
>110 B=31.8
+120 PRINT R3B
#RUN

27.9 31.8
*% DONE **
=0 A=2

* BAD LINE NUMBER
»33000 C=4
* BAD LINE NUMBER

Page 172

(FINAL DRAFT)

0326P T1-v9/2 Hook 4 BASIL Reterence Luide L LNAL DHAE 2

Numeric Constants

Numeric constants must be either positive or negative real numbers. You may
enter numeric constants with any number of digits. WValues are maintained
internally in seven radix-100 digits. This means that numbers will have 13 or
14 decimal digitms depending on the value of the number.

Scientific Notation

Very large or very small numbers are easily handled using scientific
notation. A number in scientific notation is expressed as a base number
{(mantissa) times ten raised to some power (exponent).

Exponent
Number=Mantiszsa x 10

To enter a number using scientific notation:
Firsty type the santissa (be sure to type a minus sign first if it's negativa).
Type the letter "E* (must be an upper—case E).

Type the power of 10 (if it is negative, type the minus sign before you type
the exponent).

The folleowing are some examples of how numbers in scientific notation are
‘entered.

Number Entersed as
4
3.264 x 10 3.244E4
21
~98.77 x 10 -98.77E21 or -7.877E22 .
-8
-17 ;
-2.47 x 10 -2.47E~17

- Numeric constants are defined in the range of -9.9999999999999E127 to -1E-128,
"0, and 1E-128 to 9.9999999999999E127.. "

Underflow—If an number is entered or gomputed whose value when rounded is
greater than -1E-128 and less than 1E-128, an underflow occurs. When an
underflow occurs, the computer replaces the value of the number with a zera
and the program continues running. No warning or error is given.

Overflow--If a number is entered or computed whose value when rounded is
§reater than 9.9999999999999E127 or less than -9 ,9999999999999E127, an
overflow occurs. When an overflow occurs, the constant is replaced by the
computer's limit, a warning is given with the message NUMBER TOO BIG, and the
program continues running. The computer's limit 18 -9.9979979799999ELE7 ar

9 .9999999999999E127 as appropriate. Note that "#%" is printed if the exponent
is greater than 99.

Page 123

0326P TI1-99/2 Book 4 BRSIC Rererence Gulde

*PRINT 1.2
1-2

*PRINT -3
-3

*PRINT O
0

+PRINT 3.264E4
324640

*PRINY -98.77E21
-7 .877E{EE

>PRINT -9E-130
0 .

~PRINT 9E-142
0

>PRINT 97E136
* WARNING:
NUMBER TOO BIG
? . FTIIIELH¥
»PRINT ~108E144
* WARNING:

NUMBER TOD BIG
| —9.99999E+xx

(FINRL URAFT)

Q324PF TI1-99/2 Book 4 BRS1IC Reterence Guide‘ (F iNAL. DRAF Y

String Constants

A string constant is a string of characters (including letters, numbersy
spaces, symbols, etc.) enclosed in quotes. Spaces within string constants are
not ignored and are counted as characters in the string. All characters on
the keyboard that can be displayed may be used in a string constant. A string
constant is limited by the length of the input line (112 characters or four
lines an the screen).

When a PRINT or DISPLARY statement is performed, the surrounding quote marks
are not displayed. If you wish to have words or phrases within a_sircina
printed with surrounding quote marks, simply enter a pair of adjacent quote
marks (double guotes) on either side of the particular word or phrase when you
type it. Thus, three pairs of quotes are used in all.

]

Page 125

0324P TI-99/2 Book 4 BASIC Reterence Guide (FLtlAL

#NEW

#100 PRINT “"HI!"
»110 PRINT “THIS IS A STRING
CONSTANT . "
>120 PRINT "ALL CHARACTERS (4
~-%/ @,) MAY BE LSED."
>RUN
HI!
THIS IS A STRING CONSTANT.
ALL CHARACTERS (4-%*/ @y) MAY
BE USED.

k% DONE **

+NEW

>100 PRINT “TO PRINT **QUOTE
MARKS"" YOU MUST USE DOUBLE
QUOTES WITHIN A STRING."
»110 PRINT
»120 PRINT “TOM SAID, "“HI, MARY!®""*
>RUN
TO PRINT “QUOTE MARKS* YOU MUST USE DOUBLE QUOTES.

'TOM SAID, "HI, MARY!®

¥% DONE e

Page 26

. DRAFT)

Yo ldliegs

In BRSIC all variables are given a name. Fach variable name may be from one
to fifteen characters in length but must begin with a letter, an at-sign (@),
a left-bracket (I), a right-bracket (1), a back slash ¢), ar an underline (
o The only characters allowed in 4 variable name are letters, numbers, the

at-sign (@), the underline (L)y and the dollar sign ($).

The dollar sign myst be the last character i3 a string variable name, and this
is the only place in a variable name that it may be used. Variable names are

Array names follow the Same rules as simple variable hames., (See the section
on Arrays for more information.) In a single program, the same hame cannot be
used both as a simple variable and as an array nama, nor can two arrays with
different dimensians have the same name. Far exanpla, Z and Z(3) cannot both
be used as names inp the same program, nor can X(3v4) and X(2,1,3). However,
there is no relationship between a numeric variable name and a string variable
hame are the same except for the dollar sign (X and X$ may both be used in the
Same progranm).

Numeric UYariable Names

Valid: X, A9, ALPHA, BRSE_PAY, V(3}, T(X,3), TABLE (X, XX7V/2)
Imvalid: X$, x/B, av

String Variable Names

Valid: 5§, vZ2$, NAMES, 05$(3,X)
Invalid: S$3, x9, 4z$

If you enter a variable name with more than fifteen characters, the message
BAD NAME is displayed and the line is not entered into memory. Reserved words
are not allowed as variable names but may be used as part of a variable name.
For example, LIST is not allowed as a variable name but LIST$ is accepted.

t -
At any instant while 4 Program is running, every variable has a single value,
When a program begins running, the value associated with 2ach numeric variable
is set to zero and the value associated with each string variable is set to
rill (a string with a length of zero characters)., When a program is running,
values are assigned to variables when LET statements, READ statements,
FOR TO STEP statements, or INPUT statements are perfarmed. The length of the

character string value associated with a string variable may vary from a
length of zero to a limit of 255 charactérs while a program is running.

>110 ABCDEFGHIJKLMNOPQ=3
¥ BAD NAME

*

bl

Page 127

0326P TI-99/2 Book 4 8ASIC Reference Guide (FINAL DRAFT)

Numeric Expressians

Numeric expressions are constructed from numeric variables, numeric constants,
and function references using arithmetic aperaters (+-%/7). All functions
referenced in an expression must be either functions supplied in TI-99/2 BASIC
{see sections on Built-In Functions) or defined by a DEF statement. The ‘wa
kinds of arithmetic operators (prefix and infix) are discussed below.

The prefix arithmetic operators are plus (4} and minus (=) and are used to
indicate the sign (positive or negative) of constants and variables. The plus
sign indicates the number following the prefix operator (1) should be
multiplied by +1s and the minus sign indicates the number following the prefix
operator (-) should be multiplied by ~1. Note that if no prefix operator is
present, the number is treated as if the prefix operator were plus. Some
examples of prefix operators with constants and variables are:l

10 -6 +3
-

The infix arithmetic operators are used for calculations and include:
addition (4), subtraction (~), multiplication (*), division (/), and
exponentiation (). An infix operator must appear between each numeric
constant and/or variable in a numeric expression. Note that multiplication
cannot be implied by simply placing variables side by side or by using
parentheses. You must use the multiplicaton operator (¥},

Infix and prefix operators may be entered side by side within a numeric
expression. The operators are evaluated in the normal way.

In evaluating numeric expressions, TI-99/2 SASIC uses the standard rules for
. mathematical hisrarchy. These rules are outlined hera.

1. A1l expressions within parentheses are evaluated first acgording to
the hierarchical rules,)

2. Exponentiation is performed next in order from left to right.

3. Prefix plus and minus are performed.

4, Multiplications and divisions are then completed.

S. Additions and subtractions are then completed.

‘:Noie that 0"0 is defined to be 1 as in-ordinary mathematical usage.

In the evaluation of a numeric expression if an underflow occurs, the value is
simply replaced by zero and the program continues running. If an overflow
occurs in the evaluation of a numeric exeression, the value is replaced by the
computer's limit, & warning condition is indicated by the message “WARNING?
NUMBER TOO BIG," and the program continues running.

when evaluation of a numeric expression results in division by zero, the value
is replaced by the computer's limit with the same sign as the numerator, the
nessage WARNING: NUMBER TOO BIG is displayed, and the program continues
running. If the evaluation of the operation of exponentiation results in zero
being raised to a negative power, the value is replaced by the positive value
of the computer's limit, the message WARNING: NUMBER TOO BIG is displayed, and
the program continues running. If the evaluation of the operation of
exponentiation results in a negative rumber being raised to a non-integral
power, the message BAD VALUE is displayed, and the program stops running.

Page 178

0326P TI-¥9/2 Boak 4 BASIL Reterence Gujdé AFLNAL UKRE L)

+NEW

»100 A=6
»110 B=4
»120 C=20
¥130 D=2
»140 PRINT A®B/2
»150 PRINT C-D#3+é6
>RUN
12
20

%% DONE ¢

*PRINT 3+-1
2

*PRINT £2%¢-3
-4

=PRINT &/-3
-2

~NEW
#1000 R=2
»110 B=3
#1820 C=4
»130 PRINT A*(8{2)
»140 PRINT B"A-4
»150 PRINT -CTA5¢(-C)7A
»160 PRINT 10-B*C/4
#RUN

10

5.

-1&6 146

8

*% DONE *¥

*PRINT 070
1

Page 129

Volbdr O N R VT T Bt TR

»NEW

100 PRINT 1E-200
»110 PRINT P4+1E-13%
»120 PRINT 1E171
»130 PRINT (1ES60%1E76)/1E50
#RUN
0
24

* WARNING:
NUMBER TOO BIG IN 120
P TPIITEF AN

* WARNING
NUMBER TOO BIG IN 130
1.E478

*% DONE %

+NEW

#100 PRINT -22/0
»110 PRINT 0°-2
»120 PRINT (-3)°1.2
- #RUN

* WARNING:
NUMBER TOO BIG IN 100
—9 nW9E+“

* WARNING:
NUMBER TOO BIG IN 110
?.9F97E %

* BAD VALUE IN 120

(R

e e L.

Page 130

0326P 11-99/2 Hook 4 BASIC Reterence Uu1dé (R INRL DRAR D

Relational Expressicons

Relational expressions are normally used in the IF THEN ELSE statement but wmay
be used anywhere numeric expressions are allowed. When you use relational

expressions within a numeric expression, a numeric value of -1 is given if the
relation is true and a numeric value of 0 is given if the relation is falase.

Relational operations are performed from left to right before string
concatenation and after all arithmetic ovrerations within the expression are
completed. To perform string concatenation before relational operations
and/or to perform relational operations before arithmetic operations, you must
use parentheses. Valid relational operators arel

Equal to (=) Not equal to (<)
Less than (<} Less than or equal to {<=
Greater than () Greater than or equal to (»=}

fin explanation of how string comparisons are performed to give you a true or
false result is discussed in the IF THEN ELSE explanation. Remember that the
result you obtain from the evaluation of a relational oserator is always a
number. If you try to use the result as a strinmg, you will get an error.

Page 131

Yot ld— 77/ uoaurs

#NEW

»100 A=2<5
»110 B=3<=2
+120 PRINT A3B
#RUN

-1 0

%% DONE ¥%

>NEW

»100 A$="HI"
110 B$=" THERE!'*
»120 PRINT (A$&B$)="HI!'"
*RUN
0

%% DONE #*

120 PRINT (A$&BS)>*HI"
>RUN

-1

X% DONE **

120 PRINT <ns>a$w4ﬂ

>RUN
-4

*% DONE %

>NEW

>100 A=2<4%3
*110 B=Rx0
»120 PRINT A8
~RUN

-1 0

#% DONE *%

[VT VPR,

B R L L PR

Page 172

v b, Wity

i

Q326P TI-99/2 Hook 4 BASIC Retference Gulde FAINAL DRRFT)

String Expressions

String expressions are constructed from string variables, string constants,
and function references using the operation for concatenation (&). The
operation of concatenation allows you to combine strings together. A1l
functions referenced in a string expression must be either functions supplied
in TI-99/2 BRSIC {see Built-In String Functions) ar defined by a DEF statement
and must have a string value. If evaluation of a string expression results in
a value which exceeds the maximum string length of 255 characters, the string
is truncated on the right, and the program continues running. No warning is
given.

Note that all characters included in a string expression are always displayed
on the screen exactly as vou enter them.

=NEW

»100 Ag="HI"

>110 B$=“MELLD THERE!'"“
>120 C$="HOW ARE YOU?"
130 MSGE=RPASEGS (BS,6,7)
>140 PRINT MSG$&" “8C$
>RUN

HI THERE! HOW ARE YOU?

#% DONE %%

Page 13#'

_OSEéP T1-99/2 Boaok 4 BASIC Reference Guide

INDEX
A

Absolute value function
Accessories

Accessory outlet
Accuracy information
Addition

AID key

Alphabet keys

APPEND mode
Arctangent function
Aritimetic expressions
Aritmetic operators
Arrays

RSCII character codes
Assignment statement
Auto repeat

BACK key
Backspace key
BASIC

BEGIN key
Binary codes
Blank zpaces
Branches, program
BREAK command
BREAK key
Breakpoints
BYE command

c

CALL CLEAR statement

CALL GCHAR statement

CALL HCHAR statement

- CALL KEY statement

CALL VCHAR statement

Care of console

Caret key

Cassette Interface Cable

Cassette Recorders
CLOSE statement

' INPUT statement

- Loading programs from
OPEN statement
PRINT statement
Saving programs on
With file processing

Page 136

(FTHAL. DRAFT)

0326F TI1-99/2 Book 4 HASIC Reference Guide

Character codes
Character function
Character sets
Charactersy defining

CLEAR key
CLEARR subprogram

CLOSE statement

Command mode

Cartridpes

Commands

Commarnds used as statements

Computer transfer

ON G0OSUB

ON GOTO0
Computer's limit
Concatenation
Constants

Numeric

String
CONTIMUE command
Control keys
Conversion Table
Correcting errors
COSirme functon
Cursar

0

Data

DARTA statement

DEFine statement

DELETE cowmand

DELete key

DELETE option

Difficulty, in case of
with cassette recorder
with LOAD routine
with SAVE routine

DIMension statement

DISPLAY file-type

'DISPLAY statewent

DISPLAY-type data

Division

DOWN ARROW key

Page 137 '

(EINAL DRAFT)

W vt b b) LI] [T

E

EDIT command

Editing

End-of-file

End-of-file function

END statement

ENTER key

ERASE key

Error messages

Execution, program
Beginning
Continuing
Interrupting
Terminating
Tracing

Exponant

Exponential function

Exponentiation

Expressions

F
File-life
Filename
File-number
File-organization
File processing
File-type
FIXED record-type
FOR~NEXT loop
FOR TO STEP statement
Forwardspace key
Frequency
Function keys
Functions
Numeric
String
User-defined

G

GCHAR suberoaram
GOSUB statement R
GOTO statement
Greater than
Grid

H.
HCHAR subprogram

Hexadecimal _
Hierarchy, mathematical

Page 138

0324P TI-99/2 Hook 4 BRASIC Reference Guide

I

IF THEN ELSE statement
Infix operators

INPUT mode
Input-output statements
INPUT statement

INSert key

INTeger function
INTERNAL file-type
INTERNAL-type data

J

K

Keyboard
Keyboard overlay
KEY subprogram

L

{eaving TI-99/2 BRSIC
LEFT ARROW key

LENgth function

Less than

LET statement

Limits, computer

tine numbering, automatic
Line rumbers

LIST command

Load data in TI-99/2 BASIC
LOGarithm function

Locp, iterative

H

MACHL Subprogram
Mantissa

Math keys
Mathematical hierarchy
Multiplication

Page 1392

(FINAL DRAFT)

VucodP 1 .. <2 Book v oHBlL Ke1&rtnucruq10E7

N

Name (variable)

NEW command

NEXT statement

Normal decimal form
Notational conventions
NUMBER command
Number kevys

Number mode

Number representation
Numbers

Numeric constants
Nuweric expressions
Numeric functions
Numeric operators
Numeric variables

]

OLD command _

ON GOSUB statement

ON GOTO statement

ON/OFF switch

Open mode

OPEN statement

Operation keys

Operators
frithmetic
Relational
String

OPTION BASE statewment

Order of operztions

Outlets

OUTPUT wode

Overflow

Overlay

P

Parameter
Parenthesas

PEEK Subprogram
Pending inputs
Pending prints
Peripheral outlet
PERMANENT file-life
flacement of console
FOKE Subprogram
Position function
fower cord connection
Powers

Prefix operators

Page 140

si o Life Liam

0324F TI-99/2 Book 4 BASIC Reference Guide

Print separators
PRINT statement
PROC'D key
Program lines
Programs
fipplications
Deleting from accessory device
Editing
Loading from accessory device
Running
Saving on accessory device
Pseudo-random numbers
Punctuation kevs

Q

QUIT key

R

RaNDom number function
RANDOMIZE statement

READ statement
Record data

. Record—-type

»

REDO key

Relational expressions
Relational operators
RELATIVE file-organization
RELATIVE files

REMark statement

Remote controls
RESEQUENCE command
Reserved words

RESTORE statement
RETURN statement

RIGHT ARROM key

RUN command

Running a BASIC program

S

SAVE command .
Save data in TI-?9/€ BASIC
scientific notation

-Seed

SEQUENTIAL file—organization
SHIFT function

SHIFT kevs

Sign function

SiGNum function

SIN function

Page 141

(FINAL DRRFT):

0326P TI-99/2 Book 4 BASIC Reference Guide

SPACE BAR

Special function keys
SBuaRe root function
Statement used as command
STOP statement

String constants

String expressions
String functions
STRing-number function
String SEGment function
String variables
Strings

Subprograms
Subroutines

Subscript .

Subtraction

T

TAB function

TANgent function

Television—consple connection
TI-99/2 BRSIC

TRACE command

Transformer and power cord connection
Trigonometric functions

u

UNBREAK command
Underflow

UNTRACE command

UP ARROW key

UPDATE Mode
User-DEFined functions

v

value function . =
VARIABLE record-type
Variables

VCHAR subprogram
Video=-out.

Volume

W-X-¥-Z

Page 112

(FINAL DRAFT)

