z
:
:

T

Qoesal TI-99/2 Book 23 BRSIC tor Beginners

"

Cover Copy: The place to start if you are just beginning in
the world of computer programming.

(title page)

Basic Computer 99/2

Book 2@ BASIC for Beginners

Copyright ¢ 1983 Texas Instrumentis Incerparated

Page 1

Y ey

8ook 21 BASIC for Beginners--Contents

Vou and Computer Programming « « « s s a ¢« ¢ » = s s 8 2 ¢ = & = 3+
How to PRINT Messages in the Immediate Mode o o« & o o o s o o o v
Performing Calculations with the PRINT Statement . ¢« o =« o « « & &«
Error Messages and Ways to Correct Errars in the Immediate Mod=s . .

Using Numeric Yariables and the LET Statement . « « =« o o = o « o = = = a =

Assigning Numeric Expressians to a Numeric Yariable

Using String Uariables and the LET Statement « + « + « &
Correcting Errors with DELete and INSert « « - « o o v @ 0 a0 0 v

Using the Comma (,), Semicolon (3), and Colon (%) as PRINT Separators .
Using the NEW Command . « « « o = = o s « « s = = ¢ o« & 2 a o 2 2+ » .
Computer Graphics——Pasitioning Characters with CALL VYCHAR and CALL HCHAR .

Using the CALL CLEAR statement . o « o o ¢ o o s o 2 o 0 v o v o =

Using ' the Repetition Feature of CALL HCHAR and CALL VCHAR . & 4 o « « &

REV iEN - L] L] a L] - - L] - a i] - L} - - "] [3 | | L] a
Simple Programming—-Line MNumbers « « « o » « «
UYsing the RUN Command .« « o« « = o = s s » = &«
Using the LIST Command to Review Your Program
How ta Edit a Program——Correcting Errors . - «
fdding Program Lines « « « « ¢ = & « = = o s =
Removing Program Lings « « « o s 2 o s s = « « &
Using the INPUT Statement with a Numeric VYariable
Using the INPUT Statement with a String Variable .
Using the GO TO Statement——Loops—-BBEBK . . « . -
More Practice with the G0 TO Statement . . « . . &
Using the FOR-NEXT LOOP =« o = o = o = = = = « = =

NEStEdFUR"NEXTLDOPS s 4 ® 8 ®w @& % B W m ¥ 5 ®w ® W

Error Conditions associated with FOR-NEXT Loops .
REUiEU----.u-:c----un---cc-u

Page 2

XX
XX
XX
XX

XX

XX
xX

xX
XX
XX
XX
XX
XX

XX
XX

XX
XX -

XX
XX
XX

Oear (1-9Y/2 Book ci BRSIL for HBeginners

More on PRINT Separators €, 5) 2 o = = 2 2 2 =2 = » = =« = = 2 = 2 a = a » =
Understanding the QOrder of Arithmetic Operations .
Using Parentheses to Alter the Order of Operations

Understanding Scientific Notation
Using the INT Function « « & = o ¢« « o &
Using the RND Function and the RANDOMIZE
Other Random Number Ranges . « « « a o &
A Tuwo-Dice Simulation .
Error Conditions with RMD . . « . . . &
Randomized Character Placement . « - « &
Using the IF THEN Statemant
Error Conditions with IF THEN
ReVioW o « « o s » &« 8 2 5 2 » = 5 « s &=
Index

" ® 8 ® % &« @& 8 % ® 2 s = ¥ = e =

Statement

Page 3

VEaGl 1Ll Y 1 iU e cetadbe fwl bwmaiie. o

You and Computer Programming

What is computer proaramaing? MNothing mysterious! Programming is simply
communicating with a computer——telling it what to do and when to do it.
To program your computer you only need to learn two things: the language
your computer understandsy and the way you talk to it. No lensthy
training periods or super~sophisticated skills are required.

Tha Language—-BASIC

To communicate with any computer, you need to learn its language. The
language we'll be exploring here is a form of BASIC (short for Beginners
fll-purpose Symbolic Instruction Code). BRASIC was developed by John
Kemeny .and Thomas Kurtz at Dartmouth College during the middle 1960's.
Although BASIC is anly one of many computer languages, it is one of the
most popular in use today. It's easy to learn and simple to use, vet it
is powerful enough to do almost anything you want to do with your
computer.

As you work through this books you'll notice one striking fact about
BASIC: it's very much like English! You'll see words like PRINT, NEW,
RUN, and LIST. The meanings of these words in BASIC are almost identical
‘tp the definitions vou already know and understand. This is what makes

BASIC so easy to learn and fun to use.
" The Way You Talk to the Computer——the Keyhoard

Now, how do vou talk to the computer? Everything you need to use to
communicate with your computer is right there on the keyboard. You type
vour instructions, and the computer "hears" them.

Page 4

QbbP IIf99/E Book 23 BASIC for Beginners

About this Book

This book guides you stes by step through the srocess of learning BRSIC. The
material included here gives you a good foundation for the continued
development of your programming skills. Throughout the book, each explanation
of a statement or command is fallowed by one or more examples for you to try
out. Also, you can {(and should) experiment with other examples of vour own to
help you becowme thoroughly acquainted with the capabilitites of your computer.

Remember: the computer is a tool for your use and enjoyment, not something to

be feared. It has mo intelligences only sowme extrasordinary capabilities. It
doas exactly and only what you tell it to dos it can't do anvthing by itself.

TO PROGRAM THE COMPUTER:
1. Learn the language (TI-99/2 BASIC).

2. Learn the means of talking to the computer (keyboard).

Pageag' ‘

- m—— - —— - — p o —rr d -
L R v TR GO SR S A ST "SRR TR 4 oy e O B dh e L BE et S e e TRRATLEe g TR R my e

weatlr 1l - vered BODK i broll tul guga.antla

How to PRINT Messages in the Immediate Mode

In the Immediate Mode, vour computer “"immediately” performs each BAsIC
statement you've typed in as soon as you piess ENIER. Because you can see an
instant response on the screen, the Immedi te Mode is a good way to introduce
and explore certain TI-99/2 BRSIC language statements.

Turn on your television, and then turn on the console. When the title screen
appears, press any key to begin. When you see the next screen, eress 1 for
T1-99/2 BASIC.

TI-99/2
TEXAS INSTRUMENTS BASIC COMPUTER
TI-99/2
BASIC COMPUTER PREGS

i FOR TI-99/2 BASIC
READY-PRESS ANY KEY TO BEGIN

1983 TEXAS INSTRUMENTS

‘The flashing underline you see on the screen is called the cursor. It tells
you that the computer is ready for you to use.

.

»_ (“prompting character™ and flashing cursor)

& -

The PRINT statement tells the computer to display something on the screen.
You type the word PRINT, followed by a message enclosed in quotation marks,
and the computer prints the message when you press ENIER.

Note: Type quotation marks by holding down either the SHIEI ar ECIN key while -
pressing the P key.

Page &

Yoot L7y e BODK Ce broee LUl Luygaaime

Type the PRINT statement below:

PRINT "THIS IS A MESSAGE" (your statement to the computer)
THIS IS A MESSAGE (the computer's response)

Remember to press the ENIER key after the ending quotation marks. This ie the
computer's cue to perform what you have requested.

NOTE: If vou make a mistake, don't worry about it. Just press ENIER and start
over for right now. Correcting errors are covered a little later.

Now type this PRINT statement:

PRINT “"HI THERE®
HI THERE

Try another example. Type these words, then press ENIER.
PRINT “I SPEAK BASIC. DO vOUu?"

(When you run out of rcom on a line, just keep typing-—the computer
automatically returns the cursor ta the beginning of the next line.)

Experiment by entering more PRINT statements with your own messages. As long
as you begin and end the message with quotation marks, the camputer displays
i€,

(Notice that the lines move up on the screen when you press ENJER and again

when the computer finishes printing its line. This procedure is called
scrallipg. The cursor shows you where the next line begins.)

Page 7

0L6sP TI-99/¢ Book ¢: bhell for beginners

Performing Calculations with the PRINT Statement

You can use PRINT to display numbers. With numbers, vont do not need quotation
marks. To try this, type the word PRINT, follow it .y a number, and press

ENIER.

PRINT 4
4

You can also have the computer perform calculations with the PRINT staitement.
Study the information below for typing arittmetic symbols on the keyboard.
The computer uses the asterisk (*) for multiplication and the slash (/) for
division. '

plus sign + Use the SHIEI key and the = key.

minus sign - Use the SHIET key and the / kevy.
times sign * Use the SHIEY key and the 8 key.

/

divide sign Use the / key.
decimal point Use the Periad (.) kevy.

Try the examples on the right; then make up your own numbers. Try saveral
kkinds of calculations.

Page o

e T TR

Quead 11-YYAd Book <. BHDLL

PRINT 314
7

PRINT 86459
145

PRINT 1.2+4613.1498.4
148.9

PRINT 6.4-3.5
2.9

PRINT 99-18
81

PRINT 45%9
405

PRINT 7.98%54.07
447 .4386

PRINT &7/56
1.196428571

PRINT 42/6
7

tur deyinners

Page 9

Yeaolk 11 -Yyoul O we Bhesis wd werjlisbkds 2

Error Messages and Ways to Correct Errors in the Immediate Mode
Every computer programmer makes mistakes, 30 don’'t hesitate to try experiments
of your own as you go through the examples in this boak. Errors do not hurt
the computer. It quickly recognizes things it cannot do and gives you an
error message such as INCORRECT STATEMENMT or CAN'T PO THAT to tell vou to try
again. When this happens, you can simply identify the errory retype your lipe
correctly, and press ENIER again. :
Some of the most common errors are typing a wrong letter and omitting a
necessary part of a statement. For example, here are some things that your
computer does not accept in a PRINT ztatement:

1. A& nisspelling in the word FRINT.

2. f missing or extra quotation mark.

3. Spaces within the word PRINT.

Experiment with some intentional errors to become more comfaortable with arror
messages.

(1) Misspelling in the word PRINT
?IRNT “THIS IS A MESSAGE"
*% INCORRECT STATEMENT %*x

{8) Missing or extra aquotation marks
PRINT "THIS IS A MESSRAGE
%% JNCORRECT STATEMENT **

(3) Spaces within the word PRINT
P RINT "THIS IS A MESSAGE"

. %% INCORRECY STATEMENT %%

Page 10

UehoP T1-99/2 Book o BHSLIL TOF Beylihners

Try a few more messages with the PRINT statement, introducing intentional
errors so that you become familiar with the error messages.

If, however, you see an error before you press ENIER, you can correct it. The
following shows two ways to correct errors in the Immediate Mode (if you have
not yet pressed ENIER):

1. While holding down either the SHIFI or the ECIN key, use LEEI ARROW (§ key)
to backepace to the error and correct the error by typinsg over it.

If, while backspacing, you move the cursor past the error, move the cursor
to the right with RIGHT SBROW (SHIEI D or ECIN D) until the cursor is
positioned owver the error. (Note that characters are not erased as you
move the cursor over them. If you need to erase a character or word, use
the SPACE BAR to advance the cursor over the character.)}

2. You can press ERASE (ECIN 3) to erase the entire line and start over.
(Hold down the ECIN key and press 3).

Now look back at the PRINT statements on the previous page. Type the commands
incorrectly (exactly as written), but instead of pressing ENIER and getting an
. @rror message, corrgct the errors using one of the above wethods. '

Exper1ment with your ouwn intentional errors and practice correcting them
before you press ENJER. As you continue your uork with the computer, make use
of these methods to correct errors. (We'll discuss other ways to correct
errors later in this book.)

Page 11

Uising Numeric Variables and the LET Statement

@ variable is a "name® given to A number or a group of characters. Although
there are two types of variables, in this section we'll consider only those
variables that give names to numbers. These are called numeric variables. A
numeric variable is just a name given to a numeric value.

A= the word yariable implies, the value of a variable can be made to change or
vary. A number is assigned to a numeric variable with the LET statement.
Variables can be up to 15 characters long, but they are generally kept fairly
short for convenience.

In the LET statement the word LET is followed by one spacer then the variablé
(the name), then an equals sign, and finally the numeric value you are
assianing to the variable. ‘

Try a few examples. Type in the following lines, pressing ENIER at the end of
each line. '

LET A=%
LET A2=8
LET ALPHA=10

‘You can think of variables as labeled boxes that hold assigned values. Only
one value at a time may be assigned to a given variable, but you can change a
value easily. Type this LET statement, pressing ENIER at the end of the line.

LET A=8
The value of & is no longer 5. The § has been replaced by 8.

Now use PRINT statements to check the values you have gntered. Trpe PRIﬁT A -
and press ENIER.

PRINT A
8

Page 12

[vlay| (I R B L T A O O T N S TN SNt

Did you notice that this PRINT statement is different from the PRINT
statements we explared earlier? We didn‘t put quotation marks around the A
even though it is a letter. That's because we didn't want to print the letter
A7 we wanted to see the numeric value assigned to A.

Now, check for the values of A2 and ALPHA. (Remember to press the ENIER key
at the end of each line, even though it isn't shown,)

PRINT A2
8

PRINT ALPHA
10

The value of every numeric variable is zero if it has not vet been assigned
value. Try the following PRINT statement.

1]

PRINT F
0

ﬂote: In BASIC, the LET statement is not the only way to assign a numeric
value to a variable. Your computer also accepts the assigrment without the
- word LET.

JACK=3
JILL=E

PRINT JACK*JILL
15

-

In other words, the word LET is optional in BARSIC; your computer accepts the
assignment with or without it.

Page 13

Oeéar |1 ‘7“?1‘& ool @0 Lol Pun DeYaiiier 3

Assigning Numeric Expressions to a Numeric Variable

You have just seen how a numeric variable can be assigned a Eingle-number
value. An arithmetic expressian (such as 4*5 or A+1) can also be assigned to
a variable.

(If you just completed the previous section, the computer still holds the
following valugs in memory. If you are jusit now beginnifg a new gession with
the computer, enter these statements again.?.

LET A2=8
LET ALPHA=10

You can assign new values to the variable and check the new value with a
PRINT statement after each one. Enter the following lines. Note that the
variable always appears before the equal sign and the expression always
appears. following the equal sign. :

LET A=5%3
PRINT A
15

LET A=A24ALPHA
PRINT R
18

LET A=A-5
PRINT A
13

LET A=A/2
PRINT A
6.5

Page 14

T
S TR T TR T N

Qreet TL-$%/¢ BoOK i BHDIL T4i buylisiels

Using the CALL CLEAR Statement

As you type instructions to the computer in the Immediate Mode, the screen
eventually fills with instructions and the resulting displays. The lines
scroll up the screen as you enter additional instructions. There is an easy
way to clear the screen of previous lines so that you can concentratae an the
line you are currently typing. This is done with the CALL CLEAR statement.

when you enter the words CALL CLERR, the screen is cleared except for the
prompting symbol and the cursor. You can use the CALL CLEAR statement anytime

you like, whether the screen is filled or not.

+

A=36
CALL CLEAR

(screen is cleared and the cursor returns to the lower-left-hand corner of
the screen)

The CALL CLEAR statement clears the screen, but not the computer's memary. If
you assign a value to a variable and then clear the screen, the computer still

"holds that value in memory. To verify this, tell the computer to PRINT the

value of A.

PRINT A
36

Mote: s you work through this books you'll see several BASIC statements that
begin with the word CALL. Your computer has certain built-in suberoacams for
special purposes (such as clearing the screen), and a CALl statement tells the
computer to *call" the subprogram named in the statement. -

Page 15

UEGEE tlovy. e BLUOK . coeals T wegdbie s

Using String Variables and the LET Statement

The words that you told the computer to PRINT a few pages back are called
chacacier strings. A "giring” of characters is anything that vau enclose in
quotation marks. Usually this means alpha ¢ «wracters (letters of the
alphabet), but a string can include any character the keyboard can tvpe,
including numbers, letters, punctuation, spaces, and symbols.

A string variable is a name given to a “z¢trina" of characters. A string
variable name always has a dollar sign () at the end of it. Because of this,
you {and the computer) can always tell string variables from numeric variables.

Yau already know what numeric variables are: numeric values assigned to names
(variables), like “K=50". String variables differ from numeric variables in
the following ways.

i. The variable name must end with a $.

a. The alphanumeric characters in the string must be enclosed in

quotation marks. ‘
3. S+trings of rumbers cannot have arithmetic operations performed with or

upon them.

Try a couple of examples. Clear the screen (with CALL CLEAR). Using SHIET 4
for the dollar sign ($), enter this.

.LET W$="HASTE MAKES WASTE"

PRINT W$
HASTE MAKES WASTE

Notice that the character string is displaved, rather than the string .
variable. As with numeric variables, do not put quotation marks around the
variable in the PRINT statement because you do not want to print the
characters “W$"; you want to see the value iszigned to W. ;

Page 146

Oesal Tl-yv/2 H0ok &. LHDiL 1Ol beginners

Correcting Errors with DELete and INSert

Earlier you practiced correcting errors by using the BEROW keys (G5 or R} in
conjunction with either the FECIN or SHIET keys. You also used ERASE (ECIN 3)
to erase the entire line and start over. There are two other key combinations
that you can use to correct errors. These arel

DELete (ECIN 1)-—deletes character(s)
INSert (ECIN 2)--inserts character{s)
Type the following statement exactly as written, but don't press ENIER vet.

PRINT I M LENING TO CORRRRRRECT ERROORS®

There are abviously several errors in this statement. First, you need to
insert quotation marks before the character I. Backspace with LEET ARROMW to
the I. Press INSert (ECIN 2); then type quotation warks (2).

PRINT *I M LENING TO CORRRRRRECT ERROORS"

Next, insert an A before the M. To do this, advance the cursor (with RIGHT
- ARROW) to the M. Press INSeri and then trpe an A.

PRINT “I AM LENING TO CORRRRRRECT ERROORS"

Notice that to insert a character, you wmust determine where you want it
inserted and then position the cursor over the character immediately following
that point. Now pasition the cursar over the first N in LENING. Then insert
an B and an R in LENING so that it reads LERRNING.

-

PRINT “I AM LEARNING TO CORRRRRRECT ERROORS®

Page 17

You can insert or delete single characters or as many characters as you want.
To delete characters, position the cursor aver the first character you want to
delete. Now let's delete four of the Rs in CORRRRRRECT. fosition the cursor
over the first R} then press DELete four times (while holding down the EQIN
key, press 1 four times). If you press ECTN 1 down for more than one second,
the automatic repeat feature deletes characters more quickly. However, you
must be careful not to delete too many characters, or vyou will have to insert
them again.

PRINT “I AM LEARNING TO CORRECT ERROORS™
Now delete one of the Os in ERROORS using what you have learned. Look over
the statemaent and correct any aother errore (if you have made any). Then press

ENIER.

PRINT “I AM LEARNING TO CORRECT ERRORS" (press ENIER?
I AM LEARNING TD CORRECT ERRORS

Page 18

0R&GP T1-99/2 Book ¢: BHolil 100 Beginners

\Using the Comma ¢,), Semicolon (3), and Colon (I} as PRINT separators

A single PRINT statement can be used to print two or more items. By using the
comma, semicelony or colon, you can control the way the computer displays
these items. Try these examples.

CAlLL CLEAR
A2=6
AL.PHA=10
PRINT A2,ALPHA
8 10

Now, try these:

AL=6

ALBERT=8

PRINT ALSALBERT
& 8

The computer divides the display screen into two horizontal zones. When you
uyse a comma () between two (or more) variables in a print statement, you are
‘telling the computer to print the values 1in different zones. On the other
hand, the semicolon (§) instructs the computer to print the numbers close
together.

Now try this example, using the colon (2).
PRINT AL:ALBERT
&
8

The colon has the computer print each itew on separate lines.

Page 19

ORGP TI-99/2 pooh i bBrodl. for Beglnners

Now try an example that uses character strings.

N$="TARCK SPRAT"

PRINT N$

JACK SPRAT

W=" ATE NO FAT." (Note the one space at the beginning of
PRINT W$ this st:ing to prevent its running on with
ATE NO FAT. , the previous word.)

PRINT N&;W$ (Computer prints the two strings close

JACK SPRAT ATE NO FAT. together on one line.)

Now print the two strings again using firgt the comma (,) and then the colon
(2} as print separators to see the differences:

PRINT N$,W$
JACK SPRAT ATE NO FAT.

PRINT N$:US
JACK SPRAT
ATE NO FAT

Page 20

VEoobr 11 %7/ 0 DUUR e Wheodii b DUjuinine o

Using the NEW Command

The words "command" and "statement" are sometimes used interchangeably.
Generally, commands are used in the Immediate Mode (sometimes called the
Command Mode, without line numbers) and statements are used in programs (with
line numbers; this is covered a bit later).

The NEW command produces visible results similar to those of the CALL CLEAR
ctatement in that baoth clear the screen. An important difference, however, 1is
that the NEW command also clears the computer's memory. When you use the NEW
command, any information you have entered is erased. This should be done when
you begin a new activity (in the Inmediate Mode) or a new program, so that old
information that the computer may be storing (such as the value assigned ta a
variable) does not interfere with what you are about to do.

On the previous page you assigned and printed several numeric and string
variables. These values are still stored in the computer's memory. (If vou
are besinning a new session with the computer, enter these statements again.)
Thay arel

A2=8

ALPHA=10

AL=6

AL BERT=8
N$="JACK SPRQT"
Wg=* ATE NQ HAT."

If you clear the screen with a CALL CLEAR command, you can still print the
values of these variables, as you did in the section on the CALL CLEAR
command. Try itl .
CALL CLERR
PRINT ALPHAGAZiNS
10 8 JACK SPRAT

Page 21

CALL CLERR
PRINT ALBERT:AL:W$
g
F3
ATE NO FAT.

If you enter the NEW command, however, these values are erased from memory and
cannat be printed. The NEW command has the same effect on the computer's
memory as turning the computer off and then back on again. Enter the

followingi

NEW
PRINT AL PHA

0

+

PRINT N$

If you print the value of a rumeric variable, a zero is displayed. If vou
print the value of a string variable, a blank line is displayed, because the

string is empty.

Page 22

Veloor bk TR DUO R e DRl 1yl Leygldiing: o

Computer Graphics--Positioning Characters with CALL VCHAR and CAL L HCHAR

One of the most exciting things you can do with your computer is to create
graphic designs right on the screen. With your computerts graphic capability,
you can make a design, draw a picture, create a gamehoardy and s0 on.

This section introduces vyou to two simple yet powerful graphics statements.
CALL VCHAR and CALL HCHAR are used to position A character or draw a line of
characters on the screen. Later in this book., we'll show you how to use
graphics statements in programs.

The Basic Computer 99/2 uses 28 printing positions on each line. For
graphics, howevers the computer allows 32 character positions an each line.
Think of the screen as a “grid" of square blocks made of 32 columns and 24
rows.

ILLUSTRATION (grid with 32 columns and 24 rows)

Page 23

Each sauare on the grid is identified by two value: called goordipates--a row
number and a column number. For example, the coordinates 5,7 mean the fifth

row and the seventh columny, and the coordinates 10,11 mean the tenth row and

the eleventh calumn.

The first thing to try is to place a character in a particular square on the
screan. For the time being, consider that a character iz one of the 24
letters of the alphabet, the numbers O through 9, and certain other symbols,
such as the asterisk (%), the plus and minus signs (4 and -), and the slash
(/). f{Later you will learn about other characters available for graphics.)
Each character is assigned an identifying numeric value of its own. The
values for the full character set are given in Appendix XX in Book 4.

By using either Cal.L VCHAR or CALL HCHAR, naming the two coordinates (row and
column), and identifying a character by its numeric value, you can place the
character in any spot you choose. Here's the form used for these two
statements.

CALL YCHAR(12,17,.42) (row 12, column 17, character number 42--the
asterisk)

Try this examplesy and you'll see an asterisk (%) appear near the center of the
SCreen.

Try a few more examples. First, clear the screen by typing CALL CLEAR and
pressing ENJER. Type the following.

CALL VCHAR(15,10,67) {row 15, column 10, character number &7--C}

pon't forget the parentheses in the statement-—they are impartant! Now try
the CALL HCHAR statement. A

CALL HCHAR(C14,10,47) {row 14, column 10, character number 47--C)
The order for entering the row number, the rolumn number;«and the character's

numeric value is the same for both CALL VCHAR and CALL HCHAR, and they do the
same thing when ygu are positioning a sipale character on the screen.

Page 24

Ousdl VL-99/2 Book £:@: Bhbll tar beyinners

Using the Repetition Feature of CALL HCHAR and CALL VCHAR

When you try to draw a line of characters, you find that there is a distinct
difference between the functions of the statements, CALL HCHAR and CALL
YCHAR. CALL VCHAR rauses a vertical column of characters to appear, whereas
CALL HCHARR displays a horizontal row of characters. To display a line with
gither statement, you add a fourth numeric value to the statement: the number
of repetitions you want. This number controls the "length" of the line.

Clear the screen'by typing CALL CLEAR and pressing ENIER, and try a vertical
line. Type this:

CALL YCHAR(11,10,86,8) (row 11, column 10, character number 86--V, 8
' repatitions)

Check for errors and then press ENIER. The screen looks like thist

CALL VCHAR(11,10,B6,8)

CCCCCCTCCTC

As mentioned earlier, there are 24 horizontal rows of character blocks on. the

"grid" of the screen. Therefores you can only draw a vertical line (calumn)
that is 24 characters long. What happens if you enter a repeat value greater
than 247

Page 25

il 1l %o WDUOR e b o il W kA Gaire s 3

Clear the screen and then type the following.
CALL VCHAR(1,10,846,50)
When you press ENIER, the screen shows the following display.

Wy

SEEEeLEEsEEEeE

cAtl. VCWR(1,10,86,50)

s

(Note: You don't actually see all 50 of the V's above because there is a blank
line after the CALL VCHAR command.)

Page 2bé

GiIZhor 14 Yy DOUK (e Ditsdic Lawd bUanicte

Type

CALL CLEAR
CALL HCHAR(17,1,72,50)

and you see

CALL HCHAR(17,1,72,50)

HHHEHHHHHHHHHHHHARHHHHHHHHAHHHHHS
HHHHHHHRHHHHKHHHHH

So far, you have entered actual numeric values in your statements. However,
vou can assign numeric values ta variables and then use the variablaec in the

CALL VCHAR and .CALL HCHAR statements. Try this:

ROW=5

COLUMN=12

CHARCODE=&7

CALL CLEAR

CALL VCHAR(ROW, COLUMN CHARCODE)

Uhgre did the “C" appear on the screen?

For a big finale, fill the screen with asterisks (numeric code 42)}. Type
these lines, pressing ENIER at the end of each line.

CALL CLEAR
CALL HCHAR(1,1,42,748)

Continue to experiment on your owny trying different characters (zee fAppendix

XX) and positions. For example, can you fill the screen with your first-name
initial?

Page 27

Review

—— —— "

4.

5.

R s

A variable is

A. a mistake that is made repeatedly.

8. a statement used in the Inmedi ‘e Mode.

(. 2 word or letter that is assia d a particular value.
D. a value that always remains the same.

The difference between rumeric variables and string variables is that

A. one is for serious prograwming and one is just for fun.

B. string variables are always langer.

C. numbers are assigned to rumeric variables and characters are
assigned to string variables.

D. numerals are assigned ta nuweric variables aml numbers are assigned
to string variables.

The difference between NEW and CALL CLEAR is

A. that NEW anly clears the screen and CALL CLEAR clears the
compu ter's meMOryY.

B. not important.

C. impossible to explain.

D. that CALL CLERR only clears th> screen and NEW both clears the
screen and erases the computer's memory.

Which of the following are valid ways to correct errors?
Q. Backspace with LEET ARROW and type over the error.

8. Use DEL (ECIN 1) to delete incorrect characters.

C. Use INS (ECIN 2) to insert correct characters.

D. Press ERBSE C(ECIN 3} and type the line again.

€. Al1 of the above.

Match each type of punctuation with the resulting display {when the
particular punctuation is used between two items in a PRINT statement).

fi. comma $,) X, items printed close toge ther
8. semicolon (3) Y. items on separate lines

_,,__c. colon (1) Z. each item is in a different print zone

6.

———

+

w

The numbers within the parentheses after a CALL HCHAR or CALL VCHAR
command specify (in the correct order):

A, (rowy column, character-code, number of repetitions)

8. (character-code, number of repetitions, rows column)
C. (columny rows charac ter-code, .number of repetitions)
D. (aumber of repetitionsy row, column, character—code)

(Answers are on page XX. If you wmiss a question, 9o Back to the appropriate

section and review the information before you proceed to the next section.)

Page &8

Qabdi? 1L-YvY 2 Book i Beblu fOr beginners

Simple Programming—-Line Numbers

So far you have been entering single instructions and the computer has
performed them immediately. A computer proacam is simply a list of these
instructions that the computer performs in a certain order. A program is
different because the computer waits until you have entered all your
instructions and does not perform them until you tell it to. Thus you can
enter the program, correct errors, and revise or edit as much as you want
until you are ready for the computer to perform the program. Then it performs
the instructions in rapid succession.

How does the computer know that the instruction that you enter is not to be
performed immediately? This is done by putting line oumbers in front of the
instructions to show that each instruction is just cne in a series.

In a computer programy each statement begins with a line number; which serves
two important functions:

1. It tells the computer not to rerform the statement immediately, but
to store it in memory when you press ENIER.

2. It establishes the order in which the statements are to be performed
in the program.

Let‘s begin by using an old familiar friend, the PRINT statement, in a
program. fFirst type the word NEW and press ENIER. Mow type the following
program, pressing ENJEE at the end of each program lines

10 PRINT "RRE YOU READY" (one space after each line number
20 PRINT "TO LEARN BASIC?" is required) .
30 END

Page 29

0646 T1-99.2 Buo» 2 bHblL tar Bevinaers

(As you type the program, notice the small “prompting” character that appears
just to the left of the printing area. This symbol marks the beginning of
each program line you type,)

In computer terminology, you have just “entered" a program. Nothing to it!
Check the program now to see if there are any typing mistakes. If there are,
just retype the line correctly, including the number at the beginning af the
line, right there at the bottom of the screen. Then press ENJER. The
computer automatically replaces the old line with the newy correct one.

Alsos, you may be wondering why we numbered the lines in increments of ten (10,
20, 30, etc.). Well, we could just as easily have numbered them 1, &y 3. By
using increments of ten, however, or other spreads like 100, 200, 300, etc.,
we can go back and insert new lines if we want to expand the existing program,
and we don't have to retype the whole program! (We'll cover this clever trick
when we discuss editing a program.)

When you're ready to see the program in action, type CALL CLEAR and press

ENIER. The screen is cleared, but your program is not erased-—it's ctored in
the computer's mewmory!

Page 30

0266P T1-99/2 Book 2: BASIC for Beginners

Hsaing the RUN Command

The RUN command is the command that tells the computer to perform the list of
instructions you have given it. This is called running a program.

With the program vou entered on the previous page 3till in the computer's
memorys we are now ready to RUN it. Type RUN and press ENIER again.

RUN ;
ARE YOU RERDY
TO LEARN BASIC?

%% DONE #*

want to “run® the pragram again? Type RUN again and press ENIER.

RUN
ARE YOU READY
TO LERRN BRSIC?

¥ DONE wx
RUN
ARE YOU READY
TO LEARN BASIC?
¥€ DONE %+
Each time you type RUN and press ENIER,; the computer begins at the first

statement and follows your instructions in order until it reaches the last
statement. END means just what it says: the end, stop!

Page 31

Q2gsP T1-99:e¢ Book 2: BASIL for Beginners

Using the L.IST Command to Review Your Program

The LIST command tells the computer to display, in the correct order according
to line numbers, the current program in memory.

Now that you've had a bit of programming experience, let's review some of the
things you did when you entered the previnuz program. To refresh vour memory,
we'll get the program back on the screen.

Firsty, type CALL CLEAR (without a line number) and press ENIER to clear the
screen. Now type LIST and press ENJER again:

LIST

10 PRINT "ARE YOU READY"
20 PRINT “TO LEARN BASIC?"
30 END

The program above consists of three statements or “lines." As in the
Immediate Mode, you pressed ENIER when you finished typing each program line.
Pressing ENJER defines the end of the pragram line, just as the line number
identifies the beginning of the line. It is also the computer's cue to store
the line in it's memory. Pressing ENIER at the end of each program line is
essential-—without it, vyour line will not be correctly stored by the comeuter.

Now type NEW and then LIST. What happens?

NEW
LIST

* CAN'T DO THAT
You get the error message CAM'T DO THAT. VYou have asked the computer to do

something impossible, since it can't LIST a program if it has been erased with
the NEW command.

Page 32

S [S [N I W O R I IR W L A

How to Edit a Program——Correcting Errors

You have already practiced correcting errors in instructions by backspacing
with LEEI OR80W or by pressing ERRSE and beginning the instruction again., You
also practiced correcting errors with DELete and INSeri. These methods work
(if vou have nat vet pressad ENIER) both in the Immediate Mode and when
entering program lines. If you have already pressed ENIER, there are several
other ways to edit a program line, one of which we mentioned when you entered
your first program a few pages back. These are:

1. Retyping the line correctly, including the line number, and pressing
ENIER again. The computer will replace the old line with the new
carrect line in its mewmory.

2. Using the EDIT command followed by the line number of the line which
vou wish to edit. {(Or vyou can simply type the line number and then
press UP ARROW (ECIN E or SHIEI £) or DOWN ARROW (ECIM X or SHIEL X).
The current line appears, and you simply use the QRROW keys to position
the cursor over the error and correct the error by typing over it.
Editing by these methods often requires less typing.

Let's practice editing by using the above methods. Below is a program which
converts pounds to kilograms. Entar the program just as it is written (it has
some intentional errors in it).

© 10 K=600
20 P=2.2%J
30 PRINTY H
40 END

Change the number 400 to &0 in line 10. Use the first method to correct this
line. Simply type the corrected line, press ENTER, and the computer replaces
the old line in memery. Type

10 K=60
and préss ENIER.

Page 33

Now to prove that the corrected line is in the computer's memory, cl2ar the
screen (CALL CLEAR) and list the program (LIST). This is what you see.

10 K=60
20 P=2.2%]
30 PRINT H
40 END

The variable J should be changed to K in line 20. To fix this, let's use the
second method we discussed: using the EDIT command. Enter

EDIT 20

Line 20, appears, with the cursor flashing over the variable P. Using RIGHT
ARECW (SHIFI Q or ECIN R)s position the cur »r over the J and type a K over
it. Then press ENIER. Now clear the screei. and LIST the program.

As you can seas the computer has the corrected version of line 20 in memory.
Now what is the error in line 307 The variable H has not been assigned a
value. Actually, we want to PRINT the value of P. Type 3Q and press Ue ARRQW

(ECIN E or SHIEI E).

When line 30 appears, move the cursor to th. H at the end of the statement,
type a P over the H, and press ENIER. :

Now if you like, you can list the program once more to see the whole program
corrected.

10 K=460

20 P=2.2%*K

30 PRINT P °
40 END

Let's study what this program does. We said it converts kilograms to pounds
(1 kilogram = 2.2 pounds). We've used the variables K (for kilograms) and P
(for pounds) to help us remember which value is whichs and we besan our
program by assigning values to these variables.

In this case, we are trying to find out how many pounds are equal to &0
kilograms, so we have defined K as 40. Notice that we have defined P as

2.2 X K. .If we stopped here and ran the program at this point, the computer
would perform the conversiony but it wouldn't show us the answer! S0 we added
the PRINT statement.

Now RUN the program. What iz the answer?

Page 34

o

VLGt L s e (8 W LN O) S S I SR O) N W1 3 ¥ IO Y TC

Adding Program Lines

What vou have just done is called “editing" a program. The ability to edit or
changa a program without retyping the whole thing is one you'll come to value
highly as your programming skills grow. To give you an idea of the great
flexibility editing adds to programmings let's experiment with a fow more
chages in the present program.

We mentioned earlier that the reason we number program lines in increments of
10 (instead of 1s 2, 3y etc.) is to allow program lines to be added without
having to retype the whole program. Before we experiment with a few examples,
let's clear the screen and recall our program. Type CALL CLEAR, then LIST

LIST

10 K=60

20 P=2.0%K
30 PRINT P
40 END

We might want to add a CALL CLERR statement to the program, so0 that we waon't
have to keep clearing the screen from the keyboard each time we Yryn" the

program. Types

5 CALL CLEARR ﬁ

Page 35

LRy eTw} | Vi

Now LIST the program again to see the new line (tyee LIST and press ENTER? .

The old
program

The new
program

Compare the two programs on the screen, and notice that the computer has
automatically placed the new line in its proper order.
to see the effect of the added line.

Now let's add another line that helps to point out our answer. Type

anq press ENIER. When you run the program again, you‘ll see this:

i b [N A

LIST

10 K=60

20 P=2.2%K
30 PRINT P
40 END

§ CALL CLEAR
LIST

5 CALL CLEAR
10 K=40

20 P=2.2%K
30 PRINT P
40 END

27 PRINT "THE RNSWER IS:"

THE ANSWER IS:

132

*% DONE **

Page 36

Run the program again

M. O P ?ivmwm [L T I N N] 8% PR ATY 1+ -2

Removing Program Lines

Guite often it's necessary to remove a line or lineg from & program. Deleting
a program line is a very simple procedure.

The program we have stored right now doesn't really have any lines we want tno
delete. Just for practice, however, let's remove line 5.

Firsty, clear the screen and list the program as it is now. Line 5 is the
first line of the program, a CALL CLEAR statement. To remove it, simply type
g and press ENJER. Then LIST the program again. Presto! Line 5 is gone!

LIST
ald . & CALL CLEAR
program 10 K=60
20 P=2_ 2%
27 PRINT "THE ANSWER IS:"
30 PRINT P
40 END

5 (Here's where we deleted line 5.)
LIST
New 10 K=40
program 20 P=2.2%¥K
27 PRINT "THE ANSWER IS:"
30 PRINT P
40 END

That's all fhere is to it. To remove a line, type the line numbar and press
ENIEE. The computer then deletes the line from pragram memory.

Since we really need line 5 in this program, let's reenter it. Type

.5 CALL CLEAR

and press ENIER.

Page 37

Rl T

ucser Tl-yv/d Book d: bHoli (or peginners

Using the INPUT Statement with a Numeric Variable

The INPUT statement tells the computer to stop the program in progress and
wait for input from the keyboard. The value you enter is then assigned to the.
variable contained in the INPUT statement. Thus, the INPUT statement, like
the LET statement, is a way of assigning values to variables.

1f you want a value for a variable to be different each time a program is run,
the INPUT statement is better than the LET statement because the program
itself does not have to be changed. .

In the conversion program we have been working withs you can easily change the
value of ¥ simply by retyping line 10 to assign a new value. (Remember that
the word LET is not necessary when assigning a value to a variable.) Try it
by typing

10 K=40

Then run the program. The answer you get is the number of pounds equivalent
to 40 kilograms. But suppose you had many values for K, and you wanted to
find the equivalent value of P for each one. It would become rather tiresame

_to retype line 10 aach time.

an INPUT statement causes the computer to display a question wmark and stopy
waiting for you to type in a value and press ENIER. The value you enter is
then assigned to the variable contained in the INPUT statement. For example,
type

10 INPUT K '
and press ENIER. Now run the program again.
The questi&n mark and cursor show you that the computer is waiting for you to
“input" a value for K. This time we'll let K=70, so type [Q and prass ENIER.
The computer prints your answer:

? 70 o

THE ANSWER 1S5%

154

%% DONE #*

Page 34

e et et b PR S U PO S T .- .

Now you can run the program as many times as you like, changing the value of K
aach time the computer prints a question mark and stops. Try the program
several times with different values for K.

The INPUT statement can also be used to print a "prompting" message (instead
of simply a question mark) that helps you remember what value the computer is
asking for. Change line 10 again by typing

10 INPUT “KILDGRAMS?":K
and pressing ENIER. Now run the program again. Firast the program asks:
KILOGRAMS?
Let's let K=50 this time. Type 50 and press ENIER.
KILOGRAMS?50
THE ANSWER IS:
110
¥ DONE *»
By now, your program looks like this!
£ CALL CLEAR
- 10 INPUT "KILOGRAMS?":IK
20 P=2.2%K
27 PRINT “THE AMSUWER IS:“
30 PRINT P
40 END

If you'd likes you can list it on the screen at this time and review the
changes you've made so far. When you're ready, we'll g0 on to look at one
more change.

Page 39

VitdeP 1L . o082 Buok i Brodn Tul beylulera

Using the IMNPUT Statement with a String Variable

Lot's make your conversion program a little more personal by using a string
variable. Type these two lines:

8 INPUT "NAME, PLEASE?":iB%
26 PRINT "OK, ";B$

(Clear the screen and list the program again so you can see how the new lines
fit in.)

When vou run the program this time, the twn INPUT statements will stop the
program twice:

The computer asks: You type in:d

NOME, PLEASE? Your name and then press ENIER.

KILOGRAMS? The number of kilograms and then press
ENIER.

Let's try it. Type RUN and press ENIER.
NAME» PLEASE?

Ue'il type in HARRY (that's a nice name) and press ENIER. Then we'll see

NAME, PLEASEPHARRY
KILOGRAMS?

Again let's type ZO for the number of kilograms. Press ENJER again and Ydﬁ‘ll-
seal :

NAME, PLEASE?HARRY
KILOGRAMS?70
- 0Ky HARRY
THE ANGWER IS:
154

%% DONE *#

Page 40

Ty

Qe6eHP 11-%9/2 Book . BHbll T beylhhers

Using the GO TO Statement--Endless Loops--The BRERK Key

So far in your programming studies, you have seen that the computer performs
the instructions in a program in the exact order that they are listed
(according to line numbers). When the computer finishes the last inatruction
in a programy it stops. There are ways te change this order or make the
computer repeat a series of lines over and over. One of the statements that
allows you to do this is the GO TO statement. (GO TO can be typed as GOTO in
a program. The computer acceepts it either way).

The GO TO statement tells the computer to do exactly what it says: go to a
different line than the one the computer would normally perform next (the next
line in succession).

So far, you've been developing programs that operate from beginning to end in
a straight sequential order. Thare are many situations, howaver, in which you
want to interrupt this orderly flow of operation. Look at the following
programs but don't enter it yet:

10 CALL CLEAR
20 INPUT K
30 PRINT K

50 K=Kk}1
40 60 7O 30

Here we "send” the program back to line 30 by using a GO TO statement in line
40. The GO TO statement causes the actions performed by lines 30, 40, and 50
to be repeated over and over again, setting up what's called a looe.

Notice that we don't use an END statement. That's because the program néver
gets beyond line 60! (The END statement isn't necessary in BASIC anyway.)

The computer won't stop until you tell it to by precsing BREAK (the key at the
lower—left-hand corner of the keyboard. You can get the same result with
CLEOR (ECIN 41). This is called an "endléss loop."™

Page 41

(Y LRI - . e [P N -

Let's enter the program now. First, type NEW and press ENJER to erase the
computer's memoryy and then type these lines:

10 CALL CLEAR

20 INPUT ¥

30 PRINT K

40 PRINTtsezsszze:

50 K=K+}i

&0 GO TO 30

gBefore you run the programy we'll examine a diagram called a flowchart,
explaining how the program works.

Program Line Operation
' 10 CALL CLEAR Clears the screen
20 INPUT K ' Gtops and waits for initial value
of K
30 PRINT K Pfints the current

value of K

40 PRINT:fzzssazsr Prints nothing} just gives
you 10 blank lines

50 K=K+t Reassigns a new value to K
{the old value +1)

40 GO TG 30 Transfers the program
back to line 30
Now run the programs putting in 1 for the beginning value of K. Watch how
quickly the computer counts--almost too fast to follow! That's why we added
line 40--to display some blank lines. This line puts ten blank lines in
between the numbers (with ten colons) so that you can see the numbers better.

Let the computer count as long as you want to. When you are ready to stop the
program, Press GREAK. You'll see *BREAKPOINT AT lipe-numbec on the screens
indicating where the program stopped. Run the program as many times as you
wanty using whatever number you wish as the initial value for K (80, 100, 500,
etc.).

Page 42

Ogéel TI-99/2 Book 2@ BASIC for Beganners

More Practice with the GOTO Statement

If you try to send the program to a non-existent line number, however, you'll
get an error message.

(From here on we'll use GOTO instead of GO TQ, since the computer accepts 1t
either way.? Supposey for exaaple, we type in

60 GOTO 25

and press ENIER. Try ity run the program, and see what happens! You'll see
this srror message!

% BAD LINE NUMBER IN &0

So correct the lina by typing and entering
60 GOTO 30

and run the program again.

Can we change the program to make it count by 2's, or §'s? You bhet we can!
‘By making one program change, let's make the computer count by 2'st Type

. 50 K=K{2

and press ENIER. Now run the program, typing in 2 when the computer asks for
the starting value of K.

Experiment with the program for a while, making it count by 3'sy &'s, 10's,
etc.

Page 43

{Using the FOR-NEXT Loop

The FOR-NEXT loop is a way to make the computer repeat a series of program
lines a specified number of times and then continue with the rest of ‘the
Program.

Earlier we presented several examples of the GOTO loops which repeats a set of
statements indefinitely-—or until you press BBEAK to stop the progrsm. The
FOR and NEXT statements also create a loopy but they are different -rom GOTO
in two important ways:

1. The FOR and NEXT statements are twg lines in the program, the FOR line and
the NEXT line, each with its own line number.

2. You control the number of times the loap is performed. After the loop has
been “"executed” the number of times you specify, the program maves on to
the line that follows the NEXT line.

The FOR lir- has the form
30 FOR A=1 TO 3

The NEXT line could be
‘80 NEXT R

These two lines cause the portion of the program between the FOR and NEXT
lines to be performed three times. In this example, the starting value of A
is 1} after each pass through the loops R is increased by 1. Its value is
then tested against the upper limit (3, in this example). RAfter the third
pass through the loopy A is equal to 4, so the program “exits" (or leaves) the -
loop to the line following the NEXT line, which is line 80.

Page 44

0266P TI-99/2 Book ¢: BASIL tor Beginners

To help you zee the differences between GOTO and FOR NEXT more clearly, let's
compare two similar programs, one with a GOTO loop and one with a FOR-NEXT

loop.
A GOTO Loop
Type NEW, press ENTER, and then enter this program:

10 CALL CLEAR
20 A=1

30 PRINT "A="jR
40 A=Rt1
50-GOTO 30

Before you run the programs, think for a few minutes about what it will do.
First, the initial value of the variable A will be set to 1. Then the
computer will print out the current value of A. Finally, the value of A will
be increased by 1, and the prosram will loop back to line 30. It will go on
with this procedure until you press BREBK.

Ready to run the program? Type RUN and press ENIER to see it in action. When
‘you're ready to stop it, press BREAK. .

A FOR-NEXT toap

Now let's examine a similar “counting” program with a FOR-NEXT loop. Trype NEW
and press ENTER to erase the first program. Then type these lines:

10 CALL CLEAR .
20 FOR A=1 TO 5

30 PRINT "A="}A

40 NEXT A

50 PRINT “OUT OF LdoP”

60 PRINT "A=";A.

Page 45

0246P TI-99/2 Book ?: BARSIC for Bedinners

Think about the way this program will be performed. The value of A will start -

at 1 and will be increased by 1 each time th program cowpletes lina 40. As
so0n as the value of A is greater than 5, the prcoram will exit the leop and
cantinue with line 50. If we listed the lines in their oerder aof perfarmance,
alona with the increasing values of A this is what we would have:

Line Number Value of A
10 0
20 1
0 1
40 2
30 2
40 3
30 3
10 q
30 4
40 5
30 5
10 &
g0 4
&0 &
Run the program, and the screen should look like this: -

A= 1

A= 2

A= 3

A= 4

=5

ouT OF LODOP

A= &

%% DONE *%

Page 464

Opbalt T1-9Y,/2 Book & BABLIL tur deglnpeis

The following flowcharts illustrate the differences in the two prograwms.

GOID Progacam EQB-NEXT Proaram.
Clear screen. Clear screen,
Set initial value of fA. Set the "parameters” for Al

beginning and ending values.

Print “A=" and current
value of A. Print "A=" and current

value of A.
Increase A by 1.

Loop back to line 30. Increase A by 17 check to zee if
tie new value for A exceeds the
upper limit set by line 20.

(Loop continues until you If the answer is “no," repeat
stop the program by lines 30 and 40. If "yes," break
pressing BREBK.) out of loop.

Print “Out of Loop."

Print "A=* and current
value of R.

Stop program run.

Wwe can use the FOR and NEXT statements to build a controlled time delay into a
program. Consider this example: ' :

20 FOR A=1 TO 1000
30 NEXT R

Better still, let's try it! Type NEW, press ENIER, and then type in the
following program: ' -

10 CALL CLEAR
20 FOR A=1 TO 1000
30 NEXT AR

‘Nuu fun the program. What happens on the szereen? Not much, really. The
cursor disappears. After a short time delay (while the computer “counts" from
“{ to 1000), the cursor reappears and the program ends:

n% DONE *%
fAlthough no other lines are being executed between the FOR and NEXT lines,

time paszes while the computer counts the number of loaps, in this example
from 1 to 1000. oo

Page 47

Q266 TI-99/2 Book 22 BASILC tor Beginners

Nested FOR-NEXT loops

It is possible for us to use more than one FOR-NEXT loop--ane inside
another-~in a program. We call these pested loops.

Now let's examine a srogram Wwith nested FOR-NEXT loops. The following program
displays sixty—-faur of the alphanumeric characters, codes 32 through 75. (See
Appendix XX for a list of the character codes.) Enter these lines:

NEW

10 CALL CLEAR

20 CHAR=32

30 FOR ROW=7 TQ 14

40 FOR COLUMN=13 TO 20

50 CALL HCHAR(ROW,COLUMN,CHA
R

60 CHAR=CHAR$L

70 NEXT COLUMN

80 NEXT ROW

There are several things we'd like to point ocut about this program. first,

JFOR-NEXT loops do not have to start counting at 1. They can begin with

whatever numeric value you need to use. Second, the nested loop (FOR
COLUMN-NEXT COLUMN) is not just a time-delay loop. It actually contrpls a
part of the program repatition.

Finally, line 50 is called a wrap-around line. It has wmore than 28
characters, so part of it prints on another line on the screen. This is an
important point: program lines can be wmore than one screen-line long. In
fact, a program line, in general, can be up to four screen lines (112
characters) in length. Notice that wrap-around lines (that is, the second,
third, or fourth screen lines of a program line) are not preceded by tha swmall
prompting symbol.

Page 48

et ' Ve P T T] [V I S LIRS

Run the programy and the sixty-four characters are printed in nicey neat rows
on the screen:

! Iﬁz&u
O%f,-./
01234547
8Prii=x?
@ABCDEFG
HITKLMNO
PQRSTUVW
Xyzl 1°_

_ £ 2 3 D[}NE ® %
. Hi there Gary, you really shouldn't go off and leave me. I get lonely and start
talking to myself.

Hold on' There are only sixty-three characters on the screen! What happened
to the other one? Well, there are actually sixty-four. Look at the top line,
and notice that it appears to he indented ane space. That's because character
72 is a space. Even though a space doesn't print anything on the screen, it
does occupy room on a liney and it is a character as far as the computer is
concerned.

Page 49

0264F TI-94-2 Book 2: BWSLIL for Beginners

Error Conditions with FOR-NEXT Loops

We mentioned sarlier that a nested loop must be comeletely containad within
another loop. Were your program to include lines like these,

20 FOR A=1 TO ¢
- 30 FOR X=5 T0 10

B0 NEXT A
90 NEXT X

the computer would stop the program and 1ive you this error message:
®*CAN'T DO THAT IN 90

The computer can‘t go back inside the completad “A" loop to pick up the
higinning of the *X" loop.

Anpther possible error condition with FOR and NEXT statements is the omission
of either the FOR line or the NEXT line. Far example, if you attempted to run
this program,

10 FOR A=1 TO §

20 PRINT R
30 END ﬂ

the computer would respond with

¥FOR-NEXT ERROR

-

If you encounter an error message, just list the program (type LIST and press
ENIERYy identify the errory and correct the problem line or lines.

Page S0

VCEOOE LY/ E LUUR e Lifsadt D b

PR

Review

1. What in & program lire tells the computer not to perform the line
immediately?

2. What are two ways to display an existing program line for editing?
3. What punctuafion is missing from the following statement?
10 INPUT “LENGTH?" L
4. A GOTO statement often causes an “endless loop" whereby a program will not
stop by itself. What are two ways to stop a program in pragress from the

keyboard?

6. What is the term used to describe a FOR-NEXT loop within another FOR-NEXT
loop?

(Answers are on page XX. If you miss a question, go back to the appropriate
section and review the information before You proceed to the next section.}

Page 51

0R&6&P TI-9%2 Book 2: BHolC tor bedginners

More on PRINT Separators (y §)
While using the PRINT statement in the Immediate Mode, we saw that a

difference in spacing occurred when we used a comma, semicolons or colon ta
separate numeric values in a PRINT statement. Let's take another look at this.

Spacing with Commas

Try @ach of the following examples. ¢(In eachy we'll assume that the screen
has been cleared by typing CALL CLEAR and pressing ENIER.)

PRINT 1,2
1 2
PRINT 1,2,3,4,54
1 2
3 4
s 6

So far we have used only small positive integers. Let's try some simple
negative numbers.

PRINT -1,-2
-1 -2

Now let's try a combination of positive and negative numbers.

PRINT 1,2!-3"‘4
] g
-3 ..4 ~

Note that the computer always leaves a space preceding the number for the sign
of the number. For positive numbers, the plus sign (4) ig assumed and is not
printed on the screen, For negative numbers, the computer prints a minus sign
(-) before the number.

e ﬁentianed earlier in this book that there are two print zones on the screen
line. Each print zone has room for fourteen characters per line.

Print Zone 1 Print Zone 2
(spaces 1-14) (spaces 15-28)

(4
when you use A comma to separate numeric values of variables in a PRINT
statement, the computer is instructed to print only ane value in each zone.
Therefore, since thére are only two print zones on @ach line, the computer can
print a maximum of twe values per screen line. If the PRINT statement has
more than two items, the computer simply continues on the next line until all
the items have been printed.

Page &2

024sP T1-99/2 Book £: BASIC tor Begilnners

Now let's try some examples with string variables, using commas as
"separators."

A$="ZONE 1"
B$="ZONE 2"

PRINT A$,B$
ZONE 1 ZONE 2

The strings (the letters and numbers within the quotation marks) are printed

in different zones on the screen when a comma is used to separate the string
variables.

Try this example:
AS="ONE"
B$="TWO"
C$="THREE"
D$="FOUR"
. PRINT A$,8$,C$,08 | ﬁ
ONE TWO '
THREE FOUR
(Mote that for strings, the computer does not leave a preceding space.)
Spacing with Semicolons

Now let's look at semicolon spacing. Try these examples:

PRINT 132

fiha! The numbers are much closer together.

PRINT 13233
1 2 3

PRINT 1325-33-4353-657
1 2-3-4 5-6 7

w

The semicolon instructs the computer not to leave any spaces between the
values or variables in the PRINT statement. Then why do we see spaces between
the numbers on the screen? Two reasons! First, remember that each umber is
precaded by a spaca for its sign. Second, every number is followed by A
trailing space. The trailing space is there to guarantee a space between all
numbers, even negative ones.

Page 53

0264P TI-29/2 Book 2: BARSILC for Beginners

If the semicolon tells the computer to leave no spaces between variables in a
PRINT statement, what happens when we use :trlng variables rather than
numeric? Let's try some examples.

A$="HI THERE'"
B$="HOW ARE YOU?"

PRINT A$;BS ‘
HL THERE'!'HOW ARE YOU?

The two strings are run together. If we want a space to appear between them,
then, we must include the space inside one of the sets of quotation marks!
For example, let's change A$. Type

A$="HI THERE! *
PRINT A$;B$

" HI THERE' HOW ARE YOU?
$pacing with Colons

There is a third "separator® that can be used: the colan. The colon instructs
the.computer to print the next item at the beginning of the next line. It
works the same way with both numeric and string variables. Enter these 11ne5
as an example:

A=-5

B="HELLD" .
CE="MY NAME IS ALPHA"

PRINT A:B8%:C$

-5

HELLO

MY NAME IS ALPHA

To review for a moment, then, these aré the three print separators we have
used:

Punctuation mack Qeeration

Comma Prints values in different zones; maximum of
. two items per line.

Semicolon Leaves no spaces betweenﬂitems. (The spaces

that appaar betwaen numbers are results of the
built-in display format for numeric
quantities.)

Colon —~Prapgts next item on followina line.

Paga ¥

OeoP 11-99/2 Book ¢: BRLIL for Beginners

Understanding the Order of Arithmetic Operations

You've been introduced before to the arithmetic pouwers of your computer, but
it's time now take a more detailed look of some of its wmathematical
capabilities., For example, what is the answer to this problem:

445%5=7 {Remember, * means "multiply” to the computer.)

Lat's gsay, for example, that the answer represents an amount of money you aue
a friend. Your friend argues that you owe him $50, because

446=10y and
10x5=580

*

You, however, don't agree. You say you only owe $34, because

Ax5=30
4430=34

wWho is right? Why not ask your computer?

Type PRINT 414%S
and press ENIER.

The answer is 34. You win!
Order of Operations

There is a commonly accepted order in which arithmetic operations are
performed, and your computer performs calculations in that order. In any-
problem involving addition, subtraction, multiplication, and division, the
aritimetic operations are completed in this way:

Multiplications and divisions are performed
before additions and subtractions.

This’iélthe method your computer used to solve the previous example. It first
multiplied 4%5 and then added the result to 4, giving you a final answer of
34. Now try this example:

PRINT &4+15/3%2-4

Before you press ENJERs let's think about the way the computer evaluates this
problem. Scanning the problem from left to right, the computer solves it in
“this order:

15/3=5
5¥2=10
6+10=164
16-9=12 -

Al

Your ansueb) then, should be 12. Press ENTER now, and see the result:

PRINT &4+15/3%2-4
12

Page 55

O246P TI-99.2 Hook 2: BASIC for Beglinners

U.1n1 Parentheses to Alter the Order of Operations

Supbose. however, that we want the computer to solve the last problem like
_this:

(1) Add 6 and 15.
(2) Divide the result by 3.
(3) Multiply that result by 2.
(4) Subtract 4, giving a final result of 10.
We can changa the built-in computational ordar by using rarentheses. Try thist
PRINT (&415)/3%2-4 Press EMTER.

The answery 10, is displaved on the screen, because tha computer has romplated
the computation inside the parentheses first. So our new order of operations
becomes:

(1) Complete everything inside parentheses, innermost first.

(2) Complete multiplication and division, in order from left to right.
(3) Complete addition and subtraction, in order fram left to right.

Now try this example:
TPRINT 8/2%4/2

The answer is 8, because
8/2=4
4%4=14 N
16/2=8

But suppose we entered the problem with parentheses; like thisi

PRINT 8/(2%4)/2

Thfé“{i%é, we get a result of .5y because the expression within the
parentheses has heen solved first:

2%q=g
8/8=1
1/2=.5 ’
Heére's a slightly harder problem to tiy:
PRINT 274410/2%100-30

If we enter the problem just like this, we obtain an answer of 744 bgcause

10/2=5 _
5x100=500
274+500=774
774-30=744

-

Page 5&

TAES

0R4&4P TI-99/2 Book 2: BASIC for Beginners

But by adding parentheses in different places we can get a variety of answers:

PRINT (274+10)/2%(100-30)
9940

PRINT (274%10)7(2#100)-30
~-28.58

PRINT (274+10/2)%100-30
27870

Try thg following for practice:
PRINT 38146-4
PRINT 384s-4%2
PRINT (38+4—-4)%2
PRINT ((38+6-4)%2)/ (442}

Rearrange the parentheses in the last problem.

Page &7

How is the answer affected?

0R&6R TI-99-2 Book £2 HRASLEC far Beg.uners

Understanding Scientific Notation

So far, all the examples we've tried have given results in a normal decimal
display form. However, the computer displays very long numbers {more than ten
digits) in a special way. Try this programs.

NEW

10 CALL CLEAR
20 A=1000

30 FOR X=1 TO §
40 PRINT A

50 A=A*100

60 NEXT X

When you run the programs the first four results are printed out in the normal
form. The last result, however, looks like this:

1€411
We call this special form scientific notation. It's just the com, .ter's wa?

of handling numbers that won't fit into the normal ten-digit space allotted
for numbers.

11
- 1E411 means 1X10 or 100,000,000,000

As you CAn 388y iE+11 represents a very large'number!

Page 58

VeZoel e YYse bOLY ©e bl TWOH DEYLONE @

lsing the INT functiion

The INT function gets its name from the word integer, meaning whole number,
one that has no fractional part. Integers include zero and all of the
positive and negative numbers that have no digits af ter the decimal point.

The best way to learn how the INT function works is by trying it. First,
let's work a division problem that doesn‘t result in a whole mwmber answer.
Type

PRINT 14/3
and press ENIER. The answer is 5.333333333.
Now try this example:

PRINT INT(16/3)
5

INT kept the whole number part of the answer and threw away the digits after
the decimal point. Notice that the number or expression that the INT function
works on must be enclosed in parentheses. Try another examplel

PRINT INT{(7/86) (7/6=1.166666666)
i (INTeger of 7/6<1)

The answer is 1} all of the fractional part has been discarded.
How about a real-life problem? Let's say a salesclerk is giving $1.37 in

change to a customer. The customer wants as wmany quarters as possible. How
many quarters can be given? '

Page 59

Qh&P TI-9vY<2 Book 2@ buoll tor beglnners

PRINT INT(1.37/.25%)
The answer iz 5. Five quarters can be given.

More than one INT function can be used in a PRINT statement. Here's an
example:

PRINT INT(1/3);INT(20/9)
o 2

What would happen if you entered these values with the INT function: 8, 8.9%,
8.347 Try them and see.

PRINT INT(8)
8

PRINT INT(8.99)3INT(8.34)
B 8

If you use INT with a whole number (integer), you just get the same number
back. In the other two examples, no matter what digits are to the right of
the decimal point, the INT function "truncates" or cuts off those digits--that
js, it works this way for positive rumbers. What happens with negative
numbers?

Ne'il use a program to explore INT and negative numbers. Enter these lines:

NEW

10 CALL CLEAR

20 FOR A=1 7O 7

30 PRINT -A/3,INT(-A/3)
40 NEXT A

Page 60

Oe&oP T1-99/2 Wook i BHLIL 0r Beginners

Now RUN the program. The screen shows these results!

-.3333333333 ~1
= . 6666666666 -1
-1 -1
-1.333333333 -2
-1.686666666 -2
-2 ~2
-2.333333333 -3

S0 INT(X)-—where X represents a number or a mathematical expression--computes
the nearest integer that is less than or equal to X. Perhaps looking at a
number line will help to explain.

¥

{number line graphic)

As you see from the number line, when X has the value -0.3, the nearest
integer that is less than or equal to X is -1.

One last feature assaciated with INT is very useful to know. It can appear on
the right side of an equals sign in an assigmment statement. Foar examples try
the next series of lines.

A=INT(4/3)42
_ PRINT A
3

In the assignment statement, INT(4/3) produces the integer result of 1. This
result is added to the constant 2, yielding 3 as a final result. A is then
assigned the value of 3 and printed. .

Try some other experiments with INT so that you become even more familiar with
how it wOrks.

Page 61

Q266F TI-99/2 Book &: BHSIL tor Beginners

Using the RND Function and the RANDOMIZE Statement

The letters in the name RND are taken from the word RaNDom. To find out what
RND does, let's try a few examples in the Immediate Mode.

Enter the NEW command, and then enter this line:
PRINT RMD

Now try entering the line again. Here's an interesting situation' Every time
we use RNDs we get a different number. That's exactly what RND does--1t
generates random numbers. ’

Now let's try a program that produces ten random numbers. Enter these lines:

20 FOR LOOP=1 TO 10
30 PRINT RND
40 NEXT LOOP

When you've checked your program for errors, run it. R list of ten random
numbers is printed on the screen. Look at the numbers closely. Are any two
of the numbers identical?

You may have noticed that all the numbers generated by RND are less than one
(1.0) in value. Alse, there are no negative numbers. RND is preset to

produce only numbers that are greater than or equal to zero and less than one
(0sn<l). .

Page &2

QeheP TI-9%9/2 Book £: BASIC tor deginners

Write down the numbers this program produced, and then run the program a
zacond time. Check your written list against the numbers on the screen this
time. Very strange! The list of numbers is the same!

This feature of the RND function is important to remember and can be very
useful in certain applications. Within a program, RND produces the same
sequence of random numbers each time the program is run.

UNLESS.a«'' Unless the BASIC atatement RANDOMIZE is used in your program.
Add the RANDOMIZE statement shown below to the program that is still in your
compy ter.

10 RANDOMIZE

Clear the screen now (type CALL CLEAR; press ENIER)r and list the changed
program on the screen:

LIST

10 RANDOMIZE

20 FOR LOOP=1 TO 10
30 PRINT RND

40 NEXT LOOP

Run the program againy and compare the new set of numbers with your written
list from the first program run. Are they different this tiwe? They should
be' Continue to experiment with the program until you feel comfortable with -
RND and RANDOMIZE. For example, try changing line 30 of the previous program
to:

30 PRINT RNDFRND ' R
What result does this change have on the program?

If you want the program to generate more or fewer than ten random numbers,
just change line 20.

Page &3

OpsaF TI-99-2 Book £: BASIL rur Beginners

Other Random Number Ranges

The program you just completed generates random numbers between 0 and 1
(0<n<l). Now let's examine ways to increase the range of the numbers we
generate.

The RND function can be used as part of any legitimate computatian. For
exampla, 10%RND and (10%RND)>+7 are both valid uses of RND in BASIC. To show
what is produced when RND is used in this way, enter the following statement.

PRINT 10%RND

What number appears on the screen? Try the same statement again. What number
did you get this time?

In both these examples, you should see a decimal point followed by ten digits,
or one digit to the left af the decimal point, followed by nine digits to the
right of .the decimal point. That's because 10¥RND produces random numbars in
the range of O to (but not including) 10. Try thig:?

PRINT 100%RND

and see what is produced. This time you could get one or two digits to the
left of the decimal point, in the range from 0 through 99.999....

Let's use a program to generate some random numbers in the ranges 0 to 10 and
O to i00. Enter these lines:

NEW

10 RANDOMIZE

20 FOR LOOP=1 TO 5

30 PRINT 10%RND,1O0C*RND
40 NEXT LOOP

Page &4

O2bab 11-79/2 Book @I bRASIL ror bBeginners

Now clear the screen and run the program. Although the numbers you generate
on vour screen are different, they look something like thiss

RUN

3.196128739 11.32761568

6.23353281 7.502421843)
7.030941884 33.17351797

» 6687170795 86.40802154

?.388967713 .75845322811
1% DONE #¥

Study the differences between the numbers in the left print zone on the screen
and those in the right print zone. Can you see that the range is greater in
those on the right? Run the program again to produce other numbers.

Suppose we'd like to eliminate all digits to the right of the decimal point
and produce positive random whole numbers (integers). Remember the INT
function we discussed earlier? This is a job for INT!

‘Change the program by typing and entering this new line:
30 PRINT INT(1O¥RND), INT (100%RND)
When you list the program now, it looks like this:
S L3
10 RANDOMIZE
20 FOR LOOP=1 10O 5

30 PRINT INT(10%RND),INT(100
#RND)

40 NEXT LDOP

Page &0

02464P TI-99,/2 bBaok £: BASIL tor Begiiawrs

o When you run the program, the screen shows two series of random whole numbars
{the numbers you genarata on your screen are different):

RUN

9 51
0 14
6 77
5 ?
1 cl
%% DONE #*%

A1l the numbers on the left side of the screen have values from O through 9,
whereas' the numbers on the right have values from O through 99. The INT
function throws away the digits to the right of the decimal point. The
following table summarizes what we have covered %0 far.

Pragram Instruction Range

RND ¢ through .999%7...

10%RND ' 0 through 2.999%...
INT(10%RND) 0 through 9 (integers only)
100%RND 0 through 79.9999...
INT(100%RND) 0 throush 99 (integers only)

Notice that all these ranges begin with the value of zero. In wany games and
simulations, however, we need random numbrrs that start at some other value.

For example, to simulate the throw of one die you need a random number
‘generator that produces values from 1 to 4. You have seen that INT{1O%RND)

aives values from 0 to 9. What dees INT(6®RND) produce? Change line 30 in
the program to PRINT INT(&#RND) and run the new program.

Page 46

Q2464P TI-929/2 Book d: BASIC faor Beginners

Type:
30 PRINT INT{A%RND)
CALL CLEAR
RUN
4
1
5
2
3
% DONE ®*

Your screen shows a list of five random numbers ranging from O to S. What
happens if we added the value 1 to each item in this list? The resulting
numbers range from 1 to 6. That's just what we need to simulate the throw of
a single die. Again, alter the program as shown below and run it.

Type:

30 PRINT INT(&%RND)i1
CAalL CLEAR
RUN

oo = 5L

#% DONE **

That does it! The program now in your computer is a simulation (imitation) of
throwing a single die five times.

Page &7

OR86P TI-992/28 Bouk &2 BASIC for Bewinners

A Two-Dice Simulation

At this point we can easily design a program to simulate the throws of two
six-sided dice. Before you start, erase the old program by typing NEW. Then
enter the following programs

S CALL CLEAR

10 RANDOMIZE

20 INPUT “NUMBER OF ROLLS?":IN
30 FOR ROLL=1 TO N

40 DIE1=INT(&*RND)+1

50 DIE2=INT(S*RND)+1

60 PRINT DIE1;DIE2,DIEI{DIER
70 NEXT ROLL

80 PRINT

90 GOTO 20

This program prints out the number of "spotc" on each die and the sum of the
spots on both dice faces. VYou are asked how many rolls you wish to make at

the start of the program. Run the program now and watch what happens.

Firsty, the program prints a request for the number of rolls to make. Enter a
numbar (5, for example) and press the ENITER key.

NUMBER DF'ﬁﬂLLS?S

2 5 7

& & 12

3 1 4

2 3 5 .
1 4 5

NUMBER OF ROLLS?

The program keeps looping back to the IMPUT request line. (If you want to
stop the proarams just press BREAK.)

Try entering different values for the number rolls. What happens if vou try
30 rolls? Then make some changes to the programy, if you'd like to
experiment. For example, how would you alter the program to simulate the
throwing of three dice? Two eight-sided dice?

Page &8

(SRR S | R A Edurh s DHIQAL (] e i &

Error Conditions with RND

The error messages produced by an improper usage of RND are essentially the
same as the error nessages we've menticned before. Here are some examples:

Typing Errars Error Messzagse
10 PRINT INT(10RND) #% TNCORRECT STATEMENT IN 10
10 PRINT INT(10¥RND ## TNCORRECT STATEMENT IN 10

About the only new error condition we need to mention occurs if you try to use
the letters RND as a numeric variable name in an assigmment statement. For
exampley if you type

RND=5
the computer responds with

¥INCORRECT STATEMENT

This occurs because RND is "reserved,* to be used only as a function in
BASIC. A list of all the reserved words is in Book 4.

Page 49

0R&HP TI-9%/72 Book i BABIC for Beginners

Randomized Character Placement

The following program utilizes the INT and RND functions to benerate random
screen positions for a character you input. First, type NEW and press ENIER
to erase your old program; then enter these lines:

10 RANDOMIZE

20 INPUT "CHAR CODE?*:CODE

30 CALL. CLERR

40 ROW=INT(24%RND)+1

50 COLUMN=INT(32*RND)+1

&40 CALL VCHAR(ROW,COLUMN,CODE)
70 GOTO 40

We'll use the character codes 33 through 953 because character 32 is a blank
space, we want to avoid entering it when the program asks for a code number.

Before running the program, look at the line—-by-line description below.

Line 10 wRandomizes" the random number
series each time the program is run.

Line 20 Stops and asks "CHAR CODE?".
fAissigns rumber you enter to the
variable CODE.

Line 30 Clears promptins message and input
character code from the screen.

Line 40 Produces random integer in range -
of 0 through 235 adds 1 to value
and assigns value to variable ROW.
tine 50 Produces random integer in range of
0 through 31; adds 1 to value and
- assigns value to variable COLUMN.

Line 40 Prints input character in random
position designated by lines 40 and 50.

Line 70 Loops back to produce new random
position for character.

Page 70

ViZGal LYol DO0K e RFieae P U LML S

Now clear the screen with CALL CLEAR and run the program. For this first
example, enter 42 (the character code for the asterisk) as the input for CHAR
CODE. The screen looks something like this:

*

* *

To stop the program just press BREBK. Then try running the program several
times, putting in a different character code each time. See if any unusual
designg are produced.

When you've finished experimenting with different characters, let's change the
program to generate characters at random, as well as placing them randomly on
the screen. First we'll have to decide how to set the limits we want for the
character range. Here's a general procedure for setting the limits for use
with RND:

Subtract the lower limit from the ypper limit.

Add 1.

Multiply that result by RND.

Find the integer (INT) of this result.
“Add the lpower limit.

Now we know that we want 63 characters, with character codes ranging from 33
through 95. So our lower limit is 33, and our upper limit is 95¢

95-33=62
6241 =43

Page 71

bl P s VA e - e s e =

The number we want to multiply by RND is 63, and we must use the INT function:
INTCA3%RND)

Mow check the limits established when we add our lower limit, 333
0+33=33 (lowest possible character code)
62433=95 (highest possible character code)

INT(S62%RND 432 gives us random whole numbers in the rﬁnge we need. Type the
following new line:!

20 CODE=INT (43%RND) 433

and press ENIER. Now clear the screen and LIST the program to review this
change.

LIST

10 RANDOWIZE

20 CODE=INT(43*RND)+33

30 CALL CLEAR

40 ROW=INT(24%RND)41

50 COLUMN=INT (32%RND) +1

40 CALL. VCHAR(ROW, COLUMN, COD
E)

70 GOTO 40

When we run the program this time, the computer generates a random character
cade and then print the character in random pasitions on the screen. (Press
BRESK when you want to stop the program.) Run the program several times to
see different characters. ‘ .

Experiment'—-By making changeé in twa lines, yau can cause the previous

program to print different random characters each time it loops. Try it!
(Hint: Think about lines 30 and 70.)

Page 72

0R646P T1-99/2 Book 2: BRSIC for Beginners

Using the IF THEN Statement

The IF THEN statement causes the computer to make a decision about whether a
condition is true or false. If the condition is true, the program transfers
control to a different line (as in a GOTO statement). If the condition is
false, the program proceeds with the next sequential statement.

All the programs we've considered so far in this book have been constructed so
that they either run straight through or loop using a GOY0 or a FOR-NEXT

loop. The IF THEN statement provides you with the capability of making
bhranches or "forks" in your program. A branch or fork is a point in a program
where either one of two paths can be taken, just like a fork in a road.

(TLLUSTRATION)®
TD: PRINT B

T0: A=

The general form of an IF THEN statement looks like this:

IF conditign THEN lipe pumber

The condition is a mathematical relationship between two BASIC expressions.
The line number is the program line to which you want the program to branch if
the condition is true. If the condition is not true, then the program line
following the IF THEN statement is executed. For axampley

30 IF K<10 THEN 70

The statement saysd If the value of K is less than 10, then go to 1ime
70 of the program. 1f X is greater than of aqual
to 10, then do not branch to line 70. Instead,
execute the line following line 30.

Page 73

QueaP 1177/ Buoek ¢i bBroic Tar buwlving: 3

Let's try a demonstration program. (Pre.s the comma key in conjunction with
either SHIFT or ECIN to enter the < sign.) Enter these lines:

NEW

10 CALL CLEAR
20 K=1

30 PRINT "K="jK
40 K=Kt1

80 IF K<10 THEN 30
40 PRINT "OUT OF LOOP®

Now run the program.

= 1
=2
= 3
= 4
=5
= 4
=7
=8
K= 9
ouUT OF LDOP
#% DONE #%

Each time the program reaches line 50, it must make a "true or false"
decision. When K is less than 10, the IF condition (K%10) is true, and the
program hranches ta line 30. When K equals 10, however, K<10 is false. The
program then executes line &0 and stoes. -

We mentiocned earlier that the condition is a wathematical relationship betuween
two expressions. In the example you've just seen, the mathematical
relationship was <y or "less than.” There are a total of six relationships
that can be used in the IF THEN statement:

Page 74

0264P TI-929/2 Baok 2: BASIC for Beginners

Matbematical BASIC
Relationshie Sxmbgl Sxmbal
Equal to = =
" Less than < {,

Graater than > :
Legs than or

equal to 4 =
Greater than

ar equal to & e
Not equal to e Lo

Suppuse we changed line 50 in the program to this:
80 IF K<=10 THEN 30

How is the program's performance be affected? Try it! Enter the new lines
and then run the program again.

Now the program prints the value of K all the way through 10, because the new
line says, "If K is less than or equal to 10, branch to line 30."

Tha IF THEM statemant can be a powerful tool in program development. Try this

program for a graphics application:

- NEW
10 CALL CLEAR
20 K=1
30 CALL HCHAR(K,K}1,42)
a0 K=K+1
50 IF K<25 THEN 30 | -
&0 K=1
70 CALL HCHAR(K.K+3,42)
80 K=K+1
90 IF K<25 THEN 70
100 GOTO 100

(Press BREBK to stap the p'rogram.) Can you follow this pattern to create more
than two diagonal lines?

Page 75

O266P TI-99/2 Boeok i BASIL 1o Bedinners

Error Conditions with IF THEN

Like most 8ASIC statements, the IF THEN statement iz epretty ‘particular about
its form. The main errors that can accur in using the IF THEN statement are
shown below:

20
20
20
20
All of
during

of the

If the

IFA=B THEN 200 (No space after IF)
IF A=BTHEN 200 {No space in front of THEN)
IF A==B THEN 209 (Invalid relational symbol combinations)

IF A= THEN 200 (No expression on one side aof the relational symbol)
the above conditions produce an error message either when entered or
the running of the erogram, along with a reference to the line number
statement in which the erraor occurs.

line number refecenced in an IF THEN statement does not exist, the

program stops and produces a message saying that the line number referenced in
the statement is nat found in the program. For example (using the line
above), if 200 is not a valid line number in your program, you see this error
nessage:

% BAD LINE NUMBER IN 20

Page 7&

0R&4P TI-99/2 Book 2! BASIC for Beginners

Review

1. Which arithmetic operations are performed first, multiplications and
divisions or additions and subtractions?

2. How can you change the normal order of arithmetic operations in a program
line?

3. What does the INT function do?

4. What is the difference between RND and RANDOMIZE?

%. If the condition in an IF THEN statement is true, what happens?

What if the condition is false?

(Answers are on page XX. If you miss a question, go back to the apepropriate
section and review the information before you proceed to the next section.)

Page 77

066l 1T-99/2 Book .. BRLBLIL tor Beguuwwia

Answers to Review an Page 2B

1. C. A variable is a word or letter that is assigned a particular value,

2. C. The difference between numeric variables and string variahles is that
numbers are assigned to numeric avariables and characters are
assianed to string variables.

3. D. The difference between NEW and CALL CLEAR is that CALL CLEAR only
clears the screen and NEW both clears the screen and erases the
computer's memory.

4. E. All of the given answers are valid ways to correct errors.

5. A matched with Z. A comma displays each item in a different print zone.
B matched with X. A semicolon displays items clpose together.
¢ matched with Y. A colon displays items on separate lines.

4. A. The numbers within the parentheses after a CALL HCHAR or CALL. YCHAR
’ cammand specify (row, columns character-code, number of repetitions).

Page 78

QR&6P T1-99/2 Book 2@ BASIC for Beginners

Answers to Review on Page 51

i. Line numbers

2. EDIT lipe=pumber (press ENIER)
line-ounbes (press UP ARROW or DOWN ARROMW)

3. Calon (%)
10 INPUT “LENGTH?":L

4. BREAK or CLEOR
5. Nested

Page 79

Yol TL-9%/d Buen we LHedl 1ol Lo, el ®

Answers to Review on Page 77
1. Multiplications and divisions are performed first.

2. Yau can insert parentheses to change the normal order of arithmetic
operations.

3. The INT function truncates (deletes) any fractional paft of a number$ thus,
INT makes the number an integer.

4, RND generates the same series of numbers. RANDOMIZE causes the RND
function to generate truly random numbers.

§. If the condition is true, the computer branches to the line number
specified.

If the condition is false, the computer simply proceeds to the next line in
succession.

Page 80

QeeP 1i-YYsd BOOK e bHOLL i

Index

Arithmetic Operators
CALL CLEAR
CALL HCHAR
CALL VCHAR
RELeie
EDIT
Error Correction
Errer Messages
FOR-NEXT
GOTO (GO TO)
IF THEN
Immediate Mode
INPUT .
INGert
INT
LET
LIST
NEW
PRINT
#rint Separators

Colon

Comma

_ Semicolon

RANDOMIZE
RND
RUN
" Variables
Numeric
String

[SLEL R IR

Page 81

