WORDS WERE JUST DATA UNTIL...

S ' R T N G
M A S T E R

99/4A Progran Environment
100% Assenbly Language LINKs for Extended BASIC

"...one of the most valuable valuable software development
tools the 99/4A has seen since the Extended BASIC cartridge.”
- Computer Shopper

Another Fine Product From

BYTEMASTER COMPUTER SERVICES
171 MUSTANG STREET
SULPHUR, LA 70663-6724

SYSTEM REQUIREMENTS:

TI-99/4A or Compatible
TI Extended BASIC or Compatible
Memory Expansion
Disk Drive

ONLY $19.95

STRING MASTER

TABLE OF CONTENTS

STRING MASTER OVeIrvVieW . vttt teenenreeoenenenonenos 1
STRING MASTER Conventionsuiuiinnneennnnn 1
RemMINders ittt e e e e e 2
Conventions of the STRING MASTER Manual 2
Loading STRING MASTER . it v ittt ettt ittt 3
APEND A L e e e e e e e e e, 4
2 5
BINHE K & ittt ittt it ittt i e e e e e 5
O I8 5 0§ 1 6
6)11 6 1 6
CONC T R v ittt ittt sttt ettt ettt e neenneesneeenenenenenes 7
0 ¥ A 8
B XL EN .. it e e e e e e e e e e e e e e e e e e e 8
N 9
0 0 e 9
HEXDECt sttt n e v e ettt 9
3 0 10
] 00 10
7 I 0 11
MINLEN ...t ettt e e e 11
3 = 3 0 11
REPLAC ...t iiinnnnns et e e e csssesisesievnes 11
BEARCH & e e e e e e e 12
0 1 12
3/ o 0 e e ae e 13
SMPOKE & o v ittt e i et e e e e e e e 14
S T 14
SORT AN L i i e e e e e e e e 14
SORTD ... i, O, e e 15
ST RINC .ottt ittt ittt ettt et e s oo e e e e 15
8 0 16
SVPOKEccvuuun e e s e e R T N
TRIM ...0vvvenn.s e e ot et et et e 17
WINDOW L ittt it ittt ettt e s eneeonnsennnns A
WARRANTY TINFORMATION ..ttt it ittt ettt e ttteee o 18
REGISTRATION et e e et e e e vee. 19

See the program DEMO on the STRING MASTER diskette for
additional ideas on using the functions of STRING MASTER.

STRING MASTER, Copyright 1987, Bytemaster Computer Services

- 4 -

REGISTRATION FORM
REGISTRATION #SM0023

Name

Street

City

State

Zip

Country

Vendor

Date of Purchase

Mail to:

Bytemaster Computer Services
171 Mustang Street
Sulphur, LA 70663-6724

19

STRING MASTER Overview

STRING MASTER is a set of Assembly Language routines accessible from TI
Extended BASIC (or derivations therefrom, such as Triton Super Extended BASIC).
String Master routines provide for handling macro equivalents of standard XB
functions, thereby greatly reducing program development time and program run
time. Furthermore, STRING MASTER's speed and practical design provide an
environment that is conducive to creative programming.

For those of you unfamiliar with accessing Assembly routines from XB, it
is really quite simple. For instance, it would be possible to write an Assembly
equivalent of XB's CALL HCHAR. The regular HCHAR is used 1like this:

CALL HCHAR(1,1,32,768)

An Assembly equivalent could be accessed like this:

CALL LINK("HCHAR",1,1,32,768)

AS you can see, there is very little difference, so don't be intimidated by the

words "Assembly Language"! Simply follow the guidelines of this manual and you
will find programming with STRING MASTER to be as easy as programming in XB.

STRING MASTER Conventions

All routines can be fully utilized with any standard 99/4A system with disk,
memory expansion and Extended BASIC.

TI Extended BASIC and direct derivations therefrom are fully supported (MYARC
XB is not supported because it is internally radically different).

Both OPTION BASE 0 and OPTION BASE 1 are fully supported.

Any string type (direct string, string variable, string array element or string
array) is valid for any string parameter.

Any numeric type (direct number, numeric variable, numeric array element or
numeric array) is valid for any numeric parameter.

Both string and numeric arrays can utilize any number of dimensions supported
by XB, 1 to 7.

Complete error checking with standard XB error messages.

Numeric integers within a maximum range of -32768 to 32765, inclusive, are
fully supported.

CALL LINK's utilize standard XB syntax. In other words, complex expressions
may be used only for passing parameters to (not from) assembly routines and

may not pass entire arrays (examples of valid complex expressions are "AS&BS"
and "A+B").

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 1

Reminders

STRING MASTER provides many powerful features for handling strings and is
designed to follow standard protocols to the extent possible within an
enhancement package. Still, there are routine cautions to be observed.

The 99/4A has a limited area for storing strings, but system software
recovers string memory no longer being utilized. Therefore, it is often very
advantageous to use functions available in STRING MASTER to minimize the
lengths of strings, so that memory will remain available for additional string
processing. User programs should be thoroughly tested to ensure that system
string memory space cannot be exceeded. When string memory space is exceeded,
a "Memory Full in Line XXXXX", where "XXXXX" is a line number, error message
will be issued as a standard system error.

User programs should be thoroughly tested before being used to over-write
important files. This is a standard tenant of program development that is
especially relevant in using environments previously unfamiliar to the
programmer.

Conventions of the STRING MASTER Manual

Each STRING MASTER function is described in detail. Near the beginning
of each description, the proper CALL LINK format for linking to the assembly
routines is given. The format utilizes the following abbreviations for the
data types of the LINK parameters:

SV = string variable, direct string or string array element

SA = string array

NV = numeric variable, direct number or numeric array element

NA = numeric array

DM = does not matter (any data type)

As previously described, string parameters can utilize any string type and
numeric parameters can utilize any numeric type. The LINK formats are
supplied to indicate the preferred data type. Where a non-array 1is
indicated, usage of an array will pass the first element of the array to
the function. Where an array is indicated, usage of a non-array will have
the same effect as using an array dimensioned to one element. Functions

with a format that specifies an option, indicated by "OR" (for example,
"SV OR SA"), will act upon the two data types differently, with subsequent
documentation indicating the exact manner each is handled. "DM" indicates
that it does not matter what data type is utilized; the function will act
or not act depending on whether the parameter is used, regardless of the
data type. Below the LINK format is a line indicating whether each
parameter is R)equired, O)ptional, or a "S)ub-parameter” (see below), followed
by a line indicating paired optional parameters (denoted with "\/").

Following the LINK format is the parameter description list. The specific
usage of each parameter, including any range limitations, is described in the
parameter description 1list. The word "parameter" is abbreviated "PARM" in the
list. Thus, PARM 1 refers to the first parameter in the LINK. Note that some
parameters are listed as what might be casually referred to as
"sub-parameters". The number of sub-parameters corresponds to the number of
dimensions of a specified array. If a non-array is used where an array is
preferred, then one sub-parameter must be used for values passed from the
assembly routines and/or no sub-parameters should be used for values passed to
the assembly routines. Sub-parameters are numbered in the parameter list as a
parameter with a suffix (for example, "PARM 3Al through 3A7").

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 2

The function description then continues with a list of any optional
parameters, including any parameters that are dependent upon usage of
other parameters.

Finally, the function description can include Comments, Usage,
Applications, Cautions and Examples to clarify the exact way to use
the function.

Loading STRING MASTER

METHOD 1

STRING MASTER can be loaded with the standard Extended BASIC CALL's for
loading Assembly routines as relocatable code to Low Memory, as follows:

100 CALL INIT
110 CALL LOAD("SM/O")

METHOD 2

While the standard CALL LOAD method provides full integrity of the XB
environment, the XB loader is very slow. To facilitate a faster load, Todd
Raplan's popular "XBAL" load method has been employed for those users who prefer
simplified, fast loading. "XBAL" loads (to High Memory) "hidden" assembly code
along with an XB program and the XB program triggers moving the assembly code to
Low Memory (beginning at »>24F4, the standard address for loading immediately
following CALL INIT). While a programmer can add code to an XBAL program, it is
more common to RUN or OLD another program, thereby freeing the area containing
redundant assembly code. After an XBAL program completes, the XB environment is
standard, as if the standard CALL LOAD process had been employed. The STRING
MASTER XBAL program is the "LOAD" file on the STRING MASTER disk. Thus,
inserting the STRING MASTER disk in drive 1 and selecting Extended BASIC from
the main system menu will load the STRING MASTER assembly routines. Optionally,
use (drive 1 is merely an example, the drive number can be any available drive):

RUN "DSK1.LOAD"

METHOD 3

The third loading method is somewhat less standard and is therefore
recommended for somewhat advanced users. A method similar to that described by
George Steffen in GENIAL TRAVelER diskazine has been used to allow having
the STRING MASTER routines reside in High Memory. To accomplish the High Memory
residency, the system pointers to the XB program are manipulated. Once that is
done, a few programs that use CALL LOAD's to poke values to memory may not

function as intended. Also, OLD or RUN will reset the pointers. To load the
High Memory routines, use:

OLD "DSK1.LOADH"

To write XB code for the High Memory environment, OLD in LOADH, key in the
program normally and SAVE the program. To use or modify a program in the High
Memory environment that was not written for the High Memory implementation of
STRING MASTER, OLD in the program (OLD "DSK1.PROG"), SAVE the program in MERGE
format (SAVE "DSK1l.MYPROGRAM",MERGE), OLD in LOADH (OLD "DSK1.LOADH"), MERGE in
the program (MERGE "DSK1.MYPROGRAM"), then SAVE normally (SAVE "DSK1.PROGRAM") ,
thereafter loading the program normally. With STRING MASTER residing in High

Memory, Low Memory is available for assembly code (the standard XB LOAD must be
used to avoid destruction of the STRING MASTER REF/DEF table).

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 3

APENDA

APpEND Array
CALL LINK("APENDA",SA,SA,NV,NV, NV, NV,NV,NV, NV, NV, NV,SV,SV,SV,NV,DM)

R R S s s s s s s 0 O 0O 0 0 O ©
\/ \/

PARM 1: Source; array to append to another array.
PARM 2: Destination: array at which to append.
PARM 3A1 through 3A7: From 1 to 7 parameters, one for each dimension of the

destination array, for indicating the element at which to begin an
append. Use no sub-parameters for non-array destinations.

PARM 4: SEGS position (range: 1 to 255)

PARM 5: SEGS length (range: 1 to 255)

PARM 6: Operator for selectively engaging the SEG$ function, can be one of the
following (must be one character):

(equal)

(greater than)

(less than)

(greater than or equal)

(less than or equal)

(not equal)

(all) (any character not otherwise used can be

substituted for "A")
: Match String, for matching the SEG$ through an operator
: SEGS Qualifier; determines whether the results of the Operator function
will be used to utilize the entire string or the SEG$. Use of "S"
qualifies the SEGS, any other string qualifies the entire string.

PARM 9: Count of the strings passing the Operator test.

PARM 10: Count Only; used to obtain only a count, with no append. Omit PARM 10
to actually append.

PREQAVI

PARM 7
PARM 8

Optional Parameters: 4 through 10. Parameters must be in sequence, with the
only omissions permitted being sub-parameters that are not applicable
and options at the end of the parameter list that are not used. PARM
4 is dependent on PARM 5. PARM 6 is dependent on PARM 7.

Comments: APENDA is one of the most powerful functions of String Master and is
also the most complex in structure. Optional parameters allow
learning the capabilities of APENDA a step at a time, as well as
permitting a full range of capabilities.

Usage: Copies strings from one array to another array or from an array into the
same array. Allows a function equivalent to XB's SEGS at the time of
the copy. The string result of the SEGS can optionally be tested
against a Match String for copying strings selectively. A count of
the elements copied can be obtained. When selectively copying, either
the original string or the SEGS can be copied. Using the Count Only
feature, the append can be by-passed and yet a count of the elements
that would otherwise have been copied can be obtained. The append can
begin at any element of the destination array. The append
automatically stops when either the entire source array has been
copied or the end of the destination array is reached (i.e., "string
stack overflow" errors will not be encountered). Note that copying
is done sequentially into the destination array, so that there is no
implied correlation between corresponding element numbers of the two

arrays.

Applications: Useful for database operations in which a field is derived as a
SEG$ of a string. Can also be used to obtain counts of strings
matching certain criteria. Many other applications possible,
including c¢clever manipulations of character patterns.

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 4

Cautions: Appending an array into itself while not beginning at the first

Example

Example

Example

Example

Example

Example

element or while copying matched strings can yield unanticipated
results. The function may repeatedly pick up a particular element or
otherwise perform in a manner other than what might be expected.
Appending an array into itself is recommended only for purposes of
obtaining a Count Only or SEGS.

1: The following is equivalent to AS$=BS.

100 CALL LINK("APENDA",BS$,AS)

2: This example will provide the equivalent of A$(I,J)=SEGS$(AS(I.J),
1,5) where I and J are FOR-NEXT loop counters that cycle through the
entire array, for all elements of the array.

100 CALL LINK("APENDA",AS(,),A$(,),0,0,1,5)

3: The following will copy all occurances of "AAAAA" as the first five
letters of an element to BS$().

100 CALL LINK("APENDA",AS(),BS$(),0,1,5,"=","AAAAA")

4: This code will copy all elements of A$() that begin with "AAAAA" to
BS().

100 CALL LINK("APENDA",AS$(),BS$(),0,1,5,"=","AAAAA","")

5: This one will do everything in Example 4, plus it will provide a
count of the elements copied.

100 CALL LINK("APENDA",AS$(),BS$(),0,1,5,"=","AAAAA","", 6 COUNT)

6: Finally, this example will provide the same count as in Example 5,
but will not append.

100 CALL LINK("APENDA",AS$(),BS(),0,1,5,"=","AAAAA","",COUNT,C_ONLY)

BEEP

BEEP

CALL LINK("BEEP")

Usage:

Used to generate a BEEP tone.

Applications: Useful for providing emphasis with a positive connotation.

BINHEX

BINary to (ASCII) HEXadecimal conversion

CALL LINK("BINHEX", SA,SA)

Parm 1:

Parm 2:

R R

Binary string (a string consisting of characters in the range 0
to 255, inclusive).
Hex string (a string of characters from the set "0123456789ABCDEF")

Comments: See also HEXBIN.

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 5

Usage: Used to convert a binary string to a hexadecimal string. Each binary
digit is converted to two hexadecimal digits. For instance, character
255 would be a single character in the binary string, but would become
"FF" in the hexadecimal string.

Applications: Useful in conjunction with SMPEEKV to obtain character patterns
SMPEERV and BINHEX can be used together for the equivalent of XB's
CHARPAT, but the STRING MASTER functions may utilize an array, while
CHARPAT is 1limited to use with strings only. Other memory peeking
applications are possible.

Cautions: The binary string should be no longer than 127 characters. Because
BINHEX yields a twice-as-long string in the destination (the hex
string), use of a binary string greater than 127 characters will cause
a "String Truncated" error and termination of the program.

Example:

100 AS(0)=CHRS(25)&CHRS(48)
110 CALL LINK("BINHEX" ,AS$(),BS())

CIRCUL

CIRCULar rotation of an array

CALL LINK("CIRCUL",SA,NV)
R R

Parm 1: Array to rotate.
Parm 2: Number of single-element rotations to accomplish.

Usage: Used to move the first element of an array to the last element position
and move all other elements down one position.

Applications: Useful for changing the screen display position of an array
element while using WINDOW. For instance, if an array has 48 elements,
then 24 rotations will swap a "hidden" 24-row window with the one being
displayed on the next WINDOW of that array.

Cautions: While CIRCUL can "hide" elements, it will not eliminate those
elements, so that functions such as SORTA may bring an element back
into a more predominant role than casually anticipated.

Example:

100 DIM AS$(47) :: CALL LINK("CIRCUL",AS$(),24)

CONCaTenate Left

CALL LINK("CONCTL",SA OR SV,SA)
R R

Parm 1: Source array
Parm 2: Destination array

Comments: See also CONCTR, APENDA, MAXLEN

Usage: Used to concatenate (equivalent to using the "&" in XB) the elements of

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 6

one array to the corresponding elements of another array. Or, if a
direct string, string variable or string array element is used as the
source, the string will be concatenated to every element of the array.

The source string is placed on the left side of the destination
string.

Applications: Useful for database operations to rebuild a string taken apart
with APENDA or XB's SEGS. For instance, if A$() is an array of first
names and B$() is an array of last names, using CONCTL will place both
the first and last name in B$() if B$() is the destination.

Cautions: Exceeding the 255-byte limit of a single string will yield a "String
Truncated" error message and terminate program execution in an error
state. If all strings are 127 characters or less, no error can occur
(MAXLEN can be used to test for maximum length within an array).

Careful program planning is required in using CONCTL.
Example 1, places an "A" preceding the first character of each element of AS():

100 CALL LINK("CONCTL","A",AS$())

Example 2, concatenates each element of AS() to the left side of the
corresponding element of BS():

100 CALL LINK("CONCTL",AS$(),BS())

CONCTR

CONCaTenate Right

CALL LINK("CONCTR",SA OR SV,SA)
R R

Parm 1l: Source array.
Parm 2: Destination array.

Comments: See also CONCTL.

Usage: Used to concatenate an array, element for element, with another array.
The source will be placed to the right side of the destination and the
concatenated string will reside in the destination. Use of a direct
string, string variable or string array element as the source will

place the source string to the right of every element in the
destination.

Applications: Useful for database operations.

Cautions: Exceeding the 255-byte 1limit of a single string will result in an
error message and termination of the program in an error state.

Example 1, places an "A" following the last character of each element of AS():

100 CALL LINK("CONCTR","A",AS$())

Example 2, concatenates each element of A$() to the right side of the
corresponding element of BS():

100 CALL LINK("CONCTR",AS$(),BS())

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 7

EOANN

End-0f-Array, Non-Null

CALL LINK("EOANN",SA,NV,NV, NV, 6NV, NV, NV, NV)
R 8§ s s s s s s

Parm 1: Array

Parm 2 Al through A7: From 1 to 7 parameters, one for each dimension of the
array, for indicating the last element that is not a null string.

Comments: See also APENDA

Usage: Used to find the last element in an array that is not a null string (a
null string is a string with a length of zero).

Applications: Useful for reducing output by stopping at the last element that
has what would typically be considered usable contents.

Cautions: EOANN finds the last non-null string. A null string can precede the
non-null string within the array. Use APENDA with Operator "X" and
Match String "" to eliminate nulls that precede the EOANN.
Example:

100 DIM AS(2,3,2)
110 A$(1,2,1)="HELLO"
120 CALL LINK("EOANN",AS(,,),A,B,C)

FIXLEN

FIX the LENgth of a string

CALL LINK("FIXLEN",SA,NV)
R R

Parm 1: String (array).
Parm 2: Length, 0 to 255, for the string(s) (in the array).

Comments: See also MAXLEN.

Usage: Used to set all strings in an array to a specific length.

Applications: Useful for database applications where an array with strings of
variable length are to be set to a like length for usage as a field.
Also extremely useful for saving memory by setting an entire array to
null strings (length of 0).

Cautions: Can truncate strings, so usage of MAXLEN may be appropriate.

Example:

100 AS(3)="HAMBURGER"
110 CALL LINK("FIXLEN",AS$(),3)

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 8

FRAME

window FRAME

CALL LINK("FRAME" NV,NV,NV,NV,NV)
R R R R R

Parm 1: Beginning screen row. Range: 1 to 23.

Parm 2: Beginning screen column. Range: 1 to 31.

Parm 3: Ending screen row, must be larger than Parm 1. Range: 2 to 24.
Parm 4: Ending screen column, must be larger than Parm 1. Range: 2 to 32.
Parm 5: Character for frame. Range: 32 to 143.

Comments: See also WINDOW

Usage: Used to draw a hollow box.

Applications: Useful for framing a window.

Cautions: To avoid over-writing a window with a frame or vice-versa, remember
to make the frame one character position larger than the window on
each side.

Example:

100 CALL LINK("FRAME",1,3,3,30,143)

HEXBIN

(ASCII) HEXadecimal to BINary string conversion

CALL LINK("HEXBIN",SA,SA)
R R

Parm 1: Hex string (a string of characters from the set "012345689ABCDEF")
Parm 2: Binary string. Range: characters 0 through 255, inclusive.

Comments: See also BINHEX.

Usage: Used to convert a binary string to a hexadecimal string. Each two hex
digits are converted to a single binary digit. For example, "FF"
would convert to character 255.

Applications: Useful for use with SMPOKEV to provide the equivalent of XB's
CHAR, but STRING MASTER's functions can utilize an entire array, while
CHAR is limited to a single string. Other memory poking applications
are possible.

Example:
100 CALL LINK("HEXBIN","FF",bAS)

HEXDEC

(ASCII) HEXadecimal to DECimal conversion
or

decimal to (ASCII) hexadecimal conversion

CALL LINK("HEXDEC",SA,NA) or CALL LINK("HEXDEC",6NA,SA)
R R R R

Parm 1: If a string, Parm 2 must be numeric and vice-versa.
Parm 2: If numeric, Parm 1 must be a string and vice-versa.

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 2

Usage: Can be used to convert hex to decimal or decimal to hex. The first
parameter is the source (to be converted) and the second parameter is

the destination. The routine automatically determines the type of the
first parameter and expects an appropriate type as the second
parameter.

Applications: Can be used for converting memory addresses from base 16 to base
10 and vice-versa.

Cautions: The range limit is 4 digits for the hex string. Decimal values must
fall within the range -32768 to 32767. Null strings convert to 0,
thereby reducing program error terminations, though there is no
decimal equivalent.

Example 1, Hex to decimal:

100 CALL LINK("HEXDEC",6"FFFF",A)

Example 2, decimal to Hex:

100 CALL LINK("HEXDEC",-32767,A8)

HONK

HONK
CALL LINK("HONK")

Usage: Generates a HONK tone.

Applications: Useful for providing emphasis with a negative connotation.

LTRIM

Left-side TRIM of unwanted characters

CALL LINK("LTRIM", SA,SV)
R R

Parm 1: Array to be trimmed
Parm 2: Character(s) to trim, as a string.

Comments: See also TRIM.

Usage: Used to eliminate unwanted characters from the left side of a string.
For instance, if Parm 2 is "E4", then all "E"'s and "4"'s at the
beginning of each element of the array in Parm 1 will be removed up to
the point where a character is not an "E" or a "4".

Applications: Useful for eliminating leading blanks and other characters that
might not be desired for a particular situation.

Cautions: LTRIM does not eliminate all occurances of the specified characters,
only the occurences at the beginning of the string. LTRIM'ing more
than one character at a time should be done with caution, as one of

the characters to be trimmed might appear to be safely imbedged within
a string until other characters preceding it are eliminated.

Example:

100 AS$(7)=" BEAR" :: CALL LINKR("LTRIM",AS().," B")

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 10

MAXLEN

MAXimum LENgth present in an array

CALL LINK("MAXLEN",b SA,NV)
R R

Parm 1: Array.
Parm 2: Numeric return variable.

Comments: See also MINLEN, FIXLEN.

Usage: Used to determine the longest string in an array. Array equivalent XB's
LEN.

Applications: Useful in determining the maximum required size for a database
field.

Example:

100 AS(4)="TIGERS"
110 CALL LINK("MAXLEN",6AS$(),A)

MINLEN

MINimum LENgth of a non-null strings present in an array

CALL LINK("MINLEN",SA,NV)
R R

Parm 1: String (array).
Parm 2: Numeric return variable.

Comments: See also MAXLEN, FIXLEN

Usage: Used to determine the shortest non-null string in an array.
Applications: Can be used for statistical analysis of the lengths of an array.
Example:

100 AS(5)="BARTER"
110 CALL LINK("MINLEN",AS(),A)

REBEEP
REBEEP
CALL LINK("REBEEP")

Usage: Sounds a beep tone repeatedly until a key is pressed.

REPLAC

REPLACe a segment of a string with a string

CALL LINR("REPLAC",SV,SA,sV)
R R R

Parm 1: String to replace.
Parm 2: String (array) in which to replace.
Parm 3: Replacement string.

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 11

Usage: Used to search through an array and replace every occurence of the string
in Parm 1 with the string in Parm 3.

Applications: Excellent for replacing fields of a database or for correcting
misspellings.

Cautions: Will not wrap from one element to the next, so that it cannot pick up
on hyphenated words. If the replacement string is no longer than the
string to replace, then the REPLAC has the potential for creating a
string that exceeds XB's 255 character 1limit, so that a "String
Truncated" error can result and cause program termination.

Example, replaces all occurences in A$() of "THEIR" with "THERE":

100 B$="THEIR" :: C$="THERE"
110 CALL LINK("REPLAC",B$,A$(),CS)

SEARCH
SEARCH an array for a string

CALL LINK("SEARCH",SV,SA,NV,NV,NV, NV, NV,NV, NV, NV, NV, NV, NV, NV, NV, NV)
R R S s S8 S s s s s s s s s s s

Parm 1: String for which to search.

Parm 2: Array in which to search.

Parm 3 Al through A7: From 1 to 7 parameters (no PARM 3 sub-parameters if PARM
2 is not an array), one for each dimension of the array in which to
search, for indicating the element at which to begin the search.

Parm 4 Al through A7: From 1 to 7 parameters, one for each dimension of the
array in which to search, for indicating the element at which a match
is found. If no match is found, those parameters required will return
-1 (if PARM 2 is not an array, one PARM 4 sub-parameter is still
required for returning 0 or -1).

Usage: Used to SEARCH an array for a string. Because allowances are made for
both the begin and find elements, searches can continue where a
previous search left off.

Application: Excellent for finding specific text passages or for searching
database.

Cautions: Does not indicate multiple occurences of a string within an element.

Example 1, returns 4 in variable A, indicating that "COMPUTE" is found within
the string "COMPUTER" at element 4 of A$(). The SEARCH begins at
element O of AS().

100 AS(4)="COMPUTER"
110 CALL LINK("SEARCH","COMPUTE",(AS$(),0,A)

SELECT

view and SELECT an element in an array

CALL LINK("SELECT",SA,NV,NV,NV,NV,NV,NV,NV,NV)
R R § s s S s S s

Parm 1: Array in which to SELECT.

Parm 2: Beginning screen row for display, 1 to 14 (11 rows dislayed).

Parm 3 Al through A7: From 1 to 7 parameters, one for each dimension of the
array in which to SELECT, for indicating the element at which a
selection is made.

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 12

Usage: Can be used with the keyboard or either joystick (1 or 2). Uses the up
and down arrow keys or up and down on the joysticks to change the
element displayed in its own screen window. Up decreases the element
number, down increases the element number. When either end of the
array is reached, that end of the array is displayed. The window can
be placed beginning at row 1 through row 14. The first row displayed
is the element number (the screen display number is valid only for
single-dimension arrays, multi-dimension arrays display one number, as
if a single-dimension array). The next 10 rows displayed are the
string contents of that element. The longer
up or down is depressed, the faster the sequencing through the
elements f{(up to a maximum speed that is marginally readable).
Keystrokes are initially handled rather slowly, providing ample time
for reacting. When <ENTER> or the fire button of either joystick is
depressed, the element selected is denoted in Parm 3 Al through A7.

Applications: Useful for situations in which the contents of an array must be
visually inspected, where the exact search parameters may initially be
unknown. Can also be used for icons.

Cautions: When using multi-dimensional arrays, disregard the element number
displayed on the screen, as it is the one-dimensional equivalent.
When an actual selection is made, the proper multi-dimensional element
will be properly denoted in Parm 3 Al through A7.

Example, displays an element of AS() at row 1 and the contents of the element
at rows 2 through 14; returns the number of the selected element in A

100 CALL LINK("SELECT",AS$(),1,A)

SMPEEK

String Master PEEK of (CPU) memory
CALL LINK("SMPEEK",NV,NV,SA,NV)

Parm 1: CPU memory address to begin peek. Range: -32768 to 32767.

Parm 2: Bias to add to each byte peeked. Range: 0 to 255.

Parm 3: String array into which the peeked values are placed as a string.
Parm 4: Bytes per element. Range: 1 to 255.

Comments: See also SMPOKE.

Usage: Will peek as many bytes as desired, limited only by available string

memory space. Will terminate when the number of bytes specified are
peeked, when the specified array is filled or when string memory is
full.

Applications: Can be used to examine ROM and RAM.

Cautions: SMPEER will terminate with a "MEMORY FULL" error if string memory
space is filled. Also, the string array used must be dimensioned to
an adequate number of elements to hold the bytes to be peeked else
the routine will terminate prior to peeking the specified number of
bytes. As with CALL PEEK, some addresses can "lock up" the console!

Example 1, will peek 24 bytes from the beginning of High Memory, placing 8
bytes in each string array element of A$() with no bias.

100 CALL PEEK(-24576,0,24,A5(),8)

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 13

SMPOKE

String Master POKE of (CPU) memory

CALL LINK("SMPOKE", 6 NV,NV,6NV,Sa)
R R R R

Parm 1: Address at which to begin a poke. Range: -32768 to 32767.
Parm 2: Bias to add to each byte poked. Range: 0 to 255.

Parm 3: Number of bytes to poke.
Parm 4: String (array) to poke.

Usage: Will poke as many bytes as desired from an array. This is the string
array equivalent of XB's function to poke values, LOAD.

Applications: Can be used to change RAM values.
Cautions: Writing to some addresses will lock up the console, requiring that a
reset of the console be performed, normally accomplished by turning

the console power off and back on.

Example, pokes the string "HELLO" at the beginning of High Memory, with no
bias.

100 A$(0Q)="HELLO"
110 CALL LINK("SMPORE",-24576,0,5,aA8())

SORTA
SORT in Ascending order

CALL LINK("SORTA",SA)
R

Parm 1l: String array to be sorted.
Comments: See also SORTAN, SORTD.
Usage: Sorts any string array into ASCII order.
Applications: Useful for database and other operations.
Cautions: SORTA is a very simple sort routine. Complex sorting is beyond the

scope of this program, due to memory limitations. For complex,

multi-level sorts, use a package such as Andy Deshoff's BasicSort 2.0.
Example, sorts AS$() in ASCII sequence.

100 CALL LINK("SORTA" , AS$())
SORTAN
SORT in Ascending order, Nulls last

CALL LINK("SORTAN",SA)
R

Parm 1: String array to be sorted.
Comments: See also SORTA, SORTD.

Usage: Sorts any string array into ASCII order, except null strings are placed
last.

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 14

Applications: Useful for database and other operations.

Cautions: SORTAN is a very simple sort routine. Complex sorting is beyond the
scope of this program, due to memory limitations. For complex,
multi-level sorts, use a package such as Andy Deshoff's BasicSort 2.0.
Unlike standard sort routines, this one will place null strings last.

Example, sorts AS$() in ASCII sequence with nulls last.

100 CALL LINK("SORTAN",AS$())

SORTD

SORT in Descending order

CALL LINK("SORTD",SA)
R

Parm 1: String array to be sorted.

Comments: See also SORTA, SORTAN

Usage: Sorts any string array into descending ASCII order.
Applications: Useful for database and other operations.

Cautions: SORTD is a very simple sort routine. Complex sorting is beyond the
scope of this program, due to memory limitations. For complex,.

multi-level sorts, use a package such as Andy Deshoff's BasicSort
2.0.

Example, sorts A$() in descending ASCII sequence.

100 CALL LINK("SORTD",AS$())

STRINC

STRing equivalents of values INCremented

CALL LINK("STRINC",SA,NV,NV)
R R R
Parm 1: String (array) into which to place string equivalents of values.
Parm 2: Beginning numeric value. Range: -32768 to 32767.
Parm 3: Increment value from element to element. Range: -32768 to 32767.

Usage: An approximate string array equivalent of XB's STR$, but allowing
incrementing the initial value through an array.

Applications: Can be used within a program that writes a program to assign line
numbers.

Cautions: Function will terminate when 32767 is reached or exceeded or when the
last available element of the string array is reached.

Example, will place "100" in AS$(0), "110" in AS$(1), "120" in AS$(2).

100 DIM A$(2)
110 CALL LINK("STRINC",AS$(),100,10)

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 15

SVPEEK

String (Master) Video (Display Processor) memory PEEK

CALL LINK("SVPEEK",NV,NV,NV,SA,NV)
R R R R R

Parm 1: VDP address at which to begin to peek. Range: 0 to 16383.

Parm 2: Bias, a value to be added to each byte peeked. Range: 0 to 255.

Parm 3: Number of bytes to be peeked.

Parm 4: The string (array) into which to place the peeked values, in string
form.

Parm 5: Number of bytes per element. Range: 1 to 255.

Comments: See also SVPOKRE.
Usage: Can be used to peek values from VDP.

Applications: SVPEER can be used to peek the addresses of the Pattern
Descriptor Table, then BINHEX can be used to convert the array into a
format usable by XB functions such as CALL CHAR.

Cautions: SVPEERK will terminate when the end of VDP memory is reached or when
the last element of the string array being used is filled.

Example, places the character definition of character 33, defaulted to be the
"i", in BS(0).

100 CALL LINK("SVPEEK",1032,0,8,A8(),8)
110 CALL LINK("BINHEX" AS$(0),BS$(0)) !

SVPOKE

String (Master) Video (Display Processor) memory POKE

CALL LINK("SVPOKE",NV,NV,NV,SA)

R R R R
Parm 1: Beginning address in VDP to poke. Range: 0 to 16383.
Parm 2: Bias to add to each byte poked. Range: 0 to 255,
Parm 3: Number of bytes to poke.
Parm 4: String (array) from which to poke.

Comments: See also SVPEEK.
Usage: Pokes VDP memory from a string (array).

Applications: Use to poke color, pattern descriptor, sprite and other table
values into VDP.

Cautions: SVPOKE terminates when the end of VDP memory is reached or the last
element of an array has been poked, in addition to the standard

termination after the specified number of bytes have been poked.
Example, pokes the elements of AS$() to £fill the Screen Image Table.

100 CALL LINK("SVPOKE",0,0,768,AS$())

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 16

TRIM

TRIM of unwanted characters

CALL LINK("TRIM",bSA,sV)
R R

Parm 1: Array to be trimmed.
Parm 2: Character(s) to trim, as a string.

Comments: See also LTRIM.

Usage: Used to eliminate unwanted characters from the right side of a string.
For instance, if Parm 2 is "E4", then all "E"'s and "4"'s at the end
of each element of the array in Parm 1 will be removed back to the
point where a character is not an "E" or a "4".

Applications: Useful for eliminating trailing blanks, carriage returns, 1line
feeds, etc. that might not be desired for a particular situation.

Cautions: TRIM does not eliminate all occurances of the specified character(s),.
only the occurances at the end of the string. TRIM'ing more than one
character at a time should be done with caution, as one of the
characters to be trimmed might appear to be safely imbedded within a
string until other characters preceding it are eliminated.

Example:

100 AS(7)="BEARING"&CHRS$ (13)&CHRS$(10)
110 BS="ING"&CHRS(13)&CHRS (10)
120 CALL LINK("TRIM" ,AS$(),BS

WINDOW

screen WINDOW

CALL LINK("WINDOW",NV,NV,NV,NV,SV,SA)
R R R R R R
Parm 1: Beginning screen row. Range: 1 to 23.
Parm 2: Beginning screen column. Range: 1 to 31.
Parm 3: Ending screen row, must be larger than Parm 1. Range: 2 to 24.
Parm 4: Ending screen column, must be larger than Parm 2. Range: 2 to 32.
Parm 5: Mode selection, "R" for "READ" a window, "W" for "WRITE" a window.
Must be one character.
Parm 6: Array to be windowed.

Comments: See also CIRCUL, FIXLEN, APENDA.

Usage: WINDOW will "read" a rectangular area of the screen and store it in an
array or "write" an array to a rectangular area of the screen. The
array is written beginning with the first array element, regardless of
the beginning screen row. The element is written to the width of the
window or to the length of the element, whichever is shorter.
Vertically, the window is written to the end of the array or to the
bottom row of the window, whichever is lesser. When reading a window,
the length is automatically set to the width of the window and
continues until the lesser of the end of the window or the last
element of the array, with the array being filled beginning at the
first element (element zero if the OPTION BASE is zero). Columns are

STRING MASTER, Copyright 1987, Bytemaster Computer Services
Page 17

numbered 1 to 32, as with XB's HCHAR, and rows are numbered 1 to 24.

Applications: WINDOW can often be used as a substitute for DISPLAY AT or PRINT.
When combined with other STRING MASTER functions, such as CIRCUL,
WINDOW can be very powerful.

Cautions: If WINDOW is used with an array where the elements to be displayed
are of a lesser length than the width of the window, then not all of
the WINDOW area will be over-written, which is advantageous if the
programmer anticipates such a possibility. To clear all of the
previous contents of the window, FIXLEN can be used on the array to
set the 1lengths of all elements of the array to the width of the
window. If the array must be maintained as it was, then APENDA can be
used to copy the array into another array before using FIXLEN.

Example:

100 CALL LINK("WINDOW",1,3,5,30,"W" ,AS())

WARRANTY COVERAGE

STRING MASTER is warranted against defective material and workmanship on such
materials for a period of 90 days from date of purchase. During the 90 day
period, Bytemaster Computer Services will replace any defective products at no
additional charge, provided the product 1is returned, shipping prepaid, to
Bytemaster Computer Services. Registration number must be provided with any
returns. The Purchaser is responsible for insuring any product so returned and
assumes the risk of loss during shipping. This warranty is VOID if the product
has been damaged by accident, unreasonable use, neglect, tampering, improper

service or other causes not arising out of defects in materials and
workmanship.

Ship to:

Bytemaster Computer Services
171 Mustang Street
Sulphur, LA 70663-6724

WARRANTY DISCLAIMERS

Any implied warranties arising out of this sale, including, but not limited to
the implied warranties of merchantability and fitness for a particular purpose,
are limited in duration to the above 90 day period. Bytemaster Computer
Services shall not be liable for loss or use of the software or other incidental
or consequential costs, expenses or damages incurred by the consumer or any
other user(s).

Some states do not allow the exclusion or limitation of implied warranties or

consequential damages, so the above limitations or exclusions may not apply to
you in those states.

LEGAL REMEDIES

This warranty gives you specifiec legal rights and you may also have other
rights that vary from state to state.

REPLACEMENT AFTER WARRANTY

After the 90 day warranty period, any original defective diskette may be
returned along with a check for $4.00 to cover shipping and diskette costs, and
Bytemaster Computer Services will replace it.

STRING MASTER, Copyright 1987, Bytemaster Computer Services
rage 18

