Q2660 Ti-99/2 Book 23 BALIC tor Beginners

ace to start if you are just beginning in

the uorld of computer programming.

(title page)

Baok 2:

r 99/2

BASIC for Beginners

Copyright c 1983 Texas Instruments Incorparated

T

ey

Page 1

Book 2: BAGIC for Beginners--Contents

Vou and Computer Programming « « « « s 2 o « = a » o o » « = & &«
How to PRINT Messages in the Immediate Mode .+ « &+ o & o ¢ o o
Performing Calculations with the PRINT Statement . « ¢ o s « « @
Error Messages and Ways to Correct Errors in the Immediate

Using Numeric Variables and the LET Statement . .
Assigning Numeric Expressions to a Numeric Variable
Using the CALL CLEAR statement . « « o o ¢ o & = =

Using String Variables and the LET Statement . . « &

Correcting Errors with DELete and INSert « « « & &
Using the Comma (,), Semicolon (3)y a :

USinQ the NE” Cmand 4 @ w a 3 2 = 8 S « @« w e s & u @ '- .- s s » % B

Moda

Computer Graphics—-Pasitioning Characters with CALL VCHAR and CALL

Using 'the Repetition Feature of CALL HCHAR and CALL VCHAR

ROVIEW « « » « s % = s s @« = = a s » s u » = & &«
Simple Programming—-Line Numbers . « « « » o «
Using the RUN Command .« « o o a s o o a o =
Using the LIST Command to Review Your Program
How to Edit a Program-~Correcting Errors . . «
Adding Program Lines « « « « o o o « = & o = &
Removing Program Lines « « « « = = o o » 2 « o &
Using the INPUT Statewment with a Numeric VYariable
Using the INPUT Statement with a String Variable .
Using the GO TO Statewent--lLoops-—-BBEGBK . « « .
More Practice with the GO TO Statement
Using the FOR-NEXT LOOP +« 4 = « o s s o = = « «
Nested FOR"NEXTLOOPS e % ® 5 ® S % = W & ®w 8 @
Error Conditions associated with FOR-NEXT Loops

- » L . . . - L L] L - L] L] L] .

pIV)

XX
XX

XX
XX

XX

XX

HCHA

[] . . a L d] L] L L a2 L] . e a . . a . - a £ -

- [] - - - L] . L LI 1 - " - a

‘Y‘x
XX
XX
XX
XX

XX
XX
XX

XX
XX -

XX
XX
XX

REV 12W &+ &« & 8 % & ¢ = & w s ¥ s € ® & » B . & =

Page 2

Ocbatr Til-9Ys2 Book o

BAS1L, tor Heginners

More on PRINT Separators (5 5) « o « s 5 o s w o« o 2 a s s a a w o« s s s « XX
Understanding the Order of Arithmetic Operations . + + « & « o o s o = » s « XX~
Using Parentheses to Alter the Order of Operations . « « o o « o = s o « » 2 XX
Understanding Scientific Notation .« . & ¢ « o » = = o o s @ « a » s a » « « XX
Using the INT FUNCEIOon & « ¢ « o ¢ « o s =« o & s 5 « s = « « « « o » s « a » KX
Using the RND Function and the RANDOMIZE Statement . . . « ¢ & ¢« v ¢« o ¢ « « XX
Other Random Number RANGES « » » « s s s s & » = 2 s s« 3 v v » a « » = o » s XK
A Two-Dice SIimulation « « = « = = o « s « s » a = s « s« s v s 2 « o « » = = XX
Error Conditions with RND . ¢ ¢ & ¢ & 2 o « 2 o s 2 2 s s s s s s o« s « « s XX
Randomized Character Placement .« « = = o o o » = « = « s 2 » s s 2 o » » « » XX
Using the IF THEN Statement . « « o « 2 o o o s « =2 s « « s o o s o« s = o s XX
Error Conditions with IF THEN . & & « ¢ & 2 2 » o« 2 s s 5 s = « = = o« » » « XX
REVIOW = « 2 2 = » o 2 2 s » = = o a s s s 2 2 38 2 2 2 s s« a s s o « » » o ¢« XX
INdEX « « =« » s =« o o % » 2 o s s s s s a s o = s a s a s = a v a = o« o = s XX

Page 3

VEQOE 1L Y i Ui e et b wl L sl o

You and Computer Programming

What is computer programming? Nothing mysterious! Programming is simply
communicating with a computer——telling it what to do and when to do it.
To program your computer you only need to learn two things? the language
your computer understands, and the way you talk to it. No lengthy
training periods or super~sophisticated skills are required.

The Language——8RSIC

To communicate with any computer, you need to learn its language. The
language we'll be exploring here is a form of BASIC (short for Beginners
All-purpase Symbolic Instruction Code). BASIC was developed by John
Kemeny .and Thomas Kurtz at Dartmouth College during the middle 1960's.
Although BASIC is anly one of many computer languages, it is one of the
most popular in use today. It's easy to learn and simple to use, vet it
is powerful enough to do almost anything you want to do with your
computer.

fis you work through this book, you'll notice one striking fact about
BASIC: it's very much like English! You'll see words like PRINT, NEUW,
RUN, and LIST. The meanings of these words in BARSIC are almost identical
to the definitions you already know and understand. This is what makes
BASIC so easy to learn and fun to use.

" The Way You Talk to the Computer--the Keyboard

Nou. hou do you talk to the computer° Everyth1ng you need to use to

your 1nstruct10ns, and the conputer "hears" them.

Page 4

Qe boP II_*‘?‘?/E Book &2 BASIC for Beginners

About this Book

This book guides you step by step throuph the process of learning BRSIC. The

material included here gives you a good foundation for the continued
development of your programming skills. Throughout the book, each explanation
of a statement or command is followed by one or more examples for you to try
out. Also, you can (and should) experiment with other examples of vour own to
help you become thoraughly acquainted with the capabilitites of your computer.

Remember: the computer is a tool for your use and enjoyment, not something to
be feared. It has no intelligence, only some extraordinary capabilities., It

does exactly and only what you tell it to doj it can't do anything by itself.

TO PROGRAM THE COMPUTER:
1. Learn the language (TI-99/2 BASIC).

2. Learn the means of talking to the computer (keyboard).

Page § -

e v o — N - - R
T e YT R N s S v As AN QORI " TR T MDA I AT W PR A A S PR T - OSSR O S

weoGlr 1l v.eE BOOK @i broll Tul Odugs a3

o~ How to PRINT Messages in the Immediate Mode

In the Immediate Mode, your computer “immediately" performs each 8AsSIC
statement you've typed in as soon as you piess ENIER. Because you can see an
instant response on the screen, the Immedi te Mode is a good way to introduce
and explore certain TI-99/2 BRSIC language statements.

Turn on your television, and then turn on the console. When the title screen
appears, press any key to begin. When you see the next screen, press 1 for
T1-99/2 BRSIC.

TI-99/2
TEXAS INSTRUMENTS BASIC COMPUTER
TI-99/2
BASIC COMPUTER PRESS

1 FOR TI-99/2 BASIC
READY~PRESS ANY KEY TO BEGIN

1983 TEXARS INSTRUMENTS

‘The flashing underline you see on the screen is called the qursor. It tells
you that the computer is ready for you to uce.

»_ ("prompting character" and flashing cursor)

- The PRINT statement tells the computer to display something on the screen.

You type the wor y fO ,
and the computer prints the message when you press ENIEB. .

Note: Type quotation marks by holding down either the SHIEI or ECIN key while
pressing the P key.

Page &

VeEoor 1L v/ E DODOKR Ce DROLL LW DRygaiiiiey D

Type the PRINT statement below:

PRINT “THIS IS A MESSAGE" (your statement to the computer)
THIS IS A MESSAGE (the computer's response)

Remember to press the ENTER key after the ending quotation marks. This is the
computer's cue to perform what you have requested.

NOTE: If you make a mistake, don't worry about it. Just press ENIER and start
over for right now. Correcting errors are covered a little later.

Now type this PRINT statement:

PRINT "HI THERE®
HI THERE

Try anather example. Type these words, then press ENIER.
PRINT “I SPEAK BASIC. DO vOUu?"

(When you run out of room on a line, just keep typing-—the computer
automatically returns the cursor to the beginning of the next line.)

Experiment by entering wmore PRINT statements with your own messages. As long
as you begin and end the wmessage with quaotation marks, the computer displays
it.
(Notice that the lines move up on the screen when you press ENIER and again

L . : - . . 4

scrollina. The cursor shows you where the next line begins.)

Page 7

0R66P TI-99/¢ Book ¢i bhell for Beginners

- Performing Calculations with the PRINT Statement
You can use PRINT to display numbers. With numbers, vort do not need quotation
marks. To try this, type the word PRINT, follow it .y a number, and press
ENIER.
PRINT 4
q
You can also have the computer perform calculations with the PRINT statement.
Study the information below for typing arithmetic symbols on the keyboard.
The computer uses the asterisk (%) for multiplication and the slash (/) for
division. ’
plus sign + Use the SHIEI key and the = key.
minus sign - Use the SHIFTI key and the /£ key.
times sign * Use the SHIET key and the 8 key.
divide sign / Use the / key.
decimal point . Use the Periad (,.) key.
Try the examples on the right; then make up your own numbers. Try several
kinds of calculations.
—

Page O

QueeHE 11-9Yv/2 Book da BRbBLL tor Beginners

PRINT 344
7

PRINT 86459
145

PRINT 1.2+46+3.1498.6
148.9

e Biame - s

PRINT 6.4-3.%5
2.9

PRINT 99-18
81

PRINT 45%9
405

PRINT 7.98%56.07
447 .4386

PRINT 67/56
1.196428571

~ PRINT 42/6
7

v ’ Page 9

Yehol 11l Yo HOwh e Bhesn Twl weddied 2

frror Messages and Ways to Correct Errors in the Immediate Mode

Every computer programmer makes mistakes, so don't hesitate to try experiments
of your own as you go through the examples in this book. Errors do not hurt
the computer. It quickly recognizes things it cannot do and gives you an
error message such as INCORRECT STATEMENT or CAN'T DC THAT to tell you to try
again. When this happens, you can simply identify the errory retype vour line
correctly, and press ENIER again. :

Some of the most common errors are typing a wrong letter and omitting a

necessary part of a statement. ’
computer does not accept in a PRINT statement:
1. A misspelling in the word PRINT.
2. A missing or extra quotation mark.
3. Spaces within the word PRINT.

Experiment with some intentional errors to become more comfortable with error
messages.

(1) Misspelling in the word PRINT
éIRNT “THIS IS A MESSAGE"
#% INCORRECT STATEMENT *%

(2) Missing or extra quotation marks

PRINT "THIS IS A MESSAGE

%% [NCORRECT STATEMENT ¥
{3) Spaces within the word PRINT
P RINT "THIS IS A MESSAGE"

. %% INCORRECT STATEMENT **

Page 10

UedhP 11-9%/2 BOOK ot BRLLL (Oi beyglinners

Try a few more messages with the PRINT statement, introducing intentional

errors so that you become familiar with the error messages.

If, however, you see an error before you press ENIERs you can correct it. The
following shows two ways to correct errors in the Immediate Mode (if you have
not yet pressed ENIER):

1. While holding down either the SHIEI or the ECIN keys, use LEEI SRROW (§ key)
to backspace to the error and correct the error by typing over it.

If, while backspacing, you move the cursor past tne errory move the cursor
to the right with RIGHT SRROW (SHIET D or ECIN D) until the cursor is

positioned over the error. (Note that characters are not erased as you

move the cursor aver them. If you need to erase a character or word, use

the SPRACE BAR to advance the cursor over the character.)

2. You can press EBASE (ECIN 3) to erase the entire line and start over.
(Hold down the ECIN key and press 3).

Nou look back at the PRINT statements on the previous page. Type the commands
incorrectly (exactly as written), but instead of pressing ENIER and getting an
. error message, correct the errors using one of the above methods.

Experlment with your own intentional errors and practice correcting them
before you press ENTER. As you continue your work with the computer, make uyse
of these methods to correct errors. (We'll discuss other ways to correct
errors later in this book.)

Page 11

Using Numeric Variables and the LET Statement

Q variable is a "name* given to a number or a group of characters. Although
there are two types of variables, in this section we'll consider only those
variables that give names to numbers. These are called numeric variables. A
numeric variable is just a name given to a numeric value.

Az the word yariable implies, the value of a variable can be made to change of
vary. A rumber is assigned to a numeric variable with the LET statement.
Variables can be up to 15 characters long, but they are generally kept fairly
short for convenience. . :

In the LET statement the word .LET is followed by one spacey then the variable
(the name), then an equals sign, and finally the muwmeric value you are
assianing to the variable. '

Try a few examples. Type in the following lines, pressing ENIER at the end of
each line.

LET A=5
LET A2=8
LET ALPHA=10

‘You can think of variables as labeled boxes that hold assigned values. Only
one value at a time may be assigned to a given variable, but you can change a
value easily. Type this LET statement, pressing ENIER at the end of the line.

LET A=8

The value of A is no longeE 5., The & has been replaced by 8.

Now use PRINT statements to check the values you have entered. Type PRI&T A -
and press ENIER. B

PRINT A
8

Page 12

VL [S [S O B W v ey SR O = O YN] S)

Did you notice that this PRINT statement is different from the PRINT

statements we explared earlier? We didn‘t put quotation marks around the A
even though it is a letter. That's because we didn't want to print the letter
A7 we wanted to see the numeric value assigned to A.

Now, check for the values of A2 and ALPHA. (Remember to press the ENIER key
at the end of each line, even though it isn't shown.)

PRINT A2
8

PRINT ALPHA
10

The vilue of every numeric variable is zero if it has not yet been assigned a
value. Try the following PRINT statement.

PRINT F
0

Note: In BRSIC, the LET statement is not the only way to assign a numeric
value to a variable. Your computer also accepts the assignment without the
- word LEY. -

JACK=3

JILL=E

PRINT JARCK*JILL
15 v

-

In other words, the word LET is optional in BASIC; your computer accepts the
assignment with or without it.

Page 13

ozébr 11 YYid wuul e ool 1w LeYaoiee 3

Assigning Numeric Expressions to a Numeric Variable

You have just seen how a numeric variable can be assigned a 'single-number

value. An arithmetic expression (such as 4%5 or A+1) can also be assigned to
a variable.

(If you just completed the previous section, the computer still holds the
following values in memory. If you are just now beginnifg a new session with
 the computer, enter these statements again.).

LET A2=8
LET ALPHA=10

You can assign new values to the variable A and check the new value with a
PRINT statement after each one. Enter the following lines. Note that the
variable always appears before the equal sign and the expression always
appears following the equal sign.

LET A=5%3
PRINT A
15

LET A=A2+ALPHA
PRINT R
18

LET A=A-S
PRINT A

13

LET A=A/2
PRINT A
6.5

Page 14

QeresP 11-YY/¢ BOOK v BHDIL TG buyliviels

Using the CALL CLEAR Statement

As you type instructions to the computer in the Immediate Mode, the screen
eventually fills with instructions and the resulting displays. The lines
scroll up the screen as you enter additional instructions. There is an easy
way to clear the screen of previous lines so that you can concentrate an the
line you are currently typing. This is done with the CALL CLEAR statement.

when you enter the words CALL CLERR, the screen is cleared except for the

T TN TR TR TN T N

prompting symbol and the cursor. You can use the CALL cL
you like, whether the screen is filled or not.

W

A=36
CALL CLEARR

(screen is cleared and the cursor returns to the lower-left-hand corner of
the screen)

The CALL CLEAR statement clears the screen, but not the computer's memory. If
you assign a value to a variable and than clear the screen, the computer still

'holds that value in memory. To verify this, tell the computer to PRINT the

value of A.

" PRINT A
36

Note: As you work through this book, yau*114see4severa}ABASIcgsiatenenis that

begin with the word CALL. Your computer has certain built-in suberoacams for
special purposes (such as clearing the screen)y and a CALL statement tells the
computer to “call® the subprogram named in the statement. -

Page 15

OedGE 19, ¢ BUOK e coeale TU wegdbie s

Using String Variables and the LET Statement

The words that you told the computer to PRINT a few pages back are called
character stcings. R ugtring of characters is anything that you enclose in
quotation marks. Usually this means alpha i «racters (letters of the
alphabet), but a string can include any character the keyboard can trpe,
including numbers, letters, punctuation, spaces, and symbols.

A string variable is a name given to a “string” of characters. A string
variable name always has a dollar sign (§) at the end of it. Because of this,

you (and the computer) can always tell string variables from numeric variables.

You already know what numeric variables are: numeric values assigned to names
(variables), like "K=50". String variables differ from numeric variables in

the following ways.
i. The variable name must end with a 3.
2. The alphanumeric characters in the string must be enclosed in

quotation marks. ‘
4. Strings of numbers cannot have arithmetic operations performed with or

upon them.

Try a couple of examples. Clear the screen (with CALL CLEAR). Using SHIET 4
for the dollar sign ($), enter this.

.LET W$="HASTE MAKES WASTE"

PRINT W$
HASTE MAKES WASTE

Notice that the character string is displaved, rather than the string .
variable. As with numeric variables, do not put quotation marks around the
variable in the PRINT statement because you do not want to print the
characters “W$"; you want to see the value ’ssigned to W$. ’

Page 14

QoGP Y1-YY/2 BOOk & LHDIL TQU beginhers

Correcting Errors with DELete and INSert

Earlier you practiced correcting errors by using the GRRQW keys (§ or Q) in
conjunction with either the FCIN or SHIEI keys. You also used ERASE (ECIN 3)
to erase the entire line and start over. There are two other key combinations
that you can use to correct errors. These are:

DELete (ECIN l1)-—deletes character(s)

INSert (ECIN 2)--inserts character(s)

Type the following statement exactly as written, but don't press ENIER vet.
PRINT I M LENING TO CORRRRRRECT ERROORS"

There are abviously several errors in this statement. First, you need to
insert quotation marks before the character I. Backspace with LEET ARROW to
the I. Press INSert (ECIN 2); then type quotation marks (2).

PRINT "I M LENING TO CORRRRRRECT ERROORS

Next, insert an A before the M. To do this, advance the cursor (with RIGHI
- QRROW) to the M. Press INSerct and then type an B.

PRINT “I AM LENING TO CORRRRRRECT ERROORS"

Notice that to insert a character, you wmust determine where you want it
inserted and then position the cursor over the character immediately following

i rt

an B8 and an B in LENING so that it reads LEARNING. .
PRINT "I AM LEARNING TO CORRRRRRECT ERROORS®

Page 17

You can insert or delete single characters or as many characters as you want.

To y

delete. Now let's delete four of the Rs in CORRRRRRECT. Position the cursor
aver the first R} then press DELete four times (while holding down the ECIN
key, press 1 four times). If you press ECTN 1 down for more than one second,
‘the automatic repeat feature deletes characters more quickly. However, you
must be careful not to delete too many characters, or you will have to insert
them again.

PRINT "I AM LEARNING TO CORRECT ERROORS*

Now delete one of the Os in ERROORS using what you have learned. Look over
the statement and correct any other errors (if you have made any). Then press
ENIER.

PRINT “I AM LEARNING TO CORRECT ERRORS" (press ENIER)
I AM LEARNING TO CORRECT ERRORS

O0R&6P TI~99/2 Book & BREIL 10r Beginners

\uginggjhggcggmg (,), Semicolon (3}, and Colon (%) as PRINT separators

A single PRINT statement can be used to print two or wmore items. By using the
comma, semicolon, or colon, you can control the way the computer displays
these items. Try these examples.

CALL. CLEAR
Ac=8

AL.PHA=10

PRINT A2,ALPHA

8 10
Now, try these:

AL=6

ALBERT=8

PRINT ALSALBERT
& 8

The computer divides the display screen into two harizontal zones. When you
use a comma (y) between two (or more) variables in a print statement, you are
'telling the computer to print the values in different zones. On the other
hand, the semicolon () instructs the computer to print the numbers close
together.

Now try this example, using the colon (2).

PRINT ALIALBERT

6
8

The colon has the computer print each itewm on separate lines.

Page 19

ORSGGP T1-99/2 ook f broil tar Begioaners

L Now try an example that uses character strings.
N$="TACK SPRAT"
PRINT N$
JACK SPRAT
Ww=" ATE NO FAT." (Note the one space at the beginning of
PRINT W$ this string to prevent its running on with

PRINT N&;W$ (Computer prints the two strings close
JHCK SPRAT ATE NO FAT. together on one line.)

Now print the two strings again using first the comma (,) and then the colon
(1) as print separators to see the differences:

PRINT N$,W$
JACK SPRAT ATE NO FAT.

PRINT N$:WS$
JACK SPRAT
ATE NO FAT

=1
Page 20

VEOOE 1L T/ 6 DUUR e WEio bl b RSgu i

Using the NEW Command

The words "command" and "statement" are sometimes used interchangeably.
Generally, commands are used in the Immediate Mode (sometimes called the
Command Modes withaut line numbers) and statements are used in programs (with
line numbers; this is covered a bit later).

The NEW command produces visible results similar to those of the CALL CLEAR
statement in that bath clear the screen. An important difference, however, i3
that the NEW command also clears the computer's memory. When you use the NEW

command, any infarmation you have entered is erased. This should be done when
you begin a new activity (in the Immediate Mode) or a new program, so that old
information that the computer may be storing (such as the value assigned to a
variable) does not interfere with what you are about to do.

On the previous page you assigned and printed several numeric and string
variables. These values are still stored in the computer's memwory. (If you
are beginning a new session with the computer, enter these statements again.)
They are:

A2=8

ALPHAR=10

AL=6

ALBERT=8
N$="JACK SPHYT"
W=* ATE NO HAT."

If you clear the screen with a CALL CLEAR command, you can still print the

va1ues*uf‘theseAVartablesygasgyeugd4dA%ngihegsecilongongihe CALL CLEAR

command. Try it?

CALL CLEAR
PRINT ALPHA3A2;N$
10 8 JACK SPRAT

Page 21

CALL CLERR
PRINT ALBERT:AL :W$

8
6
ATE NO FAT.

If you enter the NEW command, however, these values are erased from memory and
cannot be printed. The NEW command has the same effect on the camputer's
memory as turning the computer off and then back on again. Enter the
following:

NEW
PRINT ALPHA
0

0

PRINT N$

If you print the value of a rumeric variable, a zero is displayed. If you
print the value of a string variable, a blank line is displayed, because the

string is empty.

Page 22

DEOOF 1L -7Ye € BUUKR e DROLG LUl Deygdiirk 2

Computer Graphics-—Positionihg Characters with CALL VCHAR and CALL HCHAR

~ One of the most exciting things you can do with your computer is to create

graphic designs right on the screen. With your computer's graphic capability,
you can make a design, draw a picture, create a gameboard, and s0 on.

This section introduces you to two simple yet powerful graphics statements.
CALL VCHAR and CALL HCHAR are used to position a character or draw a line of
characters on the screen. Later in this book, we'll show you how to use
graphics statements in programs.

The Basic Conputer 99/2 yses 28 printing pasitions on each line. For
graphics, however, the computer allows 32 character positions an each line.
Think of the screen as a “"grid" of square blocks made of 32 columns and 24
rows.

ILLUSTRATION (grid with 32 columns and 24 rows)

Page 23

Each square on the grid is identified by two values called cpordipnates--a row

row and the seventh column, and the coordinates 10,11 mean the tenth row and
the eleventh calumn.

The first thing to try is to place a character in a particular square on the
screen. Ffor the time being, consider that a character iz one of the 26
letters of the alphabet, the numbers O throush 9y and certain other symbols,
such as the asterisk (%), the plus and minus signs (+ and -), and the slash
(/Y. {Later you will learn about other characters available for graphics.)
Each character is assigned an identifying numeric value of its own. The

values for the full character set are given in Appendix XX in Book 4.

By using either CALL VCHAR or CALL HCHAR, naming the two coordinates (row and
column), and identifying a character by its numeric value, you can place the
character in any spot you choose. Here's the form used for these two
statements.

CALL VCHAR(12,17,42) (row 12, column 17, character number 42-—the
asterisk)

Try this example, and you'll see an asterisk (¥) appear near the center of the
screen.

Try a few more examples. First, clear the screen by typing CALL CLEAR and
pressing ENJER. Type the following.

CALL YCHAR(15,10,67) (row 15, column 10, character number &7--C}

Don't forget the parentheses in the statement-—they are :mportant’ Now try
the CALL HCHAR statement. N

CALL HCHAR(14,10,67) {row 14, column 10, character number 47--C)
The order for entering the row number, the column number;‘and the character's

numeric value is the same for both CALL VCHAR and CALL HCHAR, and they do the
same thing when you are positioning a sipale character on the screen.

Page 24

Ocool 11-9Y72 Book <@ BRBIL tar Beginners

Using the Repetition Feature of CALL HCHAR and CALL VCHAR

When you try to draw a line of charactersy you find that there is a distinct
difference between the functions of the statements, CALL HCHAR and CALL
YCHAR. CALL VCHAR causes a vertical column of characters to appear, whereas
CALL HCHAR displays a horizontal row of characters. To display a line with
either statement, you add a fourth numeric value to the statement: the number
of repetitions you want. This number controls the “length" of the line.

Clear the screen;by typing CALL CLEAR and pressing ENIER, and try a vertical

line. Type this:

CALL VCHAR(II,lo;Bé.B) {(row i1, cnluhn 10, character number 86--V, 8
, repetitions)

Check for errors and then press ENIER. The screen looks like thist

CALL VUCHAR(11,10,86,8)

CCCCCCCC

As mentioned earlier, there are 24 horizontal rows of character blocks on.the
"grid® of the screen. Therefore, you can only draw a vertical line (column)
that is 24 characters long. What happens if you enter a repeat value greater

than 247

Page 25

Clol VL %o WUOR e b dbe v W Rl gabre s 3

Clear the screen and then type the following.

CALL VCHAR(1,10,86,50)
When you press ENIER, the screen shows the following display.

WV

SEEEssEeEEEEe:

CALL VCWR(1,10,86,50)

s

(Note: You don't actually see all 50 of the V's above because there is a blank
line after the CALL VCHAR command.)

Page 24

GiZoomr 14 Yvs g DOUK & DBitisdic Ll Lelaiiote o

Type

CcALL CLEAR
CALL. HCHAR(17,1,72,50)

and you see

CALL HCHAR(17,1,72,50)

HHHHHHHRHHHHARHHHHHHHHHHHHEHHHHHH
HHHHHHHHHHHHKRHHHHH

So far, you have entered actual numeric values in your statements. Houwevery
yOu can assign numeric values to variables and then use the variablee in the
CALL VCHAR and CALL HCHAR statements. Try this:

ROW=8

COLUMN=12

CHARCODE=6&7

CALL CLEAR

CALL VCHAR(ROW, COLUMN,CHARCODE)

whgre did the “C* appear on the screen?

For a big finaley fill the screen with asterisks (numeric code 42). Type
these lines, pressing ENIER at the end of each line.

CALL CLEAR
CALL HCHAR(1,1,42,768)

Continue to experiment on your own, trying different characters (see Appendix
XX) and positions. For example, can you fill the screen with your first-name
initial?

Page 27

Review

1. A variable is
A. a mistake that is made repeatedly.
B. a statement used in the Inmedi ‘e Mode.
C. a word or letter that is assig d a particular value.
D. a value that always remains the same.

i e s e

2. The difference between numeric variables and string variables is that

A. one is for serious prograwming and ane is just for fun.
- B.string !
variables are always longer.

C. numbers are assigned to numeric variables and characters are
assigned to string variables.

D. numerals are assigned ta numeric variables and numbers are assigned
to string variables.

3. The difference between NEW and CALL CLEAR is
A. that NEW anly clears the screen and CALL CLEAR clears the
compu ter's mewory.
B. not iwpartant.
C. impossible to explain.
D. that CALL CLEAR only clears th> screen and NEW both clears the
screen and erases the computer's memory.

4. Which of the following are valid ways to correct errors?
A. Backspace with LEEL BRROW and type aver the error.
8. Use DEL (ECIN 1) to delete incorrect characters.
C. Use INS (ECIN 2) to insert correct characters.
D. Press ERASE (ECIN 3) and type the lipe again.

E. All of the above.

5. Match each type of punctuation with the resulting display (when the
particular punctuation is used between two items in a PRINT statement).

; Ao cowma () X. items printed close together
O B. semicolon () y. items on separate lines

__.C. colon () Z. each item is in a different print zone

6. The numbers within the parentheses after a CALL HCHAR or CALL YCHAR
command specify (in the correct arder):
A, (rowy column, character-code, number of repetitions)
8. (character-code, number of repetitions, rouwy column)
C. (column, rou, character-code, number of repetitions)
. D. (number of repetitions, row, column, character-code)

—— —————

(Onswers are on page XX. If you miss 2 question, go Back to the aperopriate
section and review the information befare you proceed to the next section.)

Page 28

Qb tL-9vs 2 Book <o Beblil tOr beginners

Simple Programming—-Line Numbers

So far you have been entering single instructions and the computer has
performed them immediately. A computer proacam is simply a list of these
instructions that the computer performs in a certain order. AR program is
different because the computer waits until you have entered all vyour
instructions and does not perform them until you tell it to. Thus you can
enter the program, correct errors, and revise or edit as much as you want
until you are ready for the computer to perform the program. Then it performs
the instructions in rapid succession. .

How does the computer know that the instruction that you enter is not to be
performed immediately? This is done by putting lipe oumbhers in front of the
instructions to show that each instruction is just one in a series.

In a computer programy, each statement begins with a line number, which serves
two important functions:

i. It tells the computer not to perform the statement immediately, but
to store it in memory when you press ENIER.

2. It establishes the order in which the statements are to be performed
in the program.

Let's begin by using an old familiar friend, the PRINT statement, in a
program. First type the word NEW and press ENIER. Now type the following
program, pressing ENIER at the end of each program line:

10 PRINT “ARE YOU READY" — (are space aftereach line number

20 PRINT "TO LEARN BRSIC?" is required) .
30 END

Page 29

0R66F T1-99.2 Buux~ ¢ uHbil tar Beginners

£ 5% . o " . L]

A |

just to the left of the printing area. This symbol marks the beginning of
each program line you type.)

In computer terminology, you have just “entered" a program. Nothing to it!
Check the program now to see if there are any typing mistakes. If there arey
just retype the line correctly, including the number at the beginning of the
line, right there at the bottom of the screen. Then press ENIER. The
computer automatically replaces the old line with the new, correct one.

Also, you may be wondering why we numbered the lines in increments of ten (10,
20, 30, etc.). Well, we could just as easily have numbered them 1, 2, 3. By
using increments of ten, however, or other spreads like 100, 200, 300, etc.,
we can go back and insert new lines if we want to expand the existing pragramy
and we don't have to retype the whole program! (We'll cover this clever trick
when we discuss editing a program.)

When you're ready to see the program in action, type CALL CLEAR and press
ENIER. The screen is cleared, but your program is not erased--it's stored in
the computer's memory!

%ﬁ
w
o

0266P TI-99/2 Book &: BASIC for Beginners

Using the RUN Command

The RUN command is the command that tells the computer to perform the list of
instructions you have given it. This is called running a program.

With the program you entered on the pr'e{rious page 5till in the computer's
memory, we are now ready ta RUN it. Type RUN and press ENIER again.

RUN
ARE YOU READY

TO LEARN BASIC?
#% DONE %%
Want to "run® the program again? Type RUN again and press ENIER.
RUN
ARE YOU READY
TO LEARN BRSIC?
e DONE
RUN
ARE YOU READY
TO LEARN BASIC?

#¢ DONE *#

Each time you type RUN and press ENIERs the computer begins at the first
statement and follows your instructions in order until it reaches the last
statement. END means just what it says: the end, stop!

o,
-1
®
w
-

Qe66P T1-9%/¢ Book 2: BRLIC for Beginners

Using the L.IST Command to Review Your Program

The LIST command tells the computer to display, in the correct order according
to line numbers, the current program in memory.

Nrw that you've had a bit of programming experience, let's review some of the

things you did when you entered the previnuz program. To refresh yaur memory,
we'll get the program back on the screen.

44444——————44Firsti4tvﬁe4€ﬂ&h—GLEAR4£uitheu%—agline;numhepigandgppesnguIEB;iogéleatgihe

screen. Now type LIST and press ENIER again:

LIST

10 PRINT “ARE YOU READY"
20 PRINT *TO LEARN BASIC?"
30 END

The program above consists of three statements or “lines." As in the
Immediate Mode, you pressed ENIJER when you finished typing each program line.
Pressing ENJER defines the end of the program line, just as the line number
identifies the beginning of the line. It is also the computer's cue to store
the line in it's memory. Pressing ENIER at the end of each program line is
essential—without it, your line will not be correctly stored by the computer.

Now type NEW and then LIST. What happens?

NEW
LIST

* CAN'T DO THAT)

You get the error message CAN'T DO THAT. You have .asked the computer to do
g something impossible, since it can't LIST a program if it has been erased with
g : the NEW command.

Page 32

Jiardrt [0 P [L N P R [P T U SO S

How to Edit a Program——Correcting Errors

You have already practiced correcting errors in instructions by backspacing
with LEEI ARROW or by pressing ERASE and beginning the instruction again. You
also practiced correcting errors with DELete and INSeri. These methods work
(if vyou bhave not vet pressed ENIER) both in the Immediate Mode and when
entering program lines. If you have already pressed ENIER, there are several
other ways to edit a program line, one of which we mentioned when you entered
your first program a few pages back. These are:

1. Retyping the line correctly, including the line number, and pressing
ENIER again. The computer will replace the old line with the new
carrect line in its memory.

2. Using the EDIT command followed by the line number of the line which
you wish to edit. (Or you can simply type the line number and then
press UP ARROW (ECIN E or SHIEI £) or DOWN ARBOW (ECIN X or SHIET X).
The current line appears, and you simply use the GRROW keys to position
the cursor aver the error and correct the error by typing over it.
Editing by these methods often requires less typing.

Let's practice editing by using the above methods. Below is a program which
convarts pounds to kilograms. Enter the program just as it is writtan (it has
some intentional errors in it).

© 10 K=600
20 P=2.2%J
30 PRINT H
40 END v

Change the number 400 to 60 in line 10. Use the first method to correct this
line. Simply type the corrected line, press ENJER, and the computer replaces
the old line in memory. Type

10 K=60
and préss ENIER.:

Page 33

Now to prove that the corrected line is in the computer's memory, clear the

screen (CALL CLEAR) and list the program (L.IST). This is what you see.

10 K=60
20 P=2.2%J
30 PRINT H
40 END

The variable J should be changed to K in line 20. To fix this, let's use the
second method we discussed: using the EDIT command. Enter

EDIT 20

Line 20 appears; with the cursor flashing over the variable P. Using RIGHI
ARBOW (SHIFI Q or ECIN Q)s Position the cur i over the J and type a K over
it. Then press ENJER. Now clear the scree:. and LIST the program.

As you can see, the computer has the corrected version of line 20 in wemory.
Now what is the error in line 30?7 The variable H has not been assigned a
value. Actually, we want to PRINT the value of P. Type 30 and press ue ARRQW

(ECIN £ or SHIEI E).

When line 30 appears, move the cursor to th. H at the end of the statement,
type a P over the H, and press ENIER.

Now if you like, you can list the program once more to see the whole program
corrected.

10 K=&0

20 P=2.2%K
30 PRINT P -
40 END

Let's study what this program does. We said it converts kilograms to pounds
(1 kilogram = 2.2 pounds). We've used the variables K (for kilograms) and P
(for pounds) to help us remember which value is which, aind we began our
program by assigning values to these variables.

In this case, we are trying to find out how many pounds are equal to 60
kilograms, S0 we have defined K as 40. Notice that we have defined P as

2.2 X K. .If we stopped here and ran the program at this point, the computer
wauld perform the conversion, but it wouldn't show us the answer! So we added
the PRINT statement.

Now RUN the program. What iz the answer?

Page 34

Vi.QGt | N SR A I ae s WD b (U WEDM A LIe &

Adding Program Lines

. What you have just done is called “editing" a program. The ability to edit or

change a program without retyping the whole thing is one you'll come to value
highly as your programming skills grow. To give you an idea of the great
flexibility editing adds to programming, let's experiment with a few more
changes in the present program.

We mentioned earlier that the reason we number program lines in increments of
10 (instead of 1, 2, 3, etc.) is to allow program lines to be added without

e TR TR Tenee | TRRERTE TR T e

having to retype the whole program. Before we experiment with a few examples,
let's clear the screen and recall our program. Type CALL CLEAR, then LIST

LIST

10 K=60

20 P=2.2%K
30 PRINT P
40 END

We might want to add a CALL CLEAR statement to the program, so that we won't
have to keep clearing the screen from the keyboard each time we Yrun" the

program. Type:

5 CALL CLEAR ﬂ

Page 35

YOt Vi

Now LIST the program again to see the new line (type LIST and press ENTER) «

PRI [L L R S

The old
program

The new
program

Compare the two programs on the screen, and notice that the computer has
automatically placed the new line in its proper order.
to see the effect of the added line.

Now let's add another line that helps to point out our answer. Type

anq press ENIER. When you run the program again, you'll see this:

LIST

10 K=60

20 P=g.2%K
30 PRINT P
40 END

S CALL CLEAR
LIST

5 CALL CLEAR
10 K=40

20 P=2.2%K
30 PRINT P
40 END

27 PRINT “THE ANSWER IS:*

THE ANSWER IS:

132

DONE **

Page 36

Run the program again

NL.OWI L 2760w (W LT TS P WY S T S SR B W T buvjeinicl 2

Removing Program Lines

Quite often it's necessary to remove a line er lines from a program. Deleting
a program line is a very simple procedure.

The program we have stored right now doesn't really have any lines we want to
delete. Just for practice, however, let's remove line 5.

First, clear the screen and list the program as it is now. Line § is the
first line of the program, a CALL CLEAR statement. To remove it, simply type
. . . .))

S and press ENIER. Then LIST the program again. Presto! Line S is gone!

LIST
0ld , 5 CALL CLEAR
program 10 K=60
20 P=2.2%K
27 PRINT "THE ANSWER IS:“
30 PRINT P
40 END

5 (Here's where we deleted line S.)
LIST

New 10 K=40

Progranm 20 P=2.2%K
27 PRINT "THE ANSWER IS:"
30 PRINT P '
40 END

ENIER. The computer then deletes the line from sragram memory. .
Since we really need line 5 in this program, let's reenter it. Type
.5 CALL CLEAR

and press ENIER.

_a/__\

Page 37

uesaP 11-9vY./e Book di bHollL (o0 peginners

Using the INPUT Stat { with a Numeric Variable

The INPUT statement tells the computer to stop the program in progress and
wait for input from the keyboard. The value you enter is then assigned to the.
variable contained in the INPUT statement. Thus, the INPUT statement, like
the LET statement, is a way of assigning values to variables.

1f you want a value for a variable to be different each time a program is run,
the INPUT statement is better than the LET statement because the program
itself does not have to be changed.

In the conversion program we have been working with, you can easily change the
value of K simply by retyping line 10 to assign a new value. (Remember that
the word LET is not necessary when assigning a value to a variable.) Try it
by typing

10 K=40
Then run the program. The answer you get is the number of pounds equivalent

to 40 kilograms. But suppose you had wmany values for K, and you wanted to
find the equivalent value of P for each one. It would become rather tiresame

_to retype line 10 each time.

An INPUT statement causes the computer to display a question mark and stop,
waiting for you to type in a value and press ENIER. The value you enter is
then assigned to the variable contained in the INPUT statement. For example,
type

10 INPUT K :

N

and press ENIER. Now run the program again. .

The questlon mark and cursor show you that the computer is waiting for you to
“input” a value for K. This time we'll let K=70, sa type 70 and press ENJER.
The computer prints your answer:

? 70
THE ANSWER IS'
154

%% DONE #%

Page 38

ey

Vo A b (Y PRI [Y [- . -

Now you can run the program as many times as you like, changing the value of K

each ti .
several times with different values for K.
The INPUT statement can also be used to print a “prompting" message (instead

of simply a question mark) that helps you remember what value the caomputer is
asking for. Change line 10 again by typing

10 INPUT “KILOGRAMG?"“:K

KLLOGRAMS?
Let's let K=50 this time. Type 5Q and press ENIER.

KILOGRAMS?S0
THE ANSWER IS2
110

#% DONE **
By nows, your program looks like this:

5§ CALL CLEAR

10 INPUT “"KILOGRAMS?"IK
20 P=g.2%*K
27 PRINT "THE ANSWER IS:“
30 PRINT P

40 END

-

" If you'd like, you can list it on the screen at this time and review the

changes you've made so far. When you're ready, we'll go on to look at one
more change.

Page 39

VESGEP 11 .o 2 BUoK e Brden Tl DeYlLnersa

s Using the INPUT Statement with a String Variable

Let's make your conversion program a little more personal by using a string
variable. Type these tuo lines:

8 INPUT "NAME, PLEASE?":B$
26 PRINT "OK, “;B$

(Clear the screen and list the program again SO you can see how the new lines

fit in.)

When you run the program this time, the twn INPUT statements will stop the
program twice:

The computer asks: You tyepe in:

NAME, PLEASE? Your name and then press ENIER.

KILOGRAMS? The number of kilograms and then press
ENIER.

Let's try it. Type RUN and press ENIER.
NAME, PLERSE?
Ue'il type in HARRY (that's a nice name) and press ENIER. Then we'll see

: O NAME, PLEASE?HARRY
 KILOGRAMS?

Again let's type Z0 for the number of kilograms. Press ENIER agsain and ydﬁ'll-
see. :

NAME , PLEASE?HARRY
KILOGRAMS?70
THE ANSWER IS:

154

6 DONE #

Page 40

Qe66P 11-99Y/2 Book e bHbil, Tl beylnners -

Using the GO TO Statement--Endless Loops--The BREAK Key

TR~y

So far in your programming studies, you have seen that the computer performs
the instructions in a program in the exact order that they are listed
(according to line numbers). When the computer finishes the last instruction
in a program, it stops. There are ways to change this order or make the
computer repeat a series of lines over and over. One of the statements that
allows you to do this is the GO 7O statement. (GO TO can be typed as GOTO in
a program. The computer accepts it either way).

statement tells the com : i 5
different line than the one the computer would normally perform next (the next
line in succession).

So far, you've been developing programs that operate from beginning to end in
a straight sequential order. There are many situations, however, in which you
want to interrupt this orderly flow of operation. Look at the following
program, but don't enter it yet:

10 CALL CLEAR

20 INPUT K

30 PRINT K

40 PRINTIzZZS:3:s:
50 K=Kt1

60 GO TO 30

Here we "send" the program back to line 30 by using a GO TQ statement in line

o 60. The GO TO statement causes the actions performed by lines 30, 40y and 50

d a .

Notice that we don't use an END statement. That's because the program néver

gets beyond line 60! (The END statement isn't necessary in BRSIC anyway.)

The computer won't stop until you tell it to by pressing BRERK (the key at the

lower—left-hand corner of the keyboard. You can get the same result with
CLEGR (ECIN 41). This is called an “"endless loop."

Page 41

Let's enter the program now. First, type NEW and press ENIER to erase the

computer's memoryy and then type these lines:
10 CALL CLEAR
20 INPUT K
30 PRINT K
40 PRINT::sizizie:
50 K=K+i
60 GO TO 30

Before you run the program, we'll examine a diagram called a flowchart,

explaining how the program works.

Program Line Operation
' 10 CALL CLEAR Clears the screen
20 INPUT K "Stops and waits for initial value
of K
30 PRINT K Prints the current

value of K

40 PRINT::zzizal:: Prints nothing} just gives
you 10 blank lines

50 K=K$1 Reassigns a new value to K
(the old value 41)

60 GO TO 30 Transfers the program

back to line 30
Now run the programs putting in 1 for the beginning value of K. Watch how
quickly the computer counts--almost too fast to follow! That's why we added
line 40--to display some blank lines. This line puts ten blank lines in
between the numbers (with ten colons) so that you can see the numbers better.

Let the computer count as long as you want to. When you are ready to stop the
program, press BREAK. You'll see %BREAKPOINT AT line-numbher on the screen,
indicating where the program stopped. Run the program as many times as you
want, using whatever number you wish as the initial value for K (50, 100, 500,
etc.).

Page 42

02661 TI-99/2 Book &: BASIC for Beginners

More Practice with the GOTO Statement

If you try to send the program to a non-existent line number, however, you'll
get an error message.

(From here on we'll use GOTO instead of GO TOy, since the caomputer accepts it
either way.) Supposey for example, we type in

60 GOTO 25

and press ENIER. Try it, run the program, and see what happens! You'll see
this error message:

% BAD LINE NUMBER IN &0

So correct the line by typing and entering
60 GOTO 30

and run the program again.

Can we change the program to make it count by 2's, or §'s? You het we can!
‘By making one program change, let's make the computer count by 2'st Type

. 50 K=K}2

and press ENIER. Now run the program, typing in 2 when the computer asks for
the starting value of K.

Experiment with the program for a while, making it count by 3's, 5's, 10's,
etc.

Page 43

Using the FOR-NEXT Loop

The FOR-NEXT loop is a way to make the computer repeat a seHies of program
lines a specified number of times and then continue with the rest of ‘the
pProgram.

Earlier we presented several examples of the GOTO loop, which repeats a set of
statements indefinitely-—or until vou press BREAK to stop the progrsm. The
FOR and NEXT statements also create a loopy but they are different rom GOTO
in two important wayss

1. The FOR and NEXT statements are twg lines in the program, the FOR line and
the NEXT line, each with its own line number.

2. You control the number of times the loop is performed. After the loop has
been “executed" the number of times you specify, the program maves on to
the line that follows the NEXT line.

The FOR lir- has the form
30 FOR A=1 T0 3

The NEXT line could be
80 NEXT A

These two lines cause the portion of the program between the FOR and NEXT
lines to be performed three times. In this example, the starting value of A

;s—iigafter—eaehgﬁaﬁsgthfeu9hAthegleepfgng%sginepeased;bygifgglisgyalue is

then tested against the upper limit (3, in this example). RAfter the third
pass through the loop, A is equal to 4, so the program "exits" (or leaves) the-
loop to the line following the NEXT line, which is line 80.

Page 44

0264P TI-99/2 Book &: BRSIC for Beainners

To help you see the differences between GOTO and FOR NEXT more clearly, let's
compare two similar programs, one with a GOTO loop and one with a FOR-NEXT
loop.

A GOTO Loop
Type NEW, press ENIER, and then enter this program:

10 CALL CLEAR

20 A=1

30 PRINT "A="3;A
40 A=ARt1
50:GOTO 30

Before you run the program, think for a few minutes about what it will do.
First, the initial value of the variable A will be set to 1. Then the
computer will print out the current value of A. Finally, the value of A will
be increased by 1, and the program will loaop back to line 30. It will ga on
with this procedure until you press BREBK.

Ready to run the program? Type RUN and press ENIER to see it in action. When
‘you're ready to stop it, press BREAK. .

A FOR-NEXT Loap

Now let's examine a similar “counting" program with a FOR-NEXT looe. Type NEW
and press ENIER to erase the first program. Then type these lines:

10 CALL CLEAR .
20 FOR R=1 TO §

30 PRINT "A=*;A

40 NEXT A

50 PRINT “QUT OF LOOP*

60 PRINT “"A=";A.

Page 45

02466F TI-99/2 Book i BARSIC for Beginners

at 1 and will be increased by 1 eact time th.

soon as the value of A is greater than 5, the prooram will exit the loop and

cantinue with lin2 50. If we listed the lines in their oerder of performance,
' along with the increasing values of A this is what we would havel

program cowpletes line 40.

Line Number Value of A
l
L 10 0
20 1
30 1
40 2
30 2
40 3
30 3
40]
30 4
40 5
| 30 5
40 é
' S0 é
&0 é

Run the program, and the screen should look like this:

A=
A=
A=z
A=
. ouUT OF LOOP
A= &

b widr

#% DONE **

F)

o

ORb66P T1-9v/¢ Book ¢: BALLL tuir beginners

The following flowcharts illustrate the differences in the two programs.

GOI0 Program ' " EOR=NEXT Prparam.
Clear screen. Clear screen.
Set initial value of fA. Set the "parameters” for AL

beginning and ending values.

Print “R=" and current

value of A. ‘ Print "A=" and current
value of A.
Increase A by 1.

Loop back to line 30. Increase A by 1} check to see if
the new value for A exceeds the
upper limit set by line 20.

(Loop continues until you If the answer is “no," repeat
stop the program by lines 30 and 40. If “yes," break
pressing BRERK.) out of loop.

Print “Out of Loop."

Print “A=* and current
value of A.

Stop program run.

We can use the FOR and NEXT statements to build a controlled time delay into a
program. Consider this example: ’ .

20 FOR A=1 TO 1000
30 NEXT A

Better still, let's try it! Type NEW, press ENIER, and then type in the
following program: ‘ .

10 CALL CLEAR
20 FOR A=1 TO 1000
30 NEXT AR

you run the program. What happens on the screen? Not much, really. The
cursor disapeears. After a short time delay (while the computer “counts® fram
“{ to 1000), the cursor reappears and the program ends:

% DONE *%

Although no other lines are being executed between the FOR and NEXT‘lines,
time passes while the computer counts the number of loopss in this example
from 1 to 1000. T

Page 47

0266F TI-99/2 Book £2: BRSIL tor Beginners

S Nested FOR-NEXT loops

It is possible for us td use more than one FOR-NEXT loop--aone inside
another--in a program. We call these pested loops.

Now let's examine a program with nested FOR-NEXT loops. The following program
' displays sixty—four af the alphanumeric characters, codes 32 through 5. (See
Appendix XX for a list of the character codes.) Enter these lines:

| NEW
| 10 CALL CLEAR
20 CHAR=32
| 30 FOR ROW=7 TQ 14
40 FOR COLUMN=13 TO 20
50 CALL HCHAR(ROW,COLUMN,CHA
R>
60 CHAR=CHARHL
70 NEXT COLUMN
80 NEXT ROW

’ There are several things we'd like to point out about this program. Ffirst,

[FOR-NEXT loops do not have to start counting at 1. They can begin with

whatever numeric value you need to use. Second, the nested loop (FOR

l , COLUMN-NEXT COLUMN) is not just a time-delay loop. It actually controls a
part of the program repetition.

Finally, line 50 is called a wrap-around line. It has wmore than 28

charactersy, so part of it prints on another line on the screen, This is an
important point! program lines can be more than one screen-line long. In

fact, a program line, in general, can be up to four screen lines (112

characters) in length. Notice that wrap-around lines (that is, the second,

third, or fourth screen lines of a program line) are not preceded by the small

prompting symbol.

Page 48

[P T PRI L o N L B L T ¥ T E i

Run the programy and the sixty-four characters are printed in nice, neat rows

on the screen:

!u”mu
Ofy=,/
01234547
89:13<=x?
GABCDEFG
HIJKLMNO
PQRSTWWW

yYwrr 1®

ATLL 4

%% DONE *¥

H1 there Gary, you really shouldn’'t go off and leave me. I get lonely and start
talking to myself.

Hold on' There are only sixty-three characters on the screen! What happened
to the other one? Well, there are actually sixty-four. Look at the top line,
and notice that it appears to be indented ane space. That's because character
32 is a space. Even though a space doesn't print anything on the screen, it

does occupy roam on a line, and it is a character as far as the computer is
concerned.

Page 49

Q0264P TI-99.2 Book 2: BASIL for Beginneis

Erraor Conditions with FOR—NEXT Loops

We mentioned earlier that a nested loop must be comeletely contained within
another loop. Were your program to include lines like these,

20 FOR A=1 TO ¢
.30 FOR X=5 T0 10

80 NEXT A
90 NEXT X

the computer would stop the program and 1ive you this error messagel
*CAN'T DO THAT IN 90

The computer can't go back inside the completed “R" loop to pick up the
bcginning of the *X" loop.

Anpther possible error condition with FOR and NEXT statements is the omission
of either the FOR line or the NEXT line. Far example, if you attempted to run
this program,

10 FOR A=1 TO §
20 PRINT R
30 END ﬂ

the computer would respond with

¥FOR-NEXT ERROR

-

If you encounter an error message, just list the program (tyee LIST and press
ENIER)y identify the errors, and correct the problem line or lines.

Page S0

VEOGH 1L=%7r/78 LUUR e Gitwit . ide

ot

. Review
1. What in a program line tells the computer not to perform the line
immediately?
2. What are two ways to display an existing program line for editing?
3. What punctuation is missing from the following statement?

10 INPUT “LENGTH?" L
4. A GOTO statement often causes an "endless loop" whereby a program will not
stop by itself. What are two ways to stop a program in progress from the
keyboard?
§. What is the term used to describe a FOR-NEXT loop within another FOR-NEXT
loop?
(Answers are on page XX. If you miss a question, go back to the appropriate
section and review the infarmation before you proceed to the next section.)
-/_A

Page 51

0R66P TI-99/2 Book 2: BuolC ror Beginners

More on PRINT Separators (, § o)

Wwhile using the PRINT statement in the Immediate Mode, we saw that a
difference in spacing occurred when we used a comma, semicolons or colon ta
separate numeric values in a PRINT statement. Let's take another look at this.
Spacing with Commas

Try each of the following examples. (In each, we'll assume that the screen

 has been cleared by typing CALL CLEAR and pressing ENJER.?

PRINT 1,2

' 2

PRINT 1,2+3/4,554
1 2

3 4

s &

So far we have used only small positive integers. Let's try some simple
negative numbers.

PRINT -1,-2
-1 -2

Now let's try a combination of positive and negative numbers.

PRINT i .2 l-3|"‘4

1 2
-3 -4 N

Note that the computer always leaves a space preceding the number for the sign
of the number. For positive numbers, the plus sign (4) is assumed and is not
printed on the screen. For negative numbers, the computer prints a minus sign
(-) before the number.

We hentioned earlier in this book that there are two print zones on the screen
line. Each print zone has room for fourteen characters per line.

Print. Zone 1 Print Zone 2
(spaces 1-14) (spaces 15-28)
[4
when you use a cowma to separate numeric values of variables in a PRINT
statement, the computer is instructed to print only ane value in each zone.
Therefore, since thére are only two print zones on each line, the computer can
print a maximum of two values per screen line. If the PRINT statement has

more than two items, ti
the items have been printed.

026eP 1199728 Book & BASIC tor Beginners

Now let's try some examples with string variables, using commas as

- "gaparators."

AR$="ZONE 1"
B$="ZONE 2"

PRINT A$,B$
ZONE 1 ZONE 2

The strings (the letters and numbers within the quotation marks) are printed
in different zones on the screen when a comma is used to separate the string
variables.
Try this example:

AS="ONE "

Bszuwou

Ce$=“THREE"

D$="FOUR"

. PRINT A%$,8$,C$,08 ﬂ
ONE TWO !
THREE FOUR

(Note that for strings, the computer does not leave a preceding space.)
Spacing with Semicolons
Now let's look at semicolon spacing. Try these examples:

PRINT 132

Aha' The numbers are much closer together.

PRINT 13233
1 2 3

PRINT 1325-335-4555-657
1 2-3-4 §-6 7

e

The semicolon instructs the computer not to leave any spaces between the

n

valu .
the numbers on the screen? Two reasons! First, remember that each number is
preceded by a space for its sign. Second, every number is followed by a
trailing space. The trailing spacq is there to guarantee a space between all
numbers, even negative ones.

Page 53

0264P T1-99.2 Book 2: BASIC for Beginners

If the semicolon tells the computer to leave no spaces between variables in a
PRINT statement, what happens when we use ntrlng variablies rather than
numeric? Let's try some examples.

A$="HI THERE'"

B$="HOW ARE YOU?"

PRINT A$;B$

HI THERE'!'HOW ARE YOU?

The two strings are run together. If we want a space to appear between them,
then, we must include the space inside one of the sets of quotation marks!
For example, let's change A$. Type

A$="HI THERE!®' *
PRINT A$;B$

" HI THERE'! HOW ARE YDU?
$pacing with Colons
There is a third “separator" that can be used: the colon. The colon instructs
the.computer to print the next item at the beginning of the next line. It

works the same way with both numeric and string variables. Enter these 11nes
as an example:

A=-5

B$="HELLO" -
CH="MY NAME IS ALPHR"

PRINT A:B$:C$

-5

HELLO

MY NAME IS ALPHA

To review for a moment, thén, these are the three print separators we have
used:

Punciuation mack Qperation

Comma Prints values in different zones; maximum of

. two items per line.

Semicolon l.eaves no spaces betweent1tems. (The spaces
that appaar hetween numbers are results af the

ric

quantities.)

Colon —~Prapts next item on following line.

Paga ¥

066l 11--99/2 Book @i BRLHIU for Beginners

Understanding the Ord f Arithmetic O i

You've been introduced before to the arithmetic powers of your computer, but
it's time now take a more detailed look of some of its mathematical
capabilities. For example, what is the answer to this problem:

444%5=7 {Remember, * means "multiply” to the computer.)

Let's say, for example, that the answer represents an amount of money you awe
a friend. Your friend argues that you owe him $50, because

4+4=10, and
10x5=80

»

You, however, don't agree. You say you only opwe $34, because

6x58=30
4430=34

Who is right? Why not ask your computer?

Type PRINT 414%S
and press ENIER.

The answer is 34. You win!

Order of Operations

There is a comronly accepted order in which arithmetic operations are
performed, and your computer performs calculations in that order. In any
problem involving addition, subtraction, multiplication, and division, the
arithmetic operations are completed in this way:

Multiplications and divisions are performed
before additions and subtractions.

Thisﬁiglthe method your computer used to solve the previous example. It first
multiplied &4%5 and then added the result to 4, giving you a final answer of
34. Now try this example:

PRINT 4+15/3%2-4

Before you press ENIER, let's think about the way the computer evaluates this
problem. Scanning the problem from left to right, the computer solves it in
this order:

15/3=5

5%2210
6+10=16
16-4=12 S

Your answeb) then, should be 12. Press ENIER now, and see the result:

PRINT &+15/3%2-4
12

Page 55

0246P TI-99/2 Book 2: BRSIC for Beginners

U.1.3 Parentheses to Alter the Order of Operations

Supbose. however, that we want the computer to solve the last problem like
_this:

(1) Add é and 15.

(2) Divide the result by 3.

(3) Multiply that result by 2.

(4) Subtract 4, giving a final result of 10.

We can change the built-in computational order by using rarentheses. Try thist
PRINT (4%15)/3%2-4 Press ENIER.

The answery 10, is displayed on the screen, because the computer has completed
the computation inside the parentheses first. So our new order of operations
becomes:

(1) Complete everything inside parentheses, innermost first.

(2) Complete multiplication and division, in order from left to right.

(3) Complete addition and subtraction, in order from left to right.
Now try this example:

"PRINT 8/2%4/2

The answer is 8, because

g8/2=4

4%4=16 -
16/2=8

But suppose we entered the problem with parentheses, like thisi

PRINT 8/(2%4)/2

Thié“fiié, we get a result of .5y because the expression within the
parentheses has heen solved first:l

ax4=g
8/8=1
1/2=.5 .

Here's a slightly harder problem to try:

~

PRINT 274+10/2%100-30

If we enter the problem just like this, we obtain an answer of 744 bgcause

10/8=$ -
- 5x100=5Q0
- 274%500=774
774-30=744

Page 56

0266P TI-99/2 Book 2: BAGIC for Beginners

PRINT (274410)/2%(100-30)
9940

PRINT (274+10)7(2%#100)-30
-28.58

PRINT (274110/2)%100-30
27870

er

Try

Rearrange the parentheses in the last problem.

thg following for practice:

PRINT 38+6-4

PRINT 38+6-4%2

PRINT (38+6-4)%2

PRINT ((38+6-4)%2)/ (412}

How is the answer affected?

TEEne

-
Page 57

0R66P T1-99-2 Book ¢: BABILC far Beg.iuners

re
" Understanding Scientific Notation

So far, all the examples we've tried have given results in a normal decimal
display form. However, the computer displays very long numbers (more than ten
digits) in a special way. Try this program.

NEW
10 CALL CLEAR
20 A=1000

30 FOR X=1TOS

40 PRINT A
50 A=A¥100
60 NEXT X

When you run the program, the first four results are printed out in the normal
form. The last result, however, looks like this:

1E411
We call this special form scientific notation. It's just the con, .ter's ua}
of handling numbers that won't fit into the normal ten-digit space allatted

for numbers.

11
~ 1E411 means 1X10 or 100,000, 000,000

As You can sees iE+411 represents a very large'number!

%
4]
ae}

Velowl b YYse DOOLXN e bHDLIL TWE bDeEYLIe »

Using the INT Function

The INT function gets its name from the word integery meaning whole number,
one that has no fractional part. Integers include zero and all of the
positive and negative numbers that have no digits after the decimal point.

The best way to learn how the INT function works is by trying it. First,
let's work a division praoblem that doesn't result in a whole mumber answer.
Type

PRINT 16/3
and press ENIER. The answer is 5.333333333.
Now try this example:

PRINT INT(16/3)
5

INT kept the whole number part of the answer and threw away the digits after
the decimal point. Notice that the number or expression that the INT function

works on must be enclosed in parentheses. Try another example:

PRINT INT(7/6) (7/76=1.166666666)
1 (INTeger of 7/6=1)

The answer is 17 all of the fractional part has been discarded.

.ougabeutgagpealgiiie;ppableniggLexgsgsaygaAsalesclevkglsgslvlnags1 37 in

change to a customer. The customer wants as many quarters as p0551b1e. How
many quarters can be given?

Page 59

0:46P TI-9Y 2 Book 23 buoll 10r deglnners

PRINT INT(1.37/.25)

The answer iz 5. Five quarters can be given.

More than one INT function can be used in a PRINT statement. Here's an
example:

PRINT INT(1/3)3INT(20/9)
o 2

What would happen if you entered these values with the INT function: 8, 8.9%,
8.347 Try them and see.

PRINT INT(8)
8

PRINT INT(8.99)3INT(8.34)
8 8

If you use INT with a whole number (integer), vou just get the same number
back. In the other two examples, no matter what digits are to the right of
the decimal point, the INT function "truncates“ or cuts off those digits--that
js, it works this way for positive numbers. What happens with negative
numbers?

Ue'il yse a program to explore INT and negative numbers. Enter these lines:

NEW

aey

10 CALL CLEAR

20 FOR A=1 TO 7 | .
30 PRINT -A/3,INT(-A/3)

40 NEXT A

Qua6P T1-99/2 BooKk i BRLIL (0r Beginners

Now RUN the program. The screen shows these results:

-.3333333333 -1
= 66666666466 -1
-1 -1
-1.333333333 =g
-1.666666466 -2
-2 -2
-2.333333333 -3

S0 INT(X)-—where X represents a number or a mathematical expression--camputes
the nearest integer that is less than or equal to X. Perhaps looking at a
number line will help to explain.

»

(number line graphic)

As you see from the number line, when X has the value -0.3, the nearest
integer that is less than or equal to X is -1.

One last feature assaciated with INT ig very useful to know. It can appear on

the right side of an equals sign in an assigmment statement. For example, try
the next series of lipes.

A=INT(4/3) 12

_ PRINT A
3
In the assigmment statewent, INT(4/3) produces the integer result of 1. This
result is added to the canstant 2y yielding 3 as a final result. A is then
assigned the value of 3 and printed. -

Try some other experiments with INT so that you become even more familiar with
how it works.

Page 61

Q266P TI-99,2 Book 2: BASIC for Beginners

Using the RND Function and the RANDOMIZE Statement

The letters in the name RND are taken from the word RaNDom. To find out what
RND doesy let's try a few examples in the Immediatz Mode.

Enter the NEW command, and then enter this line:

PRINT RND

Now try entering the line again. Here's an interesting situation' Every time
we use RND, we get a different number. That's exactly what RND does--it
generates random numbers. ’

Now let's try a program that produces ten random numbers. Enter these lines:

20 FOR LOOP=1 TO 10
30 PRINT RND
40 NEXT LOOP

When you've checked your program for errors, run it. A list of ten random
numbers is printed on the screen. Look at the numbers closely. Are any two
of the numbers identical?

You may have noticed that all the numbers generated by RND are less than one
(1.0} in value. Also, there are no negative numbers. RND is preset to
produce only numbers that are greater than or equal to zero and less than one
(0<nvl). o .

Page &2

0R46P T1-99/2 Book 2. BASIC for Beginners

Write down the numbers this program produced, and then run the program a

second time. Check your written list against the numbers on the screen thi
time. Very strange'! The list of numbers is the same! »

This feature of the RND function is important to remember and can be very
useful in certain applications. Within a program, RND produces the same
sequence of random numbers each time the program is run.

UNLESS...''! Unless the BASIC statement RANDOMIZE is used in your program.
Add the RANDOMIZE statement shown below to the program that is still in your

compy ter.
10 RANDOMIZE

Clear the screen now (type CALL CLERR; press ENIER). and list the changed
program on the screen:

LIST

1C RANDOMIZE

20 FOR LOOP=1 TO 10
30 PRINT RND

40 NEXT LOOP

Run the program again, and compare the new set of numbers with your written
list from the first program run. Are they different this time? They should
be' Continue to experiment with the program until you feel comfortable with
RND and RANDOMIZE. For example, try changing line 30 of the previous program
to:

30 PRINT RNDFRND ‘ -
What result does this change have on the program?

If you want the program to generate more or fewer than ten random numbers,
just change line 20.

Page &3

026&6P TI-9972 Book i BASIL tor Beginners

Other Random Number Ranges

The program you just completed generates random numbers betwéen 0 and 1
(0<n<1). Now let's examine ways to increase the range of the numbers we
generate.

The RND function can be used as part of any legitimate computation. For
exampley 10%RND and (10%RND)>47 are both valid uses of RND in B8ASIC. To show
what is produced when RND is used in this way, enter the following statement.

PRINT 10%RND

What number appears on the screen? Try the same statement again. What number
did you get this time?

In both these examples, you should see a decimal point followed by ten digits,
or one digit to the left of the decimal point, followed by nine digits to the
right of the decimal point. That's because 10%RND produces random numbers in
the range of O to (but not including) 10. Try thisi

PRINT 100%RND

and see what is produced. This time you could get one or two digits to the
lef@ of the decimal point, in the range from O through 992.97% 0

Let's use a program to generate some random numbers in the ranges 0 to 10 and
0 to 100. Enter these lines:

NEW

10 RANDOMIZE

20 FOR LOOP=1 TO 5

30 PRINT 10%RND,100%RND
40 NEXT LOOP

Page &4

0266r 11 -99/2 Book 2: bHSIL tor Beginners

Now clear the screen and run the program. Rlthough the numbers you generate

on your screen are different, they look something like thiss

RUN

3.196128739 11.32761568

6.233532821 9.502421843]
7.030941884 33.17351797

» 6689170795 86.40802154

?.388957913 «75465322811
#% DONE %

Study the differences between the numbers in the left print zone on the screen
and those in the right print zone. Can you see that the range is greater in
those on the right? Run the program again to produce other numbers.

Suppose we'd like to eliminate all digits to the right of the decimal point

and produce positive random whole numbers (integers). Remember the INT
function we discussed earlier? This is a job for INT!

‘Change the program by typing and entering this new line:
30 PRINT INT(10¥RND),INT(100%RND)
When you list the program now, it looks like this:
©oLISY

10 RANDOMIZE
20 FOR LOOP=1 TO §

*RND) -
40 NEXT LDOP '

Page &5

0266P TI-99/2 Book ¢: BASIL tor Begiiwwers

when you run the program, the screen shows two series of random whole numbars

(the numbers you generate an your screen are different):

RUN

9 51
0 ‘14
6 77
5 ?
1 21
%% DONE *%

All the numbers on the left side of the screen have values from O through 9,
whereas' the numbers on the right have values from O through 99. The INT
function throws away the digits to the right of the decimal point. The
following table summarizes what we have covered so far.

Pragram Instruction Range

RND 0 through .9999...

10%RND 0 through 92.9999...
INT(10%RND) 0 through 9 (integers only)
100%RND 0 through 99.999%...
INT(100*RND) 0 through 99 (integers only)

Notice that all these ranges begin with the value of zero. In many games and
simulations, however, we need random numb-rs that start at some other value.
For example, to simulate the throw of one die you need a random number

‘generator that produces values from 1 to 6. You have seen that INT(10%RND)
gives values from 0 to 9. What does INT(4¥RND) produce? Change line 30 in
the program to PRINT INT(&¥RND) and run the new program.

0266P TI-99/2 Book 2: BASIC for Beginners

Type:

30 PRINT INT(&%RND)
CALL CLERR
RUN

WMo

#% DONE *#

Your screen shows a list of five random numbers ranging from 0 to S. What
happens if we added the value 1 to each item in this list? The resulting
numbers range from 1 to 4. That's just what we need to simulate the throw of
a single die. Again, alter the program as shoun below and run it.

T_YPE:

30 PRINT INT(&%*RND)+1
CALL CLEAR
RUN

o= 5 W

#% DONE **

That does it! The program now in your computer is a simulation (imitation) of
throwing a single die five times.

0264P T1-99/2 Baok &: BASIC for Beginners

A Two-Dice Simulation

At this point we can easily design a program to simulate the throws of two
six-sided dice. Before you start, erase the old program by typing NEW., Then
enter the following program:

S CALL CLEAR
10 RANDOMIZE
20 INPUT “NUMBER OF ROLLS?"IN

30 FOR ROLL=1 TO N

40 DIE1=INT(4*RND)+1

50 DIER=INT(4%RND)+$1

60 PRINT DIE1;DIE2,DIEI{DIER
70 NEXT ROLL

80 PRINT

20 GOTO 20

This program prints out the number of "spotc" on each die and the sum of the
spots on both dice faces. You are asked how many rolls you wish to make at
the start of the program. Run the program now and watch what happens.

First, the program prints a request for the number of rolls to make. Enter a
number (5, for example) and press the ENIER key.

NUMBER DF‘HOLLS?S

2 5 7
6 6 12
3 1 4
2 3 5 .
1 4 5

NUMBER OF ROLLS?

The program keeps looping back to the INPUT request line. (If you want to
stop the program, just press BREAK.)

Try entering different values for the number rolls. What happens if vou try
30 rolls? Then make some changes to the programy if you'd like to
experiment. For exampley how would you alter the program to simulate the
throwing of three dice? Two eight-sided dice?

Page 48

PRI DR (I A Lduth i DEIQ AL, (Wl Pty aime o

o Error Conditions with RND

The error messages produced by an improper usage of RND are essentially the
same as the error nessages we've mentioned before. Here are some examples:

Typing Errors Error Message
10 PRINT INT(10RND) #* INCORRECT STATEMENT IN 10
10 PRINT INT(10%RND %% INCORRECT STATEMENT IN 10

the letters RND as a numeric variable name in an assigmment statement. For
exampley if you type

RND=5
the computer responds with

*INCORRECT STATEMENT

This occurs because RND is "reserved,* to be used only as a function in
BASIC. A list of all the reserved words is in Book 4.

Page &9

0R286P TI-99/2 Book 2: BALBIL for Begainners

Randomized Character Placement

The following program utilizes the INT and RND functions to benerate random
screen positions for a character you input. First, type NEW and press ENIER
to erase your old program; then enter these lines:

10 RANDOMIZE

20 INPUT "CHAR CODE?®:CODE
30 CALL. CLEAR

“40 ROW=INT(24%RND)+1

50 COLUMN=INT(32%RND)+1
40 CALL VCHAR(ROW,COLUMN,CODE)
70 GOTO 40

We'll use the character codes 33 through 95; because character 32 is a blank
space, we want to avoid entering it when the program asks for a cade number.

Before running the program, look at the line-by-line description belaow.

Line 10 uRandomizes” the random number
series each time the program is run.

Line 20 Stops and asks "CHAR CODE?".
fissigns rnumber you enter to the
variable CODE.

Line 30 Clears prompting message and input
character caode from the screen.

Line 40 Produces random integer in range .
of 0 through 233 adds 1 to value
and assigns value to variable ROW.

Line 50 Produces random integer in range of
0 through 31j adds 1 to value and
- assigns value to variable COLUMN.

Line 40 Prints input character in random
position designated by lines 40 and 50.

Line 70 Loops back to produce new random
position for character.

%:l
N
o
<

VE2bol 1LY 0w PO0OR e biFreae 1) WAL GHW 3

Now clear the screen with CALL CLEAR and run the program. For this first

example, enter 42 (the character code for the asterisk) as the input for CHAR
CODE. The screen looks something like this:

*

* *

To stop the program just press BREAK. Then try running the program several
times, putting in a different character code each time. See if any unusual
designs are produced.

When you've finished experimenting with different characters, let's change the
program to genarate characters at random, as well as placing them randomly on
the screen. First we'll have to decide how to set the limits we want for the
character range. Here's a general procedure for setting the limits for use
with RND:

Subtract the logwer limit from the upper limit.

Add 1.

Multiply that result by RND.

Find the integer (INT) of this result.

* Add the lower limil.

Now we know that we want 63 characters, with character codes ranging from 33
through 95. So our lower limit is 33, and our upper limit is 95:

95-33=42)

6241 =463

Page 71

AV STy P 1 [RER [- B

The number we want to multiply by RND is 63, and we must use the INT function:

INT(63%RND)

Now check the limits established when we add our lower limit, 33%
0+33=33 (lowest possible character code)
62433=95 (highest possible character code)

INT (62%RND)+$33 gives us random whole numbers in the rénge we need. Type the
following new line:

20 CODE=INT(43%RND)+33

and press ENIER. MNow clear the screen and LIST the program to review this
change.

LIST
10 RANDOWIZE

20 CODE=INT (43*RND) +33

30 CALL CLEAR

40 ROW=INT(24%RND)41

50 COLUMN=INT (32%RND) 1

60 CALL VCHAR(ROW, COLUMN, COD
E)

70 GOTO 40

when we run the program this time, the computer generates a random character

cade and then print the chara:ter in random poszt1onq on the screen. (Press
, : 3 R Y- 3 imes to

see d1fferent characters. ' , .

Experiment!--By making changes in two liness yaou cdn cause the previous
program to print different random characters each time it loops. Try it!
(Hint: Think about lines 30 and 70.)

Page 72

0P66P TI-99/2 Book 2: BRSIC far Beginners

7 Using the IF THEN Statement
LR

The IF THEN statement causes the computer to make a decision about whether a
condition is true or false. If the condition is true, the program transfars
control to a different line (as in a GOTO statement). If the condition is
false, the program proceeds with the next sequential statement.

All the programs we've considered so far in this book have been constructed so
that they either run straight through or loop using a GOTO or a FOR-NEXT
i you with the capability of making

‘branches or "forks" in your program. A branch or fork is a point in a program
where either one of two paths can be taken, just like a fork in a road.

(ILLUSTRATION):
TO: PRINT B

TO: A=S

The general form of an IF THEN statement looks like this:

IF condition THEN lioe pumber

.The condition is a mathematical relationship between two BASIC expressions.

The line number is the program line to which you want the program to branch if
the condition is true. If the condition is not true,s then the program line
following the IF THEN statement is executed. For example,

30 IF K<10 THEN 70

The statement says: If the value of K is less than 10, then go to line
70 of the program. If K is greater than or equal
to 10, then do not branch to line 70. Instead,
execute the line following line 30.

3

%ﬂ
-
<

OreaP 11 7Y/ Buow ¢i bBRHoiL Tur bewlving 3

Let's try a demonstration program. (Pre.> the comma key in conjunction with

either SHIEI or ECIN to enter the < sign.) Enter these lines:

NEW

10 CALL CLEAR
20 K=1

30 PRINT “K=*;K
40 K=K+1

50 IF K<10 THEN 30
40 PRINT "OUT OF LOOP"

Now run the program.

K=
K=
K=
K=
K=
K=
K=
K=
K= 9
ouT OF LOOP

CAOUONOCOD WM

W% DONE %%

Each time the program reaches line 50, it must make a “true or false®
decision. When K is less than 10, the IF condition (K210) is true, and the

program branches to lin - ;] v K< .
program then executes line 60 and stoes. N

We mentioned earlier that the condition is a mathematical relationship between
two expressions. In the example you've just seen, the mathematical
relationship was <y or “less than." There are a total of six relationships
that can be used in the IF THEN statement:

Page 74

0264P TI-99/2 Baok 2: BASIC for Beginners

Matbematical — BASIC
Relationshig Symbal Symbol
Equal to = =
" Less than g 4

Greater than » ¥
Less than or , »

equal to 4 o=
Greater than

or equal to & b
Not equal to @ e te

Suppose we changed line 50 in the program to this:
50 IF K<=10 THEN 30

How is the program's performance be affected? Try it! Enter the new line,
and then run the program again.

Now the program prints the value of K all the way through 10, because the new
line says, "If K is less than or equal to 10, branch to line 30."

The IF THEN statement can be a powerful tool in program development. Try this

program for a graphics application:

© NEW
10 CALL CLEAR
20 K=1
30 CALL HCHAR(K,Kt1,42)

40 K=K+1
80 IF K<25 THEN 30 : -
40 K=1

70 CALL HCHAR(K,K$3,42)

80 K=K+1

20 IF K<25 THEN 70

100 GOTO 100

(Press BREGK to stop the p‘rogram.) Can you follow this pattern to create more
than two diagonal lines?

0266P TI-99./2 Baeok & BASIL v Beginners

Like most BASIC statements, the IF THEN statement iz pretty ‘particular about
its form. The main errors that can accur in using the IF THEN statement are
shown below:

20 IFA=B THEN 200 (No space after IF)

20 IF A=BTHEN 200 (No space in front of THEN)

20 IF A==B THEN 200 (Invalid relational symbol combinations)

20 IF A= THEN 200 (No expression on one side of the relational symbol)
All of the above conditions produce an error message either when entered or
during the running of the program, along with a reference to the line number
of the statement in which the error occurs.

If the

line number referenced in an IF THEN statement does not existy the

program stops and produces a message saying that the line number referenced in
the statement is not found in the program. For example (using the line
above), if 200 is not a valid line number in your program, you see this error
messages

% BAD LINE NUMBER IN 20

0246P TI-99/2 Book 2: BRSIC far Beginners

./\\ o] :
Review
1. Which arithmetic operations are performed first, multiplications and
divisions or additions and subtractions?
2. How can you change the normal order of arithmetic operations in a program
line?
3. What does the INT function do?
4. What is the difference between RND and RANDOMIZE?
§. If the condition in an IF THEN statement is true, what happens?
What if the condition is false?
(Answers are on page XX. If you miss a question, go back to the appropriate
section and review the information before you proceed to the next section.)

Page 77

Oeeor 11-99/2 Book .. BRLIL tor Beglinwis

7 Answers to Review aon Page 28

1.

2.

C. A variable is a word or letter that is assigned a particular value,.

C. The difference between numeric variables and string variables is that
numbers are assigned to numeric avariables and characters are
assianed to string variables.

D. The difference between NEW and CALL CLEAR is that CALL CLEAR only

S.

be

clears the screen and NEW both clears the screen and erases the

computer's memory.
£. All of the given answers are valid ways to correct errors.

A matched with Z. A comma displays each item in a different print zane.
8 matched with X. A semicolon displays items close together.
C matched with Y. A colon displays items on separate lines.

A. The numbers within the parentheses after a CALL HCHAR or CALL VCHAR
cammand specify (row, column, character-code, number of repetitions).

0Rs6P T1-99/72 Book &: BASIC for Beginners

7 pnswers to Review on Page 51

1. Line numbers
2. EDIT lipe-pumber ¢(press ENIER!

! line-oumbec (press UP ARROW or ROWN ARROW)

3. Colaon (3)
10 INPUT “LENGTH?":L

4. BREAK or CLEAR
5. Nested

Page 79

VZoOF [L-7%/d Buwen we LHwiIL 1wl LU, sl s

Answers to Review aon Page 77

1. Multiplications and divisions are performed first.

2. You can insert parentheses to chainge the normal order of arithmetic
operations.

3. The INT function truncates (deletes) any fractional paft of a numbers thus,
INT makes the number an integer.

4, RND generates the same series of numbers. RANDOMIZE causes the RND
function to generate truly random numbers.

§. If the condition is true, the computer branches to the line number
specified.

If the condition is false, the computer simply proceeds to the next line in
suctession.

Xty

Page 80

QCOOP 1i-YY/ ¢ LOOK i bHOLL 1w LusLoin o

P Index

Arithmetic Operators
CALL. CLEAR

CALL HCHAR

CALL VCHAR

RELete

EDIT

-Error Correction
Error Messages

FOR-NEXT
GOTO (GO TO)
IF THEN
Immediate Mode
INPUT .
INGert
INT
LET
LIST
NEW
PRINT
Print Separators
Colon
Comma
~ Semicolon
RANDOMIZE
RND
o RUN
— VYariables

Numeric
String

Page 81

