TI 89/4A
~ eneve

Doctor
Lon Albright’s

ORDPHAN
SURVIVAL
HANDBOOK

Containing:

Helpful Reclpes, Assertions, Advice and other NOSTRUMS
For owners and other custodians of the . ..

TI1 99/4A & Geneve

FUBLISHERS STATEMENT

As anrmourced. Dr. Ron Albright’s Qrphan Survival Handhook
contains over I00 pages of excellent material, much aof it Griginal
work., or material not submitted to user group newsletters. Dr,
Albright sifted through mountains of worthy material, selecting the
best, for thig continuing work.

However, neitker the srill of the writer, nor Dr. Albright’s
deft judgeme-: made the final decisions on what went ints the book
and what staved aut. The pubtlishers, Disk Only Software., did.
Therefore, sune material originallly descrik-
this publication 15 missing. It

reasgnably readagle product usin
available,

With all that said, le*rs talk about the advantages of the
medium we have choser tg Place befare you. On the first boak, Orphan
Chronicles, Dr. Albright received some comment that material just
submitted tg Printing had become out of date. The 9% er and the
Geneve user is an independent sort, seeking out his
where he can find 1t. Then why not produce a boolk,
in a three ring hinder? This dictated a sli
method than that used to print two thousand bound books. Cheaper per
Copy, bound books would be closed and a hindrance *o revision until
& Mountain of books had been sold. Thus our format.

Next comes am invitation for easily copvable material. Authors
are i1nvited to send disks or upload their material to one of the
telecommunications services. Many no longer charge while uploading,
Or forward it to Dr. Ron Albright at the address below. FReturr of
Your disks will ke attempted, but not guarenteed. Return postage
would be helpful, of course.

Thanks toc all far your support in thie effort. I+ You are not
Purchasing this book direct from Disk Only Software, and wish to he

personally notified of future updates, please write the address
below.

@d as being contained in
is merely aur ability to deliver a
9 the reproduction technique

information
drilled for use
ghtly more expensive

Jeff Guide

Jim Horn
Fublishers
March 25, 1987

Copyrighted January 1987 as a complate work, including art,
Cover design and original work by Disk Only Software (DOS) anmd Dr.
Ron Albright. Copyrighted material printed with permission of the
authors concerned. Permission tao reproduce individual articles
remains with the authors, and permission to reproduce their work

further is in no way implied by their Appearanc® in this
publication.

First Printing, January, 1987 Fourth Printing, April, 1987
Second Frinting, February, 1987

Third Printing, March, 1987

Published By:

Disk Only Software
P.O. Box 244
Lorton, Virginia 22079

or call
1-800-448-4462. At the tone, enter 897335 for recorded order message. Touchtone phone is required
Alternate is (301) 369-1339. No Touchtone is required.

Delphi: TELEDATA—CompuServe: 74405,1207—MCl: TDG—TELEX: 6501106897 MCI

The Orphan’s Survival Manual
Foreword

As 1t s.1d in the flyer for this manual, 1t was botr vasier and
harder to do tran the "Orphan Chronicles" were. Easier because
almost evervithing in thise manual was already written - b. ,ou, the
vser groups of the TI community. The only hard part (and 1t was
tough) was selecting what to include. This manual could have bheen

easily 00 or more pages. The amount ~f information available i3 a
tribute to you, the TI users.

[wanted to personally thank thaose who helped get this manual
put together. All the authors and user groups who helped me
assimilate this mass of information have been of immense assistance.
In particular, Kent Sheets of the Northwest Ohio Users Group., Art
Byers of the Central Westchester 9%ers. and Terrie Masters of the LA
F9ers Users Group. Quite literally, this manmual could not have been
done without the help of these fine folks.

The authors who wrote new material for this manual deserve a
special mention. They did it for the sheer love of the TI community
and the desire to share their waalth of informatiomn with
Agee, Jerry Coffey, Scott Darling, Jeff Guide,

Barry Traver, and Jonathan Zittrain all wrote a
expertise for this manual.

Yyouw. Warren
Howie@ Rosenberg,

lang their lines o+
I will alwavs be deeply appreciative.

I want tao remind all of You who brought this manual to send in
the registration card to User Network 99, Terrie Masters has great
plans for this organization and I support her efforts to unite *he
user groups and the non-affiliated TI users for the distrinution of
1nfarmation. I hope to be able to work with her in making uzdates
available for this manual. To get the information to you. 3he will
need vour address. Mail the card in right away.

Dedication? Who could this manual be dedicated to other than

YOU - the TI user. Struggling against the odds. Inventing.
Ingenious. Sharing. Thanks to you, we are all alive and well.

Ron Albright, Editor

'.......-cooo-ooooocootoooocotioovcocooo-o---ncoo-oooo.----ooooo-...--a..
.
.
»

Our Thanks to . ..

Bayou Byte Newsletter

ROM Newsletter—Users Group of Orange County
Manasota Users Group

Topics—LA 99ers

Call Sounds—Central Westchester 99'ers
Northcoast 99’ers

99’er News— Chicago & Wills County Illinois

M
. H
: :
: .
: :
: :
. H
: :
E North New Jersey 99’ers Group Newsletter .
. MANNERS News—Mid Atlantic 99'ers, Bill Whitmore, Editor .
. NH99’er User Group E
E AICUG .
: GEnie, Rockville, Maryland :
. OH-MI-TI .
: 99'er NEWS :
E Northwest Ohio 99°er NEWS '
' HOCUS Newsletter :
: Central Texas 99/4A User Group :
: :
: :
: :
: :
: .
. .
. .
: :
: :
: :
. .
* .
: :
: :
: :
: 4

Delaware Valley User Group
Front Ranger, Colorado Springs, Colorado
Western Penn-WPUG

'Y
Al AL A R A R A L A A A R Y N N R R R I I I I rm ' m ' x vy

"we CAN do it!
Principal Survival Principles For Life in the Orphanage"

by Barry Traver
Genial Computerware

The TI[-99/4A s alive and well and living in .,. Philadelphia,
Boston, Chicago, Los Angeles, Seattle, Ottowa, Washington, D.C., and
elsewhere! In many respects, more exciting things have happened
recently for the benefit of TI'ers than took place while Texas
Instruments was still officially supporting the computer.

Life in the orphanage, however, is different in many respects.
Losing a parent sometimes draws the family closer together, and
Tl'ers know the reality of that, but - now that we have to "make it
on aur own" - there are important computer "rules of 1ife" to put
into practice so as to continue to exist as a thriving community or
family., It will take a cooperative effort, but "we CAN do it" if we
remember three "principal survival principles”: Cottaging,
Archiving, and Networking. (If you remember the phrase, "we CAN do
itY, the word CAN provides you with a memory key for remembering
these three principles of operation: _(_ottaging, A rchiving, and
_N_etworking.} These three will be described one by one, since the
meaning of the terms by themselves may not be immediately evident.

First, we need some background to understand what is meant by
Cottaging. Whatever people may call it, we are in the midst of a
third major cultural revolution. The first major economic
orientation was the agrarian or agriculture-oriented society. Simply
put, this means that many people worked on their own farms,” and those
who didn't ysually also had home-oriented or family-oriented
businesses. To put it one way, a person's workbase was his own home
or cottage.

Then came along the Industrial Revolution. What this meant was
that workers often did not work in, at, or near their own homes, but
in large factories or other large business places of operation often
some distance away. In order to earn a living, people had to leave
home and become commuters. A man's home may have been his castle,
but it was no longer his place of work, He no longer worked "for
himself," but for other people, and often a large, multi-million-
dallar company.

[f you aren't interested 1in a personal interpretation of
sociological history, you can skip this paragraph and the next, but
some may find it of interest, As I see it, one of the unfortunate
effects of this revolution was its contribution to the weakening of
the family, since - particularly if he was a commuter - "Dad" often
only got to see his family a few hours each night. In addition,
whatever good effects it may have had, the simultaneous re-
orientation away from home-based schooling to total classroom
schooling was another sociological change that weakened the coherence
of the family.

Most people probably Just accept today as a "given" that the
"normal" way for things to operate is that Dad works away from home
and the xids go to school, but such was not the normal practice for
millennia! [t's a comparatively recent development that has only
been in place. in our country for a couple hundred years, and -
although some people may experience "future shock" become of the
"new" choices becoming available - there is evidence that both of
those commonplace suppositions are being challenged more and more
first by the increasing appearance of “cottage" industries, and the
second by the grawing home schaoling movement.

Here we come to the third revolution. We now live in a Computer
Age, whether that is your preferred term for it or not. The computer
revolution is producing "cottage" workers again. There are two
reasons for this. First, even for the person who is working for a
Yarge company, 1if it 1is computer work, he can do it at home,
communicating with his company's computer via modem. Second, millions
of dollars of resources are not necessary, just a good product. Thus
"mom-and-pop" outfits can produce (and have produced)
superior merchandise to that released by billion-dollar companies.

The point of application here 1is that we don't need Texas
Instruments to survive, if we recognize - and support - the resources
available from such "cottage" operations: individuals, families, or
small companies who can provide (and are providing) items for the TI-
99/4A that TI never provided {and perhaps never would have provided,
even if TI had continued to support the TI 99/4A).

Let's Tlook at two examples. (1) TI gave us the Terminal
Emulator II. (Befare that they gave us a Terminal Emulator I, which
was even worse!] That was not "cottage" industry: that was what a
mammoth company was able to produce. Well, now we have FAST-TERM
(Paul Charlton), PTERM (Richard Bryant), 4A/TALK (Thomas Frerichs and
Michael Holmes), and MASS TRANSFER (Stuart Olson), just to name a few
terminal emulators that offer much more than TI's TEZ did: 1200 baud
operation, XMODEM transfers, large capture buffers, and much more.
(2) TI gave wus a 32K RAM memory card. That was it. But 128K cards
(or better!) have been made available to us by Foundation, Herizon,
Myarc, Mechatronics, CorComp, and others. Do you see why some people
believe that we may actually better off now that we are not dependent
upon Texas Instruments but are looking to “cottage" companies to
support us?

The second principal principle is Archiving, The reference here
is _not_ .to my ARCHIVER program - used for packing and unpacking
related groups of files on disk - but just to collecting TI material
in general. Why didn't I call this principle "Collecting” then?
Well, this article is based on a talk I gave for the 1986 Boston TI
Fayuh, which was before my ARCHIVER program made its reputation,
And, besides, Collecting would mess up the "CAN" memory aid, so let's
keep with the term "Archiving" here.

The idea here 1is that we make sure that we collect, preserve,
and make available what has already been done. Although there may
some benefits in re-doing certain things, often it is wasteful of
time and effort for people to write new programs from scratch where
public domain programs already exist that perform the same functions
(and perhaps more efficiently). (Even worse, people who aren't
programmers may Jjust “go without" because programs that they need
have just gotten lost.)

Two types of items actually need to be archived or collected:
software and information. It especially takes a deliberate effort to
preserve the latter, because often the information appears where
areservation 1is not automatic: user group newsletters, notes on
tocal TI BBS's, even informal conversation., Some individuals in the
Tl community have done some useful deliberate effort to preserve
the archiving - especially Guy-Stefan Romano of AMNION Helpline - but
a more organized effort is needed here. AMNION and some others have
done commendably, but _all_ of us must to a certain extent become
"archivists" for the sake of the Tl community.

Here's a _caveat_ _non - emptor_ (excuse my bad Latin!): I am
not supporting the idea of collecting _pirated_ software. We will
have '"cottage" industries around to support us only to the axtent
that we ourselves support the Tl community. You can (and should)
personally archive original copies of copyrighted software for your
own wuse, but that 1is one area of your archival library that you
should not share with others. Public domain and Fairware material,
on the other hand, you should both archive and distribute freely
without restrictions. (And be sure to support Fairware authors,
because Fairware software in not "free software" but "try before you
buy" software that should be dealt with in integrity if we are to
survive and thrive as an orphan community.)

The third principle is the principle of Networking, which merely
means working together as an extended family. You should belong to
and support at least one TI-99/4A user group, and that group may be
local or not. (For example, some groups - such as Chicago, Boston,
and Washington, 0.C. - have members that live at a distance.) Also,
if you have a modem, you should be actively involved with electronic
databases, whether they be commercial, national databases
(CompuServe, the Source, GEnie, Delphi) or local TI BBS's.

Since we can less and less look to Texas Instruments for
specific help, we need to help one another more and more. This
involves getting involved in specific activities that put us in
touch with one another. In other words, we need to "plug into the
Network." I've oftan had other users answer guestions for me where
Texas Instruments was of 1ittle or no assistance. That's to be
- expected, because _we_ are the ones who are now using out TI's on a
daily basis.

User group newsietters and software/textfile libraries can be a

reat help, but one of the best resources is simply "Question and
nswer." This can be done through user groups or through leaving

messages on TI bulletin boards. [n spite of what some people think,
I'm not professionally trained in computer science; if I know
anything, 1it's because ['ve asked lots of questions and listened to
the answers, as well as listening to the conversations of others at
user group meetings and on electronic bHulletin boards (including
especially FORUM on CompuServe, where I am currently serving as a
Sysop).

(Incidentally, a more formal way of making contact with what's
going on in the TI world 1is through subscribing to various TI-
oriented publications, such as MICROpendium, SMART PROGRAMMER, and
TRAVelER (a disk-based periodical}, but I hope that you're doing that
already.)

One other place where you can "network" or "make connections"
with other users 1is in the various Tl Faires that are taking place
all across the country. In addition to {hicago, Boston, Los Angeles,
and other places already mentioned in the first paragraph (actually,
Philadelphia had not yet had a full-fledged Faire, but it has
sponsored assembly language seminars by Mack McCormick and J, Peter
Hoddie), other localities have sponsored such special specifically TI-
99/4A events (e.g., Milwaukee and TICOFF in New Jersey). Here is
where you can get to meet and talk in person with the "Who's Who's"
af the Tl world.

During the years that Texas Instruments was officially
supporting the TI-99/4A, we had only _one such Faire: the TI-FEST
in Sgn_Francisco. No? that we are orphans, however, announcements of
new raires are a regular occurrence. As an orph i
get little benefit from your TI-99/4A un1gs§“yoﬂ°gﬁ¥e¥ﬁe§3”tﬁllé
principal principles into practice: the Cottaging (i.e., realizing
that individuais and small companies can put out products equal or
superior to those from TI), Archiving (i.e., collecting in a
systematic way what has already been done for our machine), and
Networking (i.e., working together with other TI'ers). We CAN
survive and thrive: not merely as "orphans," but - as what we have

become - as _family !

Editor's Note: Mr. Traver is surely one who practices what he
preaches., He has Dbeen an active participant in all three areas that
he recommends to others. Most notably, the "Cottager" aspect. As
owner of Genial Computerware (835 Green Valley Drive, Philadelphia,
PA), he has produced the “"TRAVelER Diskazine", first (really)
"magazine-on-disk" for the TI 99/4A, This highly-acclaimed
publication has been phenomenally accepted by the TI users and has
brought such innovative programming techniques as the “Archiver"
utility that Barry mentions above - the first file compressor and
library utility for the 99/4A, among others. The announced
association of J., Peter Hoddie with Genial is sure to bring about
some incredible and innovative hardware and software from this
"Cottage Industry". Barry also has his son, John Calvin, involved in
"cottaging" as John has a business distributing disks of public-
domain software. The Travers are, surely, a "third-wave family".

—

Table of Contents

Foreword and Dedication
Introduction - Barry Traver

Section 1 -

-BASIC and Extended BASIC COmMputer MUSic . .,....oeeeeanwenn 1=12

-Color Bar Grarhs........... e e b e eaaaaaeaea cee 1=

-Programming TipPS. . ..o uwervennan ot e e e e e e e maaa 1-4
' -Adding Hard Copy to Programs (George Stefan)........... 1=7
| -Error Trapping Techniques (Ted Mills)............. aesa =8
. =MS/Labels (Martin SMOoley) o i it i ittt s mem e eeannnn a1 =9
! Section 2 - Assembly Language 2=1
!
I -TI 99/4A Memory Architecture......... S hh e e e veo2=2
{ -The Screen Pager Utility (Mike St. Vincent)............ 2-13
! -Call Peek {Danny Michae l) .o ... i oot n s seecnseesee e .2~5
I -Convert Programs to Program Form {Darren Leonard)..... 2-14
+ =-The Ultimate Save (TOM FreeMaAN) .« ... oeeeenneoeennn esa-a2=15
: Section 3 - ¢99 3-1
7 =-The C Lanquage and You (Warren Agee)uocueue..n.. es0-3=2
! ~Cc99 Beginner's Tutorial #1........ B R
| ~C99 Beginner's Tutorial #2..........0..0.0... et e e e 3-7
y ~-€99 Beginner's Tutorial #3...... ...t enntinrnn-nn sa...3=-10
' -c99 hdvanced Tutorial #1 (Warren Agee)..... . e 3-13
v+ -c99 Advanced Tutorial %2 (Warren Agee)..... . fee s .3=18
| -c99 Advanced Tutorial #3 {Warren Agee)..... . PO |
! =-2¢99 Advanced Tutorial #4 (Warren Agee)eeoueueeasad=19
l -c99 Advanced Tutorial #5 (Warren Agee)ic.euecuennnn. 3-21
i -c99 Advanced Tutorial #6 (Warren Agea)..... e maaeene.-3=23
! -¢99 Programmer's Reference Sheet (Herman Geschwind)...3-26
! Section 4 - Forth 4-1
! -Forth and the TI 99/4A (Howie Rosenberg).... B
I -Introduction to Forth (Chick De Marti)...... ereeacanad=5
! -How to BOOT the FOrth SyStem........e-za... cieeciaea..4=10
! -Forth and Extended BASIC Similarities.c..0..... 4-11
| -Goina Forth (David AragoN) . .u-euiseieanasenans P
i ~Forth Tutorial #1 (Warren AGEE&) i vmuceannannonanans 4-14
| ~Forth Tutorial #2 (Warren Agee) .,uecucaanscasace:ad=19
» -Forth Tutorial #3 {(Warren Agee)esuveeeaa e .4=22
!
l-_-“-_ﬂ_.--—l—I—l—I-I—I_I—I—I—O_I_I—I_I—l-

Orrhan's Survival Manual

T YR Y FEE R __BE BB A8 _EN__NN R NN ¥ ¥NE ¥ FE XK _EEX KN _¥¥W

[]
|
]
I
1
I
t
|
]
I
[]
|
[]
!
1
I
[]
I
)
I
»
|
]
I
[]
I
[]
I
[}
|
L]
I
L]
|
1
I
[]
I
[]
I
L]
I
]
i
"
I
1
I
|]
I
[]
I
"
I
1
|
1
I
1
”

' y
] [
! ;
! section 5 - Pascal, Pilot 5= !
1 -What They Don't Tell About P-Systems (Jerry Coffey)...5-2 .
I -Yocu're The Pilot (William Harms)...... C e e e e e e e S-10 |
i -Index of Pilot Commands (William Harms)..... . e . .5-11 i
i Section 6 - Hardware A-1 i
| 4
| -Load Interurt, Hold abd Reset Switches (Brian Kirbv)..6-2 |
' -Whis tles & Bells are Nice But Lights? (J. Wilforth}...65-5 ’
| -Wiring Diagrams and Pinouts for the 99/4n......... v .B=F |
. -Hi-Resolution Monitor (Steve Wilkinson)............... 6£=7 !
l -32K Memory Expansion Project (John Wilforth).,......... 6-8 I
i ~-Hardware Hints (Kxen Gladyszewski).....................6-9 i
b =Cool It {John Page)......... e et et e aaar B=10 .
I -Anchor Automation Modems {(Scott Darling).....6-14 I
. -Disk Drive Power Supply...... e e e e e e e 617 '
) -Cable Bax (Jim Edwards)...... ceseaeeaa S .6-18 |
. -Install GROM Chips Inside Console (Patrlck Ugqorcak)..6=-19 s
' -Adding A Second RAM Chip (Jim McCullock)........ e B2 '
i -Disk Drive Modifications (Paul pDeMara)......... e 6-24 i
i Section 7 - Telecommunications 7-1 i
] 1
| -A Look At Comrpuserve {(Jonathan Zittrain).............. 72 |
] -S%urce.......... v e e A mm A M s s a4 e e ms et m e e e aeeea 7-113 '
| -The GEnie System and TI Roundtable (Scott Darling)...7-15 |
i -The Delphi Network (Jeff Guide).... ... vuwssmmnmnonon.. 7-17 i
i Section 8 - TI Writer 8- i
[] L]
| -Instructions and Hints (Dick Altman)........ G eaeeaaaa. 8-12 |
' ~Miscellaneous - Underlining, etc (Bruce Larson)....... 8-7 r
] -Extend the Use of TI Writer (Allen Burt).............. 8-8 |
' =Character Graprhics with TI Writer (Rod Cook}...... se..B=9 .
I -TI Writer Formatter Commands (Tom Kennedy)........ ve-8=10 !
. -TI Writer Reference Guide (Bob Stephens)............. 8-11 i
! ~Bit-Image Graphics-Dot-Matrix Printers (Tom Kennedy}).8=-12 .
! .
1

h-—-—-—-—-—.-l—-_._._._.—.-._._.—-—.------—I—-J

-Arrendices

|
L}
I i
' oTT Product SOUFTCES &« v it e e e e et e e e tm e aa e e e e A= i
! -TI ""sers Groups (incomplete listing). ... -cu wuvuuouenn A-6A .
| -Reserved for Future Use A-13 thrcugh 16 '
sy —Peekxs and Pokes (Scott DArling).... .. cunaseesananeaes. A-17
| -Reserved for Future Use A-20 through 25 |
' =-Disk Drive Specifications {Louis Guion)............... A-26 ¢
| ~Tokenized Command Storage (George Stefan)............. A=27 l
Y mError Code LisS ting S eace e acscoceessasaesseesssnseeeneens a-28 '
l -Disk Map (EBarl Hall) ..ot i it ii it eee e e e e e et e anaae A-29 i
i ~Forwat for Disk Direcrory. i i @it s it e e e e e A-130 i
[] a
| -Fixing Blown Disks {Terry Atkinson)........ocooo..un- a-34 |
» -pReserved for Future Use A-32 through A-33 .
| -Bibliography of TI-Related Books (Barry Traver)....... A-35|
' -a Description and Commentary on the .
! -Geneve Computer Commentary (Chris Bebbitt)............ A—41!
!

r

C CGives
Extra Power

When You Can Use
A Little Help

Cetting Down to Basics . . .

COMPUTER MUSIC

We can write music with a list of °CALL SOUND’ statesents, but
that is very cumbersome and uses too much memory. It would b possible
to write an entire composition using only one °*CALL SOUND’ gstatement
{(wi*th the exception of leading in or trailing notes.)

My method uses a main *CALL SOUND’ statesent with all of the notes
listed in *DATA’ statements. It will be masier to debug if esch ’DATA’
statement is oOne bar. GQuite a few beginning praograsmers seem to have
dataphobia, hut DATA’ statesents are very easy to use. The following
axamples play the same five notes for one second each. Since there are
only five nctes, each program has five lines. 14 I added ten more
notes, the first program would have Ffifteen linas but THE 'DATA’
program would still be only five lines long. This memsory savings would
augment to an exponential factor with longer prograss.

In the second example, w~e put the *CALL SOUND’ statement in a 'FOR
NEXT’ loop with the number of repetitions equalling the number o4
elements (notes) in the “DATA’ statement, Whenasver the computer
encounters a 'READ’ statement, it goes off looking for some ’DATA’" to
read. It can be anywhere in the program. In this case, it calls the
data N’ for note. The note (4464) is put in the "CALL SOUND’ statement
and once a piece of DATA’ is used it is no longer availabdble, so the
second time through the "FOR NEXT’ loop °N*' will be egqual te 392, and
S0 On. We could play the notss over again in both examples by adding a
'GOTO 10’ line at the end of the program, however, in the second
program we would first have to add a "RESTORE’ line before we could use
the same "DATA’ a sacond time around.

The follaowing progras will play three notes at once and also
handle different note durations using the "DATA’ statement. (ook at
the di4égrence 1n the *READ’ statement, and notice in line 30 how the
duration 1= changed by multiplying a single digit with the constant
(5300). To change the tempo, use a differant constant

10 REM EXAMPLE ONME

20 FOR X=1 TO S 10 REM EXAMPLE TWOD

30 READ N 20 FOR X=1 TO S

40 CALL SQUND(1000,N, 1) 30 READ D,A,B,C

36 NEXT X e 40 CALL SOUND (D$%500,A,1,B,1,C,1)

40 DATA 446,392,330 9 SO NEXT X

70 RESTORE | ' o0 262,34 40 DATA 2,330,392, 466

80 GOTO 20 70 DATA 1,262,330,392
) 80 DATA 2, 194,262,330

10 REM EXAMPLE THREE P00 DATA 1,145,196,2462

20 CALL SOUND(1000,464,1) 100 DATA 4,220,262, 349

30 CALL SOUND(1000,392,1) 110 RESTORE

40 CALL SOUND(1000,330,1) 120 6070 20

50 CALL SOUND (1000,262,1)
60 CALL SOUND(10C0,349,1)
70 GOTO 20

COLOR BAR GRAPHS -

This short program in Tl Extended BASIC is very simple to use. You may use from
2 to 4 bars on each graph and each bar may be a different color. You are asked the
maximum possitle value of each bar. In other words, what is 100% perfaormance?
If the goal this year for the Acme Computer Company is to have each of three re-
presentatives praduce 10,000 units, then maximum perfcrmance for each repre-
sentative would be 10,000. Minimum performance, of course, would be zero.

The value of each bar is the relative value of each in regard to the maximum goal.
In the example mentioned, producing 7500 units would give a representative 75%

pertormance. so his bar would extend % way across the screen. The title of the
craph will appear at the top of the screen, and the title caption for each bar
appears directly above each bar. The maximum and minimum vaiues appear at the

lower carrers of the screen.

If ycu are doing an audio-visual presentation and need some color bar graphs in a
hurry, this program could be a big help. By photographing the screen of your
monitcr with a single-lens reflex camera and slide film, you could use the graphs
in your siide shows. Or, by sending the video signal from your cornputer to a video
recorder, you could tape the images far incorporation into a video presentation.

100 CALL CLZAR
110 INPUT "HOW MANY BARS? (2-4):"

sB 1 IF B<2 OR B>4 THEN 110
120 PRINT “TITLE OF GRAPH:":" (28
CHAR . HAX INPUT T% :: IF LEN(

ry»2™ {HEN '~
2
126G FRINT "MAX,POSSIBLE VALUE OF
BARS (1CO%rz v INPUT MY -: 77 M
VO THEY 130
149 FOR =1 3 B
150 PRINT "TITLE OF BAR®";Iz":"3:"
{28 CHAR MAX.)" :: INPUT TBS$(Il)::
IF LEN{(TE$(I)
) >28 THEN 130
16¢ PRINT " 2-BLACK
REEN":" 4-L T GREEM
toA—-LLT DLUE
7-DK RED"
170 PRINT " B-CYAN
ED":; "10~-LT RED
“12-LT YELLOW
1Z-DK CREEN":"14-MAGENTA 15-6
RAY"
180 PRINT "ENTER COLOR OF BAR #";
Igv e 22 INPUT C(Iy:: IF C(INC2 O
R C{IY>1S THEN
180

3I-MED 6
5-DK BLUE":

9-MED R
11-DK YELLOW":z

190 PRINT "ENTER VALUE OF BAR #";

Ig"z" :: INPUT V(I):: IF V(I)}<=0
OR V{I)>MV THE
N 190

200 REP({I)=32%(V(I}Y/MV):: IF REP(
IY<1 THEN REP({(I)=1

210 NEXT 1

220 CALL CLEAR :: CALL SCREEN(1&)
230 P$="FFFFFFFFFFFFFFFF" :1: CC=9
1)

240 FOR I=1 TQ B z2: CALL CHAR(CLC,
P#):: CALL COLOR(I+B,C(I),D):: CC

=CC+8 :: NEXT

I .

250 DISPLAY AT(2,15-LEN{T3$)/2):T$
240 FOR I=1 TO B :: DISPLAY AT(5Z
1,1):TBs(1):: NEXT 1

270 CC=94

280 FOR I=1 TO B :: CALL HCHAR(S2
I+1,1,CC,REP(I)):: CALL HCHAR(S3I
+2,1,CC,REP(I)

Y22 CC=CC+B :: NEXT 1

290 DISPLAY AT{(24,1):"0" :: DISPL
AY AT(24,28-LEN(STR$(MV})): MMV

Z00 CALL KEY{Q,KEY,STATUS)

310 IF STATUS=0Q THEN 300

I20 PRINT "ANOTHER GRAPH? (Y/N)"

t: INPUT Y$:: IF Y$="Y" OR Y3$="y
" THEN 100

I30 STOP

PRCGREMMING TIPS

The time required to test and debug o program usuglly exceeds the tin
1t toke to rewrite the program. Sesveral methods are avelloble whic,.
will moke this job egsier by prevanting or trapping errors which occur
while g pregram is running. No ona wants to spend time entering data
gnd then lose it due to a program ercor.

One of the eosiest woys to reduce errors when writing a program (s to
use the Extended BASIC stgtement ACCEPT instmad of the more common INPUT
statement. Using ACCEPT will requirs us to give up tha conveniance of
the included prompt option ovaillable with INPUT, but will allow us to
VALIDATE the keyboord input. Thers cre severgl options avoilable with

VAL IDATE. ACCEPT WVALIDRTE (UALPHAJ;AS parmits sntry of ony uppercase
aclphobetic chorocter. Substituting DIGIT for UALPHA permits O through
S, ord using NUMERIC will permit those numbers o8 well as: . + - and E,

Mony progooms ask the user o question to be arswuered by "YES” or "ND".
The program lines could be written:

40C INPUT "DO YOU WANT A HARDCOPY? (Y/N]" = AS

410 IF SEGS(AS,1,1]="Y" OR SEGS(AS1,1)="N" THEN 440
420 PRINT "PLEASE RESPOND EITHER (YIES OR (NIO."
430 GOTO 400

40 IF SEGS(AS,1,13="N" THEN END

us.ng arother option available with ACCEPT VALIDATE, o string may
entered with the charocters permitted as inputs ACCEPT UALIDA
TUY.N A"l=A% permits only three characters to be entered aos AS, Adding
the S1Z2E gpt:onm with SIZE=1, only one of the permitted chaorgocters could
be entered. With thesse cpticns, the previous sxample could be written:

4CO PRINT "DO YDU WANT A HARDCOPY? (Y/NI":AS
110 ACCEPT VALIOATE ("Y/N1 SIZE(1):RS
420 IF As="N" THEN END

With these lines in our program, pressing any key other than ¥ or N will
result 1n o rude honk as will any attempt to enter o second charocter.
Both mxcmples will preavent the user from entering o charcctar which the
computer hocs not been instructed bow to hondle and will, therefore,
reduce the possibility of on error in gour pregram, Gronted, arrconeous
entries for the exomples given will normally rasult in a WARNING at the
time of input; however, errors loter in the progrom moy hove been
prevantad,

What cgr you do cbout errors which con occur lete in o program? We can
make use of the ON ERROR stotement to trop maony of these errors allowing
us to recover and continue without losing data which may have already
entered. UWhen an earror occurs and the program stops, it con ¥
restarted only with the RUN command. But, when RUN is snterad, !
values of cur variobles are lost.

One place wherm arrors of ten occur is in a pProgram which reads OARTA

statements. When aon ottempt is mode to resad dota post the last item in
o DATA stotement, the doto srror messoge appecrs on the screen ond the
program stops. An ON ERROR stotmmant can be used to pravant this type

of arror. Consider the following program:

110 READ A :: PRINT A

120 GCTO 110

130 RESTORE

140 DATA 111, 112, 113, 114, 115

Funming this progfem will print the numbers in the DATA statement in
T:nme 140 urtil 115 hove besn printed. After 115, the lost i1tem 1in the
JaTA stotement i1s printed, DATA ERROR in 110 is printed on the screen
and the program stops. HKowever, if we odd: 100 ON ERROR 130 ognd change
l.:me 130 to: 130 RESTORE :: RETURN 110, the program will run until
stopped by FCTN 4 or QUIT.

Many other uses for ON ERROR can be found. Even fotol 1/0 mrrors corn be
srapped. To illustrote, check the following program:

100 ON ERROR 240
110 PRINT #1:"THIS IS A TESTI”
200 ON ERROR 280

240 OPEN #1:"PI!0” :: RETURN 100
280 CLUSE #1
2390 END

e f_rs+t mrror is crected by line 110 which generctes on [/0 error

sinee File Nao. 1 is not opsn., The error tokes program sxecuticn to
Lire 240 where film No. 1 is cpened as "PID” and exmcution is resumed
i Lire 10C. A second errcor is generatsd when on ctteampt is made to

npern the some file agoin. This is handled by Line 200 which Jumps the
program execution to Lins 280 which closes the fils.

A more proctical opplicoticon cen be found in the following example using
the CALL ERROR stotemant: ’

1C0 ON ERROR 130

110 OPEN #1:"PID"

120 GOTO 170

130 CALL ERRLW)

140 IF w=130 THEN PRINT "ARE BOTH P.E.B. AND PRINTER ON?”

150 PRINT "ENTER 'CON' TO CONTINUE.” :: BREAK
180 RETURN 100
170 END
Here, the ON ERROR transfers the progrum to the CALL ERR stotement. 1F

W is 130 - which indicotes gn 1/0 error - the massage reminding the user
to turn on his P.E.B. ond printsr is displaoysd on thas screen ond a
BREAK in Linm 150 permits the necessary corrections to be mode. C3N
will comtinue progrom exscution to Line 100 for o second try.

wher debugging your programs, the ON ERROR caon be used to traop any aerror
as it occurs, A CALL ERR can be used to identify the ercor ond tr
progrom steps corm be writtsn to permit the error to be corrected aond t
program ollowed to continus.

Thre CALL ERR stotement hos the copobility of returning four values, [t
CALL ERR (N,N,QO,P) ON ERROR aond PRINT M,N,P aores 4included 1in your

program, most errors can be identified while the progrom :s being
debugged. Fcor exomple:

100 ON ERROR 2350
110 ! PROGRAM LINES

250 CALL ERR (M,N,Q,P)
£80 PRINT A, N,P

270 BREAK

€80 ON ERROR 250

23S0 RETURN EXIT

Errors ceoourring in the progrom will couse esxecution $o shift to Line
250 due to the ON ERROR 2S0 im Line 100. Linme 250 assigns varicbles to
M{Error Codel, N{Error Typel, QlSeverityl] ond PL[Line Numberl.

Lime 260 prints the vaolues gssigned to tha varinobles, (Severity
alwogys 2 and thers is no need to print 0.1 Printing W gives the errcor
~ode and the code number can be found in the list of error codes in ¢
Exterded BASIC monugl. If the volue of N, the error type, is "-1", t
2rror occurred in o stotsment, P will be the linrm number of ¢t
iorarent cousing the error.,

= BREAK stotement wos included to provide on opportunity to the
programmer to correct @ correctable error, continue, gnd resume proegramn
axecution gt the line following the lime in which the error occurred.

Unce an error hos been processed, it is cleared and must be executad
ggain to handle to subsequent errar. This waos done i the previcus
examples by RETURN followed by the line number of the first ON ERROR
stotemenrt, In this exomple, the RETURN NEXT bypossed the ON ERROR in
_ine 100; therafore, ON ERROR 250 is repeated in Line 280.

N ERROR stotsmants are similor to o GOSUB so for as o RETURN being
agu.~ed. Threa options are cvailable for RETURN with ON ERROR: RETURN
s.0ng w1ll resume program exacution in the stotement which coused the
2rror; RETURN NEXT caouses the praogram to resume in the line following

the 1line whers error cccurred; RETURN (Line Numberl) starts sxecution
with the line number specified.

SOME CASIC THINCGS ...

ADOING HARD COPY TO PROGRAMS by George £. Steffan

o f was asked severy) gquestions about comverting
programs which had output only to the screem so that
they would output to a printer. [3ls0 had just done
such a comversion for the group lidbrary. The next day,
[received a copy of the newsietter of the Michita
(Kansas)#9er's Users Group [which]l contained i prograa
by Paul Yorke of Florida (no credit for original
pubiisher given) which comverted a2 program to use
SPEECH on the TE II. [saw that this program could
provide the sofution to problews of this comversion.

My first thought was just to change SPEECH to RS
232 but some people would need to use PIO or different
Baud rates, so | decided to iliow input of the desired
outpyt device. Also, | eliminated restrictions on
names for the original and new programs. | added
provisions for either adding the new output device to

screen display or vusing the output device instead of
swcreen display,

You should use the RESEQUENCE or RES cammand on
your program before runhing this program beciause some
Tines must be inserted Detwess lines of the original
program. The inserted lines are numbered § higher than
the line from which they are derived. Therefore,
resequencing is not necessary if the gap between lines
it always more than 3,

I your copy of the original program is exactly
the samd a5 the old copy saved with the MERGE command,
you sy then speed up final recovery of the progria
by using ‘0D and OLD PROGRAM NAE®, then *MERGE and
NEW FILE NNE',

This program adds " §11 * to any PRINT staiements
in the source progras. Therefore, DO NOT USE IT on 2
program which already has opmed 3 file for output and
containg "PRINT & statmments.

180 REM ADDPRINT - SEPT, ‘83
110 DATA 8,95, 159,253,200, 1,
49,181,199,999,179,247,0,99%
120 DATA 184,253,200, 1,4, 14
1,999,168,253,200, 1,499,999
, 255,255,999

138 REM 8Y GEORGE F. STEFFAN
, LA $9ER COMPUTER GROLP, P
0 BOX 3347, GARDENA (A 99247
[49 REM BASED ON AN IDEA BY
PAL YORKE @ 1280 STARFISH L
AE : STUART, FL 23494
IS0 R DISK SYSTEM REGUIRED
160 REN OP$ = *95 OPEN #1:°
IN TOKENIZED STORAGE

170 REM ENS = *,OUTPUT" IN C
ONDENSED 015K CODE (TOKENS)
139 REM E9=END OF PROGRAM
i70 REM Po=?FRINT 11:°

200 CALL CLEAR

218 PRINT * THIS PROGRAM NIL
L COWERT ANY NON-MODULE OF
PENDENT PROGRAM TO PRINT
T0 A NAMED OUTPUT DEVICE.®
220 PRINT :* IT DOES THIS BY
ADDING AN OPEN STATEMENT A
ND RORITING®

738 PRINT * ALL PRINT STATEM
ENTS ADDING QUTPUT REQUIREE
NTS,*

248 PRINT :* PROGRAM MUST- HA
VE LY ONE STATEMENT PER L]
NE."

250 FRINT * THE CRIGINAL PRO
GRAM MUST BE SAVED IN MERGE
FORMAT, *

260 PRINT :: INPUT " PRESS £
NTER TO CONTINUE':T$

270 PRINT :* YOU MUST RESEQU
ENCE YORR PROGRAM BEFORE S
AVING 1T [N MERGE FORMAT.’:;
:

200 0SB S :: OPe=Te

£3

0 DEVICE®13:°C -~ CHANGE FROM
SCREEN TO OUTPUT DEVICE':
3¢ "SELECTION®

300 ACCEPT AT(23, 120S128(-1)
VALIDATEC*AC") BEEP:TS 3: 9=
H(T='A*)

370 (PEN 41:1F8,DISPLAY R
{ABLE 143, INPUT

400 OPEN #2:0P,DISPLAY VAR
[ABLE 143,0UTPUT

410 PRINT #2:0PSCHRS (LENCOD -

$HKIDRENS :: P

429 IF EOF(1) THEN BQT(448 £
LSE LINPUT 91:T$ 11 IF Te=£$
THEN 6070 448

430 098 370 3 (F C=1% TH
EN L2248 1; GOSUB S48 :: P
RINT £2:L90PLSECS (TS 4, 160
)

&M IF C=139 DR C=152 THEN 6
OSUB 548 :; G0SUB 510 :: 2=
L2+5 :: BOSUB 348 :: PRINT §
2:LMSEDR (TS, 3, 14D)

438 6070 48

460 (2=l 2410 :: SOSUB Séd ::
e0st8 510

479 PRINT B2:E$:: CLOSE #!
11 CLOSE §2

430 PRINT :;:'T) GET YQR PR
0GR YOU MUSTDO THE FOLLOWI
NE:®:gs"NEN": ;2 MERGE ";IFS:

IF P THEN PRINT 82:.Nsd
: Pog

RETURN

Tes*® | CLEAR STRING

€ 1 IF C(Z36 THEN
(Q:: GOTO 549

X8 3P

.

548 LNmORS (L 1-(LD25D))elH
RO(L2+ 204X (LD255)) 11 RETURN
78 LImASC(TS) 5; L2wASC(SEGS
(1$,2,1) 11 CWASC(SERN(TS 3,
) 2 RETUN

ERRIR TRAPPING TECHNIQUES - By Ted Mills, CALL SOUNDS
Newsletter, Contra) Mestchester 99'ers, May, 1984

(Editoriai Remarks by Art Byers, C.M. 79/ers)

Computers generally have built-in error handling
procedures. At 3 minisum 3 computer will stop when jt
encounters an error condition, Byt first the computer
wiil store certain information, at designated memcry
addresses, concerning the type of error encountered and
the line whera the error occurred. On my Apple these
error BeSSaQEs Cin only be accessed by PEEXing into
nmory through an eeror handiing subrogtine weitten
into the program, Otherwise the prograa simply stops
when an error occurs. The T1 #9/44, however, not only
routinely describes the error type but the line where
it was encountered as wall, (In addition the 79/4‘s
TI BASIC has some built-in error routines that do nat
stop a program but rather issue 3 warning. One example
is entering an alphabet value intc an INPUT statesent
that expects 2 numerical value. Another: Extendad
BASIC’s ACCEPT AT statement allows you to VALIDATE the
type of dala you want entered and will give you &
WARNING ‘honk® and refuse to accept any other thin the
dats spacified. See page 48 of the B sanuil - EdJ)

M3-00S computers feature only a slignt iaprovement
in erroe handiing in that the line is actually
displayed after the program stops and places the cursor
over the actual error,

Error handling functions are not only used to trap
errors in newly weitten, or typed-in, programs, but
also error handling routines have useful programming
applications, The latter were the initial purpose of
this articie. Howmver, some generil coments might
also be approprizte.

Extended BASIC has two error statwments - ON ERROR
and CALL ERR. (N ERROR simply tells the computer what
to do when an error condition is escountered.
Generatly, ON ERROR will S0TO or GOSUB to 2 subroutine,

(N ERROR can be used in many ways. The sost
common is to Keep programs from crashing when the user
does samething wrong such as trying to load a biank o
not initialized data disk, hardware goofs, i.e., you
left the door open on the disk drive, or you misspelled
P10 as PIN,

CALL ERR is bast used for debugging a program.
Once the program is error free, the CALL ERR lines can
be deleted, The Syntax of the CALL ERR subprogram
contains four variables describing same aspect of the
error condition. The statement is in the form CALL
ERR(Error Code, error type, severity, line number),
Erroe type simply distinguishes between program errors
ing input/output errors. Frankly, [never have
understood the usefulness of the severity sessage.
(Neither have 1! ~ Ed4.?

Sa far %0 good’ [f the error is in the line where

the error condition was encountered, life Decames
relatively siapie. However, the error may originate
samewhere ¢lse, such as 3 bad valye generated eartier
that does not show up untii later. The best procedure,
therefore, is to place an (N ERROR stitement near the
beginning of the program that GOSUBs or 8QTOs an error
trapping routine it the end. The wbroutine should
include 2 CALL ERR subprogram. Once the error codes
and the line are identified then PRINT statements cin
be added to the subroutine to print ot each of the
variables in the line where the error condition was
sncountered. Watch out, though, for BAD VALUES arising
from i isproper use of reserved words. [once typed
in 2 program, weittem in T BASIC, using Extended
BASIC. The T1 BASIC version had a variable DIBIT which
is an Extended BASIC reserved word.

The TRACE comsand it a2 verful supplmmentiry
debugging tool. However, | prefer to insect "I'M HERE
AT (LIND' to follow program flow, [f you do use
TRACE, especially on a long and involved program, it is
helpfu! to have & screen dump in low memory 1o print
the TRACE f!ow on to paper. The one by Qualitysaft
works very well, (Mestchester also has one in the club
library for free.)

The ON ERROR statemant should be 3 useful
programing tool. [routinely insert (N ERROR
statements in ay program that either return to the sdin
sene if an error occurs of saves whatever dati has been
miered 0 far to disk, [t is very sxasperiting lo
tose 4 ot of data when 2 program comes to 2 screeching
halt ue to an error. Similarly, ON ERROR can be used
to close a file.

Last Falt [typed in a stock charting program that
could chart a2 lot of price data that [had
accculated. Among the inputs for each data paint
wire the day, sonth and year. These [entered in
through READ/DATA statements. To check for typing
accuracy, and to count the weeks, [included 2
subroutine which resd and printed the dats items,
[nstead of using an end of data identifier I sinply
vsad an (N ERROR message to save the data to disk as
soon as | had run out of DATA statements.

Some programmers hold forth that a fully debugged

and properly writlen program shouid not need error

traps, excapt to quard against the hardwire errors
discussed sbove. They consider use of (N as i
prograaming tool to be somewhat inelegant, but |
believe it provides an important measure of safely
which [like.

One final comment. [t is possible to have many (N
ERROR roulines in the same program, a3 Jong as each one
is turned on and off at the right time. For example, |
vseally insert an "ON ERROR GOTO (Menu)*. However, 0
‘N ERROR (Save Fil®)* heads wy insert data routine.
After the file is saved then [return to the ‘0N ERR(R
GOTO {Menw)* comsand.

(M) ' beedr BS/UABELS veded By: Martin A, Saoley 144 For EPSON Printer teese
1o sttt NorthCoast 9%er ‘s UG tetss
120 OPEN #9:°P1D" ' GPEN PRINTER (Could de RS232)
{30 PRINT P3:CHRE(271;"0%;CHR$127) ;8%

0=S10P skip over pert "8'=5TOP piper end detector
140 CALL CLEAR :; CALL SCREEN()]

¢ Extended Basic #oe

150 PRINT * 4% MSILABELS ¢a*; ! PRINTE'; »* Jayilin BY 15/1b1n":
o LARELS™: o

160 PRIMT * Enter Data at Proepts=': @' You erll have & line per®: :* labei, L1

ne #p = 1% Cpisg,'s ;" Line #2 =

28 Cole.":
170 PRINT ° Lines B3 and 04 2 49 o]y, ": :
11 GOSUE 220 :: G&OTO 240

130 605UB 194 :: GOSYE 210 :: 50SUB 220

190 FRINT :: PRINT = heemees Rhmanaece

200 INFUT “ENTER LINE | *:A# :: RETURN

TI0 PPINT :: SRINT * ENTER LINE 42° ;1 [NPUT "noseswssssssasassssnsncanasnr, gy
11 RETLPH

T3 PRINT 20 PRINT ™ EMTER LINE 43 i3 [NRUT mftenssasprresstnssnsarranaangsns
R R 1 *:C$ 15 AETURN

230 PRINT 20 PRINT ' ENTER LINE #4° 13 [NPUT 0 ssssnspesssses SAQARARAANAAT AN
BRI ek L ":08 :i WETURN

ZH0 PRINT :: INPUT “HOM MANY COPYS *:1

ZH0 CALL CLEAR :: PRINT * Mald G0 to Quit Printing's : @ : ¢ ¢

A0 FPA 1= TD L0 eresband PRINTOUT
T3 PRINT A9:CHRS(ZTN; G
(Bl PEINT BO:CHRE2TH; g
D300 FRINT A9:CHRS (27w
10 FUINT 4 CHREGZ70; W CHREL !
TEC PRINT #9:as
FRINT B9:CHRS (270, *W*; CHRE (D)

S FRINT BI:THREI2T) Py Stop Elite-sizeiNeeded 1§ 290 1y used)
Ty BRINT #9:" “;BS;CHREI27);°F* STGP EMPHAS]IED

330 PRINT 99:CHA$27);CHROCISH ;" *5T850;0 *r DB CHRE(IB) ;EHRI (27} °H

PHRE1G =GTART CONDENSED+CHRS(181=5T0P, "H*=8T0P DOURLE STRK.
Feo S0R Kl TD 3 POINT 89 . METT g

9 L KE¥E dsyis BF K31 08 k=113 THEN 390

30 Mg AT

I lALL DLEER o
g FRINT "
TRenta g grat: o
AN RINT
40 (NPT 7 Inter
430 iF DE="M" QK
440 IF O0F='N" DR
439 IF D0s="L* OR
a0 F G0H=@* DR
439 6010 470
480 CALL CLEAR !
499 [NPyT v
L4 TAHEN 490
T WL GOSUB 190, 2hu, 2,230
S1GG0TY IR0
SI0OPRINT H9:CHREI27):°8%" Initialize Printer = ®ige gut any leftover coamands
530 CLOSE 89
S0 wed MSULABELS +ee

LOOP #tetesens
START DOUHLE STRIRE OPTIONAL
START EMPHASLIED
Start Elite-s1zeimakes 31518 characterst
START ENLARGED

STOPF ENLARBED

TALL 3TREENVG;: tetdrees Beqinning gt TASK SCREEM vensetrt
Enter M tcr Mora jahels’: :° N For New labels’: :° L te
2ot dnt the prograe’:

your chiace: *:DG#

DO$="a" THEN CALL CLEAR :: SOTD M40

DOs=*n" THEN 140

DOS="]" THEN 48

D0$="9" THEN 510

Preetret Begianing of LINE CHANGE SCREEN sestsins
Enter line nusber ta be changed 1 to & ":L :: [F L<1 OR

I

i3

4

th

(7

NOTE:

NS /LABELS-DOC

"MS/LABELS® started out to be i saall, siepie
progras to print 3+1/2 in 1 !5/ K 1n, labels for
return addresses and dist labels, but 1t evolved
tnto the progras you see at the left,

THE USER INSTRUCTIOWS FOLLDM
Load the progras tlon't run it yet}.

Al1gn your labels
the printer on.

1n the printer thea turn

Now RUN the prograae.

Enter the data as prospled dy the prograa.
There is one circustler {*) for each spice
on the entry line, Jo not use any Cosdys.

Atter you have entered (4} lines the arograe
will ask how sany labels you want. It vou
want to see one enter 1, After the label s
printed you mil] see i screen which mall et
you prant (More f you like what you see,

[t you don't like thea enter L to chinge
line and then the [ine nusber you would like
chinged, You can repeat the L for as sany
Lines as you need, or you can use M for sore
ind print one at any tise unti]l you like the
Label you have. At this point you use More,
then type 1n the quantity you want angd ‘he
printer will start rusning thes aff.

[+ vou thange vour aind, HOLD 2 untal the
printer stops and vow will return to the
task screen,

At the task screen you can also enter an (N}
1 you want a cospletely New label ar iQiurt
te et the program.

1¢ your ribbon 1s not dark enough you
can gdit the prograe and delete the (')
and the space trom the begiantng of Jine 270
This wi!l give you Double Strike throughout.
Aiso! Doing the sase thing to line Mes. 290
and 330 will quive you 18 characters an line
#1 14 your printer 1s capable of Elrte Print
You will have to reseaber that you have i}

characters past the last (7)) n line one.

[f you do not like to type, ay prograas
are in the NorthCoast 9%er°s L:brary.

S50 END
i —_—

TI9?9/4A

Ln. §1=EM ARGED 12=5td, wnize

MS/ L_LAaBEL.S
, Extended Basic l
| "his label way made by the progras listed above,
i a4 andensed

Bood Luck' Marty

|
el

- E

Study Brings Genefits . ..

squeezing Real Benefits From
J/4 A and Geneve Systems . . «

Your 9

Assembly Language

This block diagram came from TI and may be of general interest-
a picture is worth a thousand words!

T1=-99/4(A) MEMORY ARCHITECTURE

CRU FOR BANK SWITCHING

from:

Rockey Mountain

9Fers

"TIC TALK"

| TMSS900 [CONZOLE | MEMORY |DEVICE |OPT L ! !
CENTRAL FOM EXPAN |SERVICE|COMMAND| SEE MEMORY EXPANSION
[PROCESIR PART 1 |ROMS HMODULE PART 2
RUM/RAM| BELOW
SK BYTE|3SK BYTE|3K BYTE|[23K BYTE 24K BYTES
CPU MEMORY===3>» f
VOVo 2000 4000 aooo///,sooo ACQO Co00 E00Q
FAST €OUND |vDP vDP SPEECH |SPEECH |[GRGM GRUOM i
RAM MEMORY~-|READ WRITE READ WRITE READ WRITE
MAFFED £RTSE=> |@S200 |MAPPED |[MEMCRY-|MEMORY =|MEMORY~ | MEMORY~ | MEMURY- MEHORY-I
254 PORT MAPPED |1APPED [MAPPED |MAPFED |MAPPED |MAPPE
BYTES PORT FORT PORT PORT FORT FORT
2000 €400 3800 &8C00 000 “4Q0 ¢3800 i Inde]¥]
TH3 =219 TMSS913A THSS200 GROM CNTRL ,
SLIND CHIP RD DATA=ES00 SPEECH SYN RO DATA=9200
W DATA=3400 RD STAT=8Z02 RD AOCR=9S02
WT DATA=ECO0 WT DATA=YCOO
WT ADDR=SCO2 WR ADDRw?Z02|
- |
vDP RAM VOCAB ROM
16K BYTES 32K BYTES
GFOM BANI, Q=> ! !
GROM EANK 1=> CONSOLE GROM GROM (SRAPHICS READ OMLY MEMORY)
GROM BANK =3 { GRAFHICS READ ONLY | IN COMMAND MODULES OR FERIFHERALZ
) MEMORY)
UP TO 16 BANKS UF UP TO 40K BYTES EACH|
13X BYTES ACTIVE IN H . - . }
ALL BANKS 4 V4 L L -/
. . y L . V4 —
SROM mank 1S= .) / V4 Vi
OO 2000 JG00 &R0 3000 AQLQ 2G5 EQQQ

H

SPVY LINET INDICATE FEATURES INCLUDED WITH GONSOLE

THE SCREEN PAGER UTILITY
By Michael St. Vincent

How often have you wanted to lock at part of a program as it runs or
set up an initial instruction screen that could be stored and recalled :n
an instant? If you are familiar with the almost complete impossibility of
doing this, especially in the Extended BASIC envirocnment and want to get
free of such limits, here is YOuUr answer: an assembly language subroutine
that i1s short and non—-coaplex,

Simplie solutions i0 problems such as screen storage are often
overloked in favor of stayirg strictly in one language’s environment.
Most people are unfamiliar with the usefulness of having machine language
routines take aver chrores trat are much slower in BASIC, To stare a
screen 10 BASIC, for example, most pragrammers would use a GCHAR to reac
all of the screen and store tihe result in an array. Besides oeing siow
ard inefficient, a HASIC routine to do such would use large amounts of
memory.

Enter the amazing and fast 9900 machine language routine' The
screen, usually a set of rows and columns to a BASIC praogrammer, becomes
cnly a set of memory locations. In this form, moving a copy of the
screen becomes as simple as assigning the assembly equivalent of a few
variables and a GOSUT. Uperation of the subroutines is kept simple by
having the computer do the calculating., The possiblz applications of
thesa subprograms are tinited only to the pragramer’s imagination.

1Qw tha greqram is ws2d;

The subroutines, once assembled, are some of the simplest to use.
-nading the programs into memary 1s accomplished by using a CALL IMIT
ommand follcwed by a CALL LOAD ("DSK1.PAGER/OBJ") command., The routines

are aurtemacinally stored in the memory and beccme invisiole unrtil needed.
Four mrcgrams are loaded Simultaneously for use in Extended BASIC:
FPE3AVL, PBSAV2, PGESHO1, AND PGSHO2. The SAV programs save everything cn

the scrzen a2t the 1nstant they are called to pajes 1 and 2 respectively,
The SHO preograms return the previously saved pages to the screen. All
four programs are accessed by - CALL LINK("pgname") where pgrama is one of
tha prcgram names given above. The amount of time spent by the programs
can only be mezasured in microseconds. Using OLD, SsAavT, MERGE, and NEW
cemmancs have no effect on the screens stored in memor y (thus, one could
list a program, save a screen of the list, load a new program, and still
Se able to look at the listing of the old program) . The only
restrictions on the programs are that they only store the characters,
neither the colers nor 2Ny sfrites are kept.

Hew the program works:

The programs in assembly use a simple system of setting up a block
of CPU RAM to store pages, Cnce a screen is tg be stored, the registers
o, l. and 2 are 1loaded with the address of the screen map in VDP RAM
(0C0), the address of the CPU RAM block, and the number of bytes to
transfer (768 for the full screen). A simple BLWP (branch and link with
Wworkspace nointer) command links *ta another utility routine which does
the actual transfer, After the transfer is completed, the program uses
the psuedo-opccde =T to reset the workspace pointer tg tha BASIC

nterpeter area from where it branched. At that point, the BASIC level
‘egram continues to execite.

How to assemble and install this program on your disks:

Using the Editor/Assembler package, type in the source lis*ing which
follows exactly as shown, Spacing is important to insur? that +t-e¢
program will assemble properly. Once the program is typed in (yau do
need to copy the remarks that are preceeded by an asterisk, store
source code (what vau typed) under the filename "“"PAGER/SOU". Then 1
the Assembl er, wWhen asked for the source filename, g1
"DSK1.PAGER/SOU", and whan asked for the ob ject filename, give
"DSK}.PAGER/OBJ"., I you have a printer, give the device name at the
prampt, otherwise, hit <enter>. The options for assembly are "RSL" if
you have given a printer device nase, of “RS" if you haven’t. The
assembler should do its job within 5 minutes and should print "0000
ERRORS" at the end. If there ars any errors during assembly, refer to
the source listing of this newsletter and compare what you typed,

ARs listed, the program assembles with noc errors.

* THE SCREEN PAGER UTILITY

* SOURCE CODE WRITTEN BY MICHAEL ST. VINCENT

* USED TO STORE UP TO 2 SCREEN-FULLS FOR LATER USE
*

DEF PGSAV1,PGSAVZ,PGSHO1 ,PEGSHO2 # NAME ROUTINES
)
vMBW EQU >2024
YMBR EQU >2@2C
SCRMAFP EQU >0000
SCRCNT EQU 743
-
PAGEL BSS 748
PAGEZ BSS 748
-

VDF WRITE ROUTINE
VOP READ ROUTINE
START OF SCREEN MAP ADDRESS
NUMBER OF CHARACTERS IN MAP

* % 3 %

»

STORAGE BUFFER 1
STORAGE BUFFER 2

»

PGEAVL LI R1,PAGE] * ACTIVATE BUFFER 1
JMP GOSAVE * GOTO THE SAVE ROUTINE
PGESAVZ LI R1,PAGEZ2 = ACTIVATE BUFFER 2
GasAvE LI R3,SCRMAP * STARTING POINT TO READ FROM MAP
LI R2,SCRCNT # NUMBER OF BYTES TO MOVE
BLWP ayMpnR + "GOQSUB" TO READ
RT * RETURN TO BASIC

*

PGSHO! LI R1 ,PAGE1 * ACTIVATE BUFFER 1
JMF GOSHOW * G0TO THE RESTORF ROUTINE
PGSHOZ LI R1,PAGE2 * ACTIVATE BUFFER 2
308HOW LI RA, SCRMAP # STARTING POINT TO REPLACE MAP
LI R2,SCRCNT * NUMBER OF BYTES TO MOVE
BLWP avMBW * “GOSUB" TO WRITE BACK TO MAP
RT #* RETURN TO BaASIC
»
END #+ TELL ASSEMBLER TO STOP

b 1T A EEEENEE N TEEEENS AN AEENEEEEE - EANEEENEEEEEENSOEEERT NN NS W EE XA
[you want to use this program in BASIC with the Editor/Assembler module,
change the lines to match this header:

*
DEF PGSAV1,PGSAV2,PGSHOL,PGSHO2 # NAME ROUTINES
REF VMBP,VMEW

-+
SCRMAP EQU >Q000 * START OF SCREEN MAFP ADDRESS
SCRCNT EQU 748 * NUMBER OF CHARACTERS IN MAP

*

-oeration of the program is the same as desribed for Extended BASIC.

CcCAaLL PFPEEK
Hella again averygne, Thara' =z 2

! t2 zzover this time, sc let’s get right to 1%,
Last manth’'s A/L Challenge was tc wrizsz
-

-

& proagram te input a line from the'heyooarsd and
gutsut 1t to a3 prinmtar, Since rchody lled tg ask a gquestian zbout device I/0, I assuime
evervbady was able to get all the 1n- =
Everybody LIL w~rits a program aicn’

.
-
bE“‘:.‘"E D."EEE:‘.tl."' Ty 5-:}__:.,*:1.:n = Lhe
—

ms n they neesdzd from the materials they Have,
e,777 Just 1n zase, [711 zover 2 few high ooir:
allenge. Most of the nescea i-~fecrmaticr, althﬁ.gh
‘assemelar manual,. Tue to space requiremerts
nt that information here, bot will offer a fow
Sg... grab the marual and let’s locok at "Fils Managament".

As I =5 *a’* namth, one of the greatl thimgs abaut our computer 1s the ability far
Qur programs to 1nterface with most Her1pneral: in the same namner ragardlzss of “he tvroe
device. This 1s due to the use af “smart" peripheral contrallers and the "file' concept.
Rezad pages 29! ang 292 1in the E7A mapual for a descriptian an the "fila" zoncapt. Any
g2v1C@, Wlth the gugepiicn of the cassette reccorder (sss the note on -age 257, Shat zan
be accgssad with the OQFEN, ELOSE, INFUT and/or FRINT statememts in basic can tSe accessad
10 assembly lamguzge, using a cammeon subroutine provided in the /5 utilities called
DSRWHK, EBacn geripreral card contains a 028 (Device Serwvicz Fgutirg) that hargles = 1.0
=0 that device and makes data flow %o and from the device aspear to us as a "file", Tre
DERLNK subrsutire *tzkes care of locating the desired device, ie. "PIC" ar "DSK", ana
irtsrfacing 1t with our program, Fage 2480 of the E/& manual comtains a descrip<:an =f how
to age DEFLME

1

=
& Bit crypnic, Car be found 1n the
‘erd lazirass e mv part), 1711 nzt o~
cemmaEnts on 1

‘rlL |f

Z28s5ing any devics with the DSRLMK ut:ility is the FAE {Pesrighesral Ac:zscss
S4B 1s a group of data that defines all i1nformation recessary to access a
2 on wWNataver Cevica we are working with, The FPABR has a strict format, sr:z
L ted 1n NVDF RAM, PFages 297 and 294 1n the E/A manual cover the format of a
FRB., A PAB 12 1Y bytes lemg, plus th2 lsrgth of the f1l2 adescrigtor. A file descrig+==zr
-s name, file name, and any options needed for a partizular device.

_____ Forw

Yy
Slzzvi. The F

VILMYFILE" amd "REITILBA=2400" are eramples of a file descriptor. The EFA manual has a
:FEttv gcod desc-iption of the FAE, but here are a few gonod things %2 remember... Tre FAE
1S & fwo way strast, In additicon ta 1ts function of passing necessary 1aformatico - <nse
Javic2, the Zzice alzo .ses the FAB o pass nezessary {nformaticn bach toc zur grzgram,

- PoiTpii, Ttz ol oZe cre FEBR 1g usa2d by the device kz identify any 2rrzrs sncountsErsa
Zoming the Turesrt Zogration and Byrs T ois usad by the device g t=ll us the numper of
5yne3 ~232 Iuring =z FIAD speratizn. Femember that byte | is a b1t maz-ed ayte, =hat o=,
mIc2 tman Ins Siecg 2f information e gassed through this cme byte. Alsa, bytes T-7 acg
-7 arz talen as word 14 bit) values., The data bSuffer address in Bytes 2 and T alwavs
CILNT tC a bufter area 1n VDP RAM. This is where vou put data that will be wristen %o a
file before linking to the device, and it is where dats rsad from a file will ba glacas oy
*he degvice. 1t 1s important to remember that you can change the data buffer address
betwzen sacs Link to the device 1f regcessary., For instance, you could use separate road
and write suffers when dealing with relative files, However, vou must he careful +*5 -lace
<he dats buffer in a VOF RAM locatizcn that will not irtarfzrs with tha opsration =f the
czmcuter. Addresses between 1000 amd [TO00 are usually a good cheice far SABs and 2ata
b.f<2rs 1n 3 program running Jut af tne 74 module.

'ages 293 thru 298 of the E/A4 manual 2sscribe the meanings of the I/0 opcodes uss? in
byt2 0 2f the FAR., Fage 299 describes pessinle error conditions. Although 1% 15 Jocd <o .
bFoow how error codes are passed hack from a device, the DSRLNE routine transfers the sr-or
€3Ze %g register © of the calling worbspace, and sets the agual bit in the status r=j:izzs-
1f a0 errer ZoIurs during access to a device. See page J&2 for mare information,
Hozefull . thss2 fow cocmments will snzwer zmy guesticons you may “ave had., If mot, Fazl
frez to call. MNeow... hera’s my saluticn t2 &/L Challerge #2.

0001 TITL "A/L CHALLEMGE #2°

QOQ2 FEF DSRLMNE,'/SEW, /MEW, LSCAN, VDFWD, GRMRS, GRMWA
QOUZ DEF STAFT

Q004 FAB EQU Lo Location of FRE

00NJ BLFFER ECU =8 . . data buffer

Q006 NAMLEMN ETU FAER+T . . nam2 lergth in FAB
G007 COUMT ERU FAE+S . . data count in FAB

OB PNTR O ETU CETSs . « name length pg.rter

Q009 KEY E3S 877F Keyscan raturns character rere
Q010 STATUS EZU 8I7C Location of GPL status bvte *
0011 GFLWS EQU " 37g) . + GFL registers
Q012 MAY EQU B0 Mai char counmt

COL3 Wrep EQU 2700 Lse this ar=sa for regiszosrs
2014 «x

2013 CFEN BYTE 1/0 opcsde for OFENM

O0l&s CLISE &YTE | . . . CLASE

Q017 WRITE B&BYTE = . . . WRITE

QQl8 BREAK BYTE 2 Feycode ¢or FETM &

Q019 ENTER BYTE [. . ENTER

Q020 CURSOR BYTE :iF Char number of curscr

0021 «x

0022 t Data fcor FAR

0023 EVEN Force aven addreess

Q0G24 PALDAT BYTE O 1/0 opcade

002s BYTE 12 File type descristion

0024 DATa BUFFER Data buffer adcress

o927 EYTE MAX Fecord length

0028 EYTE O Charactzr =ount

Qo29 DaTa o Fecord numbher

QI BYTE 0 Screen offset

0031 BYTE EMDAT-FILMNAM Mame lemgth

0032 FILMAM TEXT "FIO" Filepame

0033 ENDAT EQJU % Mark and of data

2034 1

QOIS EVEN Farce aven address

0034 GFMESAV BSS 2 Save GROM address nere

QQ37 & Save ERGCM address fisrt
Q028 START MOVE BERMRA, AGRMSAY Get MSE

QOIe NOF Wasta time

G40 MCUE aGRMRA, BERMSAY+1 Get LSB

Q4] DEZ GGFMSAY Adiust

Q042 «

G043 LWFEI Wk'SF Load the warkspace pointsr
3044 LI RO, FAB kO ooints to PAB

Q045 LI R1.FABDAT Rl points to data for PAB
Q046 LI R2.ENDAT-PABDAT RZ has byte Zount

0047 BLWF @&vyMEW Write the data to VDF

Q048 MOVE RCFEN,R1 OFEN cpcode to R1

Q049 BL 210 Open the file

QUZ0

eOE! LOOPL BL BCLs Clear the scrzen

cQS2 LI RO, BUFFER RO points to screen locaticn
0QT3 CLE FZ Usz FT for charactsr -ours
00Z4 LCOPT MCW® ICLRSOR,RL Fl has cursar char

0oLy BLWF 3vSEw Fut cursar an scresen

003& LODF?T BLWP @%3CAN Get a leypress

0087 MOVE BSTATUS,3STATUS Check for new kaypress
Q0I8 JEQ LOCFZ Locop 1f no new kay

QLE? MCYE EREY,RL kay code to Rl

0Q&0 Ce F!,3EREAK FCTN 47

DO&L JET ENDIT Yes, prepars to =nd

N0&62 CE R1,%ENTEFR ENTER key pressen?

0083 JEZ PEIMNT Yas, writ2 lire +ts5 devize
V0&4 x Just an zrdirary character, put 1t 20 scresn

006% BLWF 2YEEW Hrite %o screen

CO&& NG RI Ircrement countar

0047 INC F0 Incrsment screen pointer

Q068
0069
Q070
0071
0072
G073
2074
O07Y
0074
0077
o078
Q079
COB0
cogl
082
(b]a]= k1
Q084
008%
QUB&
Q087
00e8
ocae
Q099
Q0!
0092
0093
0094
Q0os
o0&
Q097
0098
nN9g
S1a0
SNt
nioz2
D103
2104
010%
10s
0107
Qio8
Q109
0110
el
0112
0113
0114
0115
Ollé
0117
0118
0119
0120
0121
0122
0123
0124
Q125
0126
0127

CI RT.MAX Reached max line length™
JLE LOCF2 Mo, continue
¥ Mazimum lirne length reached 1¥ here
CEC FZ Adjust count
DEC RO and scrasn pointer
JMP LOCFT Get ancther Lay
1
FEINT MOV RI,FRI Char coumt ta F1
SWFE R1 and intz left byte
LI RO, COUNT Fointer tg count Syte i1rn FAE
BLWF @YSEW Write the gount byte
MCYE QWRITE,R1 WRITE apcode ta Ri
BL @10 Qutput the lina
JMF LOCOF! Get ancther line -
%
EMDIT MOVE aCLOSE,®! CLOSE opzzde tz RI
BL @l Close the file
} Festore GROM zddress
MCWE RGRMEAV, ZGAMWA Writa MSE
NCF Waste time
MOVE @GRMEAV+],3GRMWA Write LSR
¥
LWFI GFLWS Load GFL registers
B AEn Return to E/A mcdule
1
¥ CLS Subroutine, clasars the scraen
¥ Uses Ry, RI, and RZ
b
cLs C_R AU Beginnig screen lacaticn
LI R1, 2200w Space char in left byte, F!
BLWF @vSEW Clear first byte
LI RZ.7&7 Remainder count
CLILE MOYVE R, @YDFWD Clear next byte
LEZ &2 Decrement count
JHE CL3LF Loop t1l done
RT then return
e
k170 Subroutine

£ Enter with I1/0 cpgcde in R1 (left byt

T Handles e

|

0 LI
BLWF
LI
aly
BLWF
DRTA
JEQ

IORET RT

EFROR CE
JEQ
SFL
SLA
Moy
BL
LI
Mo
MO &

rrars,

RO, PAB
AYSEW

RO, NAMLEN
Fi, 3FMNTR
@CSFLME

8

ERFCE

®CLOZE, R
ICRET

R,

UL

ROWRZ

LE ()

RO, BUFFER+]

ignore=s CLOSE errors
3 Uses RO, R1, RZ, and R3

Foint to FAE

Write the [/C opcode

Foint to name langth in FAE
Fequirsd fcr DSFLNK

Link to gevice

Far fi1le 1/0

Handle ary errors

Feturrn 1f no errcrs

Closing the file?
Yes. ignore errar

Move error code to right byte

and multiply by 2

Save grror code in RT
Claar *ro scresn
L3catien for error meg

RERRTAB (RI) ,R! Massage location to Fi

tR1+ A2

Byte count to RZ2

Q128
0129
0130
Q131
0132
0133
0134
017%
Q134
c137
0L38
0129
Q140
Q141
0142
0143
0144
Q14%
0144
Q147
0148
0149
Q130
0151
012
013
0154
01%%
Q136
Q1L%7
01%8
01%e
1y
014d
01s2
D143
Ol&sd
018%
Vibée
0187
0148
01&9
Q170

L §

ESRLF

4
ERRTAE

X
EDMNMSG

CWFMEG

BOAMSE

L'/CMEE
FILMSG

PREES

SFL
BLWF

LI
LI
LI
BLWF

BLWF
MOVE
JEQ
o]
INE
BL

E

DATA
DATA
DATA
DATA
DAT

DATA
DATA
DATA

BYTE
TEXT
EYTE
TEAT
BYTE
TEXT
E¥TE
TEaT
BYTE
TEXT
YT
TE*T
BYTE
TEXT
BYTE
TEXT
TEXT
END

R2.8 Adjust ta worg value
FUMBW . Write the message to screen
RO, 742 Screen location
rRi.FEEES Message polrter

RZ2. 21 Byte coun*

AYMEW Write to screen

Ak SCAN Get a kay

ASTATUS, ASTATUS New Ley”

ERRLF Nat vet

BENTER, @E'y ENTERT

ERRLP Mo, try again

aCLS Clear the scraen
@EMDIT End the prcgran
EONMSG Bad devic= name
DWFMSGE Device write protected
EOAMSS Bad open attribute
IL2MEG Illegal =peration
OpSMso Qut of butfer space
ECFMSGE End cf file

DVCHMSG Levice erraor

FILMSE File arror

1&

"Bad Device MName'’

-5

'Davize 1s write pratecteq!’

e

"Bad QFEN attribute'’
18

"lilegal operation'-
"Cut of Buffar Space!’

-
-

"Attemgt t3 Fead Past EQF !

1z

‘Device Error!’

11

‘Fila Error!’

'Brasy -EMTER» to eng.’

42r2’3 3 short description of Sow the program works, ..

Lires 1-3 assigr a title %o +%a ascaembly listing, i1nform tk
Wtilitizz and ssmsals we'll be using. ard cefines START
ret/def table when the program is loaced.

Lines 4-13 equats various latals *» values o be used in the program.
-3alue fiald for the labels NAMELEN ang COUNT cormtain “wel]l defineg sxpressions". Trese

labeis arz refarences frdm *he label FAE.

L]
&

5

as

a

g2
1
-

mbler which cre-defined

abe!l

tc be placed 1n the

Notize that the

By usLng enprassicns such as these you are

éble to change the values af several relatsg labals by charging crly cne lime in the

erogram. See page 49

e.gression,

N the E/A manual far the descriptizn of a well definad

Lines 15-20 place & zre Byte valuas in the colect zode that will he used by various
radlines i1a the zrogram.

Line 23 contains an EVEN directive.

This directive tells %he sscembler to make sure the

lccatisn pointer 1s at an even address. Although at this point the lozation pointer
would e at an sven address, that could change 1¥ you acded another byte value befzre

2-8

- -

lire 22, It's jcod practize to agd am EVEN gdirective after isi1~3 2N@ or Tmore BYTE 9r
TEXT directivas in your prsaran. The reason for neecding tg sSe sure that we're at am
2ven address at Lhis 5Tint 17 the crogram ts dus to the Lse =f the DATA direct:ve 1n
line 25, FRemember that the 5YTE dirzctive places one byte =¢ data in the Orogram while
2ATA plazes cne word or “wec Svtes (n the grogram. When the azzamtbler anzounters +-e
DATA dirscti 2 1n thne scurze zcce, it will incresmers the lacaticr s3:A%2rF tg am aven
acdress 1f 1% zhguld nappen T be at an odd locatian., So... 1f at lime 24 tha
locatizn pzi-ter w~ere at an ocd acdress the result would be a are byte "hole® in the
JCJact code tatheen lises 25 and 25, This would result in a PAE t=at would not camsc-
to the striz- format that must be follgwed.

Lines 24-33 comtain data that will make up the PAN, tNotice that another well defired
@:3rassich 1s us8C for the name length in line 2!, Doing this allcws vou to change the
filemame in lire I2 without having to charge tre filename length Eyte, as lorg as you
do nat place anytning Letwean the end of the filename amd the latel ENDAT 1, lime 7.
If your grinter 1s zonnectesd o the systam through a device sther *tharn FPIQ. you'l. -ave
to change the filename. <cNDAT is esquatad toc the current lacat:on pointer through t-e
use of the dollar sign, The assembler recognrizes the dollar sign L mean the surrert
value of the locatizon gointer. Actually, ENDAT and GRMSAV have tha same value so we
could have useg GRMSAV 1n line 21 and done away with the label ENDAT. Howaver, ! t-:1nk
1175 a goce igEa to heep related sections of code together. [f GRMSAV had been Lsez 1n
placa cof EMDAT. the name length byte would get screwed ug if any izde was addes bafarsz
GRMSAV while writing the pragram. 7You'll notiza tRat [’ve used empty Comment lires %0
keeo the code 'n modular faorm,

Line 33 contains another EVEN diractive t3 snsure that tha fallzwing zcde begirs 2n an
even adlress, regardless of the length of the FAB data.

Line 56 reserves 2 bvtas 1n the obract c=ode to “m usad %o save tha GROM address poirmter,

Line 38 is whera tha crogram will start %o evecute. Lines 378-4! save “ha GEOM address,
This must be cocne because some devices altar the GFOM address whem accessad. in oraer
to return to the E// module the GROM address must be the same wher we leave our arogram
35 1t was when the pragram was entered. The code for savimg the GROM address came
directly from pages IZ7C and 271 in the E/A manual.

Line 43 s=3*s “h2 worlszacs ~=s13%er ta 3300,

Lines 34-49 z¢ e F=B 1rn YLP RAM ang open the fila., Again, an axp~s€s:13n 15 .sod .-

45 =z .312 thg runger of Sy%ss santairnad 1o the PAE data,

1
N

] - =

-81 comz-:

rogt

Lineg S1 B 2 2210 Zrogram losop. Actually %h1s sgcti=m is razZe Lo of tRree
T2=%34 120Z3. The inrer lose (lines S&-%3) scanms the keybcard f2r a new kwyprsss., The
mzile laca :.ines S4-a%) avaluates tha kayprass ard takes necass&ry acticn dependi-ng

in what bev was pressed. [t also places the cursor om the screan. This loop 1s
gxecutad once for sach new keypress. Lines &6-72 keep up with “he zharacter cour: amc
maka sure the S0 character limit 1s not exceeded., [f the B80th crarscter is antared,
contrel :s pessed directly to the inner lcop after thae character s displiayed on Zre
screen. This prevents the cursor from overwriting the last character, The main, ar
cuter locp, clears thne screen and charactsr countsr and sets RO +o the starting scrzer
lacation. You have probably noticed that [have chosen tc use the area of VOP FAM “hat
represents screen data for the output buffer. Since the data tRat ~e're writing %3 tna
orintar 13 already stored an the scresn, thare’'s no need tg move it to anather area of
VDF RAM tefore sengding 1t £o the printer, You can also use the scraen dats area 43 an .
1nput buffer when reading data if you need “o display the data after reagding 1%, Tre
main logp alst containg the routine usad to send data <o tha Frinter. Lires 73-8! :-ahe
care 2f this chore by placing tha character count in thes FAE, inCiza*t:irng a WRITE
operatian, ard calling the subroutine I0 to actually access tha arinter.

Linmes 83-91 are =recutad when %4 Braak FCTN 4) key i35 preszed. This routire closes *-a
file. restores the GROM address, ard returns ~ontral to tha GEL interpreter aftar
sezting the «~crispace acinter to tha GFL reagister area. This method 2f returning from
th= program 1s & mocified version af the one on page 442 1n the E/R manual. The manual
Suggests %o clear the GPL status byte and then brarch to locaticn SQ070. 1 prafer =s
Sranch to lscatizn [GOLA sirce the szde thers zlears the GPL ststus byte. This saves a
little remory ussge 1n your arcgram. Beqgitning on cage 440 2§ tre E/A manual are
fescristicns gf several wavs of returning to the system wWren your pragram endgs,

Lineg 9&6-1C3 are 3 sudrcuting *s clear the scrzen. This suoroutine uses the E/A aroviZag

2-9

¥30W rcutine tz Zlear the first Syte of screen mamory and then accesses the YDF zn:is
directly te clear the rest of the screen. | .usag the VSEW routine as an 8dSY Wav =
set uc the VDF Write Addrssse registar.

Lines 110-169 make up the I/0 subroutine, This subrsutine assumes that the PAB 15 alras
set up with the excepticn of the [/0 opcode. The [/0 opcode must be passed *o the
subroutise 1n the MSE of Rl. The [/0 cocode ig written to the PAB, the 83%& poictar
i3 38t Up To sat:i:sfy the requiraments of the DSRLNY raut:ine, and ther the device is
accessesd via IERLM, I agcess 15 successful, t-e zusroutine raturos to the ca!l lirg
arssram. If an error aczurs, an errar message 15 -rinted and the program returns ta
the /A acdulz aftar you press the ENTER kay. [f an error occurs during a CLCOSE

2seratizm, 1t 15 igncred. For an erraor during any ather operation, the error codae :s
transferag tc the right byta of RO and then mult:ziied 3y 2. The multiplication is
accomzlished by shifting tne value left by cne bi-. The rasulting value 1s stored :in
RIZ. the scraen 1s cleared and RY is loaded with tha scresn address for the arror
messaje. [In line 125 the indeied addressing moda :s used to load Rl with the adcress
of the carrect error messag2 to be arinted. Sinza e2ach address in the table at SRETAR
18 2 bvtsg long 1% 1s necessary tz multiply tha 2ri13:n1al erraor code by 2. This was
dore 1n lire |22, The address of ERRTAE plus *r= value in B3 1s logaded 1rto R! Now
Fl wil: point t2 the length Syte preceeding the errsr massage, This length 1s
transfered i1nto the left byte of RD via workspaca registar indirect auto-incernent:ng
addressing. and then RI 1s made 1nto & word value with the shift instruction in lime
123, The resuit cf all this is that RO has tha scresa address. Rl poiLnts tg the
messaze to orint, and F2 contains a byte count of the message. The UMBW routire is
used ta grint the message on tha screen. After tha arror message 19 printed, tha
"Fraes EMNTEF Lo end.” messzage 1% printad cn ths last screen line and the program
waits for the enter key to ba pressed. After the a-tar kavy ig detected contral passes
t3 the code at ENDIT where the file is closed and the pragram returns to the E/A
modula, Lines 144-131 are a table of addressas cointing *o the error messages, All
the entries in this table could have been entered on one line in the source -~ode, I put
them In separate l:nes so0 1t would lock more like a table. The error megsages that
follaow 3re taken more or less from the error code meanings listed on page 299 of the
E/A marvsl.

Lire 170 cortaics w-=2 END directive that tells the assenbler that 1t hzs raaches tFe z-d

g2 /cu have 1f, FRamember that it is rct neceesary for ,our vorsi-r =4 -re
"2rate 10 2ractly the same manner as mine., [f 1t works, it s OF.

The A/l Challenge for next month sort of expands on what we've learned this manth.
Write a program that will allow you to enter letters from the keyboard onto the scraen at
any Iacatzan. In other words, the kevscan rautine will Rave to racognize the arrow hays
in arder %3 move the Cursor around on the screen. You should also try for a blinking
Cursor #nd rzp@ating keys. The keyscan routine should also check for FCIN 2 to clear <re
=zregn, FLTN 3 to end the program amd FCTN & tg save tha entire screen to a specified
Jgvize. when SCTN & is pressed, save 3 couple cf scraam lines to a buffer, clear Ltrzm,
£N2 promot foroar outout device, Aftar the output Z2avice i1¢ specified, restora tes cronot
tir2e and Tutout the antire screen to the devics., Jdf-eor the screen is Jutaub. ratoes
the weybcara irnput routine with the scresn still ir=ac:, Sikce this pragram will sl
YSL T5 save 3 screen to disk, let’s also include i routine 2 recall a2 screen. Star
Frogram cff o With g menu to salect “design a scraen’ 2 ‘recall a screen’. Your screen
design vevsIan ~outine should raturn to this meny when FCTN 4 is pressgd, The farmat _c
S: 22ve the Zata 1s up to you. If you have guestions, feel free to call 764-788! after o

FM. Qut of “zwn fol¥s can weite R+, 9, Box 460, Floramce, AL T%4830. Fleasa includs zo

Until nmaurs time,...
Danny Hichael

2-10

Assembly Routine Restart after QUIT
by Joseph H. Spiegel

There are several Extended BASIC programs now that use assembly language
routines. The loader for these routines is quite slow. For that reason,
it is somewhat annoying if you have to leave Extended BASIC for some
reason, then return and wait for your routines to reload. The worst Dars
is that, in many cases, the program still resides untocuched in expansion
memory. What has happened is that the low memory has had to be
reinitialized and the REF/DEF table cannot be found. The following
program will read a current REF/DEF table and create the proper CALL
LOAD's to restore it if you must leave Extended Basic. It will also
perform minimal checking to see if the program you want is still intact.

The program is used as follows (assuming you have saved the program on dis

) From Command mode, do a CALL INIT :: CALL LOAD("DSKl.object file")

) Type RUN "DSK1.REFRESTORE" (or whatever you saved the program as)

) Answer the prompt with the complete filename that you you wish the

merged file to be saved as.

(4) The program will recreate the REF/DEF table in merged form and prin=
the program names as it goes,

(5) You will be prompted to enter the program name for checking upon
reload. Enter one of the names from the program list. Depending
upon the location of the program in memory, a check of the program
may be included in he merge file. This check consists of a
comparison of four bytes at the gtart of the chosen program.

If the four bytes are OK, the variable FLAG will be set to 1,
otherwise ti will be 0. 1If the REFRESTORE program has
overwritten the object file, you will be given the location of
the entry point, and the program will complete the
merge file without the check.
{6) After completion, the merge file may be merged into your
Extended BASIC object loader program

—
W B

The program is below:

5 tby J. H. Spiegel 6/85 T16240

10 PRINT :: INPUT "MERGE OUTPUT FILE NAME? ":QUTFILES

20 OPEN #1:0UTFILES,DISPLAY,VARIABLE 163

30 CALL PEEK(819%4,A,B,C,D)

40 PRINT #1:CHRS{0)&CHRS(1)&CHRS(157)&CHRS(200)&CHRS{(4)&"INIT" s
CHRS(130)sCHRS(157)&CHRS(200)xCHRS (S)&"CLEAR"&CHRS(0Q)

50 PRINT #1:CHRS(0)&CHRS$(2)&CHRS(157)&CHRS$(200)&CHRS(4d)&
"LOAD"&CHRS${183)&CHRS{200)&CHRS(4)&"8194"&CHRS(179);

60 PRINT #1:CHR$(200)&CHRS(1=-(A>9)-(A>99))&STRS(A)Y&CHRS(179);
70 PRINT #1:CHR$(200)&CHRS(1-(B>9)~-(B>99))&STRS{(B)&CHRS$(179);
80 PRINT #1:CHR$(200)&CHRS(1-(C>9)-{C>99))&STRS$S(C)&CHRS$(179);
90 PRINT #1:CHR${200)}&CHRS$(1-{D>9)-=(D>99))&STRS(D)&CBRS{182)&CHRS(0)

100 E=256*C+D :: LN=3

110 FOR X=E TO 16382 STEP 8

120 CALL PEEK(X,F,G,H,I,J,K,L,M)

130 PRGS=CHRS(F)}&CHRS(G)&CHRS(H)&CHRS(I)&CHRS{J)&CHRS(K):: PRINT PRGS,
140 PRINT #1:CHRS(0)&CHRS(LN)&CHRS(157)&CHRS(200)&CHRS(4)&"LOAD"&

CHR$(183)&CHRS (200} &CHRS(5)&STRS{X)&CHRS(179);

150 PRINT #1:CHRS(200)&CHRS(1-(F>9)-{F>99)}&STRS(FI&CHRS(179)
&ZHRS(200)&CHRS{(1-(G>93)-(G>99))&STRS$(G)&CHRS(179)

160 PRINT #1:CHRS(200)&CHR$(1-(H>9)-(H>99))&STRS$(H)&CHRS(179)5&
CHR$(200)&CHRS(1-(I>9)-(I>99))&STRS(I)&CHRS(179):

170 PRINT #1:CHR$(200)&CHRS(1-(J>9)-({JI>99))&STRS(J)&CHRS(179)&
CHR$ (200) &CHRS{1-(K>9)-{K>99))&STRS(K)&CHRS(179);

180 PRINT #1:CHR$(200)&CHRS${1-(L>9)-(L>99))&STRS{L)&CHRS{179)&
CHRS(200)&CHRS{1-(M>9)-(M>99))&STRS(M)}&CHRS(182)&CHRS(0)

190 LN=LN+l1 :: NEXT X
200 INPUT "PROGRAM TO BE CHECKED UPON STARTUP? ":CKS$
CK$=CK$&RPTS(" ",6-LEN(CKS$}):: Y=E

210 IF ¥>16383 THEN PRINT "THAT PROGRAM NOT FOUND" :: GOTO 200
220 CALL PEEK(Y,F,G,H,I,J,K,L,M):: PRGS=CHRS(F)&CHRS(G)&CHRS(H)&
CHRS(I)&CHRS(J)&CHRS({K):: LOC=256*L+M
230 IF LOC>»32767 THEN LOC=LOC-65536:: LOCS$=STR${LOC)
240 IF CK$=PRGS THEN 250 ELSE Y=Y+8:: GOTO 210
250 CALL PEEK({-31952,81,82):: S=256*S1+52-65536
260 IF S<LOC THEN PRINT "PROGRAM OVERWRITTEN BY THIS ROUTINE

, CHECK LOCATION";LOC;"BY HAND!" :: GOTO 330
270 CALL PEEK(LOC,F,G,H,I)
280 PRINT #1l:CHRS(0)&CHRS(LN)}&CHRS(157)&CHRS(200)5CHRS(4)&
"PEEK"&CHRS$(183)&4CHRS({200)&CHRS(LEN{LOCS))&LOCS&CHRS(179)s
"@l"&CHRS(179)&"@2";
290 PRINT #1:CHRS(179)&"@3"&CHRS$S(179)a"@4"cCHRS(182)&CHRS (D)
300 PRINT #1l:CHRS{0)&CHRS{(LN+1)&CHRS{132)5"@1"&CHRS(190)&
CHRS (200)&CHRS({1-(F>9)-(P>99))&STRS(F)&CHRS$(187)&"RA2"5CHRS(190);
310 PRINT #1:CHRS(200)&CHR$(1-{(G>9)-(G>99))&STRS(G)&CHRS(187)&
"@3"§CHRS$({190)&CHRS{200)&CHRS(1-(H>9)~{H>99))&STRS{(H) &
CHR$(187)&"@4"&CHRS(190);

320 PRINT #1:CHRS(200)&CHRS(1-{I>9)=-(I>99))&STRS(I)&
CHRS5({176)&"FLAG"&CHRS{(190)&CHRS({200)&CHRS(1)&"1"sCHRS(129)%
"FLAG"&CHRS$ (190)&CHRS$(200)&CHRS(1)&"0"&CHRS{0)
330 PRINT #1:CHRS{255)&CHERS(255)
340 CLOSE #1

As an example, I would like to use the popular TK-WRITER program. As
you go from the EDITOR to FORMATTER or back, the object file reloads.

In most cases, this is not required. I say in most because, I'm not sure
if the loader program will be overwritten if the buffer approaches full.
Using the method mentioned, you can enter:

CALL INIT :: CALL LOAD{"DSK1.WRITER")
RUN "DSK1.REFRESTORE"

Answer the prompt for output file with DSK1.LOADMRG. Choosing EDITCR as
the check file,you find that the object file had been overwritten by
the REFRESTORE program. However, the entry point of EDITOR is
stated to be -1514. That's no problem, it just means a little more wo
Now do a OLD DSK1.LOAD (assuming that's what the locader is stored
under. Then do a MERGE DSKl.LOADMRG. If you list the program, you wil.
see parts of both routines; don't worry about that for now. Remember
that entry location, lets find out what's there. In immediate mode,
type:

2-12

CALL INIT :: CALL LOAD("DSX1.WRITER")
CALL PEEK(-1514,A,B,C,D):: PRINT A,B,C,D

The values printed will be 2, 224,248, and 142 if you have the same
version I have. You now can create the check lines:

6 CALL PEEK(-1514,91,82,83,34)
7 IF @l=2 AND @2=224 AND Q3=248 AND @4=142 THEN FLAG=1 ELSE FLAG= 0

Modify the rest of the program to do the check, then jump around the
lcad if the check is OK and you have the new LOAD program below:
NOTE: Peortions from original program by Tom Knight

CALL INIT :: CALL CLEAR
CALL LOAD(B124,36,244,63,232)

CALL LOAD(16360,85,84,73,76,73,84,250,212)

CALL LOAD(16368,70,79,82,77,65,84,250,132)

CALL LOAD(16376,69,68,73,84,79,82,250,22)

CALL PEEK(-1514,4d1,@2,43,84)

IF @l=2 AND Q2=224 AND @3=248 AND @4=142 THEN FLAG=1 ELSE FLAG=0

100 IF FLAG THEN 110

108 CALL LOAD("DSK1.WRITER")

110 DISPLAY AT(6,2):"PRESS ;": :"1 - TO LOAD EDITOR": :" 2 - TO LCA

D FORMATTER": :" 3 - TO LOAD UTILITY"

120 CALL KEY(0,K,S):: IF S=0 THEN 120 ELSE IF K<49 OR K>51 THEN 120 ELSE
K=K-48

130 ON K GOTO 140,150,160
140 CALL LINK("EDITOR")
150 CALL LINK("FORMAT")
160 CALL LINK("UTILIT")
L70 END

R U R Lo B e

DELAWARE VALLEY USERS GRQUPI MAY ., 197 5

HIN TO CONVERT ASSDMBLY PROGRAMS TO PROGRAM FORM FOR FASTER

LOADING AND LESS DISK SPACE - Mritten by Darren Leonard,

Pittsburgh Users Group, on an idea by Marty Kroli, Jr.
{Reprinted fras Worthwest Chio 997 er News)

If you have over loaded an Asmbly progrm with
Editor/Assmmbier Option 3 you may heve noticed that it
takes quite 4 while to load. With same programs this can
take over 2 winvies. These types of progrmm are in
Display/Fized 8 format which e are gQoing te change to
PROGRM forsat to foad with Option #5. [n addition to
loading 3 to 5 times faster, programs stored in program
foreat, i.e., Memory Imdge, take a3 little as /4 the disk
space of D/F 00 files.

The sethod outlined in this article will work on 95¢ of
il Assambly D/F B8 programs. Prior to witing this, [
tried it on 20 programs, and it worked on 19 of them, It
will sven allow you to save an ASSEMBLY program to cassette.
Thus people with an E/A and 32X can run Msambdly programs!

To begin with, read page 40 of the Editor/Assmmblier
mnual. Try your program the way they outiine it. [f you
get an error, then read on, and [will explain in detail how
to get around it,

This section describes the procedure for D/F 8 files
THAT DO NOT AUTOSTART! it your program does autostart, read
down 3 éew paragraphs on how to remove it with DISKO, [Ed.
note - The disk sector editing program DISKD is a Fairware
progra ir the DVG Library,)

1} Plug in your E/A and call wp TI-BASIC. Your E/A
sust be plygged in'

D Type CALL INIT
CALL LOADC*DSK1.FILENGE")

3 1§ your progras has sore than ane file, type in all
the remaining files in order as follaws:
CALL LORDC°DSK1.GAHER 1)
CALL LOAD("DSK1.GAMEX2*)
CALL LOADCDSK].GNEX3")
bet the idea?

4 Type CALL PEEK(8228,A,D)
PRINT 4,0

3 Now 2 numbers will appear on the screen, one on the
left and one in the middie of the screen, This number
correspongs to the ¢irst free address in the smmory which is
3is0 the fast address of your program.

¢ Cowert this mmber to Hex and add 8 to ¢
with & d=digit hexadecise! mmbe-. Since your proy
nored |1y ioaded in mamdry fram addresses DMOE - OFFD? i
you get MM for A then your program has an Absolute
Origin statument (AORS) and you will mot De adle to comvert
it with this sethad, Similarly, if MD is A708 or maller,
then the program is loaded in an wnusual manmer since it
camat it in the mall ared from DM - A7BE. Byt ¢ yoy
came vp with A48 = BOS or greater, then this esthed will
work ¥9(of the time.

D Type "BYE® aad call w the Editar. MNos type in the
mal) Asvmbly progras listed here:

DEF SFIMST,SLAST,SLORD

SFIRST EQU b
RO EU M0

SLAST EQU MA780 (the value of MB)
BN

NOTE!' PUT THE HEX NUMBER OF A+8 IN THE PLACE WHERE

Wit {FCTN 9 bwice and save to disk.

© Load the Assamdler.

For source file snter what you seve in step 7.

For abject file type DSX1.G0MER4 or what you want.
Hit return for the printer output.

Type "RC" when it prampts for Assambler directives.

It will
Wy wrors.,

then assmbdie the program. You shouldn‘t get

) Now load E/A Option 3.

Enter your filename DSK1.ONEI)
DSK].GNEX2

Then enter the assmbled filename from DSK).GHEX4 "
8.

1) Insert E/A disk @2 into drive one and load file
"OOK1.SME",

Hit (ENTER) and type °"WWE" +or the program 1
Foliow the screen input prampts.

11) Now hit (FCTN +> and cal) up E/A Option #3 and type
DSK 1. YOURF ILE and voila!

2-14

THE ULTIMATE SAVE

TEN ooy ==

by Tom Freeman

fou prabably have noticod by now that loading Me0ry
1m392 files, whether in Basic, Extended Basic, or EA 15,
's HULH fagter than loading DIS/FIX 9 files. The reasan
15 ™hat prograe, ar sesory Lsage, Files are just that -
2109 an “iaage” of the oriqinal Progras in eemary they
tan be transferred en bloc back to the RAM af the
Zammuter. Since T1 uses VOP RAM for the transfer there
Toren limrtation o ‘he s1e that can be transferred in
ol ant B osegtors, oe abeut 12X bytes, s
it Iot sore than one recerd in a DIS/FIY 89 file
Anehoas anly shout 49 bytes 1 a compressad file or 27
T nounccenressed one. Cich record requires 3 DSR call
wnd 1 savement of the disk drive, s0 you can see why
heen sre much siower.

fhis 15 Why you oay want to try to convert your LDAD
Y 7N type files to RUN PROBRAM FILE type files, that 15
EA %5 instead of EA #3, What follows is a rather long
rticle that should cover just about all possibilities
far naking conversions. ‘ate that you need the whole
‘ile. 10 other words hidden files on praotected disks etc
=3nNot de converted. The first thing to do of course is
13hE 2 backup coPy on a fresh disk since the file will be

2amier o find, and you don't want to 55 ug your
riqinal do yeu?

[have %o state hers ind now that oy wthod aakes
=8 of DISKASTEMBLER. | have alsc outlined wiys af
sMverfing if yau don't have DISKASSEMBLER, but it s
wch o easter tf you do have tt,] don't necessarily like
"1 'Cot ay owa harn, Sut that'sg why | weate it - to sake
-2mMng and samipylating easier! | did not wite it to
FIMATA proqrams, a6 some nave illeged - a8 1 satter of
PACL T have yet tn see 3 conplete program that could be
t1ea -engjed, roassesh|od elsewhere, and wort if it was
“rrzinajly protected in a saphistica’zd sanner,

“1ough Already!

i refer in the text to the ters VDP ytilities.
These are the ones that are loaded by CALL INIT tor 1
S00N 45 you press 3 LDAD & RUN). They consist of UELNK,
KSCAN, VGBMW, VMM, VSER, VIBR, WITR, DSRLMK, LOADER, and
SPLLMK. (Other nases that say be AEF'd are addreases that
irt resolved by the loader, or DEF's in other prograss
ang also resolved, 0 you don't have to warry ibout thes,

Here goes...
1) Yoy have the source code

T™is one 18 easy' Just sake sure that there :s ng
ARG in the 208 to)4908 range. Now, unless they are
already there, insert the followingt

0EF SFIRST,SLAST,SL0MD
SFIRST
SL0AD B @START

START, or whatever you have labeiled 1t, is whers
the program actuaily beqins. Also, at the end af ‘he
file, whare you tme the A directive, put the labe|
SLAST at the beginning of the line. Also sake sure that
the auto-start feature 1s not activated by the presenca
af the START label after the END directive.

Now reasswsble using the R optipn tf necessary, and
C for spemd of loading. Mext procesd on tg step S)
belgw,

2} No source code

Al _With DISKASSEMRER

Run DISKASSEMBLER on the DIS/FIY 84 f1ls you wish to
convert. You will get all the information you neeq:
whether the file is absclute «# relocatable, cCopressed
or uncompressed, the range of addresses used, ind the
nases of all REFs and DEFs, a5 well as whether there was
aized AGRE and AORB code, or aut af order code. [n the
latter two cases there say be sose difficulty in changing

ta aemory ieaqe forsat. See MOTE 2 seiow,

Note down the first and last addresses, [f the file
ts RORG, add >A099 to sach. Note whether there are AEFS
Yo the VIP wutilities, in which case sse NOTE | below.
Ad lastly note mhether thers is an auto start or not.
In this case, if the file is cospressed, go on to D)
below. If it is uncompressed then load it into ‘he TIW
or EA editor. Scan down to the end where a line beqins
41th a Lexxx or 2xxxx and delete this line. Then resave
the file {in TIN, use FF, them F DSXx, filenase - in EA, 3
SAVF, N tar DIS/VAR D97 prompt). Now gate

2-15

8} MWithout DISKASSEMBLER

Load the DIS/FIX 99 file into the TIK or EA sditar.
icu ady Jet an errur sessage "control characters resoved”
1 Ef but don't marry abrut that just yet. Just press
eter then 2 EDIT. [f you see lats of blank spaces in EA
ar sontral charactars 1n TIW then the file is comspressad.
Soze af the work you d0 will have to be done with a

sector editor such is Advanced Diagnostics or DISK+AID

Jut shile you're here scan down to the end af the file
wiers you see a @ at the beginning of 3 line. This is
the ent of the file, and 1s preceded by any sxternal REFs
ind U£F's with readabie slocks of & characters (spacing
altavs pads the name to &). 1f you tes any names of VDP
sttitties you will have to prepare a special file coversd
tn MOTE L helow. “ete ~hether SFIRST, SLAST, and RLDAD
N3va heon defined here, Exasine the line abgve these or
*he one above the : (f there were none. [f it beqins
mith 3 0 ar 3 7 then this is an auto start file and w1l
have *n na wodified. [f the fils 19 uncospressed delete
e tine then resave it (in TIW, yse PF, then F
A% Tilanama | on FAL T QAR N fop DIS/VAR 997 promet).
brothe {1 € 14 COMungsrd 40 ta).

Ywogn bacy %o the flle if 1t i3 uncospressed and
retuen bg the first line, You will see a d foilowed by &
“harartarg wnich are the ASCIT representation of the
nmar g yyres 94 esincatable code in Hex. This is
‘oflowed by an rdentifier of 8 characters (it may be
paces, or padded to 3 with spaces). [n colusns j4-18
vl 4111 sae atther Fwxxr or 089, In the first case
the <ode 15 shsolute origin &t address xxxx. [n the
eond 1t 19 relocatable and will load at A9, Note
dn *he value in 21ther case. [f the code is
raloratanle you 73y add *he hex aumber that followed the
d it e start af tha line ‘o ABE§ to obtain the last
idress ysed, Far wsolute code scan down the beginning
It 2ach line. Each should beqin with a Fyyyy where yyyy
t5 the start agdress of that line. When you get %o the
last line of code you have almast the last address. Just
idd to 1t 2 for each group af 3 characters after the
yyvy until you qet ‘to a F near the end of the line,
fou now have the first and last addresses which will be
used Haiow,

! Compressed file —Addross Ranow- Mo DISKASCEMBLER

n vour backup d1sk find the firgt sector (it should
ne 241.”1- TZ i older MYARC FOC's), Remesber that each
“ten€" 5r rencrd beqins on hyte #§, 86, or 169 of a
i, he first |ine sheuld start {in Hex not ASCID)
A and then |4 characters which are the identifier
‘they are reagabie in ASCII, as § characters), oxx
epresents the numger of bytes of relocatabie code. Note

1t down. After the (dentifier you will see Fyyyy if the
code 15 ADRE or 4lyyyy if it is RORE. Write yyyy down :f
the code is AORG, ar A4 if 1t js RORG., [f the file Is
RG you say add the xxxx found at the start of the line
to A90F to get the |ast address, Otherwise scan down
sector by sector until you get to the last line before
the REFs and DEFs or ato start, in ather words the last
line beginning with a 39 in Hex. The next line wll
start either with a hax nusber from 31 to 35 or mith 3 A
{Hex for i}, This is the first address of the last lire
of code. Now add 2 to the yyyy after the I? for each
group of & characters until you get to the & at the end
of the *line.® You now have the last ADRE address.
Write down the firet and last addresses whgther ADRE or
RORE - they will be used below. MHote there are a2 few
strange files that apparently were assesabled witha
different asseshler from the one 7] supplied us, and sach
line does not begin with an address. [n these it will be
aleost 1apossible o detervine the last address without
DESkASSEMBLER.

D} Cospressed file —auto start- No 0]SkASSEMBLER

Nith your sector editor g0 to the last sector or lwo
and find the line that begins (in Hex) 3ixxxx or 32xxxx,
Change the 31 or 32 to 4 and weite 1t to the disk.

E) Other suto starts

A few sneaky programmers auto start their prograss
not with the above method but instead By inserting the
start address into the user intervupt hook at H8ICH. If
you have a file that auto starts but can't find the | or
2 fin ASCII, 31 or 32 in Hex) this say be the sethod.
Look at the end of the last line of code for the
following: {compressed) 37 B3 CA 42 xx 1x, (uncompressed)
98ICHBxxxax, [f you see 1t oo i9 the start address.
Replace the 9 with a2 4 if the file 13 cospressed, or
the F83CY with SF39 if it is uncospressad, and th
program won't auto start anymore, it may not start at
all, but that dowsn't matter because we don't want it
to' We just want to load 1t, then convert it.

3} The Firet Executable Instruction

For the EA ¥5 loader to work (and all loaders Dased
on it} the initial code must be an executable
instruction. [f you have a file already in eesory ipage
forsat you can exasine the code ¥iter the first & bytes
and see what [esan. i frequently is 2 B @uxyx (3460
waxx (8 the actual code) or TP yxxx (1@xx) shere coxx 19
the actual start of the progras. Or it aay be a noreal
sequence of code .3, MV 1L, ®xxxx LWl yyyy etc.
indicating the programeer anticipated saving tn this
format. [f your File does not begin this way there wilil
have to be sowe additional preparation.

If your filw i3 auto start and you have determinad
it is done by one of the two eethods above then you know
what the start address is. [f the file is not auto start
you should know from the instructions for the prograa
what the namse of the start address is (for RUN after
(DAD, or CALL LINC in £A Basic) and you can look for it
at the and of the file (with a sector editor 1f the ¢ile
s coppregsed). fou would ses something like SxxexSTART
(uncompressed) or 35ooSI54415154 (compressed, reading
in Hex). These are relocatable start addresses and the
ieax should he added to @99, Absolute address have a -

2-18

i lg harore the ek, 1§ vou used DISKASSENBLER the
start address was dispiayed for you, NON see whether the
start ddress 19 also the firet address of the file, [¢
Lt 1s you are In luck and ndy procead on to the next
step. if not you say still proceed, but when you ars
‘firizhed zae NOTE 7 because further sodifications are to

e fanse,

1 SFIRST SLAST film

"t your f1le already nas SFIRST, SLAST, and SLOAD n
EFs 10 1%, the prograser anticipated using this sethod
and you may 30 on to step S, [f aniy one or twa of
hese names are used check 0 sake sure that they are the
‘lrst, last, and first addresses respectively. [f they
re, hen alisinate ‘the averopriate ones fros the file
belew. [f nat uee a sector editor to change any letter
0 the nane (and type 8 aver the 7 at the end if the file
is nconpressed) .

Mow prepare the foilowing speeial file, using the EA
sditor. Lines 2-4 should abut the lest argin,
[EF SFIRST,3LAST,SL0AD
FIRST 20 e
LA BT Sewwy
HAST I dyywy
D
Here «orx and yyyy are the first and last addresses
nterained zhove. Save the file tn DIS/VAR 5 forsat,
then 90 *o the assembler and ssemsbly it using the file
[ist caved as source file and a different nase for chject
de. Far List File and Cptions just press entar. ‘fou
sheuld rapidly get the 3089 errors sessage,

3 ‘he Pryseengly

Now that sou arm all wrepared the final ioh 18 easy.
"sieq ‘e 3 OLDAD ¥ AN ption of EA load your filas
~ryited i F neceseary to oliminate the auto start), the
fta cwenarad in 4 1§ 1t uas nesded, and SAVE from the
Tootiiity tieh, uWhen the - regr dPPGArs aqain, prevy
e on SAVE for progras name, ‘then follow the
streen prospts, For purposes of neatness choosa i nase
ar the output file that ends in a 1, sincs 33 sector
2lecks mell be created and sach successive one will have
*he fagt characier {ncreised by 1.

Hty,

'he newly created file shouid run in EA #5. It
=en't 1f there were SEFg to the VDP utilities, or if the
ictual jodresses were inserted in the oriqinal souree
cre. Inothis case, see NOTE | at the end of the

arricia,

"lesse note that the file you are converting shoulid
Zither ta all ACRE in which case it will load at 7AE98,
croab cheuld AOPG at VAPER or higher. [1t ADRGs in
e o 4808 range and sbove (A008 you should save
he tun parts separately ‘create two files in 4 above)
451M9 3 file naee ending in 2 for part ashove 4989,
“.rthermore the range >209 to »¥FBS cannat be used since
Mis 15 where SAVE [aads, unless that area 1s really only
i 55 btype block, In DISKASSEMBLER this would be
iidicated dy 3 ceries of ACRGs without DATA. [+ y are
Tamning the actual DIS/FTY 20 file in the aditor or
At ectar editor vou would Mave to see J9xxxx
: VT et or Tvexy (uncompressed, n ASCII)
Aang g 2ast (PO with ng 42'5 ar B's in between

for this to be true. In this case SAVE 1tsa)f would be
saved, and overwritten when the prograa runs, but that 19
XK because 1t isn't needed anymore. Furthersors he
program can't use the ranee between 6 and 2476
because the EA loader and utilities reside here, [the
Prograa appears (o do that it was ewant Lo be [oaded by
sose other locader, such as Mini Mescry, so weething 2lse
will have to be done.

ALl these problees can be fixed up :f you have ‘he
SAVE source code since it can be AORG'd whersver you mant
1it, and therefore not interfere with the original
progras. [f you have DISKASSEMPLER this can be done by
fallowing the instructions in the weendix (naturally |
would love it if you would buy & :apy!) For those that
don't have it | am placing the source code in the club
library. The disk can be purchased for $5.9 - ail
procesds to the Club, not se' You ihen place an ARG 1n
it that qives you >898 bytes outside the ranqe 3¢ the
Frogrim to be converted and redssesble it. [f the file
t0 be converted is t0 be in the Y2008 range then you wst
use the Mini Mesory cartridge to load it, and an RORG
assemdled SAVE can be used, .

MOTE | The EA Utiljties

Norsaily ZA #3 prograas sheuld stand alone sines the
utilities arw not loaded in firet, as they are with 3
type files. There is a way around this however. [the
ftle had REFs to the VOP utilitiss you know this will be
necessary. [there weren't such FEFs but the converted
prograa won't run then perhape there were uses of the
actual addresses in the program and you can try this
nethod.

Prepare a short file as in step 4 using 984 as
oxxx and 22674 a8 yyyy. Assemble it them procesd to stes
3 and use a filenase such as UTILY as the output ile.
Find the file on disk with your sector editor, and chanqe
the first two bytes from 8099 o FFFF. This is & generic
tile and msay be used with all converted prograss that
need it - all you have to da is copy it to the disk
containing the converted program and change the nase to
one the saae as the others but with the last character
decreised by 1. [prepared DISK#AID in this sannery the
converted files are called DISKAID, DISAIDE, and
DISKAlD2.

If your file contained code between 2674 and 4008
that either didn't interfere with SAVE, or you used a
sodified SAVE, them you corld save 1t toqether with the
VOP utilities. However this i not necessary - you would
just have two shorter files, and maste | or 2 sectors.

NOTE 2 High and Low Memary ey

[f the file to e cooverted contains code below
"4889 and sbove >AP8J you need to convert the two parta
separately, using the relocatahle SAVE if necessary, [
there i3 3 low sem pilece AND the utilities are also
needed then for convenience you say want ta save the
entire low ees block toqether even though some space say
be wastad. You nay also do it in 2 separate pieces if
you wish. In any case change the first 7 oytes af the
file(s) to FFFF. Also resesber that 1f you have 2 files,
the second sust have the last charscter increasea oy 1
iand aqain 1f there i code sbove AOG4).

2-17

AIE S Special File for Evecutable Instrection
“foyour First file creatsd DID have an executable
nsfroction 3t the seqinning, AND you needed the speciaj

Tot1lities frle, then “hange the [atter to have 3 nise
TIFE vn rogram fries, nd change its first two Bytes
v o He8d. Then sou ars set. (4 there waen't 4n
Prfulabie instruction and you do need the YOP file, then
Thenge avtns 7-19 of the VP fila to Sdédxxx whers xuxx
‘5 rhiere your prograa actually starts, Yoy can do this
GEree those 4 Yyles were ictually what CALL INIT loaded
AT e IR and aren't needed. One last case where
ottt have the frrst axecutable instruction but don't
$ANE 0 23ke an extra file 1s whers thers wak 4 BSS of 3t
F2a%% 1 bytes at rhe start of the file tin other words,
UCCOTSIVe Iriging in the DIS/FIX 39 file). Then you can
cerlac~ bytes 7-19 of your first progria file with fasd

'Fione of thesa sperial cases obtain, then you will
1ave tioarepare this special file, [t actually 1s rather
38 Tind an unused srea of menory, elther :n (ow aem
netemy STESE and 4988, ar hign 1n the high ses, above
T8 irvte the fallowing source code:

‘BF FIRST, SLAST, 3 oan

ADRS)F3#00 (R WHEREVER YOU HAVE DECIDED [7 &(ES
SLGAD

SFIRST 8
SLAST £ND

Save thig file, then asceabla 1ty ioad it, then [ocad
SAVE, then press enter, type 1n SAVE, enter and foi!ow
the screen prompts, Use as your file nase one with the
last charicter one less than your previous first file.
Tou will create a tiny 2 sector file which A wilj tind
the start sddress in. Resesber tg use 2 sector editor o
change the first 2 bytes érom 6690 to FFFF,

DT 10X IS YOUR ACTUAL START ADDRESS

MOTE 4 Hultipie Files

I your prograa actually contained stitiple files to
load before the CALL LINK or the entry of prograa nase,
the instruction above still apply, but it may be a littlae
harder to find the information you reed. ['l] be happv
to help if [can, but you should be able to 20 it.
Resesber to load ALL of the files hefore running SAVE,

This article wound up a LOT longer than [intended.
Unfortunately | have never been accused of being to
brief. However | was really trying to cover 4l
Possibililites. | hope 1t words for you wvery ‘tise!
Enjoy.

Editor's Note:; Tom Freeman is a practicing pediatrician in Ehe L?s Aﬁgeles
area and a regular (preolific) contributor to the excelleqt LA Times", ;
newsletter of the Los Angeles Area 99er Users Group. He is also author o

the terrific "DISKASSEMDLER" software available from ¥G (lé?S w.leEre;s
Avenue, San Dimas California; $19.95 + $2 S & H), He is skilled 1n”)o:nd
assembly language language and GPL ("Graphilcs Programming La?%uagehis
continues to produce innovative public domain routines as we ﬁs o lum
commercial efforts - the most notable being his two-column and "qua

print routines.

2-18

dit

**C*® Tutorials

Some Help When You Nee

The C Language and You
By Warren Agee
Compuserve ID 70277,2063

The TI-99/4A 1is getting to be quite an O-L-D computer! But despite its
age, quite a bit of software that is commonplace for other machines has
yet to surface for the 99 enthusiast. One of those goodies is a C compiler

- the language which 1is currently the rage the of newest and brightest
computers in the market today. But the wait is over! In or around
September 1985 a gifted systems programmer from Ontario, Canada, Clint
Pulley, filled a deep whole...a C compiler for the 994A!

But what is C? C is a language that was developed by Dennis Ritchie on the
Unix operating system on the DEC PDP-1l. Since then various versions of
the language have popped up on almost all personal computers. In fact, it
is the language of choice for the newest breed of personal computers —-
the 68000 machines likethe Amiga and Atari 520ST. C's long list of
strengths includes the fact that it is not tied to any one operating
system and machine, which makes C code rather portable. This doesn't mean
that a program written on a Macintosh will run on an Atari 5208T, but it
does mean that the process of converting such a program over to a new
machine is greatly simplified. C is also relatively small, it can be
learned quickly. It is a relatively "low level" language, which means the
programmer has more direct control over his work and the machine. However,
this facet also has its drawbacks: the programmer has to be more careful
in what he does and has tc have a good understanding of how the machine
works.

C is not a language for beginners, mainly because it is a low-level
language. But it *is* much easier to learn and use than Assembly, and
perhaps easier for some than FORTH. The most significant advantage to this
language 1is that it allows people without the knowledge or expertise (or
sanity??) to program in Assembly can now produce high-gquality, fast
software that in many cases rivals assembly.

Perhaps I should correct myself and say we now have a "c" compiler, not a
"c compiler. What? That's right, a little "c". You see, the compiler
that Clint wrote, called ¢99, really supports only a subset of the full C
language, often referred to as K&R, which stands for Kernighan and
Ritchie, the creators of the language. This is due to the memory
constraints of the 99/4A. The C language was developed on a mainframe, not
on a 48K home computer. This means that many compromises had to be made in
order to squeeze a functional C compiler into the 4A. Nonetheless, c99 is

a very capable language that stands by itself just fine.

The C language is different from BASIC in that it is compiled, which means
you key-in your programs with a word processor, then run them through the
compiler. This program reads in your source code and generates assembly
language code, which is the finished program, which can be loaded in
separately and run. The mechanics of creating a program with <99 differ
from most compilers on other machines in that the ¢99 compiler does not
generate the finished program. It's really a two-step process. The
compiler generates assembler source code instead of object code. The
resultant file is then run through the 99/4A assembler,which comes with
the Editor Assembler cartridge. So as you can well imagine, you need the
E/A cartridge in order to program in c9%! However, a thorough knowledge of
assembly language is in no way a prerequisite to programming in C. But
one deces have to know how to work the assembler, which is not hard at all.

But what is all the fuss over the C language? Who cares if it's compiled?
I care. A lot of people care. So stop asking gquestions and listen. The
singlemost important advantage of a compiled language (like C) 1is
>>>>>SPEEDK<<<<, Zoocoom...the only thing faster than a ¢99 program is an
assembly language program. Not even FORTH can beat it. C is also much
easier to learn than assembly. It is easier to read than assembly. Its
easier to go back and modify after time than assembly. So let's all pitch
assembly out the window! No, we must not do that, because there is one
major drawback of c99...it tends to create "bulky" programs. If one were
to write a program that prints mailing labels in both languages and
compare, you wculd £find that it probably took less time to write it in
c99. It probably alsc compares favorably to assembly in its speed. But
the size of the programs will be dramatically different...assembly is much
much more compact. This is very important to people like us who only have
48K of memory with which to work!

However, in all honesty, its not that bad. I have been able to write
functional, effective programs in c99 that just fit into 48K. You may not

be able to port Lotus 123 or dBASE III, but you can sling some mean code
if you stay on your toes. Fortunately, some very nice people have made
that Jjob easier on us, namely Clint Pulley, Tom Wible, and Richard Roseen,
who have developed ’optimizers.”™ These doo-dads compress your program,
allowing them to fit in a smaller space, therefore making more memocry
available to you. Clint wrote the original <99 optimizer, and Tom and
Richard continue to enhance it.

Speaking of enhancements, Clint Pulley seems very dedicated to his
project. He is constantly updating and upgrading his compiler to bring it
up to snuff with "the mainstream." Although at the start c99 was more a
novelty than anything else, Clint has raised the power and versatility of
c99 to a level of commercial quality. As of this writing, I know of three
commercial programs soon to be available that are written in ¢99, and I
have no doubt that more is on the way,

[Editor's Note: Warren is well-qualified to write about ¢99. He is one of
the very first to write a commercial program using the language, "Total
Filer" from Asgard Software, P.0O. Box 10306, Rockville, MD 20850.]

€99 Beginner's Tutorial #1
by Ron Albright
Compuserve ID 75166,2473

I have been exploring c99 for the TI of late. Written by Clint Pulley (38
Townsend Avenue, Burlington, Ontario, Canada L7T 1Y6) and available as
Fairware, the language is a full-featured version of "small c". I have found
few limitations with the language (lack of floating-point and math routines are
the major ones), and have been able to do some nice routines with the language.
Briefly, C is a very popular programming language through which, it has been
estimated, 70% of commercial software for other machines is written. So what
makes it different? It is a "compiled" language. That means, once you have
written your program in c%9, you run a companion program called a compiler. The
compiler takes your C source code and generates assembly source code. The
resultant code can then be run through the TI Assembler to generate object
code, which executes just as fast as if you went through the strenucus (to me,
anyway) task of writing assembly source code to start with. C is much easier to
learn that Assembly language and is efficiently compiled with the c99 compiler,
I have seen some programs written with c99 alone (there are a few on
Compuserve; a simple text editor and a word-counter for TI Writer files by
wWarren Agee, a program similar to the TI Writer formatter, and a graphics demo
by yours truly) and they are indistingquishable fraom pure assembly language,
because the end-product is just that, If there is any interest, I will address
the language more in depth in some more starter-level tutorials. I am no
expert,by any stretch of the imagination, but I am learning and plan to spend a
great deal of time with the lanquage. It is a marvelous programming tool and,
hopefully, this simple file will hel u get started. Learning a new 1 e
ispgeveryéasy, bug‘?t is time we allpagganggd beyond BASIC and gtarted worki g
in another environment. c99 provides a reasonable alternative. I could never
think in reverse, so I gave up on Forth; I am too dense to learn assembly
lanquage. Pilot is too slow and requires too many disk accesses. Besides C is
used in so many other machines and for so many other applications, it has to be
good. let's begin by seeing what we have to work with.

First, equipment-wise, you need the following: console, monitor, 32K
memory expansion, at least one disk drive and controller, the Editor/Assembler
package (cartridge or disk version) and, of course, the c39 system disk. A
printer is nice (see below) but is certainly not imperative for programming
purposes, Ideally, you would have two drives as this makes the work much
easier, ag does having at least double-sided drives {but ain't that always the
case!). If you have double-sided drives, you can save yourself a lot of disk-
swapping by, first, of course, making a backup of the c99 system disk and,
secondly, copying from the Editor/Assembler disk, the files AsSSMl, ASSM2 (the
files for assembling source code) and EDITL (for the E/A Editor) on to the ¢99
system disk. But, if you have a single-drive or single-sided system, don't
despair...things will work just fine with what you have,

Once you have gathered your tools, you should get a disk directory
printout of the ¢99 system disk. Pulley even provides a disk catalog program on
the system disk (called "SD" and running out of E/A 5 on my disk) but it
doesn't print to printer). You will notice that there are a long of files in
all shapes and "colors" (D/V 80, D/F 80, and PROGRAM files) and we will first
go over what is important and what is not. Some of the files you will be using

a lot, others seldom if at all, at least to start. Here are same of the files
3-4

you should have and what they are for. I will list them in order of importance
and probably frequency of use.

C99C,C99D,C99E

These are the compiler files. They are the heart and soul of the ¢99
system. There are PROGRAM image files and are run from Editor/Assembler option
5. Unlike some PROGRAM image files, these CANNOT be run from option 3 of the TI
Writer module. In my brief experiment they could not be loaded from XB with the
FUN LOADER from Australia. The first thing I did with these files is rename
them to be UTIL1l, UTILZ, UTIL3. Then, when you chose the LOAD and RUN option
from E/A (option 5), you only have to hit "Enter" and the files will be
loaded by that name as a default without typing them in.

CSUP

This file is wery important. It is a D/F 80 (which always means it runs
fram E/A option 3) which must be loaded immediately after you load you
completed, assembled program. We will discuss this more later, but suffice it
to say that your <99 program will never run if you don't load this file after
it and with it,

C9SMANL , CI9MAN2 , CIIMAN]

These are the D/V 80 files that contain the documentation Clint
Pulley provides with the c99 system. They are not going to go very far in
teaching you how to program in ¢99. Like the manual TI provided with the TI
Forth system, they are simple a brief tutorial on how the different files work,
and what they do, what the error messages mean, ect. They are quite adequate
for their intended purposes. Pulley tells you up front "This manual assumes a
knowledge of standard C or the availability of a suitable reference." That
translates into "If you have never programmed in C, go buy a book!™ I will
recommend a couple at the end of this piece. Far enough, Clint! If you have a
printer, print these files out for future reference. If not, find a friend who
does. You will need a hard—cCopy of these files.

CY9ERRORS

This is a short D/V 80 file that contains a listirng of the 30 or so
error messages that the compiler will embed in your compiled code when it
encounters one. It will only embed the error number. You will have to look in
this file to find out what the number means. Print this out also.

C99SPECS

A terribly important D/V B0 file. This short file tells you what c%9
supports and, more importantly, what it does not support, when compared to
standard C. why is this important? I have yet to find a bock that addresses
only "small ¢", the version of C (more limited than "big C") that <99 is
modeled after, All the texts I am aware of cover the full C language. Small c
and <99 do not have all the functions of C. When you look at program listings
out of these texts, you will quickly become frustrated if you try to type
them in verbatim as they are already. Many program statements in C will

give you errors in c¢99. You have to study this file when typing in program
listings out of books to avoid these errors. For example, C supports
"floating-point" arithmetic; small ¢ and c99 do not. There are other examples
covered In this file; print it out. You will need it.

GRF1DCCS

This is the documentation for the graphics routines supported by the
current version (1.32) of ¢99. Print it out.

ERRFIND1

This is a helpful file provided by Clint. It is a PROGRAM file to be
run out of E/A 5. Run this if you have run the c¢99 campiler on a source code
file and received the dreaded "!!ERRORS!!" message. What it will do is prompt
you for the compiled file's name (not the original source file!), read it in
very quickly showing the file on the screen as it reads it. You can stop to
read the file by holding down any key; releasing the key resumes the read.
Then, after it has read the file, it will flash the lines again on the screen
that contain the error message so you can (1) see where the error occurred and
(2) what the error message was. It is also nifty for reading ANY D/V 80 text
file. It's purpose, though, was to help in debugging.

There are several other files that are, for the most part, files to be
included in your c¢99 source codes as you use certain functions. We will go into
this in some depth later, but you will use an "#include dskl.filename" in your
source files to copy these files into your source codes. For example, if you
used some graphics commands in your source file to draw same sprites or such,
you would need to use "#include dskl.grflrefs" in your source code as a line
before you started using the graphics commands. Else, the compiler won't
understand what they mean and give you a multitude of errors. If you use
cormmands to access disk files, you would have to use "#include dskl.stdio" (for
"standard input and output”) before you started opening and reading from disk
files. Notice the use of lower case in these #include statements. The compiler
can use lower case, unlike the E/A Assembler which only accepts upper-case.
Just keep the list of the other files as they will be used as you start to type
in programs.

How does one enter programs with ¢99? You can do it two ways. You can
use TI Writer, but always use "PF" to disk rather than "SF" and throw in the "C
DSKx.filename" syntax to clean all the control characters out. Or, preferably,
you can-use the BEditor of Editor/Assembler. We won't do a program this time, as
you have enocugh to do for now.

What about recommended books? I strongly recommend "C PRIMER PLUS" by
Waite, Prata and Martin (Sam's Publishing, 1984). It is 500 pages and costs
about $22. It is the "Going Forth" (Brodie) for C. It is easy to read, starts
at a beginner's level and is chock full of example programs. Same usable with
out dialect of small ¢, some not (at least without scme conversions). I went
though two other books on C before I found this tome. It is the best I have
seen. If you know C, the bible (but much too advanced for me) is "THE C
PROGRAMMING LANGUAGE" by Kernighan and Ritchie (Prentice-Hall, 1878). I found a
back issue of Byte magazine also useful. The August, 1983 issue is devoted to C
and contains some very nice articles and tutorials. You can still get a copy of
this from Byte.

3-8

c99 Beginner's Tutorial $2
by Ron Albright
Compuserve ID 75166,2473

Last time we touched on what c99 is, and what files come on the disk and
what some of the more important ones do. This time, we'll actually do some
code. As we progress, we will stress some sort of style in how we enter
programs. I am no expert on style (or <99, for that matter), but since <99 is
s0 free-form and has no line numbers to follow, it can be very difficult to
read programs if you don't follow same rules. These rules are not universally
agreed upon, but we'll try to develop some sort of easy to read style of our
own. I will make a few assumptions to start. First, I will assume you have a
single-drive system with only single-sided capability. Second, I will assume
that you have a basic understanding of the Editor/Assembler package, i.e. you
know how to use the Editor, and run programs out of either option 3 or option
5. I will, further, assume, that you have assembled at least one source code
file with E/A. If these assumptions are incorrect, let me know and we'll touch
on the Bditor/Assembler more next time. Let's get started.

Take a clean disk and copy the _ollowing c99 files onto it:

CsuUP D/F 80 12 Sectors
PRINTF D/F 80 14 Sectors
UTILL PROGRAM 33 Sectors
UTILZ PROGRAM 33 Sectors
UTIL3 PROGRAM 29 Sectors

Next, from the Editor/Assembler disk, copy these files to the same disk:

ASSM1 PROGRAM 33 Sectors
ASSM2 PROGRAM 20 Sectors
EDIT1 PROGRAM 25 Sectors

If my addition is correct, that gives us 199 sectors on our work disk. Now
we are ready to proceed. Keep our work disk in the drive and insert the
Editor/Assembler cartridge., From the memu, load the Bditor and go into the Edit
mode.

Type in this program.
/* c99 The amallest ¢99 program */
main() /* a comment */

{
/* we aren't going to do anything! */

Congratulations! You have just entered your first, valid <99 program.
Let's look at it. The first line is nothing more than a "REM" statement.
Instead of REM, <¢99 recognizes anything enclosed within "/* */" ag a comment
and ignores it when campiling. You can put anything between these comment
delimiters, and it will survive compiling without error. Use them frequently as

you program. As we menticned, c¢99 programs are difficult to read at best ard
REM statements are useful to remind yourself, as well as other reading the
program, what you had in mind. As shown on the next program line, the can also
be used on the same line as compilable code, so comment each step of your code
for clarity. A routine called "main” is required samewhere in each and every
c99 program. Typically, it is the first block of code, sets things up, and
calls the other routine(s) to take over. When the compiler sees "main()" (or
anything with the "()" after it - like "first()", "setup()" - it labels this as
a function; a subroutine in Extended Basic. A string of functions make up a
program. They are just like you were using "SUB routine" in XB. It is run when
its name ("main", "first", "setup") is "called". The "main" routine is run
whether it is called or not (guess that is why they call it ™main").) is
called. More on this later. But, for now, thing of <99 as simply a series of
"calls" to blocks of modular code called functions and a function is labeled
with "name()".

Each function is enclosed with a pair of braces - it starts with an open
brace { {) and ends with a closed brace (}). This tells the compiler where
this block of code starts and ends. Everything within those braces is part of
that function. In our first program, the only thing in the main function is a
"REM" statement, so it will "do” nothing. But it is compilable. A function may
include a call for another function. Look at this:

main()

{
}
/* doit doesn't do anything! */

doit();

doit()

{

/* see! Nothing here to do! */
}

This time, main calls up the second function, "doit"™ which, also, doesn't
do anything. But you can see how programs are built. Typically (but not
necessarily) the main function will include all the calls to the functions that
make up a whole ¢99 program, Its like having an XB program that is nothing more
than a series of "GOSUB"s (really, a series of "CALL SUB routines). Each
function call doing its task and returning control back to the main, or
controlling program. The good c99 program will break large programs into
smaller ones and write a function for each. If a function can stand alone (has
nothing in it unique to a single program) the programmer eventually develops a
"toolbox" of useful small routines (functions) that can be combined in
different ways to solve problems. That is just one of the beauties of <99.

So, let's compile this program. After typing it in, hit FCTN 9 twice, get
the EDITCOR menu and elect to save it to disk. Your main work disk should have
plenty of room, so no disk swapping. After saving to disk 1, hit FCIN 9 again,
and get the main E/A menu, Chose Option 5 to "RUN PROGRAM FILE". The three
compiler files, which I have renamed UTIL1, UTIL2, UTIL3, run out of option 5,
not option 3 (which runs D/F80 files). When you are prampted for "Program
Name:", since you have changed the name of your compiler files to UTIL1-3, you

3-8

only have to hit enter., The default name for E/A 5 is UTILL and those files
will then be loaded automatically (now you see why I renamed them). You will
then be prompted by the ¢99 compiler (prompts will vary depending on which
version of <99 you use) for a input file name. Type "DSKl.filename" (filename
being generic for whatever you called the file you typed in and saved to disk).
You will then be prompted for an output file name. Call it “filename/C", just
to remind yourself that is a compiled file. Then, hit enter and you are off and
running. The compiler will flash each function name on the screen as it is
compiled to show you where you are in the program. You should see only "main”
if you are compiling the first program, and "main", then "doit" if you are
compiling the second routine. If an error is encountered, you will be told. But
we'll assume you typed these short routines in without error for now. It
shouldn't take long and you are told to press enter to continue after the
compiler is finished.

Now what? If you catalog your disk now, you should see the initial source
code file you typed in and saved, and now a second file called "filename/C".
Both should be D/VB0. You have one more step to do before you can run the
program. What the compiler produced was assembly language source code. Like all
source code, it has to be assembled. Get to the main E/A menu and choose Option
2, Assemble. When asked to "Load Assembler?”, hit "Y", and since we put the E/A
assembler files on disk 1 (ASSML and ASSM2) they should load right in without
swapping disks. You are then prompted for the "Source File Name”. Type in
"DSKl.filename/C" (NOT the program you typed in and saved, but the compiler's
cautput filename)., For an "Output File Name", I use "DSKl.filename/Q" to let me
know this is object code. Then hit enter for each of the next two assembler
prompts ("List File Name" and "Options"). The assembler should start right up
and finish with the assembly process. Now, catalog you disk again. You should
see a third file added now - "filename/O". This time, it is not D/V80, but
D/F80. Assembly language CBJECT code. You have produced an assembly langquage
program. How do you run this "do nothing" program you have written? Go back to
the main E/A menu again. Choose Option 3 fram the menu. When asked for "File
Name", type in "DSKl.filename/O". Then hit enter. You get the same prompt again
("File Name:"). This time, type "DSKL.CSUP". This "c99 Support" file MIST be
loaded after you load ANY c99 program. Hit enter. When you get the prompt for
the third filename, just hit enter this time. When asked for the "Program
Name”, type in "START". All c99 programs run with the program name start. Your
do nothing, super-duper assembly language program should now "run®. You then
immediately get the "hit enter to continue" message and you have finished.

Well, how does it feel to have generated a assembly language program just
like the "big boys"? Next time, we will -do scmething with a little more
substance., We will create a simple menu, which will demonstrate keyboard input
and the "printf", “"puts", and "getchar" functions. But, for now, I just wanted
to go through the mechanics of running the c%99 system. Till the next tutorial,
get a C book, read the "manual that comes with ¢99 itself, send for the new
version 2.0 of the compiler, and if you haven't paid Clint do so.

¢99 Beginner's Tutorial #3
by Ron Albright
Compuserve ID 75166,2473

When I started to learn BASIC (and later, Extended Basic), I remember how
I did it. I first typed in other programs from magazines and books. Then T
started to do my own programs. And the first type of commands I used were the
graphics commands. I sure didn't jump in with file handling or string
manipulation! Anyway, I found myself doing the same thing with ¢99. I typed in
some programs out of a book, then started playing with my own routines with
graphics. Then I tackled a game. I have though all long that is you can learn
the logic involved in a game, you have learned a great deal about the
programming structure of a particular language.

In this tutorial, we will try to accomplish a couple of things. First, a
glimpse at some of the graphics commands available to ¢99 in the "grflrf"
library (that cames with all version 1,32 or higher), and, secondly, a lock at
how to convert a short BASIC graphics display to ¢99. It really isn't that
hard.

Listing 1, below, is a short BASIC program fram Ed York that has appeared
in several UG newsletters. It is a colorful graphics display. Listing 2 is a
conversion of the program to ¢%9, done by me., They both accomplish the same
thing graphically. I have commented the ¢99 source code to try and explain step-
by-step what we did. I think as you look at the programs, you will see how
similar both the graphics commands and the logic is tc.ween ¢99 and BASIC. It
is, to me, much closer to BASIC than Forth was. See if you agree.

Listing 1

100 REM COLOR BONANZA

110 REM WRITTEN BY:

120 REM ED YORK

130 CaLL CLEAR

140 POR A=40 TO 136 STEP 8 ‘
150 CALL CHAR(A,"S5AAS5AAS5AASSAA")
160 NEXT A

170 FOR B=2 TO 14

180 CALL COLOR(B,1,1)

190 CALL VCHAR(1,2*B,24+8*B,22)
200 CALL VCHAR(1,2*B+1,24+8*B,22)
210 NEXT B

220 FOR C=2 TO 14

230 CALL SCREEN(INT(16*RND)+1)
240 FOR D=2 TO 14

250 CGALL COLOR(D,D,C)

260 NEXT D

270 CALL KEY(O,E,F)

280 IF F<1l THEN 270

290 NEXT C

300 GOTO 220

3-10

Listing 2

A% OOLOR BOMANZA This and the next 2 lines are REM's (line 100) */
/* WRITTEN BY: (110) */
/* ED YORK {120) */

#include dskl.grflrf /* required to use the graphics commands */
#include dskl.randam;c /* required to use the random number commands */

main{)

{
int a,b; /* MUST declare ALL variables used in a routine at start */
grfl(}); /* MUST be used as first command for graphics library use */
clear(); /* Same as CALL CLEAR (130) */
randomize();/* Same as RANDOMIZE in BASIC */
for(a=40;a<=136;a=a+8) /* Lines 140 and 160 ALL IN ONE STATEMENT! */

chrdef(a, "55aa55aa55aa55aa"); /* CALL CHAR in line 150 */

for{b=2;b<=14;b++) /* Another FOR-NEXT loop -lines 170 and 210 in one */
{ /* Maltiple lines in for loops need to be braced */
color(b,1,1); /* Same as CALL COLOR - line 180 */
vchar{1,2*b,24+8*%b,22); /* Just a plain old CALL VCHAR! line 190 */
vchar (1, 2*b+1,24+48%b,22); /* line 200 */
} /* Closed braces after FOR LOCP */
fun(); /* Gets a little tricky here. Since there was a
"GOTO" statement in line 300, I decided to make
a new routine starting at where the GOTO directs
the BASIC program - line 220. That way, I can call
the second function from itself, in essence,
creating a "GOTO". See below. Anyway, that is why
I started a new function called "FUN{}". I call it
fram the Main() routine here by just calling the
name of the routine. Its just like I said GOSUB
or, in XB, had created a user-defined SUB FUN and,
here, said CALL SUB FUN. */

fun() /* start of a new function */
{ /* All functions start with an open brace */
int ¢,d; /* Declare these variables at the start!!! */
for{cm2;c<=14;c++) /* start of another FOR loop-lines 220,290 in one! */
{ /* multiple lines after a FOR need to be braced! */
screen(rnd(16)+1); /* CALL SCREEN in line 230 */
for (d=1;d<=14:3+) /* Start of a nested FOR [OCP - line 240 */
color{d,d,c); /* CALL QUIOR in line 250 */

getchar(); /* Just waits for a key to be pressed - lines 270,280 */
} /* Close that brace for the FOR loop */
fun{); /* See that GOTO 220 in the BASIC program? This is the

same thing - it just keeps calling "fun()" which is
nothing more than the program starting at line 220.
30, by separating the lines where the GOTO starts
into a separate routine, we can now call it over and
every time we would be using the GOTO in Basic. */

} /* Close braces for fun() routine */

3-11

Notes:

[1] Compile the program with the Compiler. You must have version 2.0 of the
Compiler to use the "FOR" statements. Make sure the D/V 80 file "RANDOM;C" and
"GRF1RF" is on disk 1. The asseamble the output file. Then, load the assembler
output (which should be a D/F 80 file), then from E/A option 3 still load the
file "CSUP" (another D/F 80 file) and "GRFl" a third D/F 80 file. Then hit
enter and use the program name "START". It should run.

(2] The only complicated move was separating lines 220 through line 300 into
the separate function "fun()". This was done because line 300 in the BASIC
program is a GUTO 220, Since there is not GOTO function in ¢99, we separate out
those lines and use recursion in "fun()". Recursion simply means a routine
calls itself over and over, just like a GOTO. I hope you can feollow this.

{3] We could have used a function similar to CALL KEY{0,E,F) as in line 270.
But, by using "getchar()" we accomplish the same thing in one line. Getchar
waits for a keypress automatically without testing for “status”.

(4] FOR-NEXT loops in ¢99 are three parts. Just as

240 FOR D=2 TO 14
250 CALL QOLOR(D,D,C)
260 NEXT D

accamplishes three things (set D=2, then CALL CDLOR(D,D,C), then increment D by
one, then loop), the FOR loop in <99 does it all on one line, We say

for(d=1;d<=14;d++);

d is set to a, then tested to see if it is less than or equal to 14. The
color(d,d,c) is executed as log as d<=14. As each color() function is executed,
d is incremented by one by the "d++" statement. All things are done with one
statement, Also remember that is there are miltiple commands after a FOR
statement in c99, they must be set off between a pair of braces. If a single
statement, as we have here, they can be used without the braces.

[5] If you don't have version 2.0 of the Compiler and, thus, can't use "FOR"
loops, you can try this: use a “while()™ function. For example, instead of

for(d=l;d<=14;d++)
color(d,d,c);

use this:

d=1; /* Step 1 in a loop: set dml */
while{d<=14) /* Step 2 : test for d<=l4 */
{
color(d,d,c);
d++; /* Step 3 : increment d by 1 */

It will accomplish the same thing. This is only needed if you have version l.32
on NOT version 2.0.

3=-172

<c99 Tutorial 1
by Warren Agee
Campuserve ID 70277,2063

This is my *first* utility word for C. I am NOT an experienced C
programmer...I have had 2 days experience with C. So, this may not be the best
way to do it, but it DOES work!!

This file contains the C source code for the definition of a new function,
seg{}, and a test program to demonstrate its use. seg() corresponds roughly to
SEGS in BASIC. It will take a chunk of one string and place it in another
string variable. Both strings must be variables. You provide the variable which
contains the string to take apart, the variable where you want the new string,
and the starting and ending positions of where you want the chunk taken out. If
strl contains "APPLE PIE" and you wanted str2 to contain "APPLE", simply use:
seg(strl,str2,0,4). Everything starts with zero, not one. So the first
character is 0, the second is one, etc, seg() returns the new chunk in str2.
strZ should be an "empty" variable. This may not make sense yet, but I have
commented this listing thoroughly.

Run the compiler on this program, then assemble it, then run it (eption 3
of E/A). Load the assembled program first, then the CSUP file which resides on
the ¢99 disk. Program name is then START. Not exciting, BUT IT WORKS!!

/* C TEST PROGRAM */
/* Warren Agee 10/26/85 */
/* written with c99, by */
/* Clint Pulley */
/" 38 Townsend Ave, */
/* Burlington, Ontario */
/* Canada L7T 1¥6 */

/* Fresware: $20 donation requested */
/* Test of the seg({) function */

#include dskl.conio
int pl,p2,c; /* integers */
char strl[81],str2{8l]; /* strings, 8l chars long */

r;ain()
pl=0; p2=4; /* take a segment of the string */
/* fram position 0 to position 4 */
c=putchar(12) ; /* clear screen */
locate(3,1);
puts("Please enter string:\n");
c=gets(strl); /* input string into strl */
seg{strl,str2,pl,p2); /* NEW FUNCTIONI */
puts("The new string is:\n\n"};
puts(str2); /* str2 holds the new, segmented string */

3-113

/* Function to segment a string (SEGS in BASIC) */

/* seg{strl,str2,charl,char?2) */

/* strl=string to take apart */

/* str2=segment of strl that is returned */

/* pl,2 = beggining & ending position of string */

/* positions start at zero!!! */

/* after call seg(), the new string is contained */

/* in str2; the original string is not altered. */

seg(strl,str2,pl,p2) /* start of function */

int pl,p2; /* tells the compiler what pl,p2,strl,str2 are */

char strl(8l),str2(8l1];

{

/* these were DEFINED in the main program, but */

/* you have to DECLARE them again, here. */
int index,lim; /* These are variables internal to the function; */
index=0; /* They do not relate to anything outside of this */
limep2-pl; /* function. ie. they are not global. */

while{index <= lim)

{
str2[index++]=strl[pl++];
1

str2l ++index |=NULL;

Ly

Some Easy Learning

““C*° Tutcrials by Warren Agee

and mcre.

3-124

Suppose that we want to pass one or more values to a function. Look at
this: -

add{nl,n2)

int nl,n2;

{
int sum;
sumenl+ing;
return{sum);

}

The first line tells the cmpller to expect 2 values in the parenthesis
when this function is called. We give these two values the names nl and n2.
When one calls this function, two numbers may appear in parentheses [like
add(1,2})] or two variables [like add{a,b)]. The next line is a variable
declaration, which was described in the first tutorial, but the purpose here is
a little different. The function add({) receives two values; now the campiler
has to know what KIND (class) of values they are. Since we are passing numbers,
we declare them as integers. also notice that this must came *before* the
opening brace, We then declare another variable, sum, to hold the sum of the
two integers. We perform the addition just as one would do in BASIC. The next
line is very important.

When this function is called, we give it two numbers, and we want back the
sum, right? Since the variable "sum® is local to add(), once we return to the
calling program, the value of sum is lost. "Sum" only exists in add() and
nowhere else. What we have to do is artificially send the value of "sum" back
to the calling program, and we do this with the return statement, as shown
above. Now, when we call add(), we will get back the value of sum, like this:

main()
{
int o;
c=add(5,2);
}

The expression "add(5,2)" is replaced by the answer, and we assign that
value to c. If we just wrote "add(5, 2)" and did not assign it to anything, the
sum would just be discarded.

But why do all thia? We could just declare "sum™ as an external variable
in main(). That way "sum" would retain it's value throughout the entire
program. In very large programs, you can run into difficulties if you use only
external variables. Stick to local (automatic) variables whenever possible.

Well, there you have it! There is a lot more to cover as far as functions
go. The return statement only retuwrns ONE value, no more. If you need more than
one value back fraom the function, you have to use pointers. Pointers can be
quite sticky and confusing to beginners, so I will be spending quite same time
on them in the next few tutorials. So stay tuned, and experiment! It's the only
way to learn! (Well, reading my tutorials may help a bit!)

3-15

c99 Tutorial 2
"How To Function Properly”
By Warren Agee
Compuserve ID 70277,2063

In my first tutorial, I covered storage classes, something necessary to know
before you even start programming in C. Functions are another basic concept
which must be grasped before writing C programs. Simply put, a function is a
subroutine designed to perform a specified task, In same cases, values are
passed to and from functions, while other functions require no communication.
Mumerous functions are part of the standard C library, like gets() and puts(},
wr..ch allows input and output of strings, respectively. Others, like fopen(),
are kept in function libraries and stored on disk. And,of course, you may write
your own functions. Indeed, the process of writing a C program involves writing
user-defined functions, then putting all these functions together into a
runnable program.

So, where do we begin? First of all, naming conventions. Although a function
may have a name of any length, the ¢99 compiler only recognizes the first six
characters, and they may be only alphabetic. Unlike most other compilers, the
underscore {) is not allowed. Secondly, what distinguishes a function name
from a variable is the presence of parentheses. Depending on the purpose of the
function, the parentheses may be empty, like getchar(). If the function
requires values to be passed to it, these are placed inside the parentheses, as
in puts(™\nHello there!") . Now that the cosmetics are ocut of the way, let's
get down to creating a flunction.

As I mentioned in the last tutorial, to call a function, merely type in its
name, followed by a semicolon. To alert the compiler that you are creating a
function, omit the semicolon.

clrl()
{
int c;
patchar(12);
}

Here we define function called clr(). Note the missing semicolon. Also
note that since the parentheses are empty, we are not going to commnicate any
values to the function. Next we have an opening brace, which signals the
beginning of the function body. Note that the brace aligns with the first
letter in the function name above; this is a standard C convention to make
programs easier to read. Then we indent a few spaces, another convention. We
then define the integer variable "c." Because this statement occurs inside the
function body, it is local to that function (See Tutorial #1 for more info).
The next statement is a standard console i/o function which prints a character
to the screen whose ASCII value is in parentheses. In this case, putchar(12)
simply clears the screen. We then find a closing brace which ends the function.
Notice that the two braces line up.

1=-1¢8

c99 Tutorial 3
"How To Create a Function Library in c99"
By Warren Agee
Compuserve ID 70277,2063

Function libraries are simply collections of tested functions (or
subroutines) which reside in separate files from the main program. This helps
the programmer to avoid reinventing the wheel each time he writes a program.
There are basically two code. The difference is that with source code the
compiler has to process the code every single time you compile, while an object-
code library is only campiled once.

Creating a function library using source code is the easiest of the two
methods. Say you create a function strlen() which returns the length of a
string. You could just type in the function's definition each time you need it,
but a simpler way is to save the source code for the function in a separate
file. If the strlen function is ever needed in a program, merely insert the
following line at the start of your code:

#include "dskn.woox"

where n is the drive no. of where the file sits, and xxxx is the name of the
file which contains the source code. The compiler will load in and compile the
source code as if it were typed directly into the main program. The #include
command works just like .IF (include file) of TI WRITER.

Creating a function library using object code is a bit more involved. You
start out the same as before, with the source code of the function in question
as a separate file. But, as in the case with strlen(), you also need the
following three lines at the beginning of the file:

#asm
DEF STRLEN
$endasm

The actual definition for strlen() would follow these lines. The first
line tells the caompiler that the following code is not in C but in assembler.
The second line tells the coamputer to make the STRLEN code available to another
program. Even though it is defined in this program, a totally separate program
{main) will alsc have access to it. Note 1) the leading space before DEF (that
is important) and 2) the function name is in capital letters. The third line
tells the campiler that the assembler code ends and C code begins again.

The DEF directive can be used to externally define many, many functions at
once; just separate each function name with a cama,

i-17

Now compile and assemble your "mini-file" which contains just one
function. You now have a standalone function library consisting of the
strlen{) function that can be used in ANY program. But how do you go about
linking it to your main program?

The next thing to do is add three more lines to the start of your main
program:

fasm
REF STRLEN

#endasm

Loocks familiar! But instead of defining an external function, we are
REFerencing one. This tells the computer that even though the main program will
use the function STRLEN, it must look QUTSIDE the current program for its
definition. Please note that you can REFerence more than one function as with
the DEF directive. If you look at the STDIO file on the <99 disk, you'll note
that it contains mostly REF's!

When your program is compiled and assembled, be sure to load in the STRLEN
file that you already compiled before you run your program. Under E/A option 3,
first load your main program, then CSUP, then any other required files, then
your STRLEN file. Now you're all set to go!

The theory behind this is not that hard to grasp: instead of including the
definition of strlen() within the main program, we compiled it separately as a
standalone module. But without the REFs and DEFs, there would be no
communication between the program module and the strlen() module. This
momentary slip into assembly language allows us the opportunity to open a line
of communication between separately campiled modules.

3-18

/*
Ve
/*
/*
/*
S
/*
/*
/*
/*
*
J*
/*
/*
/*
J*
/*
/*
/*
/>
/*

/*

<99 Source Code - Tutorial 4
by Warren agee
Compuserve ID 70277,2083

NEW FUNCTIONS: getint() and stoi() */
The following is a short demo program */
demonstrating the use of getint() to */

directly input an integer, and stoil) */
which converts a String TO Integer, */
similar to atoi(); stoli returns a */
status flag, which atoi() does not. */
Various version of both functicns */
exist in the public domain, these */
have been adapted for ¢99 by Warren */
Agee. */
To run: Compile the entire file, making */
sure CONV;C is in drive cne. *x/
When done compiling & assembling, Load */

& Run first the object code of this file */
and then the CSUP file. Program name: START */
The demo routine may be deleted and x/
getint & stol */

can be saved as a function library. Dont */

delete the #defines...they are needed */
in both functions. */
getint() demo */

#include dskl.conv;c
#define STCP -1
tdefine NO 1

#define YES 0
#define EOF -1
main()

{

int num,stat;
char string(8l];

puts{"This reads in integers until it detects\n");
puts("a CTRL-Z.\n");
while((stat=getint(&num)) !=STOP)

if (stat==YES) {
itod(num, string,5);
puts(string);
puts("™ is the number accepted.\n");
} .
else
puts({"That was no integer...try again!!\n");
puts("We're finished!\n");

3-19

/*

getint{) */

/* format: status=getint(snum) */
/* status contains: */
/* -1 : BEOF was found */
/* 1 : error (no #s) */
S* 0 : successful input */
getint(ptrint)

int *ptrint;

{

}

char buffer{81];
int index,ch;
index=0;

while((ch=getchar())=="\n'|ch="' ')
i /* do-nothing */
while(ch!=EQF & ch!="\n' & ch!=' ' & index<8l)
{
buffar{ index++]|=ch;
ch=getchar();
}
buffer([index]=0;
1if (che==FDF)
retwrn(STCP) ;
else
return(stoi(buffer,ptrint));

/* stoi(string,intptr) - */
/* converts string to integer {intptr) */
/* and returns status report. */

stoi(string,intptr)
char string{];
int *intptr;

{

int sign; sign=l1;
int index; index=0;

if(string[index]=="-'|string{index]=="+") {
if (string{ index++]=='-")

sign= -1;
else
sigre 1;
}
*intptr=0;

while({string[index]>='0' & string[index]<='9')

intptr=10(*intptr)+string(index++]-'0"';
if(string[index]==0)

(

intptr=sign(*intptr);

return{YES);

}

else

return({NO};

/*

<99 Sourcecode - Tutorial 5
by Warren Agee
Campuserve ID 70277,2063

DRIVER for string routines */

/* This program expects the conv;c file from the <99 disk */
*/
*/
*/

/*
/*
/*

and the STRING.C file in drive 2.

The STRING.C file should be renamed "string" as per

the #include directives below.

#include dsk2.conv;c

#include dsk2.string

char bigstrin?(80],smallstring[80];
3

char answer|

]
t

main()

{

int c,a;

puts("Simple test of match and strien\n\n"):;
puts("Remember that all #s start at\n");

puts("Zero! !\n\n");
puts("Enter large (target) string:");
c=gets(bigstring);

pats("\n\nEnter small (search) string:");

c=gets(smallstring);

a=strlen(bigstring);

itod(a,answer,3);

puts{™\nLength of first string is:");
puts{answer);

a=strlen(smallstring);
itod(a,answer,3):

puts(™\nlength of second string is:");
puts(answer);

a=match(smallstring,bigstring);
itod(a,answer,3);

puts('"\n\nThe match occurs at");
puts(“character #:");
puts(answer);

99 Tutorial 6
"Pointers" - Part I
By Warren Agee
Compuserve ID 70277,2063

Of all the aspects of the C language, pointers are the hardest for the
beginner to grasp. However, once mastered, one will find that pointers are what
makes C a powerful language.

Simply put, a pointer is an address, or memory location. when one declares
a variable (like int ¢;), that variable resides somewhere in memory. A pointer
to the variable "c" is the address where "c" lives. This is advantagecus if we
want t- change a variable that is local to another function. Using pointers
gives us a way to get through the narrier of being local to another function.
Think of it as going through the basement to get the contents of a variable. So
how do we do this?

int o}

int *ptr;

The first line just declares a normal int variable. The second line
declares a *pointer* variable named "ptr." Pointer variables are preceeded with
an asterisk, Now, the first line tells the compiler that we have an integer-
type variable, and it's name is "c." The second line says that, first of all,
we have a pointer variable. Its name is "ptr." In addition, ptr is going to
point to an integer-type variable—that's what the purpose of the int in the
second line., Right now, ptr does not point to anything at all. We have merely
created a variable, and have told the compiler what kind of variable it will
point to. Similarly, char *goose; declares a pointer variable called goose
which will point to a char-type variable. Think of it this way: a pointer
variable's purpose is to "look" at other variables. But you have to tell it
what it is looking at...an integer or a char-type variable.

Now, if we want ptr to point to "c", we do this:
ptTr=&C;

Notice that the asterisk is gone. The asterisk has two purposes, cne of
which is to DECLARE a pointer variable. The other purpose will come later. The
"&" can be pronounced "the address of." So "&C" means the address of ¢. This
statement assigns the address of ¢ to ptr. If we now do c=5, what will ptr
contain?? The same thing. ptr holds the location of the variable c. No matter
what ¢ contains, the location of ¢ will not change. Variables cannot move
around in memory. Ptr just contains a number, perhaps 15000, just a memory
location. To tell ptr to look samewhere else, say the variable x, all you need
do is ptr=&x.

Now is the time to make an important distinction:
int *ptr; /* ptr is a pointer variable */

ptr=&c; /* & is a pointer constant */

You can change the contents of a pointer variable. You cannot change a
pointer constant--it ig a number! Just like you can say x=3 but you cannot say
3=x. This may seem obvious, but this can get confusing later on. Just remember
the difference between a pointer variable and a pointer constant. The first is
a variable, the second is a number., A pointer variable contains a pointer
constant, but you can use constants in other places as well. More on that some
other time!!

Now that we know how to declare a pointer variable and assign it, what do
we dowith 1t??. Well, lock at the following:

c=5;

*ptr=5;

The first line is obvious; it assigns ¢ the value of 5. But what does the
second line do?? The same thing!! Here we are using a technique called
"indirection," or, as I like to call it, going through the basement. ptr
contains the address, or location of c. If you were to print the contents of
ptr, you would have same large number. But once we put the asterisk in front of
it, we are saying "lock at ptr's address, and access what is sitting there." In
this case, we are saying, "Ptr, you are looking at a variable. Put the 5
there." You are making two jumps at once...the compiler looks at the address in
ptr, then jumps to that address and see what's there. Similarly, if we want to
know the value at ¢, we can do this:

int 4;
d=*ptr;

Get the address out of ptr, hop over, get the value sitting there, and
assignit to 4. We are accessing the variable c INDIRECTLY, by using it's
address.

This seems like an awfully silly way to do things!! why all this hanky-
panky with pointers and go DIRECTLY to the variable in question? Look at this:

int *ptr; /* declares an external pointer to an int */
main()
{
int answer; /* autamatic {(local) integer */
ptr=ganswer; /* ptr now points to answer */

add(s,2); /* calls add() */

}

add{nl,n2) /* nl=5, n2=2 */

int nl,n2; /* declares the above as integers */
*ptr=nl+n2;

}

This itsy-bitsy program combines several things I have covered before.
Take a good look at the pointer used. First of all, we only have one external
variable here: ptr. If we were to move ptr insgide main(}, that would make it
unavailable to add(). 50 we declare it as external. Then we declare answer to
be an int. Now, using the address operator (&), assign the address of answer to
ptr. Now that we have done this, we can access answer anywhere in the program.

Then we call the add() function. Once inside, we add the two numbers together,
and, using the indirection operator (*}), we tell the compiler, "Here is this
sum. Go to the address contained in ptr, and deposit this sum thera." When we
exit this function and go back to main{), where does the sum end up? Why in
answer, of course! Ptr contained the address of "answer." In fact, you can
think of the compiler as a mailman. He looks inside ptr, gets the address, and
delivers sum to the mailbox it found at that address...in this case, that
mailbox is the variable "answer.”

Note that in the above example, we used ptr to point to only one variable.
Suppoed we want several answers, and we want to keep them in separate
variables? All you need do is change the contents of ptr to point to whatever
variable you want, like this:

ptr=tanswerl ;
{oees) /* calculate answer */

ptr=&answer?;
([)
ptr=sanswerl;

(...ete.)
Just by changing the contents of ptr, you can point to any variable you want.

The above examples are trivial, From the last article, you learned how to
easily return a value back to the calling function using the return()
statement. But return() only gives back ocne value. By using pointers, you can
alter as many values as you want. For instance, supposed you want to swap the
contents of twe values. This would be done like this:

main()

{
int x,y:
x=2;
y=19;

switch(ax,&y);
}

switch (nl) ne)
int *nl,*n2;
{
int temp;
temp=*nl;
ml=*n2;
*n2=temp;

X and v and local variables. Using normal means, we cannot change the
values of x and y outside of main(). So, instead of giving add() just the 2
variable on a platter, we give them the addresses. In this way, add() can go

through the basement and change the contents of x and y. So, in order to
inform switch() that it is getting addresses (or pointer constants), we declare
nl and n2 to be pointer variables. Only pointer variables can contain
addresses. nl and n2 now hold the addresses of x & y. We create a "temp"orary
variable, and we do the switch. Since nl and n2 are pointer variables, to get
at the actual values, we use indirection (*). If we had just nl=n2 instead of
*nl=*n2, all we would be switching are addresses, but not the contents of the
addresses. Just a pointer variable by itself holds an address. But with an
asterisk, we access the value contained at that address.

The main thing to remember here is that you can pass values to functions
easily. But in order to CHANGE the value of an outside variable, you must use
pointers.

Wow!! Confusing, isn't it?! I suggest you reread this tutorial many times.
Buy a book on C (a gocd onel and read all you can about pointers. I've tried to
make things a bit clearer by using "ordinary" language (like "through the
basement"}. When fiddling with numbers and pointers, you will run into
difficulty seeing your results because ¢99 does not have printf{), which allows
the output of numbers. In our case, we must first convert the number into a
string, then print out the string. This is done with the file called ONV;C on
the release disk. Please refer to the file called CONVT.C in this DL for a
little tutorial on how to use the CONV;C function to print out numbers. MNext
time, I'll cover char arrays and strings, and, eventually, the biggie, string
arrays. -

¢99 Programmmer's Reference Sheet
Compiled by Herman Geschwind
Compuserve ID 73557,3447

Command /Function Description Include File
c=getchar(}; Read one character from the keyboard CSUP
c-putchar(c}; Write one character to the screen Csup
;:;ets(buff); Read a line from the keyboard CSup
puts(string);_—— Write a string to the screen céiﬁ
exit(c); Exit the program CsuPdh_
abort(c); Exit the program CSUP
locate(row,col); Locate the cursor on the screen CSUP
key-poll(c); Check keyboard status CSUP
tscrn(f,b); Change screen color CSUP
unit-fopen(name ,mcde); Open a file stdio CFIO
c-fclose(unit); Close a file stdie CFIO
c-getc(unit); Read one character from a file stdio CFIO
;:putc(c,unit); Write one character to a file stdio CFIO—__
;:E;;;;E;;;E:;ol,unit); Read a string from a file stdio C;IO
c—fputs(strzgg,unit); Write a string to a file stdio CFIO
c-fread(buff,len,unit); Read a record from a file Stdio CFIO
c-fwrite(buff,len,unit);Write a record to a file stdio CFIO
fseek(unit,recno); Set record number stdio CFIC
fdelete(filename); Delete a file stdio CFIO
c-feof (unit); Test for end-of file stdio CFIO
c-ferrcl{unit); Get error code stdio CFIO
rewind(unit}; Rewind a file stdio CFIO
grfl(}; Set to graphics 1 mode grflrf GRF1
text(); Set to text mode grflrf GRFl

Command,/Description Function Include File

screen(c); Set screen color to ¢ grflrf GRFl
color(cs,f,b,): Change colors for char set cs to f/b grflrf GRFl
chrdef(ch,str); Define character patterns grflrf GRF1
;;;;;;;;:__----_ Load standard character patterns grflrf GRFl
;;;;;;;;:;3;_—__ Copy character pattern grflrf GRF1
clear(); Clear the screen grflrf GRF1
hchar(r,c,ch,n); Place character n times horizontally grflrf GRFl--_
vchar(r,c,ch,n); Place character n times vertically grflrf GRFl o
c-gchar(r,c); Return value of character at r ¢ grflrf GRFl o
;:;;;;;?;:;;;,&&y): Read joystick u grflrf GRF1
c-key(u,&&s); Read keyboard u grflrf GRF1
sprite{spn,ch,col,dr,dc)Define sprite grflrf GRF1
spdel(spn); Delete sprite grflrf GRF1
spdall(); Delete all sprites grflrf GRF1
spcolr(spn,col); Set sprite color grflrf GRFL
sppat{spn,ch); Set sprite pattern grflrf GRF1
sploct{spn,dr,dc); Set sprite location grflrf GRF1
spmag(f); Set sprite magnification grflrf GRF1
spmotn(spn, rv,cv); Set sprite wvelocity grflrf GRFL
poct(n); Enable sprite automotion grflrf GRF1
spposn(spn, &&rp,4&cp); Return sprite position grflrf GRF1
dsg-spdist(spnl,spn2); Return distance between sprites grflrf GRF1 o

dsg-spdrc(spn,dr,dc,); Return dist. betw. sprite and loc. grflrf GRFl

flg-spenc{spnl,spn2,tol)Sprite coincidence grflrf GRF1
flg-spcrelspn,dr,dc); Coincidence sprite and location grflef GRF1
flg-spcall(}; Coincidence of all sprites grflrf GRF1

float number[FLOATLEN]; Define float type floati FLOAT

Command,/Description Function Include File
c-fpgets(s,f); Prampt for floating point number floati FLCAT
foput(f,s); o Display floating point number floati E{DAT
c-itof(i,f); Converts ;;;ger to floating peint floati ;'LOAT
i-ftoi(f); Converts floating point to integer floati FLOAT
;;;;E;:BT ________ Converts string to floating peint flcati FLOAT
c-fros(f,s,mode,sig,dec}Float array to strirng array floati FLCAT
;Tf;;;?;;;;;;,res); Execute float expression floati FLOAT
c-fexp(£fl,"+",£2,res); Add two numbers floati FLCAT
c-fexp(fl,"-",£2,res); Subtract two numbers floati FLOAT
c-fexp(fl:::",fz,res); Mualtiply two numbers floati FLQOAT
c-fexp(£fl,"/",£f2,res); Divide two numbers floati FLOAT
true-fcom(fl,rel,£2) Compare two floating point numbers fleoati E‘I—.OAT
c-fint(£1l,£2); Returns greatest integer value floati FLOAT
c-fcopy(fl,£2}; Copy one float array to ancther floati FLOAT
filptr-topenin,a,s); Open a file(name,access,fsize) tcioi TCIO
eof-tread{b,r,f,5&s); Read a file(buff,rec,fileptr,&&size} tcioi TCIO
eqof-twrite(b,r,f,s); write a file(buff,rec,fileptr,size) tcici TCIO
eof-tclaose(fileptr); Close a file tcioli TCIO
randomize(); Initialize random seed randam;c
rndnum() ; Generate a 16-bit randam number random;c
rmd(n); Generate a random number betw. 0&&n-1 random;c
n-atoi(s); Convert string to integer conv;c
s-itod(nbr,str,sz}; Convert number to signed decimal conv;c
n-xtoi(hexstr,nbr); Convert hexstring to integer conv;c
- bitmap(fore,back); Change to bitmapped screen mode biti BITSUP
bitclr(); Clears the entire screen biti BITSUP
plot{x,y,c,t,); Turns on single pixel biti BITSUP

Command,/Description Function Include File

line(xl,yl,x2,y2,c,t); Draws line between two points biti BITSUP
rect(;:;l /X2, y2j;E) : Draw;—; rectangle i bitz-gi’;‘;a;““
;;;;Ie(xc:;;:r,c,t); Braws a circle biti BITSUP
bitxt(); o Copies ASCII characters into CPU RAM biti BITSUP
bputch(A;EEI,r,c,col); Similar to putchar() biti BITSUP o
bputs{r,c,col,str}); Similar to puts() biti BITSUP
blanks(r,c); Places a blank on the screen biti BIT;a;
btblanks(r,c,count); Blanks sequence of locations biti BIT;UP
bgetch(r,c,coI;; Returns keypress of user input biti BITSUP
bgets(bufE;dr,s,r,c,colJInserts characters in buffer biti BITSUP
getky(); Scans keyboard similar to poll() biti BITSUP

Notes: The purpose of "c99 Quick Reference" is to provide a handy summary of
<99 command syntax and required parameters, a brief dscription and a reference
to "include" and "object" files required to support a particular command. All
references were re=capped from Clint Pulley's release diskette for c99 Version
2.0 except for "biti" and "bitsup" which are based on Jay Holovacs BITRTN and
BITWRT Rel. 2.0. By necessity the description of the command had to be brief
and is intended to be more of a "memory jogger". In all cases the user is
urged to refer to the full documentation for all items .The naming of include
and object files reflect the preference of the compiler of this quick
reference. You may have your own system and can feel free to use any suitable
editor to make necessary charges.

Going FORTH

Stepping FOLRTH into a new language
with your 99/4A, and Geneve

by Howie Rosenberg
Compuserve ID 74216,1640

The FORTH language was developed by Charles Moore in 1969. As he stated, he
developed the language as an interface between him and the computers he
programmed. He placed the language in the public domain, The lanquage has been
promoted by the Forth Interest Group(FIG) of San Carlos California. FIG has
available Assembly source code and architecture guides for each major processor
for a nominal fee. These items are in the public domain. Both major versions of
FORTH available for the TI-99/4A were derived from the FIG mode!l.

In 1983 version 1 of Wycove FORTH became available. A short time later the TI
version of FORTH was released to the public domain., There were flaws in both
version. First were{are) a number of bugs which carried over from the FIG
model. Several bugs peculiar to each of the versions also existed. The Wycove
version had one fairly serious flaw in that method of storing data (screens)
was somewhat flawed and the FORTH editor could not be used to full

advantage. Proponents of the Wycove version claim increased speed which while
true is considered not of any significance by most FORTH programmers as
indicated by the fact that the TI version has gained much wider acceptance.
Version 2 of Wycove FORTH while it offers some improvement of the screen
structure, still was not the same as the FIG standard. There is still a debate
in some quarters as to the relative merits of the two versions. I feel these
are somewhat academic. TI IS the standard in our community and will most tikely
remain so. Whether it is due to the merits of the two versions or simply
because the Tl version was free is of academic interest.

ON STACKS, RPN, AND OTHER FORTH "HORRORS"

The characteristics of the language which are noticed, commented on, and in
many cases used as an excuse to quickly depart for more traditional languages
are all based on a simple idea one which is a central theme of Charles Moore's
FORTH. Make it simple for the machine not necessarily for the programmer. This
results in the highest degree of flexibility and speed in a higher level
language. Thus while stacks are used internally in the architecture of all
computers, not only are the stacks accessible in FORTH but myst be utilized.
The parameter stack is the only way to transfer data. The FORTH programmer
enters data on the stack prior to executing a word. The resultant data from the
word is outputted to the same parameter stack. In addition the return stack is
readily available for use, indeed must be used in many applications so that the
programmer must keep track of the status of this stack. This idea of putting
numbers on the stack for use of the next word leads to the statement by many
that FORTH uses Reverse Polish notation(RPN). Thus instead of 1+1=2 we have 1 1
+ . 2 in FORTH. It is actually somewhat ironic in the TI world. For a long
time, prior to the TI99-4 computer a long time competition existed between the
two giants in the calculator world, TI and Hewlett Packard. Texas Instruments
calculators all utilized an algebraic system AOS which TI claimed simulated the
way people did arithmetic. On advanced calculators up to 9 levels of
parentheses were allowed and arithmetic expressions were(and still are
evaluated by entering equations left to right, with parentheses used as needed
to indicate deviations from the normal hierarchy(first exponentiation followed
by multiplication/division and finally addition and subtraction). The Hewlett
Packard calculators used RPN and the user had to chew his way out from the

middle of an expression and understand what he was doing to a much greater
extent than did the TI calculator user. TI calculators were easier to use
without much training or thought. Hewlett Packard calculators ran faster and,
when comparing programmable calculators were considerably more efficient in
terms of programming space. Based on calculator history RPN in a Tl machine is
indeed ironic. Another factor which seems to keep some programmers away from
FORTH is the fact that the primary arithmetic system for FORTH is fixed point
rather than floating point. Numbers can be single length(2 Bytes), double
length(4 Bytes) or if needed the programmer can define even larger numbers. The
use of fixed point arithmetic leads to efficient and fast running code.
Sacrificed is ease of use. The programmer must understand any arithmetic
manipulations used in his programs, size the results, decide on accuracy versus
range of answers and the like., In short easy for the machine, a bit more
difficult for the programer, O0f course in both TI versions flpoating point
routines are provided. Actually the floating point routines are links to the
cansale GPL routines with there inherent lack of speed. There are cases where
floating point is quite useful, Some FORTH systems have included hardware
floating point which not only does not slow down the language but can run
faster than software fixed point routines. In summary the use of the stack,
RPN, and fixed point arithmetic as used in the FORTH environment is quite
natural, leads to efficiency and speed in a higher level environment and really
is well worth the effort for those who are willing to make the effort to learn
how to deal with them.

WHAT IS FORTH?

FORTH IS A THREADED INTERPRETIVE LANGUAGE., The use of "interpretive" in this
instance is somewhat confusing as the run time code is actually compiled code.
FORTH applications consist of "words". New words are defined which call on
previously defined words not unlike the concept of procedures in LOGD. Those
words which are included in the basic FORTH language i.e. the primitives are
called the kernel. The words in the kernal and any new words added in a
particular application comprise the FORTH dictionary. Any new application has
all words from previous applications which are presently in the dictionary
available to it.

FORTH IS AN QPERATING SYSTEM. Moore's basic aim in designing FORTH was to
provide an operating environment which while operating a higher level language
would provide the maximum efficiency and speed at run time. To this end the
FORTH system was designed. The system provides a disk operating system which
was foreign to Tlers and which still causes difficulty to many. A FORTH disk is
divided into screens. Each screen consists of 16 lines of 64 Bytes of source
code, Text, data, or program image. Each s¢reen thus requires 1024 Bytes or 4
sectors. In TI FORTH after the FORTH system is booted, screen #3 is
automatically loaded thus enabling auto start of an application or customizing
the configuration., Five s¢reen buffers are provided. These are used to store
screen information on command. When all five buffers are full, a subsequent
request for screen data results in the screen which was accessed least recently
to be reused. Thus the FORTH disk system is a virtual memory. The utmost in
simplicity and flexibility are provided in the operating system which allows
for easy alteration. Many functions can be altered merely by changing the value
of a user variable.

FORTH IS AN ASSEMBLY LANGUAGE. There is an assembler built into FORTH and words

can be defined directly in assembly language as well as in higher level FORTH.
The end result is similar to that which many of our EXTENDED BASIC programmers
have been doing namely using the higher level language to provide simple non
time critical functions and linking to assembly routines where needed. The
process is somewhat simplified in FORTH as the code routines are direct
replacements for higher level FORTH words. The process of linking is automatic.
There are versions of FORTH not available for the TI-99/4A which have the
ability for direct compilation of runable object code which can be run in the
system without booting FORTH (i.e. establishing the FORTH environment). The
result of such a compiler is Assembly object code. Supposedly all Atari arcade
games which were produced for various machines including the TI-99/4A were
written in FORTH and processed with a target compiler.

FORTH IS EXTENSIBLE. Changes can be rather easily made to any words in the
dictionary. Of course care must be used when changing words in the kernel which
are used by other words or the system will most assuredly crash. [can think of
no other language which can be changed with such ease.

THE FORTH ARCHITECTURE

Maximum utilization of the FORTH language requires some understanding of the
architecture of the language. This is more true of FORTH than other languages
in that the elements of the language, stacks, users tables etc. are readily
accessible to the user, For purposes of this note a short description is
sufficient. TI FORTH utilizes memory much like the typical FIG FORTH system.
Lower memory is used for support functions, the disk buffers, and the return
stack. Upper memory contains the dictionary at one end, and the terminal input
buffer at the other end followed by the parameter stack. The stack and
dictionary are thus able to grow toward each other, Applications which require
a large number of stack entries(unusual) can thus be handled by keeping the
dictionary small. In turn by keeping the stack small, large applications can be
handled.

THE STATUS OF TI FORTH IN QUR COMMUNITY

FORTH has been with the TI-99/4A community for 3 years. The FORTH programming
community is not large but with few exceptions once a programmer has taken the
trouble to learn FORTH and has started to use it he stays with it. There have
been few commercial FORTH programs but those,which are available illustrate the
capabilities of the language quite well. There is also a considerable array of
public domain software for the TI written if FORTH.

Within the FORTH community there has been several major versions of the
lTanguage after the FIG version, The latest of these is FORTH 83, While FORTH 83
has features which cannot be utilized in the 99/4A environment because of
memory restrictions, the language is, generally transportable. Of course as
always machine specifics in any language act as a restriction to
transportability, Those Tlers who try their hand at programming other machines
will find that FORTH programming experience on he Tl will be entirely
applicable. Those of us who stay with the TI have found a language which has
given us much greater control of your programming environment than available
with other langquages.

D g = S O S

INmntroduction to FORTH

(As lecturwd by Chick De Marti)
= INTRODUCTION -

FORTH is all things to all people. It is extensive (you can do
anvthing in FORTH). It is fast (almost as fast as ASSEMBLY). It is
EASY (to the extent it is user friendly) and it is complex (it can
challenge the mind of the ASSEMBLY Programer).

“hile many routines appear to be simular to BASIC or EXTENLED

FASIC, ¢ sae PLATE 1) these languagQes can not be compared to each other.
~ORTH, like FORTRAN, COBAL etc. is concidered to be a "HIGH LEVEL’
languaqge. While it uses words that are commoen in the English language,

12 requires less 1nterpretation into machine lanquage than most of the
other languages.

Decause of it's structure, FORTH uses no "...run-time error check-
1Ng. FORTH's compiled code is compact ...(it‘'s) applications require
less memory than their squivalent ASSEMBLY' programs!®” (1)

FORTH is transportable (it has been usaed on Jjust about every mini-
and microcomputer known to the industry). Charles Moore who inventes.
FORTH in 1949 said in all computer languages we, the cperaters, have to
le2arn the computer’'s language. He creatsd FORTH, a langQuage with whictr

we are able to teach the computar only those words required to complet
Ar assi1gnmeant.

{3 FORTH A GOCOD LANGUAGE?

*...First, FORTH is more than just a language. It can be a stand-
alone operating system that provides basic support for terminal and
disk control.

"Multi-tasking and multi-ussr FORTH systems are available. FORTH
has been called a psusdo—machine language becausas :the key words ussd for
noving data from place to place are simular to the techniques usad in
assembly lanquage.

“FORTH is an on=line interpreter. Commands are given to FORTH from
the keybocard in a manner simular to the 'iamediate mode’ of most Basic
interpreters, This is ideal for the development and debugging of the
program. The programer can try out sequences of cossands, one at a time.
After the programer is satisfied that the sequence works properly, he
can make it a permanent part of FORTH by giving it a name. Later, i°
can be called (type it’'s name) to perform by itself or as part of an
other defined word. (1)

FCRTH was first used as a computer control for large telescopes.
While it continues to be used by many cbsarvatories, it also is being
+3ad to control ROBOT cameers, remote sensars of water depth and as an
1:d 10 navigation of large barges in inland waterways. General Electri-
als0 uses it to diagnose and trouble shoot large electric locomotiver
ard 1t nas been used 1n weather predicticn programs.

To Erogram in FORTH, vou must know what a STACK is because alnost
ali FORTH operations 1nvolves a 3TACK in some way. When adding 2 + 2,

Both numbers must be on the STACK and the sum is placed on thae top of the
STACK. The same goes for subtraction or aultiplication or any operation.
Ting STACK 15 actually the MEMORY AREA

You will learn to understand the function and operation of the stack
both from outside and within a loop. Also, you will learn to store in-
formation and move 1t at will. With 'hands on’ experimenting, you will
become comfortable in FORTH and with your new found confidence, you will
De able to let your own imagination dictate the programs you can write.
The least you should accomplish is to be able to confidently entar and
ruh the various programs that will appear (and are appearing) on the
Source Boards, in books, mnagazines and Computer Group Newsletters.

SUGGESTED READING

There are many magazines and books dedicated to the furthering of our
education in FORTH. MICRO (magazine) continues to increase it’'s articles
an FORTH. Another excellent source of information is FORTH DIMENTIONS.
MILLER GRAPHICS puts out an excellent Newsletter...and for the more am-—
bitious programers, FIG (FORTH INTEREST GROUP ..PO BOX 11835, San Carlos
Calif. 9407@) publishes a bi-monthly newsletter. Membership in FIG is
¥15.0a. Other suggested reading is:

STARTING FORTH by Leo Brodie
published by Prentis Hall

THE FORTH MANUEL (of vyour choice)

INVITATION TO FORTH by Katzan
published by Petrocelll Book

FORTH PRDGRAMMING by Leo J. Scanlon
published by Howard W. Sams Co.

YARIETIES OF FORTH

The main standards of FORTH that exist are FIG/FORTH, FORTH 79 and
FORTH 83 (which is an update of FORTH 79 }. Some spinoffs ars WYCOVE
FORTH and TI-FORTH {(an extension of FIG—FORTH). All are ocutgrowths of
the aoriginal FORTH Inc. started by Charles Mooras.

FORTH is eaxtensible. It's programs are interchangeable with most
othe computers, lncluded are APPLE, IBM and the VIC family (20 and
and the 64)..as wall as TEXAS INSTRUMENT 'S 99/4A. The resident words
that one computer may contain can sasily be defined tn another langqudg.
An example ... Apple’'s 'HOME' can be defined : HOME cls @ @ GOTOXY 3

Many of the differences have besn documented in both Brodie’'s START-
ING FORTH and Leo Scﬁnlnn's PROGRAMMING IN FORTH.

FORTH '3 STRUCTURE

RESIDENT AND OPTIONAL WORDS
" Tha ACT o4 programming in FORTH is the act of defining WORDS "
“40RDS can be mnade up of other user defined words..." and continue until
3 s1nNgle word Decomes the application desired. ()"
Zach new WORD is added to the dictionary and can be used in the def-
tnition of future programs. The format of a WORD is:

! name operation { or data section) ;

"he colon at the beginning tells the compiler that the following itams
are the Zomponents of a "WORD'. The "NAME' can be of any comboration
3f lattars and numbers, ie TNOTE =P13 MOV/B etc. (also see CLASS 2 .
"me "DATA’ can be a CONSTANT, A VARIABLE, LIST OF VARIABLES or TEXT.
"he semicolon dencotes the end of the WORD definition.

3inc® a FORTH word must exist before it can be referenced, a
Sottoms up programming decipline is enforced” (2) Thus we nust learn
to pgragram "... from the bottom up* (2). Words take their parameters
from the "STACK' and place the results on the STACK

AREAS WE WILL COVER

fesides 'RESIDENT’ words you have a choice of 20 ocptional or 'ELECTIVE
3LECCKE " you may add to the computer’'s memory. We will work primerily
~1th <S> ~-SYNONYMS, <E> -EDITOR, <V> =-VDPMODES and <P> —PRINT.
(Seq Page 35 Chap.l of TI FORTH Manuel for a complate list.)

« NOQTE » .3> i1ncludes -DUMP -TRACE -CDPY
VP oincludes -TEXT —GRAPHL -MULTI -GRAPH2
P> i1nclucdes -FILE
‘EY includes =-44SUPPAORT

STACK MANIPULATION WORDS:

bue ROT

DROP -DupP

SWaAP >R (R>)
OVER R

ARITHMATIC OPERATORS:

+ =~ /v # and later MOD AND
/maD orR
»/MOD

FEQUIRED EQUIPTMENT

COMSOLE EDITOR/ASSEMBLER MODULE
MONITOR RS232 INTERFACE (optional)
MEMORY EXPANSION PRINTER (optional)

DISK DRIVE (For the time being we will be referring

to

one drive - your drive #1 (actually

Drive @, but more on this later.)

STARTING UP YOUR SYSTEM:

Put your

"SYSTEMS" disk in the drive.

Turn on EDITOR/ASSEMBLER Module.
(use OPTION 3 ... LOAD)

type DSK

1.FORTH <ENTER>

type -EDITOR -SYNONYMS -PRINT

TQ EDIT A

SCREEN:

(A) type 3 EDIT <ENTER> (this gets you onto screen
({B) use ARROW keys to move the cursor

(C) prass

FCTN 9 to get out of the EDIT moade.

3)

Take your SYSTEM disk out of the drive and replace it
withh & blank initialized disk (use your DISK MGR for
the time being). This will be your PROGRAM DISK.
type EMPTY-BUFFERS <ENTER>
type (any number’) EDIT <ENTER>

You will

find that you have 9@ Dblank screens on your

program Disk. Here is where you will store your pro-

grams and

CONGRADULATIONS!
You are now in FORTH and have sxecuted I commands:

REMEMBERS

-EDITOR

sxperinents.

~-3GYNONYMS =-PRINT (all one group)

EMPTY-BUFFERS and

{number)

Only use your ORIGINAL FORTH disk to mak® a "“SYSTEM"

EDIT

working) disk. A back—-up copy can egasily be made using
copler found elsewhere in this volume. At this point,
try out some new wards (commands):

UFPDATE, LOAD and SWCH and UNSWCH

(or

the
let’'s

Intering ~LUSA recoplies the sntire Jisk (like SAVE DSK1.:.oi
LN oR3iC) . it foOu want to copy a partizular screen from an-
Zther 213k, 00 NUT FLUSH 1t to your 31sk...instcaad:

Tspa UPDATE “ZENTER. This assures you that this par-
ticular screen i3 currently
resident in your console.

Put vour disk in the drive and:

Type (n)}LOAD JENTER >

wherz "n' is the nunber oFf the scre=en you want 1t cop:1ad to.

HNETZ: N ward of warning...ALWAYS EDIT scrzen(n) before you LOAD
something to it...t00 nmany times we write over an impartant
screen. If your planning on making changes to a certain
screen, make a FRINTed copy of that screen BEFODRE you change
it. If your have already loaded the rssesident block of words
under the title -PRINT (see #%4 in apragraph "STARTING UP YOUR
SYSTEM"), then you are ready.

Type SWCH (n) TRIAD CR UNSWCH
NET=: Thia is very important,.. ALWAYS end vour SWCH command with
TUNSWCH". “SWCH" switches on your printer. If you do not

include "UNSWCH" (unswitch), the printer will stay on...your
console will become disables, as though it had crashed!

24 DID ITY ¥y DID IT!"!
YoU now have some contral of the FORTH environment..,.you can:

Mak® a copy of an entire disk in FORTH (FLUSH)

You can locate and examine a screen (n EDIT)
fou can print a copy of a screen (SWCH n TRIAD LUNSWCH)
You can copy a screen to a Prog. Disk (UPDATE n LOAD)

And because you are getting used to the format, the language
you are ready toc peruse the volumns of misc. information put
aut by various books and newsletters. The following will be
some I have selected as being worthwhile for the Seginnaer.
[t dows not represent ail that is available, but you'll fing
it informative, instructive and interesting.

Bo FORTH my friends. Chick

1. Booting The Forth GSystem

a. Insert the Editor/Aesembler module.

B. Switch on the P=box, monitor and consolae.

c. Insert the SYSBTEM DISK. 1f you have two drives, use #{,

d. Press ENTER. Press 2. The E/A selections appear,

e, Press 3. The file name request appears.

f. Type, DSK1.FDRTH (Press ENTER) .

g. The FORTH menue appears. Type, =EDITOR (Press ENTER)

h. Type, =DUMP (Press ENTER)

1. ;ngl 1 BLOCK DROP UPDATE (Press ENTER)

J. Type, & BLOCK DROP UPDATE (Press ENTER)

k. Typs, S BLOCK DROP UPDATE (Press ENTER)

1. Remove the BYSTEM DISK and relace it with a blank disk which
will be formatted. into & WORKING DIBK.

2. Preparing the WORKING DISK

a. Type, O FORMAT-DISK (The @ is zerc) (Press ENTER)
b. Type, FLUBH (Press ENTER)

3., Entering a program on a SCREEN

s. Type, 1 EDIT (Press ENTER). If the SCREEN is not clear, exit
the GBCREEN by pressing FCTN BACK .

b. Type, 1 CLEAR <(Press ENTER). This action clears the BCREEN but
doss not return you to ths BCREEN.

c. Typa, ED® (Press ENTER). This action rcturn' you to tha
SCREEN in the EDITOR wmode.

d. Tha cursor is now on linae 8, at the left margin. Type in the
program listed on page 13 of °STARTING FORTH". On line 7, typs
the letter F . Do not use any punctuation marks. Whan program
entry is completed, suit the SCREEN by pressing FLTN BRCh .

e. Type, 1 LOAD (Press ENTER), This action will locad and sxgcute

T the LETTER-F grogram.

¥*. Type, FLUSH (Press ENTER), {f you wish to save the program.

Taiw action writes the program to SCREEN #1 of the WORKING DISK.

4-12

<aH

BASIC (or Extandesd)

FORTH and X-BASIC SIMULARITIES

*>8)>

Sect:
Location

SREI AN a0 W a---m-“---:--n-m-mmmmm-—r—

id.
11.
12.
13.
14,
15,
16.
17.
18,
19.
2Q.
21.

22.

I |
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL

CALL
CAaLL
CALL,
CALL
CALL

(to enclose a strinq)

(2 blank spaces

CLEAR

CHAR (42,1234 "
COINC(#1,42,8,0)

GOINC (ALL)

COLOR (3,2, 1)
COLOR(#1,12)
DELSPRITE (#1)

DELSPRITE (ALL)

GCHAR (R,C, A)
HCHAR(5,3;96.283

LOCATE (#2,8@, 129)
MAGNIFY (2)
MOTION(#1,X,Y)

PEEK (-31880,A)

PEEK (-3188@,A)11 PRINT A
POSITION(#1,Y,X)

SCREEN (7)
SPRITE(#1,65,10,89, 129)
VCHAR (R,C,CH, COUNT)

«° (needs an ending ")
CR CR (carriage returns)
CLS (also same on &pple)
@1 23CH

83 1 8 COINC

COINCALL

@1 2 COLOR

11 @ SPRCDL

@ DELSPR

DELALL

C R GCHAR

2 4 2B 96 HCHAR
1197918PRPUT_

1 MAGNIFY

Y X 1 MOTION

-31580
=31880 ? or -31660 @ .
@ SPGET

& SCREEN

119 79 9 65 1 SPRITE

C R COUNT CH vewAR

DISPLAY AT(12,18)1ERASE ALL BEEP: "WE WANT FORTH"
11 17 BOTOXY CLS BEEP ." WE WANT FORTH *

4=11

GOING FORTH

by David Aragon
512-826-5648
CompuServe 1D 75766, 336

Most of you that have tried to learn FORTH have been directed to .
boock by Leo Brodie called "Starting FORTH." I must say that it is a
very good book for the beginner. Mr. Brodie goes step by step througt
the essentials of FORTH in a way that even a simple mind like msine car
understand. Theras are, however, quite a few differsnces between his
version of FORTH, FORTH-79, and the TI version. T1 was nice enough tc
 Put these differences into print for us, but somehow forgot to put the
in any of their screens. I, therefore, have gone that one step
farther. The screens listed below contains, I think, just about all c
the changes to allow you to work through Brodie’s book. It can be
condenced so as to fit on a Single screen that you could load prior tc

working with Mr. Brodie’s book. I might suggest that you add it to
your menu as was discussed last month.

SCR »
{ STARTING FORTH WORDS)
t ZSWAP ROT >R ROT >R 3 : 2DUP OVER QVER ;3
t 20VER SP9 & + 2 SP2 & + 3 i * Z2DROP DROP DROP ;
1 0>0 >3 : NOT O= ;3 1 7DUP -DUP]
t 22 DUP + ; : 2/ 1 SRA i 32 ORR ! R 2+ ! 3
29 X2RR 2+ 9 R> 3 35 1 NEBATE MINUS ; '
t I” R> R> R SWAP >R SWAP >R H .
: U/MOD U/ ;3 : D~ DMINUS D+ } * DNEGATE DMINUS ;
: DMAX 20VER 20VER D- SWAP DROP O< IF 2SWAP ENDIF 2DROP ;
: DMIN 20VER 20VER 2SWAP D- SWAP DROP 0< IF 2SuWAP ENDIF 2DROP H
: ~LUNSTANT <BUILDS , , DOES> 22 3
: 2VARIABLE <BUILDS O. s » DOES>)
—~—D
SCR &

(STARTINE FORTH WORDS)
D= D~ O= SWAP O= AND i 1

D< D~ SWAP DROP 0K § Tt M+ O0OD+; 'S

M/ M/ SWAP DROP 3 1 >IN IN ; 1 MOVE 2/ MOVE ; '
DU<C ROT SwAP OVER OVER U< IF DROP DROP DROP DROP 1 ELSE = IF
U< ELSE DROP DROP O ENDIF ENDIF 1
: TEXT PAD 72 BLANKS PAD HERE -

1~ DUP ALLOT MINUS SWAP WORD ALLOT
PLUS 32 WORD DROP NUMBER + " me

ARRAY <BUILDS OVER , & ALLOT DOES
-TEXT 2DUP + SwaP DO DROP 2+ DUP 19 -
IF DUP ABS / LEAVE THEN 2 +LOOP SWAP . DROP 3
EXIT C[COMPILE] 313 3 IMMEDIATE

BEesides the resident WORDs in FORTH, you can create your own words. The
formatof a FORTH word is:

1 (name) {instructions) !

The colon announcas the start of a new WORD. The samicolon signals it's
and. AN examplasl

s BYE EMPTY-BUFFERS MON

“BYE" will first clear the buffers of any memory (EMPTY-BUFFERS),
then the word "MON“ will take you bach yo the Tl LOGO screen.

The following are J. VOLK's "most used words". Try ‘em, you'll like ‘e
EDitor

3CR #91
0 { MY MOST USED WORD3 by J. Yolk)
1 { LOAD -SYNONYMS FIRST if not already BLOADed)
2 : MYLOAD -GRAPH -VDPMODES ; (Will load these options)
3 AT GOTOXY ; (Same a3 'Display At')
4 : TOP CLS O 0 AT ; (Same as Brodie 'a 'PAGR')
5 : RANDOM RND 1+ . ; (o RANDOM >>> gives randos number)
§ : PICKE (Leave copy of ni-th numsber on top of ataock)
7 { oY === 02)}
3

2 " Spé + ¢ ;
9 : KROLL (Rotate atb number to top of stack) (o ==~ n)
10 DUP 1| = IP DROP BLSE DUP 1 DO SWAP B> R> ROT >R >R >R LOOP
11 1 DO R> R> R> ROT ROT >R >R SWAP LOOP THEN ;

12 : TEST BEGIN ." HELLO THEREY 2 SPACBS 7TERMINAL UNTIL ; (PCTN &
13 TO END)

14 : SGN DUP IF DUP 0< IF -1 ELSE 1 BNDIF EL3SE 0O ENDIF ;

15 : WORK BLOCK DROP UPDATE ; (My word to update a FORTH acresn)

SCR #92

(A Word to copy FORTH disks-Single Drive §/16/8% J. Volk)

{(Load Screen #91 and =-COPY then ROUN)

O VARIABLE COPYSCR O DISK_LO !

: MES1 COPYSCR € 88 > I# CLS ABORT B¥WDIF TOP 2 11 AT .¥ INSERT M
ASTER DI1SK " Y2Y DROP ;: (PRINT MBSSAGE AND KEY PRESS)

: COPY1 5 0 DO COPYSCR @ WORK 2 20 AT .* SCR # " COPYSCR 7 1t COP
YSCR +1 LOOP ; (DO THE WORK AND LET US ENOW=GET NEIT SCREEN)

: COPYZ 2 11 AT ." INSERT COPY DISK-ANY KEY * EEY DROP ;

(COPY 5 SCREENS AND PRINT MBSSAGE)

: GETIT BEGIN MES1 COPY) COPY2 PLUSH COPYSCH ¢ 89 = UNTIL ;

10 (RUNS ABOVE WORDS)

11 : MESO TOP 2 11 AT ." INITIALIZE FORTH pIsK 7 (Y/N) * ;

12 : MSG TOP 2 11 AT ." INSERT COPY DISK " KEY DROP ;

13 : RUN MESO KEY 89 = IF MSG 0 PORMAT-DISK DISK-HEAD ENDIF GETIT ;
14 { ROUTINE TO INITIALIZE DISK)

D~ O FWh - O

4-13

Forth Tutorial #1
By Warren Agee
Compuserve ID 70277,2063

PREFACE:

With this tutorial (and more to came!), I humbly submit what I have
learned by programming in the FORTH language. One reason I decided to put
down into words the knowledge I have acgquired is to share my experiences,
frustrations, and triumphs while hacking away with FORTH. But, on a more
personal level, I give these tutorials to the TI world as a token of
appreciation for everything I have gained from knowing such pecple as Ronald
Albright, Barry Traver, and Howie Rosenberg, just to name a few, as well as
the whole gang ¢on the TI FORUM. These and many others have given unselfishly
to both me and the TI community as a whole, and I am proud to be part of a
community that refuses to die. Now, on with the programming, FORTHwith!
<ugh!>

STRINGING ALONG IN FORTH

Of all the peculiarities the beginner confronts in FORTH, string
handling is a major obstacle. Nothing is more frustrating than to sit down
and have no idea how to write something like AS="1234"::A=VAL(AS). No
advanced string-handling routines come with the TI FORTH systems disk. So,
it is up to the programmer to invent his own. Hopefully, this article will
make it much easier to write a FORTH program that invelves any string
manipulation at all.

THE BASICS

Before jumping into the new string words, let's first take a look
at how a string sits in memory. This knowledge is imperative in crder to
fully exploit the power of FORTH. Think of a string as a numeric array; each
character in the string represents a number, or byte. The string HOME
CCMPUTER would look like this:

lulo|miE| |clojM|p|u|T{E[R]

The first "box" represents the address in mamory where this string
starts. Determining the location of this address is what we will discuss
next.

There are many ways to store strings; we could save them in VDP
RAM, or in the disk buffers. In this article, we will investigate storing
strings directly in the dicticnary. A string variable is no more than a
numeric variable stretched out. In fact, unlike BASIC, there is only one
type of variable in FORTH. The only thing that differs is the size. First
- use the word VARIABLE to create a variable. But when you create it, let's
say 0 VARTIABLE TEST, only two bytes are allotted for storage. This is fine
for single numbers; but for strings, we can use ALLOT to specify the length
cof the variable. For instance, (0 VARIABLE TEST 8 ALLOT will create a
variable with a length of ten bytes. This gives us room for a string with a

4-14

maximm length of 10 characters. If the above 1s executed, the variable
will loock like this in memory:

addr of TEST

Once the string is created in the dicticnary, there may be garbage in the
variable. Here we can use BLANKS to clean it out: TEST 10 BLANKS. This will
fill ten bytes of memory, starting at TEST, with blanks (ASCII 32).

Now that space has been reserved for the string, there are
basically two ways to store the string. If the contents of the variable is
not going to change, then the word !" can be used. All this word requires is
an address on the stack. So, to store STRINGS in the variable TEST defined
above, the sequence TEXT !" STRINGS" will do the trick. If you wish the user
to input the string, the word EXPECT is available, which is similar to
BASIC's INPUT statement; it awaits an entry from the keyboard. EXPECT
requires both an address and the maximum length of the string on the stack.
Using TEST 7 EXPECT will achieve the same results as TEST !" STRINGS" .
The variable will now look like this:

ts|TIR|IIN|GIS| | | |

This presents our first problem. Since the contents of TEST is not
expected to change, the length of the string can be assumed to always be 7.
However, if the length will vary, we must keep track of it, EXPECT does not
do this for us. Sure, it requires a lerngth on the stack, but it does not
incorporate this value into the string. Not to worry. This brings us to our
first new word, ACCEPT, which replaces EXPECT. The only difference is that
ACCEPT stores the actual length of the string inputted into the byte
preceding the string. This is often called the count byte. If we use ACCEPT
in the example above, our string would now lock like this:

|7Is|Tir|T|N|G|S| | |

addr of TEST

As you can see, the first letter of the string, the "S", no longer sits
at TEST; the whole string has moved over one byte to make room for the
ocount. Now, to print this string is a trivial matter of using TEST QUUNT
TYPE. TEST supplies the addr of the camplete string. COUNT takes that
address, calculates the address of the actual string (TEST+1}, and finally
supplies the length of the string. Everything is ready for TYPE. To
summarize what we have done so far, consider the following example:

4-15

0 VARIABLE QCOKIE 18 ALLOT (reserves 20 bytes)
QOCKIE 20 BLANKS

COORIE 20 ACCEPT _CHOCOLATE CHIP_

COOKIE COUNT TYFE

Note: any words that appear between underscore characters () are to be
typed in as a response to the ACCEPT word.

MOVING AROUND

Up till now, I have discussed performing basic functions on strings
which reside directly in the dictionary. This is not always the ideal
situation. A much better way is to store the string in a temporary spot, do
what needs to be done, then move it back into the dicticnary. This temporary
spot is called PAD. Typing in PAD just leaves an address on the stack, just as
TEST does. Typically, instead of typing in TEST 10 ACCEPT, you would type PAD
10 ACCEPT. Once any processing is done, the word OMOVE can move the bugger back
to where it belongs., Here arises our second problem. OMOVE moves a specified
quantity of bytes fram low memory to high memory. But what if you want to go
the other way around? Well, define a new word, of course!

The new word will be <MOVE, which is included in some versions of FORTH.
But wait--isn't it rather a hassle having to remember which word to use? Of
ocourse it is! Remember, FCORTH is extensible, and we can make it as user-
friendly as we like! The next new word will be OMOVES, which decides which way
the string is moving, and does the moving for you,

Here is an example of using OMOVES and PAD:

0 VARIABLE DRESSER 8 ALLOT
DRESSER 10 BLANKS
PAD 10 ACCEPT _SOCKS

. (string processing done here)

PAD QOUNT (get addr and length)
1+ SWAP 1- SWAP {PAD=1 CNT+1)
DRESSER SWAP (PAD-1 DRESSER CNT+1)
CMOVES

DRESSER COUNT TYPE

Everything should make sense until you get to the 1+ SWAP 1- SWAP. The
reasoning is a little hard to grasp at first: we want to move SOCKS fram PAD to
DRESSER, We also want to maintain that ever-important count byte. But when we
use PAD COUNT, we only have the addr and length of the string itself, not
including the count. So we compensate. Add 1 to the count (because we want to
move the count byte along with the string), then subtract one from the address.
COUNT adds 1 to the address, so we have to correct this to catch the count.
Once these two numbers have been corrected to catch the count byte, shift
things around to get everything ready for OMOVES. Tov better illustrate this,
here is a diagram of PAD:

d~-1¢

|s|slolcIkls] | | | | (Contents of PAD)

PAD+] (This is where you are using PAD COUNT)
PAD (This is where you are using PAD COUNT l+ SWAP 1- SWAP)

If you can understand the principle of the count byte, and how to keep
the count byte tacked on to the string when moved, then a major obstacle in
writing in FORTH has been removed. Next time, I will discuss string arrays.
Until then, experiment, and Keep On FORTHin'!

SUMMRRY OF RESTDENT WORDS -

VARIABLE (n—) Create a variable.

ALLOT {(n—) Reserves n bytes in the dictionary,
BLANKS (addr n—) Fills n bytes with blanks.

EXPECT (addr n—) Waits for input; stores string at addr.

CQOUNT {addr—) Returns addr and count of a string.

CMOVE (adrl adr2 n)Moves n bytes fram adrl to adr2, from low to
high memory.

PAD (-—adr) Temporary storage place for strings.

NEW WORDS

: PICK (nl — n2)
2 % SPE + @ ;

(Copies nlth number to top of stack)

dkkkith
: IEN (addr —— n)

255 0 (string max=255 characters)

DO
DUP I + C@
0= IF (looks for null)
I LEAVE (I=length of string)
ENDIF
Loop
SWAP DRCOP

{ Returns the length of a string at addr.)

4-17

¢t ACCEPT (addr n —)

OVER 1+ DUP ROT (adr+l)
EXPECT
LEN (length of string)
SWAP C! ; (store count byte at addr)
{ Waits for input; stores count at addr and string
starting)
{ at adr+l.)

ek ke ok

: <KOMOVE (adrl adr2 n)

P ROT + SWAP RCT

1-DUP RCT +
Do

1- I C@ OWER C! -1

+LO0P
OROP ;

(Moves n bytes

khkkkk

: OMOVES (adrl

OVER 4 PICK >
IF <OMOVE
ELSE OMOVE
ENDIF ;

{ Moves n bytes
{ direction.)

fram adrl to adr2, from high toc low memory.)}

adr2? n)

fram adrl to adr2; automatically decides on)

4-1g

Forth Tutorial 2
by Warren Agee
Compuserve ID 70277,2063

AN ARRAY OF STRINGS

Last time we met, I covered how to handle the basic string in FORTH. I
also stressed the importance of the count byte and how to move it along with
the string. Now, we have graduated to the realm of string arrays, which is an
entirely new mess with which to work.

Think of a string array as a super-long string. Since the character
{or bytes) of a string sit sequentially in memory, it stands to reason that
the elements in a string array do also. But the physical structure of an
array must be forced by the programmer; maintaining an array is not
automatically done. The structure is what we will discuss first.

Here is a possible string array:

13fclalr| |3{plols| | | |4iBlz|R[D[5[P|O]O|C]H]|

This array has 4 elements: CAT, DOG, BIRD, and POOCH. Fine, right? No way!
This is a mess! Each element in this array has a different length. Element #1

has 5 bytes, #2 has 7, #3 has 5, and #4 has 6. How in the world are you qoing

to keep track of all this? You cannot! Elements in a string array - must -
have a constant length. A much better way to construct the above array is
like this:

#3|Cc|a|T] | #3ip|olG| | #4|B|I|R|D| #5|P|O|O|C|H]|

Note: from now on, the boundaries between elements will be pound (#) signs.
Now each element is exactly 6 bytes long. Remember, the actual strings in an
array can have variable length, but each element has to have the same -
maximm - length, If the string is shorter than the maximum, then blanks
will fill the excess space.

So much for structure and theory. How do we go about achieving this
neat and tidy array? Well, start out with good old' VARIABLE. Remember,
arrays (string OR numeric) are just stretched-out variables. Think of a good
name, let's say PETS. Now, decide how many elements this array is going to
contain., Let's say 20. Now decide the maximam length of the elements. Let's
keep it at 6. Remember to allow enough room for the count byte for each
element! This sequence will then create our array:

0 VARIABLE PETS
60 ALLOT (10 elaments X 6 bytes each)

That's it! Easy, eh? Actually, you can think of the 60 ALLOT as a DIM
statement in BASIC. It reserves memory for the array. The hard part is
accessing the individual elements. Also notice that I totally ignored the

4-1g9

initial two bytes which VARIABLE autcomatically reserves; when dealing with
large arrays, the first two bytes are insignificant and may be ignored. This
makes for much better readability when going over your program

listings.

Now refer back to my diagram of the PETS array. The first box of the
array is the address provided by PETS. Since the first element has a count
byte, simply typing in PETS COUNT TYPE will print out "CAT". But how do you
get at the rest of the array? You have to calculate the address of the
element, using this simple formula:

base addr + (elament 4 * length of each element)

The base addr is PETS. Now, as with most of FORTH, element numbers start at
zero. Let's say you want the first element using this formula. Plug in the
values: base addr=TEST, element #=0, length=6. 6 * 0 = 0, so you are adding 0
to the base addr to find the first element. That makes sense! Similarly, to
get to the second element, the sequence to type in is (TEST 1 6 * +)}. What
you are actually doing is adding an offset to the base address. Once you
have the address of the element, a simple COUNT TYPE will print the
contents, providing you stored the count byte! If you want to view all the
@lements in PETS, type in:

t GO0 ODOCRPEIS I 6 * + COUNT TYPE LOCP ;

Since element #s start at zero, we want to print out elements 0-9. However,
you must always add 1 to the upper limit whenever using DO LOOPs in FORTH.

As you can imagine, if you have a lot of string arrays, you will need to
make these calculations often. To make it more readable (and more convenient),
we can easily turn that into a definition, as follows:

: PETS() PETS SWAP 6 * + ;
: GO 10 0 DO CR I PETS(} COUNT TYPE ;

This is MJCH easier to read than hefore. As a naming convention, I use the ()
symbol to indicate that PETS is an "indexing" word; all it requires on the
stack is the index, or element #. A word of warning: When you are using DO
LOOPS, the word "I" must used in the same definition as the loop itself. You
cannot put the "I® in the definition of PETS(); it MUST appear in the same
definition as the DO LOOP, This problem is actually a blessing in disguise.
Since we reamoved the "I" from PETS(), we are free to use the index word ocutside
of the loop. In other words, if all I needed was the last element of the array,
I could just type in 9 PETS() COUNT TYPE. No loop is needed!

Up till now, all you have done is sit back with your arms folded and
watch me babble on about accessing an array. Here's your chance to follow along
with me as I show you how to store things in your array. First we will use
ACCEPT and input the strings directly into the dictionary, then we will modify
our routine so we first input into PAD. First of all, we have to modify our
array a bit. In the above example, POCCH barely fit into the space allot for it-
-6 characters. If we are to use ACCEPT (which was defined in the previous
tutorial) and input directly into the array, we need to tack on 2 more bytes

for each element. You see, ACCEPT (and EXPECT) always glue 2 mulls onto the end
of each string. So if you input a string exactly 6 characters long directly
into PETS, ACCEPT will over-write the next element with nulls! With this in
mind, here is the complete routine:

0 VARIABLE PETS

80 ALIOT (10 items * (6+2) bytes each)
PETS 80 BLANKS

: PETS() PETS SWAP 8 * + ;

: INPUT-IT
10 0 DO I PETS() (addr of each element)
6 ACCEPT (max. len for each string=6)
LOOP ;
¢ PRINT-IT
10 0 DO I PETS({) QCOUNT TYPE
LOCP ;

If you have been following since the first installment in this series, the
mechanics of this loop are self-explanatory.

This is fine, but remember what I said about avoiding inputting directly
into the array? To avoid those darn blanks from creeping in, Input the string
into PAD first, then move them into the array. Here is the new routine:
{remember to FORGET PETS first):

0 VARIABLE PETS 60 ALIOT (10 items + 6 bytes)
PETS 60 BLANKS

: PETS() PETS SWAP 8 * + ;

s+ INPUT-IT

10 0 DO PAD 6 ACCEPT

PAD QOUNT 1+ SWAF 1- SWAP

I PETS() (Get addr of elament #I)
SWAP (source addr,dest. addr, ont)
MOVES LOOP { MVES was defined in the previous)
{ tutorial)
: PRINT-IT

10 0 DO R I PETS() COUNT TYPE LOCP ;

The PAD COUNT l+ ... sequence seems confusing, but i
tutorial, you should remember it. We want to move not only the str
count byte as well. But PAD QOUNT returns the address of
along with its length. Subtracting 1 backs up the addr to
meanwhile, add 1 to the cnt on the stack so OMWES will move the entire
string+cnt. Also remember that I PETS() just- returns the proper address of the
element in the array; a similar sequence in BASIC would be:

3
EE
g
b

100 FOR I=1 TO 10 :: INPUT PET$(I) :: NEXT I.

well, I've run out of room for this issue. Next time I will introduce
same string array utility words which will allow you to do same heavy~duty
string processing! Bye for now!

Forth Tutorial 3
by Warren Agee
Campuserve ID 70277,2063

Beyond the Basic String

In the past, we have looked at the basic string, how it sits in memory, and
the basic string array, and how it sits in memory. We've learned how to store a
string, retrieve it, and print it. Where do we go from here? Well, hopefully
you have been playing around on your own with strings, along with some of the
new words I presented (like ACCEPT). From now on, things are going get a bit
more advanced, and the knowledge gained (hopefully!) from the first two
tutorials is important. In this tutorial, I will be presenting some very useful
and powerful string utilities that I have collected fram countless sources;
some of them I have written myself.

Scme terminology, first: a BASE STRING is a string to which you want to do
some sort of manipulating, A SUBSTRING is a separate string from the base
string. You usually use it as a reference. For example, if we were to delete
the word FOX fram the sentence THE QUICK BROWN FOX, the sentence would be the
ovase string, and FOX would be the substring. Also note that the utilities
presented here work only with single strings and NOT string arrays. These words
are INS$, DELS, and -MATCH. First of all, let's say we reserve memory for a 100-
byte long string called TESTS. We also have ancther string called SUBS. Here
are the contents of these strings:

122|njofw| [z|s} |T{T|M{E| |F|O[R| |DjI[N|N|E[R|

(You can use ACCEPT and type in the above if you want to follow along).

Notice that the first string is NOT an array, merely a long string which
happens to be a sentence. The 22 is the count byte. Unfortunately, we seem to
have a word missing! What to do? At the end of this tutorial is a definition
for INS$, which will insert a “substring™ into a "base™ string. The stack
argquments correspond as follows:

INSERTS (adrl nl adr?2 n2 adr3 —)

adrl -—> address of base string

nl —> length of hase string

adr2 --> address of substring

n2 --> length of substring

adr3 --> address of insertion peoint

50, using the abowve strings, assume that the word "THE" (the word that is
missing) is located at SUB$. (Remember that variable names just supply an
address, which is what we need for INSERTS to work). Now to insert THE into
the sentence, do the following:

TESTS COUNT { adrl nl)

SUBS COUNT (adr2 n2)

TESTS 9 + (point of insertion - addr3}
INSERTS

Your string will now look like this:

|26|nfojw| |1|s| |T[a[E| [T[z[M|E| |FiC|R| |D|I|N|N|E[R]

Experiment with INS$ until you become comfortable with it; use the
previously defined ACCEPT to store a long string at one location, and a
substring to insert at another location. Just remember that YOU have to supply
the location, or address, of the insertion point.

~-MATCH

Now HERE is an interesting word! -MATCH locks for a matching string and
retwrns a 1 if no string is found, and a zero (0) if it is found. Additionally,
-MATCH also leave the address of the byte AFTER the match. It requires four
stack arguments: the address of the base string and its length, and the address
substring and its length. -MATCH tries to find an ocourrence of the substring
in the base string. This word is useful in conjunction with INS$ above. Here is
one possibility using INS$ and -MATCH. Say you want to insert the word MY after
the word FOR in the above string (TEST$). It might go something like this:

: Q@

PAD 3 AQCEPT THE (Word to search for)
Note: anything that appears between underscores (_) is
to be typed in as a response to AQCEPT.)

TESTS COUNT (Addr & cent of base string)
PAD QOUNT (Addr & cnt of substring)
~MATCH (stack: —- adr3 flag)
IF (l=no match)
DROP ." Not found!"
ELSE (else found; adrl is left on stack)

CR ." ENTER NEW WORD:"
PAD 10 AQCEPT MY (Word to insert)

TEST$ COUNT " (Addr & ont of base string)
PAD QOUNT (Addr & cnt of substring)
5 ROLL (Bring up adr3 which was left by -MATCH; this is the
insertion point)
INSERTS
(R CR TESTS COUNT TYPE (Displays new string)
ENDIF ;

Please note that ROLL does not exist in the standard TI FORTH dictionary and
must be defined separately. That definition appears at the end of this article.

DELS

Finally, we come to DEL$, which, by no surprise, deletes a substring. It
works along the same lines as INSS; the stack arguments require the address and
length of the base string and the substring. DELS searches the base string,
looking for a match with the substring, It accomplishes this by using -MATCH,
explained above. Once it finds a match, it deletes the string. If no match is
found, it clears the stack and exits, no harm done. If you plan to use DELS in
a program, you may want to modify it a bit. With -MATCH, you can test to see if
a match is found. Perhaps you want to do the same with DEL$. You could very
easily leave a 1 on the stack if the string was found and deleted, or leave a
zero if no match was found. Examine the comments for the listing of DELS to
damonstrate how to do this.

Well, that's it folks! FORTH is a powerful language, but it lacks in scme
areas, especially string handling. But the real power in FORTH lies in its
extensibility. As demonstrated here, we now have a good number of basic string
utilities which can now become part of our FORTH vocabulary of words. Does
XBASIC have a built-in INSERT or DELETE function for strings? Sure, you can
similate it with SBEGS$, but that is very clumsy and VERY slow. With a little bit
of ingenuity, you can make FORTH run circles around most languages without
sacrificing ease-of-use. Till next time, have fun!!

DEFINITIONS OF NEW WORDS

: ROLL DUP 1 = IF DRCP ELSE DUP 1 DO SWAP R> R> ROT >R >R >R LOOP 1
DO R> R» R> ROT ROT >R >R SWAP LOOP ENDIF ;

(NOTE: the following definitions require the word PICK which was defined in an
earlier article in this series.)

: INSERTS (adrl nl adr2 n2 adr3 —}
DUP 6 PICK 6 PICK +
1+ OVER -
NVER 5 PICK + SWAP <CMIVE
OVER 5 ROLL + 5 ROLL
1- C! SWAP <OMOVE ;

: MATCH (adrl nl adr2 n2 — adr3 flag)
SWAP DUP C@ 5 PICK 5 ROLL +
DUP 1 SWAP 6 PICK - 1+ 7 ROLL
DO
3PICKICR =
IF

Q
6 PICK 1
Do

JI+Ce6PICKI+Ca
= NOT

DROP 1 LEAVE
ENDIP
Loop
IF ELSE
DROP DROP I 4 PICK + 0

LFAVE
ENDIF
ENDIF
Loop

ROT DROP ROT DROP ROT DROP ;

: DELS (adrl nl adry nz)

4 PICK 4 PICK
4 ROLL 4 PICK -MATCH
IF
(NOT FOUND
[()RSP)DF&JP DROP DROP (clear Staék)
(insert the 0 if 1 wan i
- e the ; yo t to leave 3 flag if not
DUP 3 PICK -~

5 PICK 5 PICK +
3 PICK - 1+ OMOVE

- SWAP 1 -~ ¢!
(1) (i 1

insert the 1 if you want to leave a f1. i

ag if match
— was found)
Disk Only Software
P.O. Box 4170
Rockville, Maryiand 20850

or call
1-800-446-4462. At the tone, enter 897335 for recorded order message. Touchtone phone 1s required.
Alternate 15 (301) 369-1339 Ne Touchtone 18 required.
Voce information line {301) 340-7179

SOME REFRESHMENTS

=25

4 '\

!%'
u'

‘ M'm

SOME NEWSOFTWALRELE ...

UCSD Pascal
Logo
Pllot

sScme New Scftware

Things They Don't Tell You About The P-System
by Jerry Coffey

I put my first P-system together about a year after I bought my TI99/4A
console for $49.95. 1In the intervening year I had acquired an expansion
box, 32K memory, and a "disk memory system"”. I watched the UCSD
(actually Softech) software prices drop but found the P—code peripheral
card disappearing from the shelves even faster. Finally I gritted my
teeth and bought the disks before I found a card to run them. In
desperation I contacted a TI repair center and talked them into selling
me a card outright. It was then I discovered how primitive my single
drive system really was. I had to have ancther drive or give up the
whole system as an expensive mistake. In the the years since, I have
bought and sold a lot of other hardware and with each up upgrade I have
learned something new about the P-system — both the quirks of third-
party hardware and the quirks TI designed into the system.

The £first thing you need to know that isn't mentioned in the manuals is
the bug in the DFORMAT program -- it will not format the second side of
a disk or in double density even when these opticons are selected and
your hardware supports them. (Though, strangely enough, it will format
SSSD 80 track disks with the new Myarc Eprom.) Thus:

Prepare some formatted disks BEFORE you start working if you plan to
use double density or double sided drives.

* % *

You can use any disk manager program and name the disks anything you
like since the P-gystem does not use the first four sectors of the

disk, These sectors serve only to interface with the TI system. Other
versions of the P-system use this space for "bootstrap" routines to get

the system started — routines that are supplied in ROM by TI.
Differences between the way the P-system and the host TI system handle
disks are best understood by looking at the operating system.

OPERATING SYSTEM

The P-system is not just an implementation of the Pascal language, it is
a complete operating system. It has its own low-level input/output
routines in 9900 machine language. The system has its own Keyscan that
supports ALL the ASCII control codes and screen control functions equal
to many "intelligent" terminals — the system can even be set to use an
80 column terminal communicating through a serial port. Parallel and
serial ports are handled just like the TI system. TI even provided an
example program called MODRS232.TEXT that pokes the correct data into
the necessary memory locations. The conventions for handling floppy
disks, on the other hand, are unique. The system does not use the disk
parameters or the bit-map in sector zero, the pointers in sector 1, or
the file header space (file identifier blocks) in sectors 2 and 3, but

it does write data to these sectors in a process known as "zeroing” a
disk. This process fills the bit map with binary "1"'s (to prevent the
TI system from overwriting the invisible P-system files), writes a

single pointer in sector 1, and writes a header for a pseudofile called
"PASCAL" in sector 2, Before we locok at other tasks performed by the
ZERO function, we need to understand a few more fundamentals such as
block structure and the P-system disk directory.

Blocks

The P-system recognizes two kinds of I/0 devices — character devices
(such as printers, modems, and video display consoles) and block
structured devices (floppy disk, hard disk, or RAM disk devices). & P-
system block consists of 512 bytes -- two TI sectors. Thus disk
operations read or write pairs of consecutive sectors. A disk file is a

set of consecutive blocks (that's right, no fractures allowed) — in
fact an even number of blocks in the case of TEXT files, though other
types may be even or odd. This scheme imposes some inconveniences but
also has some distinct advantages. It reduces the number of operations
involved in disk I/0 =-- no bit map checks or updates and a minimum
number of track seeks in each read or write. This speeds up disk
operations noticeably.

Some blocks have special functions. TEXT files are stored in "pages" of
1K (two blocks) each — that is why TEXT files are an even number of
blocks in length. The actual text is preceded by a "zero page" where
information used by the Editor is stored. CODE files are preceded by a
single block containing data used at run time, DATA files can be used
for anything else and have no special format. Bad blocks on a disk can
be marked as a file with the suffix "BAD". After a disk has been used
for a while, removal and rewrites of files will create unused pockets of
space. These can be cleaned up with a housekeeping process called
Krunching a disk. This Filer command consclidates the files by reading
and rewriting them to close up unused blocks, but leaves BAD files
undisturbed.

Disk Directory

The P-system uses a very compact directory structure that consumes only
4 blocks (8 sectors) on the disk. There is also an option to use an
additional 4 blocks for a backup directory in case the main directory is
damaged. Each file entry takes only 26 bytes for a file name, starting
block, length in blocks (remember no fractures allowed), a type code,
and the date of creation (coded into 2 bytes). This compares with 256
bytes per file in the TI system. This data begins in block 2 (sector 4)
immediately following the 26 bytes that contain the Volume name and
parameters (similar to TI sector zerc data). A copy of the directory of
an active volume is maintained and updated in RAM during disk operations
and written back to disk when the file is closed. During some
operations — removing a file for example - the system gives you the
option of changing your mind before the directory is updated. As in
most systems a file is deleted by erasing its directory entry rather

* than the file itself,

ZEROing a Disk

So now we can look at the first step in turning a formatted disk into a
P-gystem Volume - what happens when you Zero a disk The Zero functon
is in the Filer program, the most-used system program after the Command
processor (the part of SYSTEM.PASCAL that calls other system programs).
The zero function prompts for a volume name and size in blocks. The
size sets the limit on blocks that the system will access, but if it is
larger than the number of physical blocks actually on the disk, the
missing blocks will generate errors when you attempt to read or write to
them. Whatever size you choose the entire bit map will be filled in, so
unused sectors are still not available to the TI system. (More on this
later.) Once these data are entered, the Zero function checks other
drives for the same volume name, fills the bitmap, writes the PASCAL
pseudofile header, then writes the name, size, date, and an end of
directory marker into block 2 (and also into block 6 if the duplicate
directory option is used). From this point on, any previous TI or P-
system directory data on the disk becomes inaccessible and the system
treats the remaining blocks on the disk as if they were empty.

THE SYSTEM FILES
Now that you know a few of the chores necessary to get started, lets

look at what the system does for you. The P-system contains a number of
special programs: SYSTEM,PASCAL, SYSTEM.FILER, SYSTEM.EDITOR,

SYSTEM.COMPILER, SYSTEM.ASSMBLER, SYSTEM.LINKER, SYSTEM.LIBRARY, and

SYSTEM.SYNTAX. All except the last are code files but do not carry the
".CODE" suffix required for user generated code files. Most of
SYSTEM.PASCAL is supplied by TI in ROM along with data files to set
system parameters, e.g, console or terminal configuration, and define
the the character set. If files named SYSTEM.MISCINFO and SYSTEM.CHARAC
are present on the boot disk, they are automatically read at boot up and
replace the data supplied from ROM. If the short SYSTEM.PASCAL disk
file is present, it is merged with the main program from ROM to provide

a welcome message and textual error messages in lieu of the ROM error
codes.

Boot Sequence

When your TI99 is turned on or reset with the P-code card on, the system
monitor will try to boot the P-system unless it is told not to --
literally — it 1locks for the word "NO" (ASCII codes 78,79) at integer
address 14586, If these values are not found the routines in the P-—code
ROM are locaded and begin execution. (When you Halt the P-system, these
values are replaced at that address.) The program writes system tables
into RAM and then polls the disk drives both to determine which are "on-
line" (i.e. have a disk in them) and to locate all the SYSTEM files.
When this is complete, the welcome message is displayed and the program
SYSTEM.STARTUP 1is executed if available. When this program (or any
cther) finishes, c¢ontrol is returned to SYSTEM.PASCAL which displays a
“command line" showing the prompts for the single character system
commands. Some of these commands are in SYSTEM.PASCAL (ROM}, but the
more elaborate ones, such as E)dit, Fliler, and C)ompile, call other
programs that overwrite SYSTEM.PASCAL in memory. In fact some are sc
long that parts of them are paged into memory only when needed using the
P-system's automatic memory management routines (the system uses

Page

"virtual" memory to overcome RAM limits -- it was DESIGNED for small
systems).

Running the system

Now you are ready to write your own Pascal or Assembly Language
programs. There are also some public domain or commercial programs and
a few exotic ones with murky origins and no guarantees. Some users have
ported versions of a Fortran compiler to the TI, but establishing your
right to use such a program is tricky, since it is copyrighted and has
never been released in a TI99 version. I understand that it was ported
by people who purchased the original for the exclusive purpose of using
it on the TI, There are also one or more versions of PILOT which was
under development by TI when they pulled out of the home computer
market. I've seen one of these which did not look like a finished
system, but did function.

The assembler supplied with the system is a Macro-assembler several cuts
above the version supplied in TI's Editor/Assembler package. My friends
who work in A/L speak highly of it. The SYSTEM.LIBRARY supplied by TI
contains precompiled routines to access graphics, sound, and speech
capabilities of the TI99. The implementation of UCSD Pascal is nearly
complete and supperts program chaining and concurrent processes.
Running several programs at once slows down execution and must be
managed by events defined within the programs rather than interrupts,
but it opens up possibilities not available in other high level
languages on the TI99. These features coupled with the ability to run
the system from an 80 column terminal give the TI% a much more
sophisticated feel. The ultimate limit is memory — the RAM available
on the TI requires programming techniques that use lots of paging code
into memory from disk, thus slowing down execution.

Public Domain Software

In spite of memory limitations, some excellent programs have been
written by users.- Perhaps the-mest:isephisticated are those from Andy
Cooper, particularly his terminal emulator and his GPL Disassembler.
There are now several disassemblers for GPL, available or "in the
works", but Andy's was available two years ago! The terminal emulator
is in its second major version with some enhancements that Andy
graciously added to solve some problems I had using my TI as a high
speed terminal for a Pascal Microengine., Dave Ramsey and Mike Lambert
of the Mid-Atlantic Ninety NinERS UG have written many useful programs
including <character sets, a memory- reader (PEEKIN) and various
utilities, Everyone has some version of the FASTBACK cloner — mine is
modified to handle all formats including 80 track -- in fact it is
presently the only program I know that will clone an 80 track disk.
Mike King, whom I haven't met, solved the problem of importing DV80 text
into the P-system TEXT format. And if you want a veritable sea of
Pascal code, join USUS the UCSD Pascal user group and you can access the
seven megabyte member library, most of which has never been adapted for
the TI P-system.

Page 5-g

COMMUNICATIONS

Communications was one area TI and the developers of the P-system left
alone, and for very good reasons. High performance communications
software -- terminal emulators for example -- usually require native
machine code for critical portions to assure adequate speed. REMTALK
was an early program written in Pascal to establish remote links between
two computers, but it is too slow for day-to-day use and must be running
on both machines (i.e, it only communicates with itself). Nevertheless,
it was and is used to transfer files between different machines running
the P-system,

Andy Cooper changed all this for the TI%99/4A with his terminal emulator
TEP. Here was an efficient communications program for the TI P-system,
with machine language modules running from a Pascal host program. But
the best news was its capability for binary transfers using the XMODEM
{checksum) protocol. This made it possible to transfer both CODE and
TEXT format files between TI%9's running the P-gystem or to bulletin
boards with XMODEM (checksum) capability., Andy wrote TEP to encourage
scattered P-system owners to trade files. For those of us struggling
with the system, it was the same kind of breakthrough as Paul Charlton's
XMODEM program on the TI Forum. It also shared a common frustration of
first-time XMODEM users -- how do you downlcad the more sophisticated
program when all you have is the TE2 package supplied by TI? Paul
supplied XMODEM in a form which could be captured as an ASCII file and
run from Extended Basic, but capturing a P-system CODE file (TEP) was
not so easy. There are utilities in the P-system that make it possible,

but they are a bit tricky for the novice.

When Andy uploaded a P-system TEXT file describing his scheme for
converting the TI controller toe 80 track operation, the frustration on

the TI Forum was almost palpable. The description of the file aroused
enormous interest but the only people who could read it were those with
BCTH the P-system and TEP. After listening to complaints and confusion
for several days, I cobbled up a slow, crude XB program called PASTRN to
convert P-TEXT to the standard TI DV80 format. The next day Andy Cooper
came back with an elegant rewrite of the XBasic that provided a 4X
improvement in speed. Working independently, Andy Desscff wrote an
assembly language routine which he called PSCAN to perform the critical
but slow character handling operations. At the end of that week I
combined PSCAN and the XBasic host program using Todd Kaplan's XBALSAVE
taechnique so that the XBasic and machine language could be saved in a
single file that loads and executes very gquickly. And that's how the
TI99 community got its first Pascal text file translator.

This still didn't solve the problem of downloading TEP without TEP. I
took another crack at this one while working with Phil Symerly to get
Pascal downloads onto the new hard-disk for his Washington DC BBS. The
scheme involved a utility I called PAS>TI (inspired by a program written
for the APPLE by my friend Tom Wotecki) that read the hidden files on a
P-system disk and wrote exact DF128 images that were recognized by the
TI system as individual files. Converting downloads back to P-system
format still involved using the RECOVER utility and the Filer's "Make"
command. The process was tedious but the DF128 files could be
transferred with any binary protocol including TE2. We set this up on

Page

the DC beard and Bill Byrne picked it up for the Wichita TIBBS using TE2
only. Of course the first files we put on the board were TEP and its
docs. |

It would be months before any further help would be available for novice
users, but the TI Forum and some BBS's began to build their libraries of
Pascal programs. The next step depended on a new program and an old one
rediscovered. The new one was a utility (SPLITP) that I wrote to split

up the space on a disk between a P-system volume and normal TI files. I
used it to boot either the P-system or Extended Basic from the same
disk, but it also made it easy to set up valid volumes no larger than
required to hold particular programs. I merged this new one with PASTRN
and PAS>TI into a single XB program called PUTIL. The old program was
the remarkable DCOPY which captures all the information on a disk in a
single 1IF128 file that can be restored to a perfect clone of the
original disk. In September 1986, two DCOPY files created from split
format disks were placed in the TI Forum Data Library. When downloaded
with any Xmodem terminal emulator and restored with DCOPY the embedded P-
volumes could be run immediately. One of the programs on both disks was
Andy's new 9600 baud version of TEP with full VT52 emulation and other
improvements.

ADVENTURES WITH NEW HARDWARE

The easiest upgrade for the P-system is the addition of a Corcomp double
density disk controller. It complicates life very little, since there

are only two disk formats. You can boct the system from single density
disks and transfer all your files over to the higher capacity format.
There is no problem reading or writing disks without using TI's sector
zero data since the hardware senses single or double density (think
about it -- the sector zero byte that indicates double density can only
be read AFTER the hardware switches to double density!) Once the density
is determined the sectors per track is determined.

If you want to use the faster and more flexible Myarc controller, things
get more complicated. The hardware senses density, but the Myarc
controller uses the data in sector zerc to determine whether each track
contains 16 or 18 sectors. Without this data the default format is
assumed (16 for the 40 track system and 18 for the 80 track}. When I
got my Myarc card 1 was satisfied to run in 16 sector format, but when I
got the 80 track upgrade I had to find a way to use the available
formats more easily. The answer turned out to be a very simple program
I called CHECK that used the low-level UNITREAD procedure to read sector
zero on all active drives. You don't have to do anything with the data -
- when the controller reads sector zero, it automatically adjusts to the
format data for that drive. My SYSTEM.STARTUP program now goes through
this drill before it sets printer name and serial port. The Corcomp or
Myarc controllers will access four disk drives, but you will find that
the P-system will not recognize the fourth drive. I think the
limitation is hard coded into the UNITREAD/UNITWRITE procedures for low-
level disk I/O.

Page

By the way, the P-system does not like slow printers — the system times-
out while waiting for a typical daisy-wheel printer to empty the large
buffer set up by the Filer for Transfer operations. If you can't afford
a printer buffer or spooler (or a faster printer), you can write or
acquire a simple program to send files to the printer line-by-line.

drive #1 (Unit #4), the system will try to boot from it. Most of the
boot routine executes without problem until the system polls the drives -

- the system reads drive #2, then #3, then comes back and reads Physical
drive #l. From this point on it can no longer find the Ramdisk. Again
I suspect the UNITREAD procedure works only for the three physical
drives (something o do with the CRU address). I still have hopes of
running the Ramdisk as a fourth block-structured device. There is room
in the system table for units Up to 32, but most of the slots are
empty. When I get some time, I'm going to write a STARTUP program that
pokes the Ramdisk volume name into Unit #10. Though it may be
interesting to try it with the fourth physical drive first, T+ sHll

may not work if the limitation is in UNITREAD, but its worth a try. 1In
fact getting a Ramdisk into the system should speed it up significantly
because of all the virtual memory operations.

The latest expansion was to add 80 track drives. This turned out to be
a real detective story. I approached it in stages and kept a 40 track
drive as Unit #4 (the boot drive), but those who switched over
completely to 80 track drives had their hands full. The following

meéssage to a frustrated user gives some of the Alavor of the search for

answers:

"Ralph,

I think I know what your problem is. As I mentioned on the phone, the P-
system at boot up senses only single or double density from the boot
disk — other disk parameters are the hardware defaults (in this case
the Eprom and DIP switches). What your system is expecting is AN 80
TRACK BOOT DISK! Which you don't have yet because yYou can't boot the
system to make one — CATCH 22 eh? That's also why your SSSD master
disks won't boot either — the system is looking for files in the space
between tracks.

But don't despair. The trick with my CHECK program will work if you put
it on the first track of a 40 track DOUBLE DENSITY disk. The system can
always find the first 9 sectors of a single density disk or the first 16
sectors of a double density disk. Since the first 4 sectors are
reserved for TI-DOS and the next 8 are used by the P-system directory,
you must use a double density disk to have any space left to put CHECK
on the first track. Rename CHECK as SYSTEM.STARTUP and it will
automatically execute at the end of the boot sequence. Then you can
create a true 80 track boot disk in your cther 80 trk drive.

Page

Don't put any other autoexecute files (SYSTEM.PASCAL or SYSTEM.CHARAC)

on your 40 track startup disk -- the system can't read them until CHECK
executes. It will try to load SYSTEM.CHARAC but will in fact read bit
patterns from the wrong sectors as the character definiHons -- makes
for an unpredictable display! There is a slight chance that your drives
will not read from a 40 track disk while in default 80 track mode. 1If
this happens, send me a message and I'll make an 80 track boot disk for
you.

By the way, the reason I keep a 40 track drive in the first slot is not
because of P-sys quirks but because some copy protected software crashes
on B0 track drives.

Jerry"”

(Ralph called a few days later to tell me it worked and marvel at the
complexity of the system. I've put together a "universal" boot disk
that should work with any double density drive/controller configuration -
- it involves duplicating files read before CHECK is executed during the
boot process so that the backup copy will be correctly read if the
"wrong" sector/track value is used. The next time I open up the box
I'll switch an 80 track drive into the first slot and test it. Until
then, happy hacking.]

“TAKE TIME TO PRETTY UP YOUR PROGRAMS.

“Pretty Programs Bloom Forever”

YOU ARE THE PILOT. Teaching others using your computer

by Willaim Harms
Programmed Inguiry Learning or Teaching

Although I've just spent a few days learning about PILOT, 1 can really write a
useful, enjoyable program. This language is EASY. It doesn't have many of the
capabilities of TI BASIC, but it doces have others not found in even TI Extended
Basic.

Thomas P. Weithofer sent me the program PILOT 99, and documentation. He
developed this TI99/4A version with help from Texas Instruments, Cin-Day Users
Group, and Xavier University professionals. 1It's copyrighted 1985 by Thomas
Weithofer and portions of the manual are by permission of Texas Instruments.

It is a public domain package that costs one only about $10.00 plus 2 SSSD
disks. What a great value! [Ed: Thomas Weithofer passsed away at the age of 20
in early 1986. His gift to the TI community will live on and can be obtained
from UGN by registering this copy of the book with the bound-in registration
card in the back of the book.].

PILOT was largely created by John A. Starkweather, Ph.D. at UCSF starting in
1962. In 1973 national standards were developed for the basic commands (only 8)
and syntax, and now one can get a version ¢of PILOT for most personal

computers. It was developed on a small computer to be able to function
completely on a small computer. Dr. Starkweather wrote a short book, which
I've found to be the perfect guide, 1It's called, "A User's Guide to PILOT" and
ublished by Prentice-Hall, Inc. at Englewood Cliffs, New Jersey 07632. I
ogrdered it at the lecal B. Dalton Bookseller.

I would evaluate the TI version as one of the best teaching aids available in
the world =" software, since it's easy to write programs and offers most all of
the feature: that make a lesson useful and enjovable. The only feature I would
like to see added is that of Speech.

PILOT 99 seems to be written in TI«Forth and thus a program can run pretty
fast. It shows the power and versility of TI-Forth. While one is thus limited
to a small program running at one time, one can run programs quickly with each
drawing needed data from files the other programs have created.

To use the version of PILOT 99 that I got, you will need TI's Editor/Assembler
cartridge, expanded memory, a disk system, and a word processor that can create
display/variable-80 (text) files. You would write the program in the word
processor just like the big computers/software use , which is nice in some ways
since with one like TI-Writer you've got a full screen editor and other useful
commands available. Then you would fire up the Editor/Assembler and use the
Load and Run Option, entering DSKn.PILOT. When it is loaded enter the file
name of the program you created with the word processor. The PILOT 99 software
will run the program until it finds an error in which case you get an error
message at that point. Thomas Weithofer says there is also a version one can
use out of TI Extended Basic.

Page g.1¢

PILOT 99 adds many commands beyond the basic PILOT set. You have all the
normal TI Extended Basic Sprite Commands, which provide great enjoyment *=o
user and liven the presentation of any subject matter. Thomas has also ad
the Joystick commands, TI's character graphics commands with color, real live
8it Map Graphics ie, Draw Circle, and Mass Storage device commands for files
usage.

The manual is excellent, all 70 pages of it (on disk). Each command is
described and an example given in a program context. However, it says that
data files are Internal Fixed 80 Relative Update, but the file I got when
writing data out to disk was Display Fixed 80. To help me use the manual I
created a kind of Table of Contents and Index.

Bit Map graphics are easy to create and are displayed in the top 2/3rds of the
screen with the bottom 1/3 reserved for full sized text. 1In the top 2/3rds
graphics area you can also display text, but it will be smaller(64 characters
per line). The command for Draw Rectangle is: DR: rowl, clml, row?2, clm2, ie.
DR:50,50,100,100 will draw a rectangle with the top left at position 50,50 and
the bottom right at 100,100. Then one could use the command "T:Thats a
rectangle, folks!" to produce the message at the bottom of the screen. Better
yet, to describe the language, you could ask the computer operator ie. student
some guestions about the rectangle. Here's a really short program to
illustrate,

By the way, PILOT doesn't use line numbers., It's like LOGO, LISP, and some
other advanced languages in this respect. One uses labels and subProgram like
technigues to structure the program and direct the flow of action.

R: Remark only - prog. to demo a Q & A.
IG:

DR: 50,50,100,75

TG: 1,5,shape is 50 by 25 units

T: how high is that rectangle?

A: #A

M: 50,50 UNITS

TY: That's perfectly correct

TN: Nope, thats not just right
T(#A=25}: You were thinking of the WIDTH
T: press any key to proceed

R: is for a REMark
IG: is to Initialize Graphics
TG: puts the text at row,column used
T: 1is to Type something to the screen.-
(TP: is to Type to Printer)
A: 1is to Accept an Answer
M: 1is to Match to the following possible strings
each seperated by a comma
TY: is to Type only if the previous Match was True
TN: is to Type only if the previous Match was Not-true
T(#A=25): is to Type only if the expression is True
(here users answer of 25 would be true)

Page 5-11

Instead of the TY: and TN: we could have used a command- JM:*LABEL for Jump-on-
Match to a label. After the *label would come some testing routine that ended
with an E: command to return the program flow to the line following the
JM:*1label.

de could have used the Match or Jump command- MJ: string-to-match,more. If no
match is found to the strings in the statement, the program jumps to the next
M: or MJ: statement.

User subroutines are invoked with a simple- "U:*YOUALL" {(U:*title}. They are
also ended with the command- E:. Problems can be identified with the PR:
command, then you can jump to them easily. You can put the Y or the N or the
conditional expression ie,(#A=25) after any of the basic commands.

Te save that answer to a disk file we would just add a command- Write Answer-
WA: right after the A: in the prcgram above. Earlier in the program you would
have the command to copen the file- OF: DSK2.FILENAME or some other file and
then later would close the file with- CF:.

For math you use the C: (Compute command) with the characters <- instead of the
= sign. For example: C: #F<-88 or C: #E<-#G. The first sets F equal to 88 whils
the second sets E equal to the value of G. All the other TI numeric operators
ie. + are available as are the numeric functions such as TAN for Tangent.

PILOT is for easy interaction between the computer and the user. A simple
example of it is:

T: Enter your name

A: 3SA

T: Enter an adjective

.+ SB

f: Enter a type of animal

A: $C

T: Enter a part of an animal
A: SD

T: Enter a color

A: SE

CH: (this means Clear-Home the cursor)
R:i*t*

SA had a $SB $C,

whos $D, was SE as snow

Everywhere that $A went, the $C
was sure to follow.

1334

There are many other commands in PILOT 99, but most are just like TI Basic or
the Sprites in TI Extended Basic. Most .are easy to remember and there are only
54 with the 1 or 2 digit code. 1I've barely scratched the surface in this memo
of the many ways the commands can be combined to produce a very enjoyable
interactive session of learning or data collection. Dr. Starkweather
describes many in his book.

--- EXPLORE - --
in Harms Way

Page 5-12

INDEX QF PILOT COMMANDS FOR THE TI-984/A
PREPARED BY BILL HARMS

--=-COMMANDS-—-- DESC DETAIL NOTES

REGULAR COMMANDS
A Accapt 1S
AS: Accept ona char 16
C: Compute 18
CH: Clear Home =
CS: Compute String 23
E: End 27
J: Jump 35
JH: Jump on Match 3
M. Hatc "3l
nJ. Match aor Jump
PR. Problem “3
R: Remark 44
T: Type 59
TH: Type and Hang =1
IP: Type to Printar 83
u: User subroutine 64

CHARACTER GRAPHICS COMHANDS

00000000000 WULWWEOWOW MEODEMOM@DID-~3~I3~ 3~~~

cc Character Colorc 13
CP: Character Pattern 22
HC: HChar 3e
1T: Init, Teaxt Modm 4
SN: Screan colar S5
TC: Taxt cursor 60
UC: UChar [=12]
SPRITE COMMANDS 1
GP: Graphic Pattern 1 30
SA: Spr:i:tes Atouch 1 48
SC: Sprita Color 1 49
S0: Sprite Dealste 1 S0
SG: Spritas Gone 1 Si
SKH: Spritam Hit 1 s2
SL: Sprite Location 1 S3
SM: Sprita Motion 1 54
SP Sprita Pattarn 1 S8
55 Sprita Si1zwe 1 s7
BIT HMAP GRAPHICS
BC: Draw Circle 11 24
aL: Craw Linae 11 25
OR: UOraw Ractangla 11 2b
GC: Graphic Calor 11 31
IG: Initializs Graphics 11 33
PP: Plot Point 11 Ye
IG: Type Graphic 11 61
UP: Unplot Paint 11 65
FILE STATEHENTS 12
CF: Close File 12 20
OF: Op=mn File 12 43
RE: Rm=sad 12 45
RF: Restore File 12 4B
WA: UWeite Answuer Buffer 12 g?
WR: WRits 12 9
MISCELLANEQUS 13
BW: Beagin While 13 17
EL: n Luag 13 <8
FB: Fire Button 13 29
JS: Joystick 13 37
LP: Loop 13 38
S: Sound 13 47
WH: uWhile 13 11

ERROR HMESSAGES

H
-

Page g_,

Exploring Your Hardware Package

LOAD INTERRUPT, HOLD and RESET SWITCHES FOR THE TI 99/4A COMPUTER
by Brian Kirby
Compuserve ID 70346,1703.

First, let's describe what each of these switches will do for you and the
computer;:

LOAD interrupt: The locad interrupt, when activated will cause the
computer to suspend its current operations. Then it will look at a
specific memory locations that will tell the computer where to go for the
next set of directions. This switch is useful for several utility type
programs. You can have a debugger or disassembler loaded in the memory
along with the program you plan to check. When your running program cuts
up, you can hit the load interrupt and be put inte your debugger

program. Then you can go see what happened to your program in the
computers memory. Another use is screen dump routines. You can have a
utility loaded up in the computer and your program. When you want a copy
of the screen you hit the load interrupt switch and then the screen dump
routine takes over and you end up with a hard copy of what was on the
screen, You can come up with all kinds of utilities for the load
interrupt switch.

in specific a load interrupt causes the 9900 cpu to initiate a interrupt
sequence immediately following the instruction being executed. The
memory location at >FFFC is used to obtain the vector for the Workspace
Pointer and the Program Counter. The old Program Counter (PC), Workspace
Pointer (WP) and the Status Register {ST) are loaded into the new
workspace and the interrupt mask is set to >0000. Then the program
execution resumes using the new PC and WP.

Here is a check, just for grins, that will let you know that the load
interrupt works, If you have a memory editor type program
(SBUG,MEMORY+AID, GRAM KRACKER,etc) go into memory location >»FFFC and
change the next four bytes to >83 EO0 00 24, The first two bytes are the
Workspace Pointer (>FFFC) and the last two bytes are the Program Counter
(>FFFE). If you do a locad interrupt using these changes the computer
will do a power up reset routine. Another is to set the WP and PC to
»>83C0 and >0900. This is a level one interrupt. When you do it, the
system will lock up, but you will note all your P-Box cards lights will
be on except the memory.

HOLD: The hold does what it implies. It puts the microprocessor on
hold. 1It's good for stopping the computer dead in its tracks. Works
great for games that do not have a pause function. There is times when
you do not want to use it., The states you do not want to be in are
Input/Output functions. Mainly, like during a disk read or write or
initilization routine. I think you can understand why, but if you don't
Know its possible to crash your disk or cause some timing problems during
a file transfer. Let's not worry about that. The real uses for the
hold, is so that other devices may access the computer busses without the
3900 CPU on line.

Specifically, when the hold is active, it is signaling the CPU that an
external device, such as another CPU or a DMA device would like to use
the address and data busses to transfer data to and from memory. The
9900 goes into the heold state when it has completed its present memory
cycle. The 9900 then places its address and data buss tranceivers into
an high impedance

Page 6-2

state, along with the control lines WE,MEMEM, and DBIN. Then the 99¢
will activate another signal called HOLDA. This is a hold
acknowledgment. When the hold is removed the processor will return ¢t
nermal.

After installing the hold switch, it is very easy to test. Just turn it
on while listing out a program in basic or XB. Try it during a game.

RESET: Again it resets the computer, It causes the computer to do the
power up routine. This is great when the computer locks up. You hit the
reset switch and your back to the title screen. This saves wear and tear
on your power switch and extends the life of the computers power supply.
There have been many articles on the reset switch and not all reset
switches work properly. Let me explain why. First the basic form of the
reset comes from the cartridge that you plug in the computer. There is a
line that runs from the GROM port or cartridge port back to the clock
chip that supplies timing for the whole computer. When the GROM port
reset line goes low it causes the clock chip to reset and it in turn
passes a reset on to the CPU and the 9918 VDP and the 9901 CRU chips. 1If
you have a Widget this is what they use to reset the computer when you
put a new cartridge in. But I'm sure you have notice that when you have
locked up a few times and the reset on the Widget didn't do the job, You
had to shut the computer off and on to bring it back up. This was due to
a lockup in the clock chip and it could not pass the reset along.

First the required parts:

One push button switch,normally open type, use a micro type if you pl
to mount it in the console,

Two lever type switches, normally open, again micro types if for the
console,

Three 2.2 uF/16V tatalum capacitors.

About 4 feet of small gauge wire for hook up. Wirewrap wire is great if
you mount the switches inside the console. If you want to not drill
holes in the

console, buy some ribbon cable and a mini box.

Open up the console by-remove .the screws.gn ;the-bottam of the console.
Note how the door on the I/0 port to the P-Box is installed. Then note
how the power switch is assembled on the power supply. Remove the screws
on the power supply board and set the power supply aside. Remove the
plug from the power supply to the computer board. Note how the plug
connects. Notice the keyboard and how it connects to the computer.
Remove the screws that hold the keyboard and remove the keyboard. Th
computer is then removed by taken out the remaining screws that secui
it. Note its position. Then remove the screws that hold on a shield to
the I/0 port. Note how that connects. Then remove the remaining screws
that hold the shields on the motherboard., Locate the 9300 chip inside.
Its the biggest chip and it has 64 pins. On the bottom of the board,
where no ICs are mounted, locate the CPU chip. We are interested in ~ins
4 (LOAD), 6 (RESET) and 64 (HOLD). Solder three wires to these pins
mark the wires as to what they are. Be very careful not to splash so
or to short out connections while soldering. Bring these wires out thru
a hole in the shield. 1If you are going to install switches in the
console, come out thru a lower hole near the power supply. Reassemble
the

Page £-3

motherboard with its shields and note all the above that was discussed
while taking it apart. If you are going to mount the switches in the
console a good place is beside the power supply so the switches stick out
beside the I/0 port, Be sure to mount them so that they do not short to
the power supply and make sure you will have enough room to mount your
speech synthesizer, If you are using stand alone devices, you may want
to mount the switches in the rear of the console. Now that you have
found a location that works, mount the switches and solder one each of
the three wires to each of the switches. Make sure that the reset line
goes to the pushbutton. Solder one of the capacitors to each switch
across the connections. Make sure the positive side of the capacitor is
connacted to the line that goes to the computer. On all of the switches
run a jumper to the other side that has no connections. Jumper all of
them together and run one wire back to a ground on the computer. The
shield is a good ground point. Put the computer back together following
the reverse of taken it apart.

If you do not want to drill holes you have several options., First you
can use ribbon cable and run it out of the rear of the computer to your
minibox where you can mount your switches. This way if you decide to
remove the switches you can just unsolder your connections and everytning
will be back to normal. You can alsc mount the lcad interrupt switch
external to the console, by coming off of the I/O port. You cam mount
the switech in the speech synthesizer be connecting one side of the switch
to edge connecteor finger number 13 (LOAD) and the other side of the
switch to pin 21 or 23 or 25 or 27 (all grounds). But you cannot access
the hold or reset thru the I/0 port. They do not make it outside of the
computer. If you want just a load interrupt, Navarone sells a board that
goes between the "firehose" and the console and supplies a locad
interrupt. Its about $§15.

pin 6, 9900 CPU, RESET =-—c-——m-mmmmmmm o mmmmmmmmmemmm e \
pin 4, 9900 CPU, LOAD -—=——-—-—mmemmmmemmmem e \
pin 64, 9900 CPU, HOLD -=——==m=== \
|
) l o o
o_/ o/ o -
Qm——mmm—— Qm=mm——————— o]

T % this is the shield or ground
connection

Page 6-4

GROM ComNEC TOR

RATHER THAN EIND AND *
USE ThE UNUSED INVERTERS z
s ON ThHE (ONSOLE Q'OAl., b 4 ™
PUT ANOTHER LOW POWER i
SHOTTRY P16eY-Back omw AN | A]
ALREADY CaiSTIM@ CHIP (TO P

GET oMLy *SY AND GABVNN—1 .
THEN TAKING TRE § Cip »
SELECT SIGAMALS £ pan Rl &
CHIARL Anp FRADNG THEM [
INTC % OF THE & INVEAT 3 o
N A TeLSOW CHIP, ‘13_. s
P RLTTRITTR TR 103
4 OUTPUTS 3O TO Ti

HLEDPS SMOwN Ao
SEC POVMNT-TC-PONT
“RING CHART RIGNT.

“AOVND
SOLMBR nELs
~»
puNp

rFrn-é "’; "h .

THIS HARNESS 6oEs rrom
MH. mUND, NHS z'ng,'4
ABOVE ON TOPCHIPSAL TO

IRE LIST

THE LEDS 3ELOW.

TIE THESE LEADS OF
THE 4 LEDS (nesT TO
*) RAT SIE) BeeTnER.

- R1 i)
BOTTOM VIEW RESISTOR 1 %
OF THE 4 LEDS I H -

¥a waATY

CHIPAL PSS 11 And 13 T80 TO
P 7ed curay Y

= W IRE PROM Fost Sleu D TO RY T WaN
. = .L" LEAS (ALaT of Akt LENS.
MOUNT THESE LEDS N A
LOCATICN THAT $JITS you.
SUGGESTRD) LOCATION SHOW
VRN BiiLow,
2080 JABLE <00 Y8080) AppRESy Biccas (8 K) REPEES

rTe ™ A/ Te e
SFFEPRRIE ’”‘*' yorss }.r TR % LE)S. TOTAL 32,

—

%b‘vp1‘“n iré2
Torsout y = A ('°'C""2
LANGTH . - b] 10] OO X | NG
W/I LEPT 208 AT
SO0ar) LEVEL
|

/_ f'/l/ 7 5". 7 /C/l ?

usoe ;
TUTHIL 1 f"

i
Sl

BOTR AN 52 £ ‘n—l'nTmmn" OTHER §196) SCLIERED
EXTEND AL BUT 1,19 0N TOP Cat P suaunrkfsvou-g

" NP 8L 1D PoeY-aAcnay
) ﬁmn’uv Pins T AN 9 ?cm

LOWT 70 FOolM SO g AN .
¥ ,, SUGGESTED MOUNTING LOCATIONS S
e LOCATION IS FOR SOME OLISR CONGOLES WHARE

WHISTLES AND BELLS ARE NICE BUT LI ™™

[’ve been putting memory in
consples and speech synthesizers f¢
nearly a year now and can account ¢
about 70 such units out there, som
them being in vary distant and far ARl
places. well, ONE person (ED MENASTAN
sdaid he’d_lxie to know when his memory
was functioning, since with the FEF
unit now removeds—-there is no flashing
LED to indicate that the memory 1s 1n
operation. [’ve come up with and re-
fined a pretty "FLASHY" upgrade tc the
console or speech, which will display
not only the fact that the memory 1s
functioning, but exactly which 8K
blockTKou are in at that instant.

e drawings to the left of this
text, will, 1f you take a few moments

to_sfudy, explain how to_ install the
unit inside of ANY caonsole, except the
very few QI consoles that T1 produced.
{ These consoles are [dentified by the
CPU chip being mounted vertically on
Ehe)main board, rather than horizontal-
Y.

I have not included, because of
space, drawings for the speech, but the
same proceedures apply conceptually.

PARTS LIST:

- About 10" ribbon cable
(at least 5 conductor)

- 1’ of single conductor,
26 or 28 guage insulate~
wire.

- (1) 74LS04 chip.

- (4) standard size LEDs
what ever size sults yc

- (1) 220 ohm 1/4 watt
resistor (or approximate).

- Phililps screw driver (#2
tip size}, 13 to 2% watt
grounded soldering iron,

hin resin core solder,
wire cutters/strippers,
patience.

After you have gathered the above
items, remove the console board, and
taking the 74L504 chip 1n hand, bend
the pins, 1 thru &, and 8 thru 13 out
s0 they are on a Fiat lane 180 DEG.
in reference to each other. Now smip
the smaller extensions of ALL pins off.

Set the chip down on the US08 chip
4s shown in the drawings to the left,
and solder pins 7 and [4 to the cor-
responding two pins on the US(8 chip.
You may desire to put a drop of super
qlue on the top of the bottom chip. and
hold the new chip (TOP CHIP) on :r 2
carrect position for awhile. This . .es
the two chips a very firm pair.

NOT enoven AntA (AT@)) WAS Acowdd. LOO K '
/ AND 1S MORS FuncTIONAL AT LOCATION - ,',,,.‘"“'

SERAT g e

" Seolid State Soﬂuuro\

i
/A R Y % (81K
" ® 7 T TEIl o,

Jus

wire as shown 1n the wire

Now
list on the left and mount your LEDs.
BY THE WAY you don’t need memory 1n
your cansole or speech for this modif-~
1cation to work, 1t will work for any
72K even 1 1n the PEB'''!
YOU DO ACCEFPT FULL RESFONSIEIL
IF vyOU DESTROY YOUR CONSOLE''! -

Fun
JOHN F WILLFORTH

Page 6-5

9-9 2a3eg

WIRING

All plug and port numbers are as {:
MNow you have something to use if a wirs b. eaka

2/ 0o
“
1) RED

2) TRANSPARENT Nege
3) WINE WRAP
(not a ground)
4) BLACK (ground)
S) WMITE or YELLOW

L e BN N - N
- ®»0w

1 1] Atmlc‘m'ml JOVSTIH K
13& - P
CONSOLE PN OUT g‘“ rote s uP
Joysrulk

istuy RICHT
CND o NC.
sue / —f/om E
onu/ o TION
SUTT: —INC.
S LEFY l 8 CROUND
snc” / I N~ snc.

7 STCK A | 1ur

CND 3 DOWN

[] Z 3 LEFY <
» QICHT B « MICHT
Vse V-liw ,_".%sn.c. E
Famald rate /.m ’ e
Cowseole Q

DIAGRAMS

2)
3)
4)
S)

Dl
Video Out
Shield
Ground
Sound Out

o

PIN
e were

1) woT Us
2) 8 volt AC
3) 16 wolt AC

POSITIONS

looking straight into them.
Or you want a weekend project.

MARSHALL

CASSETTE
PORT

CASSETTE
PLUG

2) Negative
1) Positive
lh,noqutlv.
5) Poaitive
) Negative
6) Positive
3) Negative
B) Positive
4) NOT USED

7. C"JII" l‘m.“ “,

Svgating
oK »igy

Ploné
PLves

Te Cassary g
“‘aﬂ.‘.d"-

Remote CSl

Remote
Mic 1

csl

lllcl.:s .
S rrTr——

Remote
Speaker
Speaker

T1-99/4A LIGHTPEN

4.

L L T

cwe J

~—d

=

Ti CAYs2TYE
Cats

USE Y Sre.ten

T

Racony 7,

Two Casssrra Tapey

:‘*J:";:;“:m
T T aTr—

Small Ramote
Plug 3/32*
Phone Plug
1/8"

Small Remote
Plug 3/32*°
Phone Plug
1/8"

The TIL 404 Photo-Transistor is attached to

one end of the wire and inserted into a Pelt-
Tip or Ball Point Pen Case.
in place by Silicone glue.

coaxial cable for wire.
be connected at the 9pin connector end and
wraped in tape to hold them.

Pin3y

T2
28290¢

Piv

7

The

J

O yié ¢tm
gy Ve

S D Corroctae
T femals

]

'y

X

It should be held
Use RG 174/U

other parts can

Technical Talk

HI-RESOLUTION
MONI TOR

Having expanded my
coltection of 99/4A's to 2
and also havineg an old Mi-
Resolution monitor (24 an
v-Raqy Mepdical T.V. system.
Jec i cec te connect the
black and white manitor to
the ‘Y* signai, on the socket
-1 1281 t 1261 s the & pin
socket that feeds the UWF or
VHE modulator). The b A
signal contains all the
neCeSSAry sync. & luminance
fevels te run 8 moNoChrome
manl tor,
Mmoag:«.catton completed, 1 was cacLt -~ cCoLOom AUTO FIRE
contreontes -l th a q004d
picrire that would not a CoLoum PROJECT
stav synchronised . Rolling
vertically ar horizontally or érom Channel 99 Hawilton UG
«i*mn the sljgnhtest change in by David Storey
oiQtwre -entent The Hi-Resolution Sequel
meeedscscseraccnemnomen I have been asked Dby several
On examtnation ot my UNF pecple why is It that the asuto
wodulator I noted that the The sequel to the Hi-Res. fire add on far the Atar! does
A connection does not manitor article came some not work on the TI 99/4A, Well
correspond with the circuit 3 - o months atter the the 99 does not have any voltage
diagram, Reconnecting the conversion. output at the joystick port. It
plug J2¢1 as per the f0llow- whiist busily working an a also has to have a physical
ing table produced & 9004 prageam, [came across one contact making and breaking for
staple nleture., of those " Saftware ° teaults the $ire button to work.
J201 that T.1. nissed & esveryone
else has wissed. This prompted me to cOme up with
this wimple circuit. It uses s
cet. diagram | 8 correct 1 was using the CALL COLOm 39S timer and & relay. R1 and Pt
\ . subprogran. It would just deal with the time constant.
i connection not waork. The picture stayed TRis circuit works well althoughr
' cemaaee Cyean reqgardloss. it s a bare bones circuit anc
1=z 42 BRI You quessed it! Manochrome could be modified to give more
L. Monitor. range of +tiring speed DbDut, I
2 = R-Y V2= Y well wy +¢ace changed colour will Jeave that up to you. Here
3= Audio '3z R-Y even {4 the picture didn't ! Is the circuilt, you wili need a
, battery. [used 8 ¥ volt as |t
4= Y . &= B-Y Steve Wilkinson is compact. This circuit as is
5§ = p-Y ''% = Audio will rua with voltages from 4
b = Ground ' & = Ground volts to 13 volts.
3 Auto f1{ drawing.

2 4 ‘ '@U’ b D.STOREY,

RimiMe¢
Pl-nug lin
Clmsiméd
Rear view of pluse. - 2:“‘.’.’eségkbpo‘:
QV—ISVt .y Ri
Plugs are weasily obtsinable
srom Atkins Carlyle. "lug 1 1
type ie DP6, cost ®1.06. 4 e F4
+ This (s true for the PAL P
99/aA*s but may not be valild - - '3 1 4 pe
tar the MNTSC version. T tick
nel s 6 :olcs._.o Jowstic
Remember that you will need (o} |
ar 4,34 ~annectian also, ¢ Timer L
e . 2.8 ‘o “ave the T
duice: tones, ta remind you 1 <] 2
that you have just ° BAD ‘ E
VALUE °*‘'ed again.
St.ve 41 n.racn

Page 6-7

Opening Up Your Hardware

2K MEMORY EXFANSION FROJECT.

Here’s an article that tells how to go abaut placing 32K memory e:pansicon inside your
speech synthesizer, stand alone disk controller, etc. 1 think placing the 2K 1n the
speech box 18 a better place than the console.

e PoAT
AL _z? .:‘m J2 KiloByce MEMORY EXPANSION
T ’ EIN FOR INSIDE THE SPE:zcd
. [l C NS XL S~y ~
& se N il ey : (es) SYNTHESIZER (OR ANY
das |3 : L Y e PLACE YOU WANT T0O PUT
S At N e sy .
1 e d " .}“m_,m (esy by JOHN WILLFORTH
Femen |32 Yoy s s (¢s9) (based on ideas from che
K ' WESTRAILIA, and che
I3 CEDAR VALLEY USERS
;"{m l = GROUPS)
—— 4 hg .
. f'."."? I bied = .fv [have wriccen up several arcicles on che
gy 5 subjecc of pucting J2K of stacic RAM inside

of the Tl console. I balfeve that mosc of the

or far :——___j"':__—[4 information for this came from the WESTERN
1:: " N AUSTRALIA U.G., and the work leading to che
n e I insertion of the same memory into the Speech
R R Uty ! Synthesizer, was done by the CEDAR VALLZI? U.G.
LA "ot Now I have put memory into both cthe -snsola
:i e ‘l, " Pres and the Speech Synchesizer. thought . Lc
§A 3 UL e there should be no place you couldn't scizk ic.
.; B g e So I jusc finished pucting it inco che OLOE
e | '8 M &3¢, TI STAND ALONE DISK CONTROLLER (parc of cthe
At 1 8 5 'Y old train). This made a nice quiec, sorc of
fa ;: ! » micro-expansion system (without RSZ32/P1O).
Yag | » I[f you already have a full blown syscem, or
L R v . 4re jusc beglnning to get inc a disk syscem,
ome |1 < 1 I and realize that you either don't have the
q{‘.:."‘. a - funds, or will not need anymore than that jusc
Silemas 13 @I ve ! described, you should read on.
poiv | 9 - The long connector on the left of che
et . schematic, represents the large 44-pin conn.
- that 1is inside the speech synth., or any other
- pPlug in peripheral ie: Stand-alone Disk Conc..
r stv The big difference, howaver, is that ONLY che
' - speech synchesizer carries pins 1,2,43, and 44
b S0 e into the unit from the console. Tharefore Lf

£Dew) you do dacide ro put zemory iazc anv c:her uni:
owwacma /N S/RacH synTveS 281 than the speech synthesizer, I would recommend
that you wire across that unic, in ocher words
you should ryr & wira from pin 1 on the console connector to pin | on che outpuc end
of that unit, vhere the 2nd unit from the console might be plugged in, and Jo the
same for pins 2, 43, and 44. This will enable you to put the very small speech
synthesizer out on the end, instead of between the 2 much larger units (console
and Disk Concroller). Thare is only one lead that is involved here that is a oust,
and that {s che pin |, since I have stayed with using che +5 VDC from the console,
racher than tapping it from the +3 Volt source in the unit where this is inscalled.
If you have the documentation on the RAM chip, you may be confused by the reverse
order of the address lines. DON'T WORRY, Jusc wire the chip up as [have indicaced,
and 1f you do your part correctly, it will work. I've done nearly 20 of these in-
stallacions in the console and the speech synthesizar, and in & stand alone disk
controller, and as far as I know, they are all working. If you want the more simple
instructions, on how to install this same memory into your console, (which is what
I ptefer) jusc contact me, by sending a stamped , self-addressed envelop, and I
vill send the i~ =ryctions. Have fun! JOHN WILLFORTH RD#! BOX 73A JEANNETTE, PA
15644 , or cai. afcter 9:00 PM, (412) 527-6656 Page 6-8

HARDWARE HINTS

By Ken 8ladyszmwsi}

When 1astalling & pair of nalf height #loppy disk drives
in the peripheral hox, witra connactors for Dbath the
tnterface and power cables are required for the second drive,
The interface cable can be handled by idding 3 J4-pin card
edge connector {Radio Shack 276-1364) to the eeisting ribbom
=able (the cable 15 ,ust barely long enought, or by resoving
111 the connectors from the existing cable and re-installing
o longer cable. (Qrientation to colored strige 1%
taportant, Isproper installation causes drive to isproperly
~ap zontinuously, Gut with no apparent dasage.!

KEYBQARD_REPLACEMENT 112
By Ken Sladyszewsii

when 4 beige keyboard 1§ 1nstalled 1n 2 black and silver
sonsole, great care sust be used to center the keyboard to
Ron Minadeo has

gi1minate binding of the outsr Keys.

discovered that tha overlay strip above the nusber keys
held in & plastic extrusion which 15 fastened to the cos;
with double sticky tape. It cam be repositioned higher ...
sore ey clearance by filing or sanding the upper corners of
this extrusion ad refastening it.

EITERWA, DISK DRIVE POWER_UPFLY

BY Kan Gladyszewski

When | bought & case and power supply for an externdl
dgisk drive, | was asazed at how sisele and uncosolicited tne
power supply was. [prasent the crroutl and garts list here
for those wanting to Build their own, because they already
have Bast of the parts. These parts are expensive and total
§20 (withowt & recoseendes on-aff switch and tuse). Better
and less sxpensive cosplets power supplies or these siae
parts can be purchased fros 3 surplus house by satl, Sheet
astal enclosures cam de obtained siailarly. Any power supply
with 12 volts DC 0.5 AWPS ain, and 3 volts OC 81,0 AMFS ain.
should power sost any single full height drive.

NSYE. RECULKIORS ~RPS & 1612

MOST BE MSUWNTED oN

D4 SoATVELE NERT SANK |
vy MECRE, PR\, CoST
T \ 'ﬁkﬂﬁﬁmak TTR-\B\S %Gwﬁ% ;;3:\
iGN Cr @TOR
- Y * ?.\% m ' con
cy 2 3 3 CWP\C,\'YQK ey A \O +5
U Zroo MR N “9 ER
& cg 2 CAPRISR zreo\ote YT
,(__,A{]C- 106 J-L{@?’s“ l ¥
ok A 3R RR- onwan © = R.GLIIHGZEWY
‘Dl \NBATZ 1,59 \2-B\=
| BV FILED 216-\Te 7°
RLGOLAR RS .
| 12y FIxED 216-11 '.59

REGULATSR 2

Page 6-9

"COOL IT: Help your steaming T] 99/44
run all dar iong like one
reliable cool cat.

While I have not had a problem with my computer crashing
because of heat, some TI owners have found that their units Q0
berond the point of annorance into a twilight zone of gnashing
teeth. Since I work my computer daily for several hours at a
time doing word processing, | was gquite concerned about the
significant heat generated inside the Ti/?94A. 1 thought of
add—-on fan cocling, boring a hole in the bottom of my computer
table and hanging a fan underneath. or moving the study furniture
argund to Tocate the computer in front of the air conditioner,
These solutions were either inconvenient or yncomfortable,
Besides, what about the air conditioner in the winter time? That
idea was obvicusly not very practical, It was time to
investigate realistic salutions.

Having cautiously grounded myself and a FPhillips screwdriver
to the Kitchen water faucet (computers get a charge out of static
electricity), 1 removed the bottom cover of my hot pglate computer
for a look-see. That 4 t/2* sqQuare board was the heating eiement
for sure. I removed the twe mounting screws to peek at the upper
side. Good arief. There was a big black heat sink obviously
positioned to reduce air flow to ZerQ, reaching right up to the
plastic too cover. That board had to come out aof there. ['ve
assembled electronic Kits before. There must be an easy fix. I
would even settle for a not too difficult fix.

Brousing through the local Radio Shack store, ! noticed a
metal chassis box with ventilating slots. A quick check of the
catalog showed Part #270-253 to be 5 174 x § ?2/8%, perfect for
holding the Tl’s printed circuit board power supply. A few
more minutes of thought., and the shopping list below was
purchased and carted home. My power supply now cools itself in
it’s cwn comfortable sheet metal box with a genuine toggie switeh
and large amber pilot lamp. This unit has been on continuously
for eight hours, becoming only comfortably lukewarm to the touch.
Five more units were contructed and are now in use without
problems in our local users- group.

A recent Tl acquaintance reported adding more heat sink
material inside his factory-stock computer, only to have the
plastic door in his Plug=in cartridge port overheat and soften.
That report spurred me to share m» most satisfactory solution
with loval Tl uysers everywhere who certainty did not purchase
their computers with the intention of perculating coffee!

Page g-1q

Here is the Radio Shack parts list:

DESCRIPTION PART # PRICE
Ventilated Metal Chassis 270-2%53 4,99
PC Board Standof+s : 270-139¢ .49
S-pin DIN Plug 274-004 1.4%
S=pin DIN Chassis Socket 274-005% .59
DPDT Toggle Switch 273407 {.79

24 gauge stranded wire,

two-conductor zip cord 278-130]1 30°/72.79
Small nylon cable ties 278-14632 30/1.39
Small panhead sheet metal

screws and 4-40 machine

SCrews, washers, and nuyts,

Tools required: Assorted smal}l drills, files, needle nose
pliers, penci soldering iron, jack Knife, screwdrivers, tin
snips, & inch ruler,

1. Dril) four small holes 1/2" in from the corners of the
aluminum chassis and reposition rubber feet as far into the
corners of the aluminum chassis bottom as possiblte. This wiltl
provide room for the nylon PC board standoffs to match existing
holes in the power supply board,

2. Drill holes to mount the new power On-Cff switch and pilot
lamp on one end flap of¢ aluminum Chassis bottom. Leave top 1./2°
of chassis end flap clear of fittings. Slightly relieve center
hole for the toggle switch top and bottow 20 the switch will
operate without binding. A small round chainsaw file does the
Jjob gquickly and neatly, Do not mount components until after the
Power supply board had been installed.

3. Remcve bottom of TI 99/44. Observe, tag, and record order of
four wires going from power supply to main computer board. Power
supply end of these four wires May OoF may not have a nylen plug
fitting., Unsoider wires from main computer board only at this
time. Remove two screws and power supply from computer. GBently
bend original red pilot lamp in toward center of board. Relieve
three corner holes in the power supply board to accept the nylon
standoffs, then drill bottom of chassis to match. A paper
template is helpful. A slip fit is desired here, not a force
fit. Do not install the PC board until all! sheet metal work is
completed. Take the time to remove all burrs and sharp edges.
Attention to such details not oeniy protects your fingers from
Possible wounds, but it will protect the electrical integrity of
the finished power supply. Besides, it is that little detail
done right that spells quality and pride of workmanship. Your TI
9744 already has those qualities. Your project can too!

4, Cut two lengths (4~ suggestead length) of 24 gauge stranded
zZip cord. Strip and tin 1/14" on all ends. Tin 4 pins of your
chocice on S-pin DIN Plug; solder above four conductors to 4 pins,
Identify the pins and tag the wires before installing the plug

cover, Page 6-1

3. Use small nrlon cable ties ever &" aor so to bind the two zip
cords together into a neat 4-conductor Cabie. Make a loop in the
computer end of cable for strain relief, just large enough to
slip over the plastic post where PoW T aply was mounted. Bind
the looo with ancther nylon cable ti. . 'Tow enough length
remaining to reach the 4 unscldered holes in the main computer
board with some slack, Solder the four wires into the main

board in their correct order. Carefu] examination of the

Power suocoly board and main board will reveal one of the four
holes to be a ground. That may help Keep your connections
correct. The other wires are +SU0C, -5V0C, and -12VDC. NO WIRES
ARE INTERCHANGABLE. Keep bcards, plug, socket, and wiring
posittively identified at all times. Place strain relief loop on
plastic post and secure with original screw and smal) washer.

. Drill ciearance holes andg mounting screw holes in cpposite
aluminum chassis end to receive DIN socket and the transformer
Power socket, which must be removed from the power supply board.
Mount high on chassis end but Keep top (/2° of the sheet metal
clear. I unsoldered the red, black. and white transformer wires
from the board, inserted the wires through the chassis end from
the ocutside (pointed down), and cClamped the ends of the socket to
the chassis with 4-40 screws washers on the outside. using lock
washers 4-40 nuts on the inside.

7« Cut three 3" insulated stranded 24 Qauge jumper wires; tin
ende. Solder one end of each Jumoer into the red, black, and
white positicn holes in the power supply board, from the top
3ide. Install standoffs in chassis bottom and gently press board
onto standof+s.

8. Inztal) new tcogale switch and pilot lamp. Solder ‘red-
iumper wire to one bottom terminal of switch. Solder ‘black”
jumper wire and one pilot lamp lead to the other bottom switeh
terminal. Salder red and black leads from transformer socket to
corresponding MIDDLE terminals of power switch. Solder white
sockKet lead, "white” Jumper, and 2nd pilot lamp lead together ang
Cap with small wire nut., Route all wiring clear of black heat
Sink. The new power switch will be ON in the UP position. The
pilot 1Tight operates on an 8.%VAC line, giving a moderately soft
glow which does not glare at »you.

7. Take the four DC supply voltage wires, and solder to correct
pin numbers on S-pin DIN socket, remembering that you are now
looking as a2 mirror image of the DIN plug coming from the
computer. I fed the wires through the chassis hole and soldered
them to the socket be¢ore mounting the socket, because I had a
4-conductor nylen plug en the power supply end. If rour board
has soldered wires, you may prefer to mount the DIN plyg first
and then solder the wires to the plug.

Page 6-12

DOUBLE CHECK FOUR WIRE connections throughout your cable!!

Qut of & power supply conversions, as careful as ! tried to-be, 1
messed up twice, Both computers worked correctly after the
mistakes had been corrected. But it is still heart stopping,
when it doesn’t work right the first time. Check your ground to
around wire first, then verify the order of the other wires
before turning anything on. Glue the original plastic On=-04+
slide switch in place with rubber cement for appearance sake
(later beige TI 99/4A enly). Install computer bottom cover.

10. RECOMMENDED MODIFICATION OF SHEET METAL CHASSIS TOP. The
black top is steel. But the silver chassis bottom is VERY SOFT
sluminum, It is easy to work, but bends much too easily when

pulling and pushing plugs into their sockets. Cut two pieces of
light sheet metal, 1* x 4. Bend lengthwars in a vise to a right
angle, 1/72" x 1/2" x 4°. Drill two 1/8" holes on 2° centers in

one side of each angle. and matching holes in the top of the
steel chassis cover, 1/2" in from each end. Pop rivet a
reinforcing angle to the inside of the cover at each end. OQrient
the ventiltation slots in the cover adjacent to the heat sink end
of the power supply board and drill through aluminum ends into
the reinforcing angles for small sheet metal screws. 8¢ sure the
original On-0+¢f slide switch on the power supply board is in the
ON position. (1 $orgot that detail the first time around).
Assemble chassis bottom to cover and secure all sheet metal
SCrews.

Six of these power conversions have been in constant use
locally since May 1984. OQOther members in Our users’ Qroup join
me in recommending this conversion project. You‘ll like it. and
your TI 99744 will love you for it'"

Page 6.

Anchor Automation Signalman Series Modems
Interfacing them with the TI 99/4A
by Scott Darling
GEnie ID TIKSOQFT

After reading some messages asking for help using Anchor Signalman
modems., I decided to sit down and write a short tutorial covering them
all. &s this is conjecture on my part, please don't hold me to all I

am about to expand upon, as I had to figure out most of this myself.

As some of you know I operate a BBS, CALTEX #8 in Spokane,Wa. The
'provider’' of the hardware had a Mark VII modem that he had bought as a
'auto-answer' modem only to find out that one had to write the software
to activate the modem. That left both of out! So I talked to Anchor
about the situation And was told for $30 more could get a Mark X.

Sc off went the modem and the check! This was in June of '84 and we had
never seen or heard of the Mark X. But was told it was 'HAYES'
compatible. So this is were the REAL fun began and I found out all the
ins and outs! Well onto the nitty-gritty.

Mark III: This modem needs no explanation as it is a direct connect
ready to go. Just plug it in and fly!

Mark VII: This modem is a auto-answer, auto-dialer 300 baud modem.
The only catch is it is your software driven, Which means you, the
user, write the program to make it operatel This is a major drawback,
at least it was for me! But when I found out I had to write the
software.....Gulp...... forget itl But if you find yourself with one
of these. It is not a problem , it still can be used just like the
Mark III.

>>>>> EXCEPT<<<<< Now here is the fun part! A wiring change is necessary
for the hookup to operate the modem.

RS232 MODEM
PIN 1 1
2 3
3 2
6 6
7 7
20 20

The above wiring changes apply ONLY to the Mark VII.

Mark X: The Mark X is also an Auto-Answer and Auto-Dialer EXCEPT for
a small detail.....This one has the ROM software to do what you want.
Whew! I finally found what I was looking for! At least I thought so.
So I took it out of the box and plugged it in and of course nothing!
Because I knew I needed to make the wiring changes. So I decided to
make up a cable interface soc as not to destroy the integrity of the
modem cable. So after about $10 of solder plugs and hoods I was ready
ko go. Here is the cable makeup that I used:

Page 6-14

RS232 MODEM

PIN 1
3
2
0

(RN R PUN N

2
7
5
8 is DCD

Because I use pin 8 of the modem for a Copyrighted BBS, I will Leave
out that connection. Besides it doesn't go to the RS232 port!

This configuration will and does work everyday. So now I had my cable
made up and hooked in and was ready to go. Right? Tried to call,
BBS got a carrier, and played around in it. Logged off and tried
calling back. Hmmmm no carrier tone but the modem connected me anyway.

Well to make a very long and frustating experience short,

I found out the COMMANDS I was sending were not being executed. It was
starting to get on my nerves at this point, So here is what I found

to make the modem software perform the commands. The following
programs are examples:

These are setup for auto-answer for a BBS! I use these formats on mine.
When you turn on the modem, these are th defaults that will power ur

"ATCOF1HOQOV1S0=151=0S2=43S3=1384=]10S5=8;¢cr"

#‘ .
Well as you can see the defaults take care of a lot of different
functions for you at the onset, But you'ld hardly ever use most of
these. The following are the ones that will be used by most people
using the modem for a BBS or auto-dialer fumction.

This format is what I use to set up my BBS to auto-answer, Of course
I don't use these exact setting's. I'm using these for an example.

100 OPEN #1:"RS232" :: PRINT #1:"ATQlS0=252=30;cr"

This tells the modem not to send result codes to the DTE

(caller end<'Ql'). To answer on the second ring ('S0=2'). And the
escape code is CHR$(30). This format is used by my BBS while waiting
for a carrier. Also notice that the command line has no spaces, Mark X
ignores the spaces, so just leave them out. The Hayes REQUIRES those
spaces between commands.

So now your online and running. The next step i3 when the caller is
done and hapngs up. This next line will open a different file. With the
LF off (which I normally use in the BBS anyway)

100 OPEN #2:"RS23Z.LP" :: FOR A=l TO 1000 :: NEXT A :: FOR A=] TO 3
PRINT $#2:CHRS(30Q) :: NBXT t: POR A=]1 TO 1000 :: NEXT a
110 PRINT #1:"ATHSO=0;cr" :: RUN

This gives a one second delay bhefore and after the escape command. T

Page 6-15

way I set the escape command evidently gives just enough pause
between characters. Line 110 is the hangup command to the modem and
also tells it NOT to answer till told to do so. The reason I use RUN
is I have turned off pre-scan and my 88 sector program will recycle
in 10 seconds versus the original 30 before.

There is one command that will act like turning the modem coff, then on
again,

100 OPEN #1:"RS232" :: PRINT #1:"ATZ;cr" :: CLOSE #1

This is the RESET command, It sets the status of the modem to ALL
the defaults.

The following is a BASIC program that will write a logon file. I haven't
figured out how to write a basic program that will logon and CONNECT.
I think there is a way of doing it. But this one works.

100 OPEN #1:"DSK1.LOGON",DISPLAY,VARIABLE 80

110 PRINT #1:"1ATD"

120 PRINT #1l:"1T" OR P FOR PULSE

130 PRINT #1:"13260515" (1 + AREA CODE + NUMBER for long distance)
140 PRINT #1:"1 "

150 CLOSE #1

This will be saved as a file that TEII will load and run from option 2
or 3. I tried calling CIS using the output of this and it worked.

MARK XII: As far as I know all of the information for the Mark XII is
the same as the Mark X. I acquired most of this info from a dealer that
sells the Mark X. But as he put it "well all of the people that buy the
Mark XII's wouldn't call a 300 Baud BBS anyway" so there was very
little animosity between us! But from I can gather everything should

be the same. Except one added command for 1200 baud

To sum up the Anchor commands: the most important part to do is
the ";cr"” as the modem will ignore anything sent till it receives
that command. If I have caused more confusion than help let me know,
as I have tried to think out this tutorial. But I could have made a
mistake. This is my first try at writing(rather obvious I suppose).
So here's hoping This clears up any confusion. Also, I wouldn't advise
calling or writing Anchor, as they are really not equipped
to handle the BASIC language to activate the commands. I know from
experience,

Page 6-15g

DISK DRIVE PUWER SUPPLY

This is a break down on how to construct a powaer supply for a

‘di sk

drive. The list of parts are listed at the bottom, but remember that
this list does not include the sales tax or the board to construct

the power supply. l¥ you need help in constructing this power supply
just give Skip a call at 944-2770 and he will help you ocut as much as
possible.
DISK DRIVE POWER SUPPLY
IRS2!
T1 D1 t
Q== =) e L mm—— Pl | e 0 +12v
F1 S1i €3::071 ! : iC1 iC1 iC4
: Laiicl - - H -
' Lavigy P 0= = : =
: ci::c3 ¢+ D2 H H H ! =0
! 110 -l | ———— : CoMM
=== £1::ic1 Pl C3Y iC3 i-0
115 = / a [1::r1 L - | IR83! -
VAC =/ =011 ([31::0) - a | ee——— =
- s== t1i:t] HE H H R 1
i LItiCfl3—==—- M e e Fe— | e 0 +3v
i ca:ic P ot
: [1iic1 D3 1
! CIVICT =i~}
' £avigl {
H c1:3¢c1 ! : ===\
| £1::C2 ! Da { P LY L = e12v
0t dle=—1 : H
! £33 1 -> COmM
H {
31 -> comm
H |
DISK DRIVE HOOKUP VLT) = +BY
----------------- | ey
| NAME | ! TYPE ! ! TECHINCAL NAME {IPART NO.! PRICE!:QT !
Di-Da 3A INS402 "BARREL* DIODE 276-1143 $.89 (4)
Ci1-C3 2200UF 3INV ELECTROLYTIC CAPACITOR 272-1020 $2.49 ()
Ca-C3 100UF 33V ELECTROLYTIC CAPACITOR 272-1016 $.79 (2)
T1 18.0CT 2.0A POWER TRANSFORMER 273-13515% $6.99 (1)
F1 120 vaC CIRCUIT BREAKER 270-~1310 $1.49 (1)
Ss1 "SPST 120 VAC ROCKER SWITCH 2735=690 $1.89 (1)
L1 NE-2H120 VAC NEON LIGHT 272-1102 % .69 (1)
RS2 +12 VDC 7812 VOLTAGE REGULATOR IC 276-1771 $1.39 (1)
RS3J +13 VDC 7815 VOLTAGE REBULATOR IC 274-1772 £1.39 (1)
TOTAL PRICE FOR PARTS -—=> $25.99

CABLE BOX
by Jim Edwards

One feature of the T.1.99 that has never been hard for me to criticlze was
the physical size and design of the peripheral cable and connector. It
Always saemad to take UpP an undesarved pertion of desk space. With enly a
goal 1n mind and virtually no "hardware saave”, I set cut to allsviats the
problem. [t seemed a simple task to Build a compact connector that would
Rlug 1n witnout disturbing the nriginal components. Actually, the mast
difficult aspect of the project was rounding upg the parts.

That proved to be an educatian. Card wdges and their matehing connectors
have saveral canfigurations. Faor example’ 22/44 mearms that it nas 22
canductcors on both sides. Spacings vary as well: .18, .12%, ,1%5, etc.
This refers to the distance between the canters of the conductors. This
Aroject requires 44 conductors (22 on a side) with .1@ certers. Finging a
card edge connector was difficult enough, but finding the male counterpart
was lmpossible. A section was litgrally cut out of an abandoned board.

U fours wost of the parts at Pacific Radioc while the card was found in a card
bear gox at all glectr-anics, QEviously, the sxact parts may vary but be
certais of the numbar of rconductors and spacing. Once everything 1is
rlunded usS, simply solder the wires together making sure to match ore end
to the ather. Cetionally, an interupt switch can be added for those screen
dump programs that require cne.

cee=="1 UTILITY BOX

—~ 2 CARD EDBE CONNECTOR

3 STRAIN

S TELEFPHONE CABLE

T & CONNECTOR HOOD
T
—= ™\, 7 CARD EDGE

s FART MANUFACTURER PT.# casT

1 UTILITY BOX CALRAD _ 90-785% £2.1@
2 CARD EDGE CONNECTOR GC ELECTRONICS : 41-87% £4.74
3 STRAIN ' ‘ .25
4 1/4" BUMFERS RUSSELL IND. REC-2075H $£1,79
= 5@ CONDUCTOR TELEFHONE CABLE
& CONNECTOR HOOD BC ELECTRONICS 41-1003 $2.48
7 CARD EDGE SCAVANGED FROM PC ZOARD £1.52
$12.86

Page 6=-18

INSTALLATION OF GAOM CHIPS
[SINE THE 7] COWBOLE
by Patrick Ugorcal
OH-A1-TI

The cartrioge grom chips for sost
of the TI eodules can be installed
inside the console so that 1t is ne
Longer necessary to glug the cartridqes
intg the groe port. The grogriss :an
3c selected by wiy of & switch attached
*eohe grom chip. This not anly saves
Lise in not naving to search for a
particular cartridge byt 1t ziso saves
wear and tear on the gros port,

Like all articles of this type !
tust first warn everyone that any
sodification te your console will void
an. warranty and also the risk you taks
15 your own. If you plan on doing this
agdification on your only console |
strongly recossend against it, There
1S alwdys 3 chance, although slia, that
4 disaster sight ocqur,

‘he parts you will need for this
aroject are:
1} Progras gros chips wither
purthased from TI far around $4
zdch or taken from 4 cartridge.
2} Ribdon ~aple (& inches long, 13
nLCES),
W Thin wire to
switch.
4) Zmiteh 1The type ot switch used
lepengs i the spplicattan. Nore
an this Later.
5F Low wattige solder iron (2%
watt or less), solder, solder Wulb
to rvaove gros chips from soduls
14 used, etc.

cannect the

This project requires the resoval
of the qros extendar, the part the
cartridqes plug into, froa the console
ind attach 14 wires to it. The other
end of the 14 wires are attached to the
groa chips which are being installes,
A smtch is attached hetwasn one of the
wires so that the progras can de turnmd
I oind off,

_What limits the nusder of prograss
which can be installed iy the typs of
suiteh that is used. I have installed
twa prograas into 4 console (E/A and
NI using a SPDT type switch and ses
10 redson why aors cannot be used. One

criterion for the seitch 1 Ehgt it
sust Nave an off position so that the
program dttached to the grom port can
be turned off whan cartridges are ysed
lextunded basic for exasplel. If you
are installing only one prograa then
any SPST switch will work as lomg as 1t
15 saall snough to wsount in the
console. If sore than one progras is
beinq ddded then 4 smitch with an off
position s needed. | used 4 SPOT
an-afé-gn *ype switch éor oy two
pragram installation. [have seen
eintature rotary smatches at has eeets
with as many s 12 positions. [eagine
Lhoprograes available at the flick of 3
smiteh, A sini DIP switch could aiso
be used byl say naot be s convenient to
operate.

Progedect
Disensentling. the_(onsele

17 Resove the on/off switch piece
on the dlack and siiver consales.
Z) Resove the 7 screws iroa the
bottom of the console.

3 Lift the bottos part of the
console fros the top portion.

4} Resove the 2 screws holding the
cower supply to the console and
reaove the power supply.

3 Disconnect the power cable froe
the power supply.

) Rescve the I screws halding the
agtherdoard to the consele iad
i1t the eotherdoard up slightly
s¢ that the kayboard comnector can
be resoved.

7} Discosnsct the keyboard and
lift the sotherdoard owt.

8) Reaove the groa extender +ros
the sotherjoerd.

Prosacing the_froe_Qhiny

The grom chips will D
piggy-backed together to fora & qroe
stick. Pin 14 on each progris yros
chip group is attached to the switch
pasition so that the differmnt prograes
can be selected. Sose of the prograss
4t s sany as 3 gros chips. For
exasple Editor/Asseabler uses |,
Multiplan uses 5 and Disk Manager [I
uses 2. In the case where sore than
one thig 1s used, care sust be takes to

Mke sure Nt the chips
pLagy-dacked in the right order or ¢
progras will net tumction proper:
This 15 a0t tos ¢ifficult decause |
chips are nusbered (n the proper order
(OMII-CO2234M. and (D221, for
txasplel. Just sake sure the chips are
stacksd 1n amsmding arder ang

everything mtl work fine. (Ses figure
2 tor sare fetail.)
To prepare the grow chips tor

installation da the ioiiowtng:
1h Carefully bend pin 14 o all
the groa chips mith a needlenase
piiers, Rafer to figure ! for
location of pin 14,
2) Piggy-back &ll of the chips
used sdking sure the notches on
the chips face the sase direction
and are arranqed 10 the proger
order as discribed above. [+ aor:
than one prograa s being
instalied temp the gros chip
groups together,
3) Solder all of the pins s:cep
for the pin 14's, Make sure that
there are no solder brigger
betwaen the ping,
§) Solder the pin 14's for eac
pragras group together. Solder -

thin, & inches long, to each
arogrie graup it pin 14, (See
tigure 2 for detail.)

lestallation_of_the_Proecie_bcoe O0(ny

11 Separate the ribbon cable into
two pinces, one with 8 wires and
the other with 7 wires.

2) Attach the ridbom cable to the
resaining 13 pins on the gros
stack, The B wire prece 1%
dttached to pins [<B and the 7
sire giece to pins 9-13, 15 and
14,

3) The wires attached to pin 14
e then connected to the switch,

8 Mtach 1 ssall prece of wira
between the center of the sxitch
Md pin 29 of the grom extander.
{Figure 3},

3) The wires froa puns 1-13, 1§
and 16 of the gros stack are
attached ta the gros extendm

positions indicated in Table A,

b6} Recheck all of the connections.
T} Wrag the gros stack and mires

Page 6~19

with electrical tape so that it
will oot shert aqaiast the
ootherboard’s setal shielding when
instalied in the cansele.

8 Inastall the switeh in the
cansole close to the g¢roe pert
tither on top or in the back.

Seaseontiio the Coamels

Sefore reassesbling the consele,
test the prograns installed. Recommect
the power supply, kteydoard and somitor
to the sotherboard. Make swre the
power supply and keyboard e o 2
non-conductive surface before applying
3y power to the comsole. Tern om the
console aad try each of the prograss
installed to eake swre sverything is
working properly. Also chact bdasic and
the gros port for proper operation. It
ody be necessary to reset the comsole
fctn w) gach tise 3 ditferemt progras
is selected. Make sure that the groe
stack switeh is in the off position
befare inserting aay cartridqes iate
the gros port. If everything is
working fine thes the comsole caa be
reassenbled. If o prodles occwrs
recheck all yowr work,

hen reassesdling the consale sake
sere that the ~tbbom cable 1s bent out
of the say 50 that the groe port caa de
resnstalled into the top of the comsele
ad it doss not iaterfere with the
operation of the comsole. The gree
stact should de placed to the left side
of the cossele abeve the sotherbeard.
Reasseshle the console in the reverse
order used to disassemble it.

After the comsole is assestled
rechack it again to eske sere
ever thing is operating corractly.

T there are any questions sbewt
this project please feel fres to ask.
My address is: 7167 Luama, Allea Park,

Al 48101,
41 1"
'Y 39
Flaure 4

BAROM CW P P4 PosTions

Rivdon CABLE CouecTED
TO %o evTenour

R I IY, TE YT T TN TS TCR NI ISR
RN TR LTS B Y LS 3

FIGWE 3

TS TS TS TS em as en e me 2% ce e® e e o me me e- ce —e ae

6roa Extender | Gros Stack

—
©Q B8NS N ey -

e e s Gt gt gma
O A & Gd N e

Tal

i
)
!
!
|
[]
t
|
!
!
!
{

'
i)

Page 6-20

Adding a Second RAM Chip

.

This section describes how I added a sacond RAM chip by piggybackinmg it
too of the First., Howesvsr, this makes the chip pile high enrough so that +

modula cover will not close .over it. Accordingly, I had t- rmmove a sma

section of the *op nadule covear [(about 1 by 2 zm.) rignt at the point whers L=
takes a couple o’ right argle turns. This is where the madule rarrgws sag that®
it will Fit intc tne cartricge mslot of the consoles. Since the chips take ocC

scme of this space, thig "souped-up” Supercart needs tao reside in a widgit =-
cther cartridge expander (it even works waell in a GK]J. To do the actual cutting
of tre mocule cover, I used an old soldering gum which had a plastic cutting t:ic
but I suppose anything from drills to hot wires could be used alsa.

The Hitachl HME2B4LP=-1% iz a 28 pin chip of which one pim is net cgcrnec+tea,
two oinms are concerned with power supply (ground amd +3-S5V input),and 21 z2inms cof

which are acddress amd data Jines, This leaves 4 pirneg left aver which camtrsl
the Fumctians af the crnip. fin 27 is the WE or Write Erable pin whiz=

determines wheither the chip will bhe written ta or read from and ia cogntrollec
vi3 the “#lre Zagnnected to edge cannecter 35 1if the voltage to thim pin is i~ =
higr state [+ voltage) thenm *he chip's memory will e available tz be read Frzm
shereas 1f it is low {@ voltage or graounced) then a write to memary is expectes,
Pin 28 is tre CS2 pin which seems to act as & searsor as to whether gower is
agpolied or not; ifF this C£S2 pin is at a low (2 valtage or grounded]! state, trern
nare of the chip's mamory functians are accessabcle, This is why it is fag a
continucus sign voltage state via the LED which is conmected to the +5V suoply
from the console (the left hand F3 hole conmects with pin 28). Pin 22 is the GE
pLn or data bus in and I'm not entirely clear as to its meaning. Howaver
this system, if this pim is at a nigh veltage state, output From the gcnip
disapleg armd ifF [t is a4t a lcw state (@ voltage or grounded)] then rasad and wrizs
Fumctions cam be done,. The last af the four caorntral pins is pinm 22 or cS1 -

=thip select =hm, When this pLn is supplied with a high astate [+ valtage) t.
2rtire =nip pretends that it ism't there (it's "deselected"). Whenm thnis pin

3% 2 . s 2 Limve o jrounded) then it gets the message that it -as Das
"s2.Eczer 9y tra ~23f of the aystem to converss with and its Fumctiaons are
eraglex, IF ¥ S L320x It tne i-side af a GK or Horizam Ramdis< which bath use
Figgybac<ad B264ALP~15a, you will Fina pins 29 bent out with imoividual wires
cgnrecting them = the Dboard; this is the way e@each chip 1s selsctesdg ar

deselectedq,

THe above paragraph 1s probably boring amd inaccurate but it helgs 3
explain the cirguitry necessary to add another RAM chip to tha pile. It's
relactively simple tc piggyback another RAM chip on top of the first; bendg inm trha
pLins ta make 3 tight fit over the lowaer chip's pins by melding on a table tzp,
=72~ teng aut pins 1, 2, 2@, 27, and 28. Then salder the pins from the tos chip
tSoth=E Zottem chip beling careful not te make any solder bridges bhetwes=- adjacenc<
- . tIn 7y madule, I actumlly solcered the %wo together before I installeag Lt
© the 2oard.,) Pin 1 is ignoraed. Pins 2, 27, and 28 ars connected to the same
#lres as supply the corresponding pinms an the lower chip, If you conmnectasd ail
af the pins of both chips in parallel, you would have both chips gdoing the mxact
game thing - clonss of each other, How do we give each chip its irmdividuality?
Thia ls where the CS1 pins (pin 20) becoms usefuyl. A "pullup" resisteor is usr
to supply + voltage (a high stats) to pin 2@ of the chip not baing used whnich .
we read in the above paragraph has the effect of making that chip "invisibie' to
the system, In the absence of such a '"pullup'™ resiator and + voltaga source,
these pins would tena to "Float'" down to a @ voltage state which would cause the
system to "select" both chips at oncs. This would cause the systam to read the
sSame acdress of DbDoth chips simultarmeously which would reasult in garbage and a
c-coable crash. [n the Supercart board, there is a resistor {R1) which acts

n

[V

Supercart Adaitioms - MgCullach Page 6-21

such & pullup resistar. In ta versian descripsd Far ugme in carcsriage
sxpandars, this R1 resistor is connectec setween CS1 (pin 2@) ana the +5v L.~
from the conscle. This supplies & nigh state to deselact the chip. How tre~ 15
the chip selectes to erabkle it tao 2o (25 thi=ng? This is the Function aof tne wi-e
cammecting pins 23 and 22 (the 0f pinl, when the QJE gin is mace & low statae (2
valtage) trem pi~ 20 is also made [cw =ince the resistar supplies voltage iess
resdily tman tre direct cormectism to gin 22 "takes it away'. To ernable us =2
use both chips L7dependenmntly them, we could use = switch to connect the EE (pinm
22) linea to either of the RAM chics oin 20 while having pullup resistars
conrected ta Datn plme 29 ta keep the ather Z2hip deselected while tne ane chLiE
is working.

This is exactly what] did: zisconmect any wiring betwaen pina 22 arg 22
(to be Fauma an tne lower or glder chipi; neaxt conmect 1K resisctors (=1 ir
Figure 3) pDetween pim 2@ angd the +SV line for Dotn the %0D and bottam RAM crnics;
mext ~um wiresa from pine 2@ of both the lower and upper chip ta the outer

termimals af the SPOT awitch; then cannect the center termimal of tne SFPOT
switcr to tne QE pim with another wire {if you'rae tired of aeaaldering o~ ch.z
pins By fnow, you could U this wire to sdge canmactor 2 which 1s the sanme
line].

I then drilled amother 1/4'" nole in the fromt (label} side of the cartricze
{(samewhere on tne laft hand sicda ta <mec it away from the chips) ta imstall tne

switon inm. [Ff the spring and daor af tre moaule cover have Deen moved tc t-e
bottasm covaer, it nakes it eas.gr tc insert the maodified board back into tne
modulms, Againm, wrapping any exposec sires halps to prevent shart circuits [in
one of my esarlisr afforts, smoka rasardaec me when I pawered up the Supercart!] I
Finally used black elsctrical tape to wrap around the module amd cover up the
hgls I'd maage in the top cover, Voila, & manually switchable axtra Sank 2af

useaolese mamary! Now I can choose betwaen 2 differenmt emtry menu screens simply
by flipping thae switcn,

Jdre 1te- sotentialily useful Faature I['ve fFound is this: with my previcos
SlNng.a camn<eg Iugarzarz, I woulz mare often than noft scramples the memgry LF M
removed the Tartrigge gr imserted it with tne comsole paowsar on. (In retrsscect,
this L3 pecause o2 CNLD was Na~3dwlras to be canstantly sslected armd was sub, @23
ta tramsients armd "aginal ahack"™ when conrnectesd and discomnected.) Ncw 1Ff I

"deaselect" both RAMs by placing the switch in the center position, I carm resmove
and inrsert the cartridge even with conscle power on without losing Sucercarc:
contants., To run, howsver, orMe or the other of the RAAM chips has to De
selacted,.

I mope thess commeantas have bsen useful to any othaer "technoklutzes'" besiae
mys=1f aQut therae, if anyones has any caorraeactiane or comments to make, I'a noe
S.eased ts get them at: Jim McCullaoch, 9535 QDrake Avenus, Evanstaon, IL
E@293-1107 [(CIS [0D# 74766,590).

THITS TS ENTERESTIMNG

Page 6-27
Supercart Adcitioms = McCulloen - =

----- TO +5Y SUPPLY (F2)lee---e-usaceeucescomoccemeamam——
! TO{=)JLITHIUM !
! TO EDGE CONNECTOR 3 CELL A\ !
bt TA(+] 5 |
U PLITHIUM A
N L T A2 ===- ! CELL o
' 1 emeena LEDmcmocccac ancwaa ! ! v
T H{FLAT) TRQUNG ! ! 1 !
--------- I T T T A A
)% = 1 § 28 = /! %O%NRBWMNUAUNUNY o VNeoWNN!NaNNARoNUR I NoWRRRNReUNAKR o 'K
%™ ez 2 2 27 =/ o aF3YI NNUNUU%L ! ! -/ '
% ' - 3 2 28 = ! %ao% = L = al 2 a ! 2 a C2¢< '%
o < 4 ¢ s S = -} al =] a ! -] o L L
5 SF L 28 - = = 3 = =] ! o Q9 ==02f=-=a=RI~-=g=-=!%:
1% ¢ a & B 23 a F1 ! ' o R o Q ! o] a fa} a fF2 %%
%% ! = 7 22 o o o_ o 0 a a a!l a Q Q a ! %al
lo% ! a 8 1 21 a ! NN a M o Q ol o o -} o __! Yo |
%% ' @ 9 5 20 g=z=-a<i\U N N o o - al a a o o C1 cRAS%%|
%% ! a %@ 19 @& LANP N N o o o o/ o o o alf %%
| %% ! a t1 18 o ONAP N\ \z==x/z\szasszs/a\ssasss3z//\saz====/ 7/ vl
|%% ! a 12 17 =1 P OWANE N\ +85y // / %%
|[%% ! a 13 18 o I ENNAR N GROUND /7 /! %%
2% ' a2 14 1S = N R\ gzaszITIAIRMSINN 'y / e
%% ! 20 \!~--Rlacccanccaccanas// / %%
| %% ! ! \ / %%
vty s SO3E A e A -/ /azzazz=z/ %%
T L= v \ ! .
Catas T3 QUTER SPOT!SWITCH TERMINAL \ oo mRRERNAERNNNIL N NNA
-3 SN TJd QUTER SPOT SWITCOH TERMIMNAL \ Tl RRENARARGROUND %N
[52024 SN TQ INMNER SPOT SwWw TERMINAL\N AL B A & & & 44 4 3 3 A A A A e b N
CUMARARUNL ! TQ RAM CHIP RIN 27 \ R4+ 4 4 1-F 5 2- T 34 5
| AARR%NER \Nawcanaas)y t AL 4 1 1-3 4333134 4 4 4 40
Y S A A \ LI TO RAM CHIP "ol RXNERERLRLEERENNAEN
TRAARKRALNEEANKEELLE \ale! cwweaat PIN 2 "umzg YEXAARRRAANONKEY% |
PO RORERKAREENRNNNXO L ! LA Y2 42335544454 AN
__________________ - TOOTErRE At TR R AT It T T 1 L e esammem ===
I (3] " " e 1" " (34 " " iad " (3] 11 " " LA ™ " l
} (3] 1t 1" r " 1" v L " r " t 1" (1] " 1 " 11 1
l 1) " tr " 1’ [N t " " rn 1" 11} " 1" " 111 l
i 4 (X (B ¥ rt Yy tt 1" ” i " m" |
i " rt 14) " ‘1 1t e e " 1 e ” " " i 1ad 11 i} I
I it t ty 1t " 1" 1" r ¥ " " " e " " 4] 1"t t '
| Twoorr oty 4 (2 NN E S] R] R D | R O L D L L U L D L B L B 4 |
. | " ” T (L] tr (34 1" " Tt i1} n 17" rn rn " 1) " 3] I
| " " e " (2} 1"t " T 1t 1" L1 it 3] 17 1" " " " !
PR T IST T LT IO TS LTI L DO L O L L DU L L QNG L | N | D
123456789 111111111
D123 456 728
FIGURE 3

(Supercart

Supersart Agditian

McCullach

SPOT 3w
'=TQ LOWER PIN 20

TO UPRER FPIN 20-!

TQ EOGE CONNECTOR 2 (GR PIN

With Switch Selwctable RAM Chips]

Page 6-213

22,

DISKE DRIVE MODIFICATION INFORMATION

bY PAUL DeMARA, CET 10760 ROSEBROOK RD. RICHMOND B.C. V7A 2R7

WRITE= LOW TO WRITE (BAR ABQOVE WORD MEANS LOW LOGIC LEVEL) NORMALY SITS
AT +5VOLTS.

"--RESERVED 16-MOTOR ON
--HEAD LOAD 18-DIRECTION IN

o--SEL 4 20-STEP

8--INDEX 22-WRITE DATA

10-5SEL 1 24-WRITE GATE

12-SEL 2 26-TRACK GATE

14-SEL 3 28-WRITER PROTECT

30-READ DATA
32-SIDE SELECT
34-READY

These even numbered pins control all functions to the disk drive. Pin
number 32 is of interest because it can switch the head to side two
electronically on double sided disk drives. Pin 32 is held high logic by the
IC on the disk drive and is pulled to ground by the disk controller card when
it wants to read side two. If you were to bring pin 32 to ground by adding a
switch it would be forced to read side two but the card would not see any
change and therefore you could format side two with a directory completely
saperate from side & of the disk. This is very helpful when backing up disks
or when you want to have two sides with XB locaders on them. You just flip the
switch to read side two. It is also possible to modify the circuit to read
side two by calling up an unused DSK# eg. DSK3. would read the back side of the
disk drive and the controller card would think its reading DSK3. When in fact
it is reading side two of one of the other disks. This would make an excellent
way to back up SS disks without having to have extra disks and would be very
quick as no disk swaping would be neccessary. The side two mod using the

smmand DSK3. or DSK4. (3rd party disk contreller cards) requires a relay to do
e switching and some rewiring of the disk drive is neccessary however the
rewards are worth the effort. The two modifications do not in any way effect
the disk drives normal operation.

Here is a diagram of the disk drive 32 pin plug:

TOP OF DRIVE 00s5001111122222333
24p680246802468024
sazsanzzzassxxszxxsa <34 PIN EDGE CONNECTOR
00c000111112222233 ALL ODD NUMBER PINS ARE CONNECTED
13e579135791357913 TO GROUND.

To wire the side A side B switch you will need a single pole double throw
switch. You then must locate wire number 32 on the ribbon cable that connects
the disk drive to the controller card. Cut wire number 32. Then take your
switch and take wire 32 from the disk drive and hook it to the center terminal
on the switch. Next take wite 32 from the disk controller card and hook it up
to one of the outside pins on the switch. The left over outside pin on the
switch is then hooked up to wire 33 or any suitable ground on the disk drive.
This switch in one position will make the disk drive cperate normally. When -
the switch is flipped the disk drive head switches to side two. One other
thing that I found is if you format side two when the disk is formated double
sided on side one you will have to first read side one when getting ready to
initialize a disk and then flip the switch when the software is ready to
format. The reason is the disk manager module will give you an error if you

'y to read side 2 before it is reformated. Hope the Modification help all you
_I users save disk space and save you from hacking up your disks. Anyway if
you would like more information or a diagram then feel free to give me a shout
during normal hours. Please feel free to copy this info and if you find it
helps a donation would be appreciated as I am working on a few other goodies
for the TI. Page 6-24

NO Special Dress or Posture
Is Reauired to Teleccmmunicate.
Come as you are?

GO 11 FORUM

A Look At Compuserve
Copyright 1986 Jonathan Zittrain
Compuserve ID 76703,3022

Compuserve's Consumer Information Service is one of the most comprehensive
and useful networks available today, especially for the TI user.

Qverview

Compuserve is part of CompuServe, Inc., in Columbus, OH. Users from
across the country (and lately the world) are able to access Compuserve
through local telephone numbers in many metropolitan areas or
supplementary networks such as GTE Telenet or Tymnet,

Users are billed by the connect- minute, also based on the time of day.
Rates through a standard CompuServe number are $6.25/hour Standard time (6
p.m.-5 a.m.) and $12.75/hour Prime time (8 a.m.-6 p.m.). Weekends and
holidays are considered to be Standard time. These charges are based on
300 baud. 1200 baud and 2400 baud costs $12.75/hour Standard and $15.75
Prime,

A Quick Tour

So much is available on Compuserve that it is difficult to choose a
representative sampling! In fact, Compuserve itself has an interesting
online tour designed especially for new users. Once online, a GO TOUR
will show each of Compuserve's main areas.

Compuserve's main structure is in "pages” of text. GO is used to manuever
from page to page, and on a particular menu one can choose a selection and
be moved o its corresponding page. The very "top" menu, known as page
Compuserve -1 or TOP, can be accessed with GO TOP (or even TQOP)}, and looks
like this:

CompuServe TOP

1 Subscriber Assistance

Find a Topic
Communications/Bulletin Bdsm: .
News/Weather/Sports

Travel

The Electronic MALL/Shopping
Money Matrers/Markets
Entertainment/Games
Home/Health/Family

10 Reference/Education

11 Computers/Technology

12 Business/Other Interests

W -1 &l b

Page 7-2

The exclamation point {!) is used as a prompt. If you see an !, it means
that it's your turn to type samething. A prompt in Easyplex, the
electronic mail system (which provides user-to-user "mail” as well as a
link to MCI Mail), the prompt may be "Easyplex!”. At first it may seem
that the system is merely excited about the fact that you are using
Easyplex and is demonstrating that with the !. It becomes routine soon
enough, though,

FIND is ancther useful camand, and functional almost anywhere. We'll be
using FIND soon as we lock at Compuserve's "forums."

For now, let's take a look at a typical group of text pages. The AP
Newswire is a good example:

AP Videotex APV-1
Associated Press News Highlights

1 Latest News- 7 Entertainment

Update Hourly
2 Weather 8 Business News
3 National 9 Wall Street
4 Washington 10 Dow Jones Avg
5 World 1l Feature News

6 Political 12 History
Enter choice or <CR> for Sports !1
AP Videotex APV-2647
AP 10/25 22:57 EST V0540
Here is the latest news from The Associated Press:

A stunning new book has been released that is rumored to be a boon to TT
users across the country. Reporters are scrambling for details on this
comprehensive tame, which is said to succeed Dr. Ron Albright, Jr.'s _The
Orphan Chronicles_.

Stay tuned to this wire for news on this story as it hreaks!

1
H

<ahem> Well, that's samething like what the AP Newswire would report.
Alsc available is the HNational Weather Service's weather reports,
searchable on a given city or state. BAviation reports are surcharged by
very detailed, including high-resolution weather maps that are in RLE
format (which the TI-99/4A can now support via several third party
programs, one of which is public domain).

As you can see, Compuserve 1is a great way to tap into timely news and
other information. The Washington Post and the St. Louis Post-Dispatch
are also available in online forms.

Page 7-3

Interaction among people fram anywhere on Earth is another incredible

benefit that Compuserve can provide. Compuserve was first with a (B

similator, o program where people can "talk" in real time. Here, for your

Vtil;efim pleasure, is a typical slice from a CB conversation. JZ is yours
¥

(B 11 - (B Similator(sm) viB(34) Band A
What's your handlet JZ

{channel) users tuned in
{1123 ()7 (1131 (15)1 (17)9
{2172 (24)2 (26)3 (33)15 {34)2
{35)1 (36)6 (Tlk)32

Salect a channel or press

<CR> for more information! 2

Entering open channel...
Key /HELP for assistance

(A2,*Foxy fram DC*) hi son

/noecho

(A2,*Foxy fram DC*) hi night!

% Echo off

(A2,JZ)} Hellc therel

(A2, *Foxy from DC*) nice guy...where are you?
(A2, *Foxy fram DC*) hi JZ

(A2, *"WAYWARD SON*) FOXY M (R F?

(A2, *Beach Baby*) hi jz

(A2,Nice Guy) me too, foxy...gaithersburg
(A2,*Foxy from DC*} son....yes indeed

(A2, NIGHTCRAWLER) Sounds interesting and very impressive,BB
{A2 , "WAYWARD SON*) WHERE U FOXY

(A2,J2) Smile at the camera—

{A2,JZ}) this is for a book!

(AZ,*Beach Babw*) gee thanks, night

{A2,*Foxy from DC*) {—gmiles

(A2,*Foxy fram DC*) son...yes I do.

(A2,Jc w/HBO) Howdies one et al

(A2,Nice Guy) [[smile]

(A2, *Foxy from DC*) hi JC!

JUST 2

Job User ID Nod Cim Handle
7 730X, XXX H/T 2 *WAYWARD SON*
20 Tooxx,oox LAK 2 1908

33 Txxxx,ox NYL 2 *LOVEREOY,nyc*
50 7xoexx , xoorx NYY 2 NIGHTCRAWLER
62 7xaxx,Xxxx CRL 2 *Beach Baby*
88 Txxxx,xxxx B0 2 Jc w/HBO

94 7ooox, xoox DOQ 2 *Foxy from DC*
96 7AXXX, XXXX DCI 2 Nice Guy

105 76703,3022 PIS 2 J2

Page 7-4

(A2,J2) I'm "taping" here for the next

(A2,J2) ten zeconds to show what CB is

(A2,J2) liks to all those uninformed

(A2,J2) folks still living in the

(42,JZ) Stene Age!

{A2,*Foxy from DC*) JZ..that should be encugh! heheh
{A2,J2) <grin>

(A2,JZ) Bye!

All CB commands are entered with a slash (/). For example, /EXIT is used
to leave the CB area. There are 36 channels available--I happened to be
on channel 2. /UST stands for "User STatus,"” and lists the users on a
particular channel. The User ID's of those involved have been changed to
%x's to protect the innocent! /NOBCHO is a nice feature which allows one's
typing not be "echoed" back—until <enter> is pressed, at which point the
line of text appears as part of the normal CB conversation. As you can
see, that conversation can became fairly tangled!

The multi-player gaming areas of Compuserve take the CB concept one step
further. "MegaWars" is a game where many users can get together at once,
each user being a starship. Since a demonstration of my lowly scout ship
being decimated by a much larger dreadnaught would be too graphic and
violent for such a G-rated book, I've opted not to include that. The fact
that it would also be rather embarrassing is immaterial, of course! The
TI-99/4A 1is perfectly capable of of participating in such areas, however,
even when screen protocol is required., Terminal Bmlator II is not
suggested; instead, Paul Charlton's FAST-TERM or C. Richard Bryant's
PTERM99 would be good disk-based terminal emulators to use.

Another mere seriocus application of the multi-user concept is through a
Campuserve forum. A forum is an area based on a particular topic, which
contains a message base, data libraries (where files and programs are
stored for user retrieval) arnd a conferencing area (a miniature CB
similator).

Here's one page of the results of a FIND FORIM command:

IFIND FORWM

CompuServe

1 ADCIS Forum
{.ADCIS]
2 Al EXPERT Forum
[ATE-100)
3 AOPA Forum ($)
[ACPA]
4 Amiga Forum
{ AMIGAFORM)
5 Apple User Groups Forum
[APPUG]
6 Ashton-Tate Forum
[ASHFORUM]
7 Ask Mr. Fed Forum ($)

Page 7-5

[ASKFED |
8 Astronomy Forum
[ASTRCFORIM]
9 Atari 16 Bit Forum
[ATARI16 |
10 Atari 8 Bit Forum
[ATARIS]

MORE !

"More" is right! There are quite a few forums (fora?) on Compuserve , and
the number increases regularly. Topics range from wine-tasting and health

food to {you guessed it) TI computers.

In fact, the TI Forum has a very

nice "entrance” in page format that can describe itself very well:

The TI Forum TINEWS

The TI Forum

Introduction

Using The TI Forum

Items of Interest: TI-99/4A
Itans of Interest: TI PRO
Enter The TI Forum

What's News

Index of Topics
Feedback/Questions
Masthead/Copyright Info

[F=2re « BN Ba) ONU IF SR ON Y N I

'l
The TI Forum TEX-~4

Welcame to the TI Forum! The TI
Forum on CompuServe is an area where
diverse people can meet, trade
information and have discussions around
a central topic of Texas Instruments(tm)
brand compaters.

As a source for information and
programs for TI camputers, the TI Forum
is unmatched! TIts data libraries
contain surely the best collection of
quality public domain and Fairware
(wa'll talk about "fairware" later!)
programs, and topics range fram the most
camplicated and technical data on the
computers to long-winded discussions on
plugging them in and turning them on!
Whether you're a novice or an expert on
using TT computers, you will find just
the level and amount of information you

MORE !5

desire.

Find New Friends cn

TI Forum

The TI Forum has two major parts:
The TI Forum itself, and the
accompanying menu pages (recognizable by
the TEX-xx page number at the header of
each page), which you are reading right
now. In order to get the most out of
the TI Forum, you should first learn how
to use it, and use it efficiently since
time is money while on CompuServe., The
menu area contains both introductory
tutorial-type information on using the
FORUM, and also news and items of
importance for the TT user. We suggest
you first read "Using the TI Forum,"
selection two from the top menu page of
TEX~-1. USING THE T1 FORUM explains how
to become a member (don't panic, it's
free!), how to use the Forum, and how to
use your time online most effectively.
Menu items three and four from the TEX-1
menu allow all users to see the latest
news and information for their
particular model of TI computer
(TI-99/4A and TI Professional,
respectively). Menu choice five lets you
actually enter the TI Forum and see what
it's all about!

So, if this is your first time on
or so, check out "Using the TI Forum"
and you can then proceed to the FORIM
itself if you like. Comments and
questions are always welcome and
appreciated; the TI Forum Coordinators
arnd members alike are almost always
ready to lend a helping hand!

The TI Forum is not affiliated with
Texas Instruments, Inc., in any way.

If you have any questions or
comments, you can use our
"Feedback/Questiocns” area, option 8 fram
the main TINEWS menu, TEX-l. You will
get a response via Easyplex, usually
within 24 hours.

USING THE TINEWS AREA

The TINEWS area will be updated
constantly to provide the latest news,
help, and information about the TI Forum
and the TI world in general. You can
check the "New in TINEWS" area
occasionally to see information about
the latest features.

Getting toc Some

Real Benefits . ..

Page 7-7

Now 1is a good time to introduce same commands that are very useful in
navigating around the whole Campuserve page structure.

Keep these on hand, and it's hard to become lost!

Navigation Command Surmmary

@ xxx - GO to a certain page number. If you have to break off in the
middle of a section, you can write down the last page number you saw in
the upper right-hand corner and just hit GO xxxX, where xxx is that number,
to return. For example, GO TEX-200, or just a GO 200 if you are already
in the TEX area will take you to the TI Forum. GO TEX-1ll {or GO 1l from
within TEX) will take you to the "Using the TI Forum" section of TINEWS.

T - Returns you to the TOP page, usually called TOP, but this is a
settable page through OPTIONS. Type QO OPTIONS for more information.

M -~ Previous menu. If you are reading an article or buried under a few
menus, this will let you climb out! It takes you to the latest menu you
accessed in TINEWS.

S = This 1is helpful! It stands for SCROLL and will display a series of
connected pages (like articles) continuously without making you hit
<ENTER> after each page. Great if you are a fast reader or are trying to
capture a certain section. Just hit S at the prompt where you are asked
to hit <ENTER>, or S x, where x is a menu choice you would like to have
scrolled.

N - Proceed to the NEXT menu choice.

P - Proceed to the PREVIOUS menu choice. .

B - Go BACK one page. F - Go FORWARD one page. SET WID xx - Set your
screen width

to xx. Set to 80 for buffer capture; 40 for regular /4A screen.

The Tour Finale: The Forum Itself * ﬁ

Now, a quick glimpse inside the TI Forum! Signing up for the TI Forum, as
with most public forums, means only supplying your name., Some forums
accept handles, such as the CB Forum, but the TI Forum prefers full name.
Here's the TI Forum main menu:

The TI Forum (sm)

FUNCTIONS

(L) Leave a Message
(R) Read Messages
(C0) Conference Mode
(DL} Data Libraries
(B) Bulletins

(MD} Member Directory
(OP) User Options
(IN} Instructions

W~ A A LD

Enter choice !

Page 7.3

The conference mode, as mentioned before, is really just a miniature CB
for TI users. There is a weekly conference scheduled where the regqulars
can get together, as well as special events. Craig Miller, Laura Bumms &
John Koloen (of MICROpendium}, and Scott Adams are a few of the people
that the forum has been lucky enough to have for an evening in D,
Transcripts of many O0's have been permanently archived in the TINEWS
area.

The Member Directory 1is an area where users can list their own interests
ard find other users with similar interests based on a keyword search.

Let's go throuwgh the process of leaving a particular message. Many
messages are left to "ALL", which is the public at large, and replies are
then added to create a message "thread." Once the commands are known, it's
very easy and convenient to navigate through the message base, reading
messages and their replies. A Compuserve forum has, in my opiniocn, by
far the best message base structure of any network or EBS.

We type "L" to leave a message:

Enter choice !L
To: John Doe 76543,210
Subject: Charges

Enter /EX to exit EDIT

[New message ready]
John -

. You must have misread your
boocklet! CompuServe standard
charges are $6/hour, not $0.06/hour!
Sorry for the two hundred dollar
bill you ran up before you realized
that.

If there's anything else I can

do to be of assistance, pleez let
me know!

A

/t
/1/pleez/$

do to be of assistance, pleez let
/c/pleez/please/$

do to be of assistance, please let
/ex

Page 7.9

LEAVE ACTIONS

1 {(8) Store the Message

2 (SU) Store Unformatted

3 {C)} Continue Entering Text

4 (A) Abort the Leave Function

Enter choice 3P

SUBTOPIC # REQUIRED

General /Haalp!

TI News & Views
Hardware /Repair
Programming

BBS Help/Views
Tips & Tricks

The TI Trader

The TI Writer (WP)
TI Professional

00~ N O

Enter choice : 0
Message # 94672 Stored

wWhen prompted for "To:", if the recipient's User ID is known, it should be
appended to the name. This will flag the message for that user when the
user next enters the forum with a warning of "You have a message
waiting:". Messages last a few days, then "scroll off” as new messages
are left. The size of forum message bases vary, fram 500 to over 2000
message capacities.

The "/t" moved the pointer in the file to the top, the "/1/pleeze/™
located the word "pleeze," and "/c/pleeze/please/™ fixed the spelling.
EDIT is not difficult to use, although it's not TI-Writer.

Messages can be stored publicly, or with the "P" appended to the <S>tore
comand, privately. <MA>il is also available as a storing option, moving
the message into the Easyplex mail system where it will be more permanent
(avoiding the few=day scroll-off), although only the recipient can then
see the message.

Now let's read the message by scanning for messages addressed to John
Doe., Again we are at the main forum menu:

Enter choice [R

READ MESSAGES Where Flocks of 99%ers Abound ...

(RF) Forward
{(RR) Reverse
(RT) Threads
(RS) Search
(RM} Marked
(RI) Individual
{QS) Quick Scan
Enter choice RS

~d A I W R

Page 7-10

Search Field Menu
(F) From

{S) Subject

{T) To

Search field: T

Search string: Doe

Forum messages: 93952 to 94672
Start at what message number

{N for new to you): 0

#: 94672 (P) S0/General/Haalp!
28-0ct-86 22:23:18

Sh: Charges

Fm: Jonathan Zittrain 76703,3022

To: John Doe 76543,210

John -

You must have misread your booklet!
CampuServe standard charges are
$6/hour, not $0.06/hour! Sorry for the
two hundred dellar bill you ran up
before you realized that.

If there's anything else I can do
to be of assistance, please let me
know!

.o JZ

And there it 1is! When Mr. Doe retrieves his message, "(X)" will appear
after his name in the "To:" field to show that he has indeed received it.
That applies to all messages with a specific recipient. Remember to enter
the ID correctly, as well, since the systam will not correct for typo's
there.

Archived messages of special note are also stored in the TINEWS area in
page format. The Great Track Copier Debate, Which Digk Drive is Best?,
and TI-Writer Tips & Tricks are just a few titles of messages and message
threads that have been saved for posterity.

The Data Libraries contain file after file (all submitted by users; the
time it takes to transfer a file to CompuServe is now free of charge——you
don't have to pay to give!) of programs, tutorials, and other gems in a
miltitude of TI-99/4A languages. Campanies often store press releases in
the DL's as well., TINEWS has plenty of help with file transfer (this is
probably the most difficult process for the novice telecommunicator to
learn), and a simple BROwse comand usually serves to get one started
looking through the list of available files.

Page 7-11

Conclusions

S0, 1in a nutshell, that's a bird's eye view of CompuServe. I am convinced
that it is the finest, most economical service available. For the TI
orphan, the TI Forum/TINEWS area is an incredible resource. CompuServe
starrer kits are available at most computer stores for around $20,
including several free hours of online time to get acquainted. A free
FEEDBACK area is also available for questions once online.

See you on the network!

7-12

A SPECIAL OFFER FROM THE SOURCE®

NOW THAT YOUR PERSONAL COMPUTER CAN TALK TO OTHER COMPUTERS . .

Talk to The Source!

Now you can }oin The Source Informatlion Network - A powerful tool to meet beth
your personal and business needs. The Source offers a broad array of top
quality communicatlons, business, personal, and Investment servlces In a network
designed to save you time and money online.

And The Source is the only major online Information service that gives you a
step-by-step guided tour {TUTORIAL) of our most popular services - FREE OF
ONLINE CHARGES!

Join The Source today and we'll walve our standard $49.95 registration fee.
Your membership can be actlvated by mailing the attached coupon to:

The Source
P.0. Box 1305
McLean, VA 22102
Sign on TODAY by calling 1-800-336-3366 Toll Free. Just tell tire Operator . . .

"I'm taking advantage of your Specfal 549.95 Fee Waived membership offer, my
claim number is 6450307

T T T T T T T T T e e e e e e e e e m e A = e W = . = = = = e e = e s o o

L] Yes! Sign me up as a member of The Source today with the
S49.95 registration fee fully waived.

L) Please send me the SourcePak and Manual at the special
reduced price of $12.95 (plus $3.00 postage and handling).
Regularly $19.95¢

Claim Number 6450307

BLl1 my registration fee and usage to:

Visa []
MasterCard [] Card number
(must be provlded)
American Express [] Exp. Date
Name
Address City State Iip
Telephone(Day) (Evening)

7-13

Mothers maiden name (in case ID or password is lost)

I authorize STC to charge all costs incurred on my account as
a member of The Source (including usage and monthly membership
fee) to the billing service indicated.

Signature Date / /

T T S T T T R S T T T T e N s e mmm s rEEm e e s E i T T E Em A E o m . ———-—————— e - -

The Source is a registered servicemark of Source Telecomputing Corporation, a
subsidiary of The Reader's Digest Association, Inc. ©1986 Source Telecomputing
Corp.

Online rates as low as 10¢/minute. $10.00 monthly minimum applies towards
usage,

This offer expires 12/31/87.

7-14

The GEnie System and TI Roundtable
by Scott Darling, Head Sysop
GEnie ID TIKSOFT

GEnie(tm}(The General Electric Network for Information Exchange) is
the newest kid on the block in regards to online information services. In
addition to a Texas Instruments RoundTable{tm), there are several other
manufacturer specific RoundTables available. GEnie also provides
miltiplayer game playing scenarios, Camputing Today magazine, EAASY Sabre,
the American Airlines reservation system, and more....all at the same low
base nonprime rate of $5 per hour for 300 or 1200 baud access.

New products socon to appear include more Travel, Shopping, and new
Financial related products. There are many more products planned for the
future.

Now, why should YOU JOIN GEnie? I mean, isn't it the same as all the
others? If this were true, this would be the last line I could write!

Far from it! GEnie is VERY different. The entire structure is
unlike any around. Everything in GEnie can be done from Menus or Pages.
Each page is numbered and you can navigate easily and fairly fast. GEnie
also allows you to go to a specific page and submenu directly from Logon.

YOUR Texas Instruments RourdTable includes a Bulletin Board, Real
Time Conference roams, as well as a Software/Textfile library.

The Bulletin Beard function is rather unique. It is based on Topics
rather than direct messages to a specific individual. This allows you to
follow a specific item or idea along its way.

Structuraily, there are specific sections called Categories set up
for RoundTable Business, Telecammunicating, Software, Hardware, Basic,
Forth, Assembly, Fairware, Gaming, Gram Kracker, TI-PRQ, as well as a
Newsletter category. These pretty much cover the gamit of things in the
TI world. Under each of these categories is where each of the Topics are
entered and responded to. Anyone can start a topic, ask questions, and
provide answers.

Most of you are used to your local Bulletin Board systems in terms of
what to expect and how to react to a message base, GEnie's BBS format
differs from your local BBS in certain ways, but as I have done, you too
will understand and really appreciate the format.

The RoundTable RealTime Conference is available every Sunday evening
for the 4A and the PRO. These are general sessions and are always "free
for alls". Whatever questions you may bring with you will most likely be
answered during the conferences. This is a Great opportunity to meet and
talk with your fellow TI enthusiasts,

Page 7.,¢

The Software Libraries are growing daily. At the time of this
writing, they have grown to over 500 files. A lot of the software is
Public Domain; the biggest selections are include Fairware and Krackerbox
programs. Just about every Fairware program can be found in the TI
RoundTable library, including the latest versions. We also have virtually
every Gram Kracker program that has been written. I don't have the space
to list every program in every library. Suffice to say that there are
quite a few and the list is growing. Alsc, please note that on GEnie, the
UPLOADS are FREE! Free uploading is available during Non Prime
time(Weekdays between 6 gm and 8 am., all days on Weekends and Holidavs).

The file transfer process is also noticeably faster than most other
systems. GEnie utilizes their local network nodes for file transfer which
results in faster operation than that from the mainframe. Consequently,
the numbers Jjust seem to fly by. Nice, especially when you are charged
for connect time.

Now the best part about GEnie...the PRICEl There is a one time start
up fee of $18.00 to join GEnie, which includes a hardcopy user manual as
well as the monthly LiveWire(tm) newsletter. Connect charges are $5.00
per hour for both 300 and 1200 baud during the non prime time hours
specified earlier. 2400 baud is also available in over 65 cities
throughout the U.S. at an hourly surcharge of $10.00. GEnie is also
available during the daytime at a cost of $35.00 per hour for 300 and 1200
baud. The same 2400 baud surcharge also applies during prime time,

Sign up for GEnie is simple and fast. You do not have to corder a
starter kit. You simply sign up online. Just set up your terminal
program for 7 bit, even parity, one stop bit, or 8 bit, one stop bit, no
parity; and either 300 or 1200 baud. Also set your terminal to local
echo(half duplex). To comnect, have your modem dial 1-800-638-8369.
After CONNECT, type "HHH" and CARRIAGE RETURN. At the "Ud=" prompt, enter
"XJM11999,GENIE", followed by a CARRIAGE RETURN. After you are logged on,
GEnie will ask you several questions pertaining to your particular system.
If you decide to sign up, GEnie will lead you through the electronic
signup process, and will ask you for pertinent information. GEnie accepts
Visa, MasterCard, and CheckFree. Within two business days following the
succesful completion of the Sign up process, a GBnie representative will
will call you with your new GEnie User ID¥. In a few days following this
you will receive your GEnie manual. One last bit of important
information. There is NO monthly minimum billing. You only pay for what
you use.

Page 7-1¢

The Delphi Network
by Jeff Guide
Delphi Name “TELEDATA"

General Videgtex Carporation
3 Blackstone Street
Cambridge, MA 02139

Rates: $7.20/hour, 6:00 PM-7:00 AM, Monday - Friday & all day
Saturday and Sunday. $17.40/hour all other times.

Network: Tymnet and Telenet

Start-up costs: Lifetime membership, $49.95 ~cludes OELPHI
handbook two hours of free non-prime time useage. DELPHI Starter
Kit, $29.95 includes lifetime membership, command card and one
hour free non-prime time useage.

DELPHI is a full-service information utility designed for use
by the whole family, DELPHI offers electronic mail,
teleconferencing and bulletin boards in addition to information
services such as weather reports from Accu-weather, news and
sports from the Associfated Press, business and financial
information, trivia tests and movie reviews. It also offers
interactive shopping, travel and brokerage services, games and
others entertainment features.

Of special interest to Texas Instruments computer users,
DELPHI aoffers the Texas Instruments Information Network (TIIN),
The TIIN offers the Tlatest in happenings in the Tl world. We
offer weekly conferences for the TI 99/4A and the TI Professional
computers, Exclusive to the TIIN is a member polling area where
you can express your views or start your own poll. The TIIN
Shopping Area have the latest products offered in the TI
community. Vendors such as Disk Only Software and ASGARD Software
offer the latest in hardware and Software for the TI 99/4A
computer., Interested in the latest information or public domain
material? We have database libraries to supply your needs.
Interested 1in communicating with other users? Have questions on
your equipment or know a new technigque? Visit our Forum message
area and the world is at your keyboard.

As a special offer to those purchasing this book, you can use
the TIN on OELPHI tonight! Just follow this procedure: Dial your
local Tymnet or Telenet number. When "Please Log In" appears,
enter DELPHI. At "Username" enter JOINTI99. At "Password" enter
TELEDATA. Ouring this special offer, for $10.00 you will receive

Page 7-17

a membership account and one hour of non-prime time useage. For
$29.95 you will receive a Users Manual, Command Card, membership
account and three hours of non-prime time useage.

Join the TIIN and experience a new world of telecommunication.

Editor's Note: I like Oelphi; a lot. I think it is a system that
deserves better publicity than General Vidtex has given it. Not
Just the T.I. Information Network (T.I.I.N.) run by Jeff Guide
and Dick Ellison (supporting the TI Pro users), but the whole
facility is a nice place. Very friendly and easy to navigate. It
also has a FREE online encyclopedia (the other systems have one,
but have a surcharge for it), and has the only "gateway” service
to the massive and complex DIALOG information service. Those two
things, alone, are worth the price of admission. But the owners
of Delphi appear to be stowly waking up to reality - the reality
that the commercial telecommunication business is a competitive
one and you have spend some money to compete. The General
Videotex pecple are starting to do just that. [f they do, and the
word gets out to the world that this is a useful network, Delphi
will achieve 1its rightful choice among the "Big 3" (Compuserve,
Source, GEnie). [recommend this network and you can reach me
there for mail or on T.I.I.N. with a message. Take advantage now
of T.I.I.N.'s generous signup offer - its not offered on any
other area of Oelphi. Thanks to Jeff Guide for getting us this
deal and for pushing General Videotex to get Delphi in the
lights.

’

Find new friendson Delphi ...

WOLRD PROCESSING

INSTRUCTIONS AMD HINTS
FOk TI-wR{TER WORD PROCESSOR
By Dick Altwan

[T CAN 3 MASTERED' [t just takes perse-erince and determination anc a desire. | Rave been using 1t since Januarv (36
and [dent have ot all vet, but [can use 1t ta av Lemense satisfactian. This came from months gf sitting with the farge
sinual 1 oav lao flioping pages Zack and forth entii [had oracticallv sesorized the M1 thing' 1 wis at the goint where wner

! had i probles { could say "Oh that ts on page 146" or shatever. For instance: this article wis done on the TI-WRITER and
ndw do ALL ot ey carrespondence with 1t alsa.

1§ vou recerved the disk with this article, lcad it ug tn TI-WAITER and cali 1% up on the screen s0 that vou 2an sed
abich coemands-and wnere thev were used-to cause the different effects shawn tn this article. [vou received tne 2isk zniv
then you aren’t reading this uniess vou have alreadv booted it uz. It 1s suggested that vou rus off 3 printed copv trer
rebaet this back up 50 that vou can see the cosmands in use as vou redd the article. There are cosaents in the aragras us!
beiow or adove the cossands that don’t show :in the arintout' This is anothar 'FREEWARE' ites. There 15 np orice set for :*
Feel free t3 pass 4 coov on t3 whamevar wanis 1. [f it will help onlv one or two gecoie that are struggliing ta .gar
TI-WAITER [will be gleasad. [f vou learn anvthing from tt, and are tnclined to fatrness, send 2 few bucks when vou 3!
afford 1t te Dick Alteae. 1053 Shrader St., 3an Francisco, CA 94117, There's no brg deai 1f vou don't-omby vour consc:ence
will know. At least droo me a note and fat e know it helped soseone.

FIRST RULE: Read the TI-WRITER Quick Reference card and reread it. Of course this aeans after vou read this articie, O
Ll of the ocperations siown on the card-at ieast once-wven though you might think vou will never need that particular ore
ou wiil find vou have 12 cpen up the big manual probably, to accosplish soae of the operstions. After vou have aiacs
‘annorized’ the card <literailv'l then vou will #ind vourself using it alsast exclustvely ind verv seldos having to refer &

the cusbersoae manual. Persgnallvy | think the sanval is poorly written.

i
¥

vou will find 3 windows -from feft to rignt-ta obtain the 80 coluans (30 normal characterss width. Each window ¢ &
zslusns wize. The first one s from O to 40, second one is fros 20 to &0, and the third 1s érom 40 ta 30, The first thing
13 umce bocting ot Ti-wRITER is to set av Liaits to 37 characters wide. if 1 take 2 whole window of 40 characters. 1b saeds
t0 crewd wv screen, ang [don't Dika to window Dact and forth to read my work. | do this By pressing 'T" ifor TABS). “her
oress INTER, then oiacing an "L on the second dot. and an "R on the I%th dot, then pressing ENTER again. Now [find sy
cursar blinking it se from line #0001, Herw 1s where | tell the grinter what sargans I want it to print sy work within, 0t':
alsa at this point that | seiect condensed type because [like tt better than the norsal size tvpe. and ! can get I
tharacters ger line 1f | wish. It just losks better in av opinion. [norsailv do this an line 0002 because | uses GCUl
set up the fereatting imargins, etc.) cosmsands ta the printer,

50,on tine 000t put in the following 'dot’ comsand (2 dat cosmsand 1s aerely
starting with a period): LM 20:RN 120;FT;AD (AND END ALL DCT COMMANDS WITH A
‘carriage return’), Tha searcolons are necessary, and the spaces. just as [

. listed 1t here. [’1] do it again: LM 20:RM 120:FL:ADic/r). You of course don’'t
put in the Line nusber 20Ul. That 15 already there.

That tells the grinter to eet the Left Marqin at 20, the Right Marqin at 120,
than Fili each line, and Adust {justify) the right margin, The ‘FILL' cossand
teils the program to put in as sany whole words on & line, within your
predetersined sarging, a8 possible. The "ADJUST' tells it to add extra blinks
betweer words to ciuse the even right sarjin as this article has.
! chianged the aargin settings on the last two paragraphs just to shaw you that vou can enter vour ‘commands’ cust about
anywhere sithin vour work'

Page a-3

Just oressing ENTER will norsally automaticallv put in the ‘carriage return’ svabol, but sometises 1t coesn’t. it degen
shat vou were doing last. Inm that case, use Contrzi and 3 to aut in & carriage return.

on fine e0ud [oaut ipoa ‘Contral' comeand thuslv: Coatral U Shift O lgntrol U, WNetther @ ‘tot’ at the beaimaing, aor 2
‘carriage return’ at the end ts necessarv. This comsand throws the printer 1nto ‘condensed’ tvoe. Neither of these tsg :-e
Jumgers eill e orinted zn Jager. They are merely foraatting coasangs. #ast af the “lontral’ coasinos are listee at the
cottom 3f fhis article.

then if 1 want to center ¢ title lor date) or some qther heading at the top of av article. on line 0003 [put tn ancther 1ot
c3amang lixe this: .CE 'remeader & carriage return is required at the end of all dot comsands). [§ wv title s sav three
.ires af tvpe, then sake that det comsand thusly: .CEJic/r! otherwise 1t will ‘canter’ only one line. The centering comaand
a7 the tog of this article was “.CES because of the olank line 1n 14, The lines you wisn ceatered have to Laeediately f3iicw
the centEring coasana.

The automatic aage length 15 84 lines. This gives vou about six Dlank iines at the top and bottom of vour page, &nd an:v
t1fty some actual [ines of tvae. You cam, with a 4ot commans change vour page tength with this: “.PL aé" as | dr1 11 iine
J002 of this article, -Not engugh rooa jn udli

Then vou start tvoing wsur articie, letter, whataver. [f vou wish each paragraph to 2e (ndented, 1t takes anether dot camaang
st IN(number). If. a5 1n av suggested margin settings of LM 20:RM 120, vou wishad to indent each oaragraph five spaces.
the comdand would be: . IM 23 hecayse the counting starts at zerc or lett edge of the paner. I1f you include the indent Coamang
4.tn others 1p line Q001, the sestcalon replaces all but the first gdot, thus LM 203N 120:IN 25, fou may put sore ‘than cne

3ot cosdand an cne line, or the Control cosmdnds. but never both of them on the same line.

The fyn part ot 1 word processor is the capabelity af inserting or deleting a ward or an sntire phrase without having t3
ratvpe the entire page or article. Another fun thing is the abtlity to sove 3 sentence or am entire paragraph to ir Ser
glace 1n vour wark. Thmis is all done verv misply. Just place vour cursor in the last space befaore shere vou wish g *
angther word and gress the FCTN kev and the nusber 2. This causas everything bevond vour cursor to aova down one [:ng.

tvge 10 vour new word ar senteace and after the space at the end of it press the Control and the 2 (just once! and ever.

1 a7 Dacv L3 %3 ou” cursere L dou dre near the beginning of a long paragraph :t takes a ittle longer 2 couple ar
inr2e secangsi 13 raforaat the oaragragh, than it does 1f you are near the bottos of that =ame garaqrach-0ON'T GET IMPATIENT
SHD 20T THE KEYS J0AIN. JUST WAIT A COUPLE 9F SECONDS:

"o pove l277s sav paragragn $10 intc the #3 spot :s just as easy. First look at paragraphn 410 and sake a note imental®™r zf
11 iine ruagers on *he first and last line. Function and zero shows the line nuabers or moves thes off the screen. Suppcse
they were U076 and 9093, Then detersine shat line nusber vou wish it to be after. Let's suppose it was 0023, Than with FCTN
? go to the ‘cossand’ line, tvpe M (for Move) and hit ENTER. Then tvoe 1n 0074 0093 (023 and hit ENTER again. Look it tnose
nusters and read the :nstructions an the Quick Reference Card for WOVE.

On sost dot eatrix printers, therw are two differant cossands to sake neat printing. They are calivd ‘emphasized’ and

‘doubie strike’, You can’t use (on wy printar at least) the esphasized sethod while in condensed size of type. But | can use
gouble strike, The difference is basically this. Both cossants print each latter twice, dut in two different wivs. One of
thes (esphasized) soves the haad slightly to the right so that sath letter is a little thicker. Double strike just prints the
line twice, [think esphasized is slightly faster than doudle strike, But [’ve never timed weither of thes. Singa [use
condensed printing aleost mxclusively, and can’t use ssphasized, | don’t worry about it. Incidentaily, you say snter these
coasands throughout your article. You just have to have thes begin at the left sargin of your work. As iong as you ber ‘ot
cossdnds with a pericd, and the control comsands with Coatrol U {and end dot comssnds with a carriage return, ang ¢ -0l

coasands with Control U and/or a capital letter) you'll be 0.K. Only this paragraph was using ‘double strike’, look at the
differance.

" 1nteresting fact about most printers 1s that 1% not only tnserts unchtrustve spaces here and “here to ADJUST zach | =~ ta

the oregetermined right eargin, [T PRINTS EVERY OTHER LINE FROM THE RIGHT TQ THE LEFT while dotnq all that FILL!
AOJUSTING, Tt wil! alss carrectlv cusber vour ages 1+ sou give it the FO coasand, which is another fot comsand.

Page 8-13

1 find aonce 1n awhile. soae ane cosmand (never the same one twice) seess to falter. Just redo it. sometimes | thine sone
comsand aust be there that 13 1avisible (this 1s possible'l so when vou run inta an ungzplainatie orodles, go Dtk %3 vour
-armatting coamand iineisi-which are usually lines C001 and H0g2-put “he cursor at the end of each ot vour commands ihen aress
FCTN and | and hold tnes s2r 2 couple of secands to gelete dny sossible tvping errars that plicez sose sort of "hygden’
camaand 10 that line.

dnather qood coemand bz iears is the '000PS' comsand. Merely ontrol and the fiqure one. This elisinates oniv vour last
1hange just now tYped 10, and returns vour work to its forser self (hopefully!).

Angther qood habit to get vourself into, :s 'SAVINE™ your work every few minutes lor every fem pages). Power glitites 40
sccur from any power campany. Either surges, or stustles. Sometimes just dn electric aotor 10 vour hoae irafrigeratar, etc.
kicking 1n wiil cause a soaentary chanqe in the power supplied to vour cosputer (vou’ve seen vour lights tiicker). If gu
<ave vour work averv ance tn awhile, vou someday will Be glad you were in the hapit. Especially if you have Just gut in oo
the word gracessor a 20.000 word stary, The power glitch could cause vou to lose it all' 1% vou have heen saving T o0 2
¢1sk, whem that giiten accurs vou will have all but @ saall oart of 1t saved. When you sive something to 4 disk, then Ioae
nack to that same disk ang save something else with the same case, it replaces the first 1tes mth the second. It daes "ot
secaae ‘Wg ceperate items on the disk, 3¢ course, :f vou are really & worry-wart, you will do the saving 2n 'm0 21815,
alternating back and #arth, ;ust :n case that glitch coses waile vou are 1n the act of saving your work.

Ane= vou wish *3 relgad a fiie fr3m 3 disk back into the word orocessor, its EASY' When you first pring up the word aracessar
:n the Editar wegde. vou are autosaticaily tn the cossand line. Just tvpe LF (for Load Fiiel and it ENTER, then tupe i3
13¢1. tang the nase vou gave 1t) then hit ENTER agarn and wait a few seconds for the work toc be loaded 1nto your comnguter fros

the dist.
sou want a rough drast of vour wark on paper ([find 1{ easier to proof than an the screen) just resove vour comsands for
zoutle strike or esghasizing to conserve vour grister ribbon, [t will nat Se sa easy to read, unless vour rihbon is new. GSut

it wiil te done raster, as well as not using up ribbon ink unnecessartily.

"+ tha 3ook coo wiil fiad tuo aethods of qoing to the disk, then to your orinter. Printing should be done from the disk. 10t

ceoy tmg teaguer oL &1l soag 2 coamand of Print File', That's not the one [use! The one [have Dbecose Jccustamed 13
L3173 3de Tak@ 3 cew seconds langer. Iut it is the cne [learned fi-st. and [have just stugk with :t, [t s as foilcws.
tiver T Rave ‘:c.sned tioing av Letter ar whatever, return to the cosmand fine with FCTN 3, there tvpe @ for duit) uc

INTEY. -ben $ rrar Sa.e: and ENTER, then DSK..TERRY or whatever nase [want to give the file instead of TERRY. then ENTER.
Lesail4 usE 4 h6Ft twe Of three character name. | have even bean tnows to use b1, or §2, or sosmthing like that (the sile
7ame canngt @ more than LY characters long, and vou fan't have any spaces 1na file namet. Than, atter the worx goes rroe
the computer to the disk. vou can mither grint it now or sosetise next week. The comsand to go to the printer &t this aqint
.s 1ike this: @ (for Ouit} ENTER, then E (for Exit) and ENFER again, This takes you back to the master menu. Ihis tise, vou
select 12, or THE FORMATTER. After it comes up, you have to type 1a DSKI. (Filenaee) and hit ENTER. Then veu have toc tvae 3
the coamand teiling it to gqo from the disk to the printer. instead of to the screen. (With the use of DISKD or sose such
azsesbly language repair program, you can insart the cossdnd to your printer so that 1t 18 a default just tike all the other
selactions on the screen. It is in EDITAL’ of vour TI-WRITER disk.) without tnowing what kind of printer vou have, [caa't
1:ve exictly the coresct cossand hare, but 1t will be sosething like this: PIG or RE232,BA=4800.LF. then you will have five
scre cnotces, aostly for =hich vou will just press ENTER for each of thea. Perhaps vou might wish sore than gne cooy, 201
the correct one vou would punch in that nuscer. Be sure vour printer 1s turned ‘on’ before hitting the last ENTER, (the ane
that cays "PAUSE AT END OF THE PAGE?) because vou miil he printing 1emediatelv.

Tor your ourposes (manuscript writing) vou will want it double spaced. That is sisply 4 dot cossand of 1§ 70 (L3 for Line
Spacing of course') ang 14 vou want 1t trigle spaced. just change the 2 to @ 3. Or of course use it for a rougn draft or soee
such. I's wostly just rasbling here, to give this particular paragraph some length, so that you can see doudle spacing at

work, ! can’t seem %o think of anything else to sav, s | will ;ust end 1t here.

Page 8-4

! find once tn amRile. S0MQ one COmNAAnd never the sime one twicel spess to falter. Just redo :t. somstises | think scae
-samind ayst be there that 15 tavisible (this 15 possibie'} so when you run into an unexpliinable srobles, go dack i3 vour
sarwatiing coasand Linetsi-which are gsually l:ines G001 and 0002-gut the cursor at the end of each of vour comsincs then aress
FCTN angd | and Sold them sar 2 couple of seconds to zelete any possible tvpiag errors that piaced some sorr of “hiaden’
coamand 1o that [ine.

1

Another qood ccamand ‘o learn 1s the '000PS’ cossand. Merely Control and the frqure one. This elimnates onlv vour iast
thange just fow tvped 10, ana returns vour work to its farmer self {hopetully!}.

Ancther good habit to get vourselé into. :s 'SAVINE’ your sork every few sinutes ‘or every fes paqes). Power glitcres ao
cccur fros any power zcepany. S:ther surges, or stusbles. Sometimes just in electric sotor 1n vour hose (refrigerator, ete.
kicking 1n il cause & sgmentary change :n the power supplied to vour cosputer lyou've seen <our lights flickers. It gy
cave vour work averv arce (n awhiie, vou scaeday will he glad you were 1n the habif. Especraliv tf you have just Jut 7 U3
tng ward arocesssr a 20,200 ward story, The powsr glitch could cause vou to lase 1t all' 1f vou hiave Deen saving it 20 3
41k, waen that glitch accurs vou will have ail but a seall part of 1t sived. When you save soaething ta a disk, then Zse
Back o that same disk and save something else with the sime nase, 1t replaces the first ites wita the second. [t coes ot
neccae two ceperate :tems on the disk, 3f course, :f vou are redlly 2 worry-wirt, vou will 0o the saving on twd J18ES.
aiternat:ng back and f3rth, just :n zase that glitch coses while you are 1n the act of saving vour work.

:n the Sditer mode, vou are autcsaticallv in the comsand lire. Just type LF (for Load Filel ang Mt ENTER, then tupe :-
N3K1.‘ang the name vou gave (%! then hib ENTER again and wait 2 few seconds for the work to be Ioaged 1nto your computer froa
‘he disk.

jou want 3 rough drast of vour work on paper (I find it easier to proot than an the scraen) just resove vour cossands ior
jouble strike ar emphasizing to conserve vour printer ribbon. [t will not be o easy to rea, uniess your ribbon 15 new, Jut
1t wiil 52 done vaster, as weil as not using up ribbon Lak unrecessarilv.

‘r wma ook oo wril Fisd two asthods of going to the disk, thes to your printer. Printing should be done ‘rom the Jisk. 10t
noemg caqputer. cs. avi. iag 2 command of Oriat File', That’s nat the one I use' The one [have becose iccustomed 3
Jiitg sav tae@ 4 cew seconds langer, Jut it 1§ the ane [learned frrst, and [have just stuck with 1t. Tt i3 as roliome.
tiver | have f14,3ned T43ing av letter or whatever, retyrn to the cossand line math FCTN 9, there tvpe 3 @ for Quit) ais
INTER. -hen 5 rar Sacer ane ENTER, then OSKL.TSRRY ar whatever nase | want to give the file 1nsteas of TERRY. then ENTER,
Jeuailu ute & 3a0rT two or three character nase. | have evan been known to use Hl, or #2. or soaething I1ke that tthe file
aage cannot te agre than 'Y characters long, and vou can’t have iny spaces in i file namel. Then, atter the work qoes tros
the -osputer to the disk. you can eirther grint it now or scaetime next week. The cosand to go to the printer at this aoint
s like this; @ (for Quit) ENTER, then E (for £xit) and ENTER again. This takes you back to the saster senu. This ti1se. vou
select 92. ar THE FORMATTER, After it coses up, you have to type in DSK1.(filanase) and hit ENTER. Then vou have to tvpe 12
the coamane ‘telling :t to go fros the disk to the printer. instead of to the screen. (With the use of DISKO or some such
azsentlv lanquage repair program, vou cam tnsert the cossand to vour printer so that :t is 4 default just lrke all the ather
salections con the screen. [t is in 'EDITAL’ of vour TI-WRITER drsk.) Without knowing what kind of printer vou nave, [can't
2:ve exactlv the correct cossdnd here, but 1t witl be sosething like this: P10 or RS232,5A=4800.LF, then vou will have five
sore cholces, aostly for which vou mill just press ENTER for each of thes. Perhaps vou atght wish acre than one cogy, s5cC 2N
the correct one vou would gunch in that nuwoer. Be sure vaur printer is turned 'on’ before Ritting the 1ast ENTER,(the one

that says 'PAUSE AT END OF THE PAGE?) beciuse vou will be grinting iasediatelv.

for your purposes (manuscript writing) vou will waat 1t double spaced. That is sisply a dot cosmand of L8 2 (L3 for Line
3pacing of course') and 1f vou want 1t triple spaced. just change the 2teal. Or of course use 1t for a rough dratt or sose
such. ['a mostly sust raabling here, to give this particuiar paragraph sose length, so that you can see double spacing at

wark. [can't seem to thimsk af anything else to sav, so [will just end 1t here,

Page 8-4

There are manv, sanv #Ore coaAdands avaliable, such as merging esther garts af two different fiies. or serging i whole e
iate the wesddle of ancther, ar putting :n headers at the tops of everv page, and footers at *he bottos, all autosat
Juch things s gdge nuabers, or requiresents for sanuscripts, etc., but those can be found as vay need em.

The word orocessor does have a capacity Bevong which vou have to save vour work to disk, and start with a clean slate. 't :s
apprazisately 10,000 taracters including Dlanxs. 1 have oniv run into it when transferring i long story to disx. [was
4,00 words I wish 1t would ring 4 beil or something). At that ooint “save’ vour work and retire that file nase. Perhags :a
this drticle o as wrating ror vou [will reach that point again, Right now | am typing on line nuaber 466, [think it was it
about line 400 plus ‘tbut I was using B0 coiumn width that tise for 2 special project, I think) that the MEMORY FULL thivg
Nigoened to me. You will iust have to tr; g error it for vour job' O course, the lemgth canNOT be judqed -ust v the
itne nuabers an the left side of vour sc-iin. Think about whether vou are using only one window. or twa, of the sdxisua o
three. | am using just ane windew while | do this work, a5 [explained earlier, sa that will wake ay capacity coae 2uch
farther down the line numbers than i1 [were using all three windows' B0 characters (or colusnsi wide, instead af the 17 0 as
using. [f and when the MEMORY FULL bit haopens to vou. resesber that shen vou save it this time to a disk, :then far 2ete’'s
sake don’t save the next tiae 12 the saee f1le nase' [n other wards. av nase for this file at the soment is TI-WRITER, ¢ ©
need to make a new f1le, 1t wiil become TI-WRITERZ.

The little 25 page hookliet froa Dr. Bill Browning 1s very j00d, don’t ignare it when vau are trving to learn the T[-NR]'ER
werc arocessor. 7541 Jersev Avenue North, Brooklym Fark, MN 55428, Price just #6.50 and worth svery penny.

There s also available in CFREEWARE' circles an excellent disk called *TK-WRITER® which was dona by TOM KNIBHT, thus -ne
‘TE'. It replaces the need for 4 cartridge to have TI-#RITER word processing capadiiities. As far as | cam teil, i1t gces
gractly the sime things the cartridge does, except for Show Dirsctorv-wnich is inconsequentrai, and won't qo direct fre- -ne
Editor stage to the Forsatting stage, You cam prodably fiad 1t tn the sase iibrary vou octained this disk from.

“he command for the underscore is aerelv the aspersand iShift 70 and 1t can be used anyehere. Note even 1n the mdale z
worg ‘zanpat’. [vou want to underlise sgre_than_gas_word vou have to comnect thes with what 15 called a caret, [t 2
the s, oo Sheftozo E oou wish, tne ANPERSAND can be orinted 1n vour work, but not the caret. Merely type in Leg ampersanas

ind oniv ane at them w:.: be orinted' Y Lk &

Jelieve ae. all of thiz wil! Jocosr easv and second nature to a gaod tvpist in a verv short time’ But 14 vou dan't use ;% sor
1 aonth or twa. vou mill cino vourseif going ack and back and back to the Big doak’

thanks so auch to Dr. Guv Romano for his assistance in writing this article. Plus his enorsous patience with v jung
guestions over the past few sonths while [was learning the TI-WRITER, Ajso to Hal White and to Larry Rosenberg for therr
invaluable assistance. And to Terry & Paul Andersan for their desire tc have word processing capabitities, whicn forced ar ta
tinally write this that had basn nagqing at ew so long.

tRERRRE}E

CONTROL COMMANDS

EHAKKKEE AR LRI KRR R KK AR R KNI KRR RS AR KRR R KKK KRN KK 7 K

AasCIii
WWDES _FUNCTION_ L FORMAT
] ‘Terminate Tabulation : CTRL . SHIFT 2, CTRo J
' 7 Sound the buzzer CTRL U, SHIFT G. CTRL u
= Backspace LT U. SHIFT H, CTRL U
b Horicontal tabulation CTRL U, SHIFT I, CTRL i
e Line reed ZTRL U, SHIFT J. CTR
L VErrroal fabulat:on RN SHIFT ¢+, CTRL

Page z_5

12 Farm feed CTRL U, SHIFT L. ZTRL g

1.z Zarriage return CTRL Y. SHIFT ™, _7TFL =

L4 Frint o omnlarged cnarachers CTRL U, SHIFT M, CTRL U

13 St randensed Characters STRL W, SHIFT 8. CTRL u

Ly S@RLIgL arlinter CTREL U, SHIFT Q, CT=L U

13 Turn w+s conmdensed printing CTRL U. SRHIFT R, LTRL U

1= Dreanle printer CTRL U, SHIFY 3, CTRL L

=i Turn a+4 eniarged orinting LTRL U, SHIFT T, CT=L 4

2 Escape CTRL Y. FCTM R, Cike 42
i a8 cek line spacing 3 per i1nch CTRL U, FCTN R, LIFL o,
PR AN Set line spacing & par 1nch CETRL 4, FCTN R, CTRL L. Z
(73Sl Set [i1ne spacing ns218 per Lhch CTRL U, FCTN R, CiRL U.
R Turn lLalic Character zet on CTRL U, FCTN R, CTRL U. -
PR Turn Ttalie Character =zet of+t CTRL U, FZTM R, CTRL O, =
AL Dicsanle paper-end detector CTRL J. FCTN R, CTRL L, 2
27357 Select paper-enc detectar CTRL U, FZTN R, CTRL U, <
1 Set line spacing(l/72 ta 85,72 1nch) CTRL U. FCTM R, ETRL U. &,
27158 Jet up 8 vertical tab pos. CTRL U, FCTN R, CTRL U, B
2T3a7 Zet torm length up to 127 lines CTRL Y4, FCTN R, CTRL U. C

=8 st vty LY harizontal tab positions CTRL U, FCTN R, CTRL U. 2

- i S wrnanasiaed oprinting CTRL W, FUTNM R, TTRL L. E
N LaTn Tt Aamprasicea arinting CTRL WU, FCTN =, CTERL U, -
27y Tur= 5 double prlnttmq CTRL o, FCTN R, CTFL W, 3
o= mmwmT o m=m :"_'.=:'=:=====:====--—=_=="===='.-================================_—.=-—.==
2T V2 Turn aff double printing CTRL U, FCTN R, CTRL W, H
=773 Turrn on normal densitv graphic printing CTRL U, FCTN R, CTRL J, =
===_—_=======z=:==============='===================================3=========:
273748 Turnmn on dual density graphic printing CTRL U, FCTMN R, CTRL U, L
2777 Turn Elite made ON CTRL U. FCTN R, CTRL . ™
27:78 Set skip-wavar perfaration CTRL U, FCTN R, CTRL U, ~N
2737 Release skip-over perforations CTRL U, FCTNMN R, CTRL U, O
=780 T;rn Elite mode OQFF CTRL U, FCTN R, ©TRL . =
273dl Set a column width CTRL U. FCTN R, CTRL U, 2
e e e e P P e P P T R R R R R PP R R
27182 Select 1| af 8 1nt’]l char.sets CTRL U, FCTN R, CTRL U, =

Page -6

TI-WRITER_LWDERL INING

Those of you who use Tl-Writer and the ampersand for underlinin
may find even if your printer has full underlining, you still g
“dashed" underlining. 1 first realized this when I switched from the
Tl Impact to the Star Micronics Delta 10.

When 1 first got the new printer, [messed around with the control
codes and found the printer had full underlining capabilities. [later
used the ampersand in TIl-Writer to do some underlining and got the
dashed underlining. I then realized the underlining characters usaed by
Tl-Writer’s ampersand wara dafined by TI-Writer.

The codes used on the Delta 10 {(the Gemini uses the same underline
codes) are CHR$(27);CHR$ (4%);CHRS (1) to turn the underlining feature on
and CHR$(27);CHRS (45) jCHR$(Q) to turn the underlining feature off. The
command usaed in TI-Writer was ".TL 91:127,45,1". This command assigned
the left square bracket,function R (or ASCII 91) the values needed to
turn on true underlining. Another coamand, ".TL 93:27,4%,0", the right
square bracket, function T (or ASCII 93) was assigned those values
needed to turn off underlining.

0f course, these commands must be used in conjunction with TI
Writer’s formatter. 14 your printer has true underlining capabilities
and you have been using TI Writer’s ampersand comsand, ygQy @ay wish to
start using the transliterate coemand tg do your underlining.

The T1 Writer
The Easy Way to Communicate

MAYBE YOU DIDN'T THINK OF DOING THIS WITH YOUR TI-WRITER
By Bruce Larson

ONE DISK DRIVE - If vou only own one drive, here’s a trick to save
wear and tear on you and your squipsent. Make a working copy of your
Tl-Writer disk, with only the EDITA1, EDITA2, FORMALl, and FORMA2 files.
This will leave you 271 <+rup sactors to temporarily save material
you’'re working on untfl you have everything perfected. No sore pushing
and pulling disks while yow.go from editor to foraatter, back to
editor, back to formatter...ad infinitum! By the way this article
occupies 14 sectors.

REM STATEMENTS - Want to document a prograam without adding REM
statements? List your program to "DSK1.NAME"™ instead of "“PIO" or
"RS23I2"%. This creates a Dieplay/Variable 980 file of your progr-n
listing which can be read by TI/Writer, Now you can add commen
instructions, etc., that will appear on a printout of thias file. A
word of caution'! Make sure the Display/Variable 80 file name is
different than vyour program name or you might find yocurself with a
beautifully documented program that won’t load!

Page 8-7

EITEMD "ME USE OF TI1-WRITER
By Allen Burt - Englang
Fros Northwast Ohio 39" ar Newms, May, 86

. TI-WRITER can be used for such sore than just producing

tters--a substitute for 4 typewriter. [n the last art::le
. described how to aake use of the CONTROL *U* function 1n
the Text Editor msode. This function can be used t0 v tend
the applicition of the s,stea and to produce integrated
docusants o- .ards and diagrass. For exisple, 1t 13 masy to
show & Histogras (Bar Chart! lika Figure 1, This uses the
CHROIZY) obtained 3y using “FUNCTION® F AND XEY *A* tor the
verticles and the underiine character CHR(9S),FUNCTION *-*
and KEY *U*.

A useful tip when doing this type of exercise i3 that
1f yoy place the CHR(124)'s [n the appropriate lacations and
wish %9 continue thee downwirds from the pount indicated b,
the asterisk - just sove the cursor down ta the next |iae
and press CONTROL *C* and key °5 - this copies the line
adave antos that line, Mhen you draw diagrass like *his, 1t
15 better ta insert 3 nuaber 2f lines in arder to “ave rock
te 80« araund.

I# you want to include a sisple graph within your
script, try daing this as shoss in Figure 2 below. A acre
sophisticated graph can te achieved usiag the abave
techniques. In the esample | found the "COPY* comsand very
usetul beciuse having once sbtatned the required width - |
only had to “copy” down the required nusber af lines using
(CONTROL & KEY **), Resssber that when you place & specia’
set of codes at the start of the line, the space they accupy
“tll not be recogrized by the printar. That is,the printed

s will cosssnce at the location of the first special
w68, This Zan place the nuabers used 1n the graph in the
wrang slace Yoy ha.e g oenter vour sgecial zodes at the
point ,ou w. . the rojlawing characters to print, Thus,
what vou see on the screen :s not necessarily what ,ou wijl
get an the grintout.

TI-WRITER c.1 be used to draw graphs as Figure
tliustrates. The harizontal lines are achievad by setting
the grinter 1ato an underline sods
'CHRS27;CHRS (45} ;CHRS (1)), Thae line spacing ts set to 7/72°
(CHR$(I71:"A'CHRS(7) - This pproximates tg 1/10°. If .
CARRTAGE RETURN is placed at the point whers the line should
finish, the printer mill draw a line to that point. The
verticle lLines are drawn by using CHR$(124) - Functisn “A®.
As the prirtar noraally prints at {0 characters to the inch,
this will produce a grid of roughly 1/10° squares.

There are points ta watch using this procedure:
I. It you do not want the underlining to start at the
beqinning of the priater line, the underline code sust be
glaced at the start of sach line and cancelled at the end of
tich line before the carriage return. Thers is another
amans of achieving this and that is tg set the left hand
Barqin to the required position (on GEMIMI printers this s
CHRS(2T) ¢ *N°CHRS(N) - n being the coluan to start printing.
THES CAN ONLY 8€ DONE USING THE PRINTER CODES, MQT B8Y

TTTING TI-MRITER’S TABS.
The second point is that aany printers do not align the

characters 1 a bidirectional sode. fOU ARE ADVISED (N THE
TI-MRITER MANUAL THAT FOR TABULATION, IT [S ADVISABLE 1D S£T
THE PRINTER TO A UM[-DIRECTIONAL PRINTING ‘NODE.

Figure & illustrates now & tine will appear on the 14
scramn,

F S i
i H 1
Figure | F I L A
u H LI } ¢
: r 3 '
: - t HE | H
10 r I t
| L yd S | 4
- 1 !
NI I i 11
0i_t i 0:
127 & % ¢
USING TI-WRITER TO DRAM A GRAPH
190 1030 30 & 0 70 M %
TN I NI I AN I N I T I T T SRS I N
T T I I T T N TN 2T
TV ITITITE NI IR S SRR SRS NIRRT NN NI SR 0T
T T I TN T TR TN N E ST TR I N TN JAR NN
%0 Liliie) Libliibafatiaiiy Liltltitisg
Mltabltat e il il i LiLtiiitiay
IETTSITTIRIENNIN] L SLIdLLibLal
I l ITISETENER]
i] LLLELREi ALl ELlE
80 L i LLGLLEi gttty
Sl j0at bR idnedg [[N RN
Py
()
L]

CHARACTER GRAFPFHICS

WITH TI—WRITEMN

by Rod Cook

OH~-MI-T1
Graphic characters can ba
defined in TI-WRITER ang printed
te the printar by using & com—
bimation of the transliterate

command and the graphics control
codes of the grinter,
The transliterate command has

the format:
+TL nicharW#,char®, .. char#

wheras n (s the special character
number and char® is the decimsl
number to be transaitted to the
printer. For example, in the
folliowing command:
T 0146,848,76

anytime the special chartacter
"a" is wencountered in the text,
the FORMATTER will transalt the
numbers 446, 84 and 7é which (n
this casse happen tD be a perliod
followed by a capital T and L.
The valus of chard can have any
valus betwesn O and 335 although
ABCII values only go up to 127,
The transliterats

define the graphics for the
character to be parinted. One
transiitarate coamand par
character will be required. Each
command will have sssentially two
parts) the contraol codes to setup
the printer into graphics mode
and the data. For the purposs of
illustration, the control codes
discuseed will be for an Epson MX

will

80. The control code for printer
graphics iws

CESC> "K" NI N2
whare <ESC> in the escape
character, number 27 and "K" i@

number 73. N1 and N2 are nusbers
that are usaed to specify Now sany

data nuabers follow, This
control code puts the printsr
inta & graphics acde that prints
480 gJots par 8 inches. An B0
character line is also # {nches
lang, therefore 480/80 = 4,

There are & dots per character
and 1t will take six data numbers

to specify the character. The
control code portian of the
transliterste command will look
lika thim

TL Q127,7%,8,0, +« -data-«»

whery NI (s & and N2 is O which
telle the primter there will be &
data numbers to 40l law.

The data numbers tel: the
printer which of the @ pina to
fire on the printhead 4or sach of

the six verticle rows of dots
that make up the character. Tor
example the graphics +or the
special character - are coded as
follows)

coasand |

12 Y11

-
1

°14id°

whare in verticle row 1 nons ot

the dots are on so they ade up
to zero, In verticle row two
the dots at 4,@ and &4 ars on se
they add up to 7é. In verticle

row three lé& and 2 dots are on
B0 they add up to 18 and sa on
with the remaining thres

verticle rows.

80 the translitewrate conmand
to print the apecial charscter -
looke like thim

TL ¢127,75,4,0,0,76,10,18,12,0

and anytime the
charactsr for zern

the TI-WRITER special
mode! is encountersd in the text

by the FORMATTER the

transliterated valuse wil]l be

sant to the printer which will

result in the defined graphics

Character being printed.

The &6 by B grid that was
printed above was printed this
way. Four graphice characters
are needed to bulid the grid.
They are:

special
(mhift 2 in
character

Fr-m

The resgective definitions are:

-TL 635:27,7%,6,0,295,120, 128,
128,128, 128

.TL 86127,79, 4,0,29%,0,0,0,0,0

-TL &7127,73,4,0,128,128, 120,
129,120,128

«Th “|27| 7=p ‘|°|2==| lZl. 1..|
108,180, 120

8a that anyties ABCII characters
&3, &b, 47 or &8 are encounterasd
tn the text, the akave graphics
Eharacters will be primted,
ABCII character &5 (s an A, &b
is a B, 7 is a C ancd &8 i a D.
fo to print the above grid, the
following pattern of characters
would be nesded:

128
b4

ARAAAAD
ADAAAAS
32 AdAAAAAR
1é AADDAAD
2 ADAADAR
4 ADAADAD
2 AADDAAD
1 AAARAAD
cecccec

Nocte the numbers will be printed
just as they appear hescause thay

have not been redaefined. Cnce
the graphics have Ceen printed
the A thru D will have te be

translitersted bagk their
regular character (4 they are tg
be used in text. The foilowing
commands will go thies

. TL
. TL
. TL
. TL

&S1 45
64166
[YAY Y4
681 48 .

There are some limitations

4% a result of working within
the limite of the FORMATTER,

1. It appears the physical

length of the transliterate

ccmmand can not be greater than

one line.

2. 1t also appears that wach
character ia limited ta é
verticle rows o dots. ! have
not been able to print a
character longer than & rows
within the FORMATTER.

3, The FORMATTER jinsists an
Putting white space on the top
and bottom of the page. To
print graphics that are
continuous from lime to linae, as
is the grid above. reguirss a
line spacing less than that of
sin linas per i1nen. To keep the
samg whits space at the bottos
ot the page and on subsequent
pages will require adjusting the
line spacing after the graphics
to zompensate for asmaller Jine
Apasing of the yraphics.

Page g-9

TI Writer Formatter Commands
by Tom Kennedy

Text Dimension commands, as the name implies, move or shape the

words in the document (margins, linespacing, right justify, etc.)

LFI
. NF
.AD

.NA
. LM
.RM
«IN
.LS
.PL
.BP

line.

FILL : PUTS AS MANY WORDS ON A LINE AS WILL FIT.
NO FILL : CANCELS FILL,

ADJUST : ALIGNS THE TEXT TO THE LEFT AND RIGHT MARGINS.
: (RT. JUSTIFY)
NO ADJUST: CANCELS ADJUST.

n LF MARGIN: SETS LEFT MARGIN TO "n".

n RT MARGIN: SETS RIGHT MARGIN TO "n".

n ¢ INDENT ¢ CREATES AN AUTO-INDENT FROM LEFT MARGIN.
n LINE SP : SETS LINE SPACING TO "n" LINES,

n

; PG LENGTH: DEFINES NUMBER OF LINES TO A PAGE.
¢ BEGIN PG : DEFINES FIRST LINE OF NEW PAGE.

Internal Format commands control the spacing of characters on a

n : SPACE : SIMILAR TO THE TAB FUNCTICN.
n : CENTER : CENTERS NEXT "n" LINES BETWEEN MARGINS.

Highlighting commands control functions such as underline or bold
allow you to redefine characters to use them to send CTRL codes to
printer.

JOINS WORDS TOGETHER WHEN REQUIRED TO PREVENT
SPLITTING IN REFORMATING, UNDERLINE, ETC.
UNDERLINE: UNDERLINES ALL TEXT FOLLOWING UNTIL NEXT PACE.

1 REQUIRED :
: BOLD : (OVERSTRIKE) RETYPES FOLLOWING TEXT FOUR TIMES.

SPACE

xx: TRANS- REASSIGNS ONE CHARACTER TO REPRESENT A NUMBER
: LITERATE OF CHARACTER VALUES TO SEND CODES TO THE PRINTER.
t : COMMENT LIKE REM IN BASIC--ALLOWS NOTES THAT DONT PRINT.

Page identification commands print notes in the upper or lower

corner of each page, either headers or footers,

.HE
.FO
.Pa

.IF

t : HEADER : PRINTS TEXT (t) AND PAGE NUMBER AT TOP OF PAGE.
t ¢ FOOTER : PRINTS TEXT (t) AND PAGE NUMBER AT BOTTOM OF PAGE.
: PAGE # : RESETS PAGE NUMBER IN .HE AND .FO

File management commands

f : INCLUDE : MERGES A FILE TO PRINT A DOCUMENT TQO LARGE
¢+ PFILE ¢ TO PRINT AS ONE FILE.

Mail Merge option commands are used to supply values to the

variables in a letter that has been set up for the mail merge option

+ML

ini

.DP

f :MAIL LIST: IDENTIFIES VALUE FILE (f) FOR MAIL LIST.
:VARIABLE : INSERTED IN TEXT AS VARIABLE FOR ASSIGNMENT
: FROM VALUE FILE.
n:t:0ISPLAY : PROMPTS YOU USING TEXT "t" TO ASSIGN.
PROMPT : TO VARIABLE (*n*).

Page g-11

A HANDY DANDY TI-WRITER USERI REFERENCE 6UT

SUBMITTED BY BOB STEPHENS

The fallowing handy TI-WRITER cammands are reprinted for tha
June issue of the 99’er News oublished by the TI Users Graous of
will Coumty, Romecville, I1. This puts the mnost used cammands on
ona gage far handvy access at ygur comouter,

s e EEEEERSRETEREERNER l-=:I=SI;I-======“-S‘”““==I'8====32======== ===
EDITOR COMMAND :FCTNICTRL! EDITOR COMMAND (FCTNICRTL: EDITOR COMMAND (FCTNICTAL
Back tabd : 7 T !lns. Blanmk line ! 8 | Q iQuit Vo=
Beganmming/line | 'V !lnsart character! 2 | G !Reformat ; 1 2arR
Cammard/escage | 9 ! C ilLast naragrapoh . tearHiRight arrow N+ IR
Jeleta character: L | F 'Laft arrow 781 9 iRoll down Vo4 A
Del. snd af line! bOK lLefht margin rel.) i Y IRell up & 1 B
Deleta ling ' T 1 N New page ' | 9orP.Screen color i -
Line #'s(on/offll 0 'New paragrach ' ‘BorMiTab V70 I
Down arraow ! XV A !Next paragraph | {40r) IUp arraow T EL B
Quplicate line ! % INext window - ‘Word tab : 1 7orw
Home cursor ' i L Ooos! ' ‘lorliWord wrap/fixed | V0

Load files: LF (antar) DSKL.FILENAME (load entire file)
LF (snter) = DSK!.FILENAME (merges filename with data in memory
after line 3}
F (snter) I 1 10 DSK1.FILENAME (lines ! thru 10 of filename a
merged after line 7 in aemgry.
LF (enter) ! 10 DSKLI.FILENAME (loads lines 1 thry 10 of filena
7-'.'.".:====ISI==8----=H-=-"-8-=II'S'“’I.ﬂ.’.“.“”"“’:m-Il:::,‘l,: E 1 a
iT (entar) DSKL.FILENAME (save antire file)
IF tenter! | 10 DSKLI.FILENAME (save lines | thru l0O)

TACEESRNEEREN ==!:-I==SII'"‘--'----’-I-.‘.-'.SI’-I--'Il"l'ﬂla:".ﬂ:.=====

. T
Y

log:PF (enter) P10 (orints control characters and line numbers)
oT (gnter) C FI0 iprints with nc zontrol characters)
oFf (gncar) L FIO (grints 74 characters with line numbers)
PF (gnter) F PI0 (prints fixed 30 format)
FF (gnter) | 1O P10 (prints lines 1 thru 1OV
NOTE: The above assumes PI0, DSK1.FILENAME, and RS2JC are alsoc valid!
Ta cancel the print cocnmand press FCTN 4,

Delete file:DF (enter) DSK!.FILENAME
===:s:ss:smmua-m-::s--sln-=nnmaﬂm:maa-saana:-s:-a:n:z-
Setting Margins and Tabs: (14 tabs maxisua)
L - Latt margin R -~ Right margin 1 -~ Indent T - Tab
Use ENTER to sxecute or COMMAND/ESCAPE to terminate command,
ZEFREITRBETERXE sasnn::uass:a:::::=:==”=-==:=s-na-ls-ﬂ:zzaim::aszsaaaususszzu
Recgver Edit: RE (enter) ¥ ar N
E=EsSSEESSEEEE=EEENEREENENREREEREIESIRNSESE ’3’8-"S“’”'.’“I'I'.":Iﬂ’:”==I“IHSII=="
Line move: M (enter) = & 10 (moves lines 2 thry & after line 1OV
M (enter) 2 2 10 (maves line 2 after line 10)

S EEEISEASEIIRSEENNIRAXERSSST ===.""'l=8==.I:I.’ﬂ--“I-IBS...‘S‘:H:IIS’..:‘—":I’S

Ceov: same as move except use C instead af M,
EEEEEEEETEESNEEERENEFERNEIR EESEEEEEEESRENETASEEENNSSESEENIZIEEERENIREER EEFEEEREIRER
Find String: FS (entar) /string/ (will loock for string in entire file)

FS (enter) L 1% /string/ (will look for string in lines 2 thru 12

=== =====I’ISIIISS==="-8’23::’=----’ﬂ’SS:.S-’--""'-IaSII-’SI":“’I’"3.3:833

Celete: D (enter) 10 !% (deletes lines 1O thru 1S in aemory)

T EEETCESEORESAREEESISETEORERRITRT NS s s EESESER ARSI ATNEEEEEIREXET R TARRARNINS -t

Page 8=11

Bit-Image Graphics on Dot-Matrix Printers
by Tom Kennedy

I want to show how you can create your own Basic programs to
print Bit-Mapped graphics to Dot Matrix printers. In this case, I use
program examples in TI BASIC, and refer to Epson compatible printers,
although similar commands apply to various printers.

First, what is Bit-Mapped? When you print a file through your
printer, such as a text file, or a Basic program listing, the
computer is sending a stream of numbers {Bytes) that represent a
predefined code for the various letters, numbers, and symbols we can
generate from the keyboard. The printer acts upon built-in
programming to convert these bytes to the 7x9 pattern that we think
of as "A Character”. '

When the printer is set to Bit-Image mode, the built-in
programming is bypassed, and you must supply the data to fire each of
the pins in the print head (the Bits) to "Map™ the graphic¢ you want.
Considering the number of possible pin positions on a line, with 8
vertical pins per position, this sounds like a arduous task, but
there are shortcuts that make it simpler,

In Bit-Image mode, only the top 8 pins of the 9 pin head are
used. To fire the pins, you send a byte, in decimal, equal to the
Binary value of the arrangement of the pins in the head, as
illustrated below:

MSEB o M L
o S S
* B B So in this case, if the number
o = 00101110 = 46 "46" is sent to the printer, the
* (Binary) (Dec)} appropriate pins will fire,
*
*
LSB o

There are two ways to figqure the decimal values for the bytes to
send. If you are good with Binary/Decimal conversion, or use a
suitable calculator, just convert the binary number. Otherwise, a
simpler way to look at it is this:

o = 128

o = 64

o= 32 Find the numbers that coincide with the pins you
Pin o = 16 want "on", and add them all up. The result is the
#'s o= 8 decimal value to send.

o = 4

O = 2

o = 1

So now you can create the bytes necessary to print a vertical
array of 8 dots, now what? Eight dots do not a picture make. Start at
the beginning. Draw a picture, preferably on a fine-grid paper.

After you have the picture on graph paper, you break up the graph
into 8 squares per row, and try to "frame" the picture in the least
number of rows, to save effort. Once you have your rows framed off,

Page 3-12

you can asign the bytes needed to create each l-bit wide column

The procedure for printing the data is to begin by sending .
string of bytes necessary to invoke bit-mapped mode, then print
bytes of data, all as one string. Each separate print statement must
be preceded with the set-up string, s8¢ it's usually simpler to print
all data for one line all at once.

So, in the example I'm using, I have set off the field into
8-dot rows, so 1 begin by going down the row, column by column, and
write down the values for the bytes. The first row gives these data
values: (The (%) is the number of times to repeat the value)

(32)0,(4)3,(6)12,(2)15,(2)0,(2)15,(4}48,(2)15,(6)0

To print the first row, you open the printer file. At this poin:
you also set the printer to 7/72" line spacing, which is height of
the print head. Next, you send the "set string®™, which puts the
printer in Bit-Mapped mode, and defines how many values will be sent
Now you start a loop tat reads in data values and the repetition
number that prints that data, After all data for one line is read,
you signify this with a "Wild Card" data value, which terminates the

loop. Lastly, you send a "CR" and a "LP", which returns the
carriage.

Susequent rows are printed by repeating the above steps, er-<apt

for the opening of the printer.

After all rows are sent, you can reset the printer by sending a:

ESC("@").

The following is a BASIC program which demonstrates the abc

procedure., Although written in TI Extended BASIC, the procedure 1is

the same in any BASIC.

90 REM WRITTEN IN TI EXTENDED BASIC

100 REM THIS EXAMPLE PRINTS A FROG HEAD, IN BIT MAPPED GRAPHICS
110 REM DATA IS READ IN FORM OF: REPETITION,VALUE

120 REM WHICH PRINTS RPTS$(CHRS(VALUE),REPETITION)

130 REM

140 REM by Tom Kennedy December, 'B85
150 REM (206) 248-2218

160 REM

170 REM **###INIT VARIABLES (OPTIONAL)**hdtsdtdbddbbrranthis
180 P$="PIO.CR.LF"™ :: E$=CHRS$(27):: CR$=CHRS(LO0)&CHRS$(13)::
SETS=ES&"K"&CHR$ (60)&CHRS(0)

190 REM OPEN PRINTER & SET LINE SPACE TO 7/72"hwRthtaddthiraknk
200 OPEN #1:P$:: PRINT #1l:ES&CHRS(49)&CRS$

210 REM 'S X3S EZ 2] BEGIN PROGRAH I YEEEXR2XZ2EX X223 EER222 2222220
220 FOR ROW=1l TO 5 :: PRINT #1:SETS$

230 REM ***READ DATA, CHECK FOR END=-QF-LINE®#*#*xtndddbdadhibsdtids
240 READ NMBR,VALUE :: IP NMBR=99 THEN 270

250 REM t*tttitpRINT DATA FOR ONE LINE**titt*ttttt*t**t**iit***

260 FOR BYTE=l TO NMBR :: PRINT #l:CHR${VALUE):: NEXT BYTE :: GOTO 240

270 PRINT #1:CRS$:: NEXT ROW
280 REM ke **RESET PRINTER (opTIONAL)tttltttttti**tttttttt*t
290 PRINT #1:ES&a"@"

Page 8-

13

JOO REM *A Rkttt kA A A e Rk ko Ak Rk A AR kN AR RN AR A R AR kR RN AR ARk

310 REM DATA VALUES = "REFPETITION NUMBER,BYTE VALUE "**tatkkaRaddis
J13 IEM A**Ae**%x059 99" SIGNIFIES END=OF-LINE®A* e xsantunseshntntnn
320 paTa 32,0,4,3,6,12,2,15,2,0,2,15,4,48,2,15,6,0,99,99

330 DATA 24:0:2:3-2:15f2r6316r255:2r0r4f6302:255a2,243,2,192,
4,252,2,255,6,0,99,99

340 paTta 20,0,2,15,2,63,6,255,2,252,4,240,6,498,2,240,2,0,8,192,2,
240,2,60,2,15,99,99

350 DATA 16,0,2,3,6,255,2,192,6,0,2,255,10,12,98,48,2,192,2,
195,2,204,2,240,99,99

160 DATA 6,0,4,15,4,63,10,255,8,0,2,192,12,0,2,3,2,
12,2,48,2,192,6,0,99,99

Everything I've covered so far ia on printing graphics, but
there is more to the Bit Image modes. In the above example, I used
the ESC("K") to set the mode, but there are actualy eight modes to
chose from. The modes are numbered 0 to 7, with 0 (ESC{("K")) being
the simplest. The following table lists the modes.

ALTERNATE HEAD SPEED!
MODE| DENSITY CODE DESCRIPTION {in/sec)
0 SINGLE ESC K 60 DOTS PER INCH 16
480 DOTS PER LINE
1 LOW SPEED ESC L 120 DOTS PER INCH 8
DOQUBLE 960 DOTS PER LINE
2 HIGH SPEED ESC Y SAME AS MODE 1, BUT 16
DOUBLE FASTER. CONSECUTIVE DOTS

NOT PRINTED.

3 QUADRUPLE ESC 2 240 DOTS PER INCH 8
1920 DOTS PER LINE
CONSECUTIVE DOTS NOT
PRINTED.

4 CRT 1 NONE 80 DOTS PER INCH 8
640 DOTS PER LINE
SAME DENSITY AS
EPSON QX-10 COMPUTER

5 ONE-TO=-ONE NONE 72 DOTS PER INCH 12
(PLOTTER) S76 DOTS PER LINE

EQUAL DENSITY IN BOTH
HORIZONTAL & VERTICAL.

6 CRT II NONE 90 DOTS PER INCH 8
720 DOTS PER LINE
7 DUAL NONE 144 DOTS PER INCH 3
DENSITY 1152 DOTS PER LINE
PLOTTER TWICE DENSITY OF MODE S

Page 8-14

All modes can be activated with the sequence ESC("*"), follc
by the mode number. Modes (-3 also have the alternate ESCape value
(K,L,Y,&2). In this tutorial, I will deal with these four, and in
most cases you will only use the first two,

The difference between mode 0 (ESC("K")) and mode 1 (ESC("L"))
is that in mode 0 one dot is printed spaced at the width of the princ
head pins. In mode 1, a dot is printed every 1/2 pin width, producing
double density.

Mode 2 (ESC("Y")) is the same as mode 1, except twice as fast.
The speed is attained by not printing consecutive dots in a row. This
feature might be a problem in fine detail, such as lettering, but not
when printing a large graphic, such as a screen dump. Mode 3
-ESC("2") is the same as mode 1, but a dot is printed every 1/4 pin
width, and consecutive dots are omitted.

The second part of the set-up string, after the mode values, are
the numbers that define how many columns, or dots, will be printed
per row. Remember, this is not the same as how many characters per
inch might be defined when selecting a font in normal print modes.

The numbers, nl & n2, combine together to determine the value.
n2 is equal to the number of times 256 will divide into the desired
value, and nl is the remainder. For example, if you wanted to pr-

500 dots per row, 500/256=1 with 244 remaining, so the set-up str..g
to print 500 dots per row in double density is:
CHR$(27)&"L"&CHR$(244)&CHRS$(1)

In my program example I print 60 dots in single density. Sir
60/256<0, n2=0 and nl is the total number of dots. This is true t
any value under 256.

If the number of dot columns will change in your application,
the best thing is to initialize two variables, to calculate nl and n2
for any width, as shown:

10 X=Z-({INT(Z/256)%*256)
20 Y=INT{Z2/256)
30 SET$=CHR${27)&"L"&CHRS(X)&CHRS (Y)

a s
*r s .

100 2=500
110 PRINT #1:SETS

200 Z=140
- 210 PRINT #1:SETS

This may sound like a crazy way to send a number to the printer,
but it's necessary because the data must be sent as Hexidecimal
numbers, two digits per number. The largest two-digit Hex number is
>PF, which equals 255, s8¢ everything goes in chunks of 235 or less.

Page 8-15

LOAD INTERRUPTS

-16

The LRest of the Meal=Appendixes

TI Product Sources
compiled by Ron Albright

What follows is a sort of "who's who" and "where to look" for
various support services for the TI 99/4A Home Computer. The list
will include commercial concerns, and public (often free) sources of
information. It is certainly not comprehensive but, the author has
made every effort to check information such as addresses and phone
numbers, but cautions the reader that these are subject to change.

Hardware

Corcomp, Incorporated
2211-G Winston Road
Anaheim, California 92806
(714) 956-4450

Myarc, Inc.
241 Madisonville Road
Basking Ridge, New Jersey 07920

Miller's Graphics

1475 W. Cypress Avenue
San Dimas, California 91773
(714) 599-1431

Ryte Data

210 Mountain Street
Haliburton, Ontario
Canada KOM 1sS0
(705) 457-2774

Horizon Computer Limited
P.0O. Box 554
Walbridge. Ohic 43465

Software

Tigercub Software

156 Collingwood Avenue
Columbus, Ohio 43213
(614) 235-3545

Asgard Software
P.0O. Box 10306
Rockville, Maryland 20850

Millers Graphics
1475 West Cypress Averiue
San Dimas, California 91773

AET
P.0O. Box 10306
Rockville, Maryland 20850

Captain's Wheel
17295 Chippendale
Farmington, MN 5024
(612) 460-6348

Rave 99
23 Florence Road
Bloomfield, CT 06002

Dijit Systems

4345 Hortensia Street

San Diego, California 92103
(619) 295-3301

Ryte Data
210 Mountain Street
Haliburton, Ontario, Canada
(705) 457-2774

Quality 99 Software
1884 Columbia Road #500
Washington, DC 20009

DataBioTics
P.Q. Box 1194
Palos Verdes Estates, Calif. 90274

Inscebot, Ing., Heim Industries

P.0. Box 260 P.0O. Box 296

Arnold, Maryland 21012 Clif-on Park, NY 12065
CST Design Group Bright Micro Komputers
P.D. Box 50150 2781 Resor Road

St. Louis, Missouri 63105 Fairfield, Ohio 45014
DataBioTics Trinity Systems

F.J. Box 1194 1022 Grandview

Palos Verdes Estates, CA. 90274 Pittsburg, PA 15237

SST Software Great Lakes Software

Box 26 804 E. Grand River Avenue
Cedarburg, Wisconsin 53012 Howell, Michigan 48843
(414) 771-8415

McCann Software Intelpro

P.0. Box 34160 5825 Baillargeon Street
Omaha, Nebraska 68134 Brossard, Quebec, Canada J4Z 1T1

(514) 656-8798

Mail-Order Distributors

Bits and Chips Hunter Electronics
23637 HWY 99 604 S. Fairview Avenue
Edmonds, Washington Elmhurst, I1l. 60126
(206) 775-7390 (312) 832-6558

Tenex Computer Express Specialist In

P.0. Box 6578 821 Excelsior

South Bend, Indiana 46660 Hopkins, Minnesota
(219) 259-7051 {612) 938-3l6l

Triton Products, Inc. Tex-Comp

P.O. Box 8123 F.0. Box 33034

San Francisco, Calif. 94128 Granda Hills, Ca 91344
1-800-227-6900 (818) 366-6631
Computer Micro Products Pilgrim's Pride

2460 Wisconsin Avenue 219 N. York Rd.
Downers Grove, Illinois 60515 Hatboro, PA 19040
(312) 960-1950 (215) 441-4262

Ramsoft Enterprises Texaments

1501 East Chapman Avenue 53 Center Street
Suite 338 Patchogue, N.¥Y. 11772

Fullerton, California 92631

 ~ N\ Disk Only Software .
S 70, sox 2t e
a4 Lorton, Virginia 22078

or call
1-800-446-4462. At the tone, enter 897335 for recorded order message. Touchtone phone is required e
Alternate is (301) 368-1339. No Touchtone is required.

Delphi: TELEDATA—CompuServe: 74405,1207—MCI: TDG—TELEX: 6501106887 MC!

Replacement Parts/Surplus:

Arnold Company Lolir

P.0. Box 512 13933 N. Central #212
Commerce, TX 75428 Dallas, TX 75243

(214) 395-2922 (214) 234-8056

(Keyboards) {Keyboards, Power Supplies,

cassette cables)

Repairs

Daymon Fikes

Texas Instruments Attn:Repair
2305 N, University

Lubbock, TX 79415

(806) 741-2321

National Organizati.oné (Membership fees required)

99/4A National Assistance Group 99 Users Group Association
Box 290812 3535 South H. Street

Fort Lauderdale, Florida 33329 Bakersfield, Ccalif. 93304
{305) 583-0467 {805) 397-4361

National Non-Profit Assistance (Information, Public-Domain Software)

Amnion Helpline

116 Carl Street

San Francisce, Calif., 94117
{415) 753-5581

National Telecomunication Networks

Compuserve The Source

5000 Arlington Center Blvd. ' 1616 Anderson Road
P.0. Box 20212 Mclean, Virginia 22102
Columbus, Ohio 43220 (800) 336-3330

{800) 848-8990

GEnie _Delphi

401 N. Washington Street 3 Blackstone Street
Rockville, Maryland 20850 Cambridge, Mass 02139
1-800-638-9636 1-800-544-4005

Bulletin Board Software

Commercial

BBS System
1411 N. 36th
Melrose Park, Il. 60160

Freeware:

TIBBS{tm)

P.0O. Box 383

Kennesaw, Georgia 30144
(404) 425-5254

Techie Bulletin Board Scott Darling
Monty Schmidt W. 5515 Woodaide
525 Wingra Street Spokane, Washington 99208

Madison, Wisconsin 53714

Public Damain

TI-C0MM
Pro-9%er EBS
John Clulow Mark Hoogendoorne
345 West South Boundary 21l Long Street
Perrysburg, Ohio 43551 Burlington, Massachusetts 01803
Publications
Micropendium Smart Programmer
P.O. Box 1343 171 Mustang Street
Round Rock, Texas 78680 Sulphur, Louisiana 70663
(512) 255-1512
Computer Shopper TRAVelER Genial Computerware
407 S. Washington Avenue 835 Green Valley Drive
P.O. Box F Philadelphia, Pennsylvania 19128
Titusville, Florida 32781 ($30/year, 6 issues of a "magazine
{305) 269-3211 on disk"; a flippy disk with 720

sectors of programs/utilities)
R/D Newsletter
210 Mountain Street
Haliburton, Ontario
Canada KOM 150

Fairware Listing

[Note: It is strongly suggested by the author to contact by mail the
authors listed below inquiring whether their offerings are still available
before sending disk or payment. Further, include a self-addressed, stamped
envelope to ensure a timely reply. while the author has made every effort
to provide factual and current information in this listing, he cannot
assume any liability for problems encountered as a result of inadvertent
errors. |

MASSCOPY Steve Lawless 2514 Maple Avenue, Wilmington, Delaware 195808
Disk cloner

NEATLIST Danny Michaels Route 9, Box 460 Florence, AL. 35630
Programming utility

SCREENDUMP Danny Michaels (See Above)
Screen dump printer utility

FAST-TERM Paul Charlton 1110 Pinehurst Court Chalottesville, VA 22901
Terminal Emulator

EASYSPRITE Tom Freeman 515 Alma Real Dr.,Pacific Palisades, CA 90272
Programming utility for graphics

DISASSEMBLER Marty Kroll 218 Kaplan Avenue Pittsburg, P, 15227
Disassembler programming utility

Checkbook and Budget Manager by John Taylor, 2170 Estaline Drive,
Florence, Alabama 35630;Household budgeting and finance management

Games; John Taylor (see above address); collection of commercial quality
games and educational activities for children and adults. $5 or disk and
mailer and return postage.

Director '99' Robert Neal/Ed Bert, P.O. Box <l6R, Romeoville, I1. 60441
Disk catalog database program

PRBase William Warren, 2373 Ironton Street, Aurora, Colocrade 80010
Database program

Best Songs 1 and 2; Music written by Bill Knecht, 815 Yorkshire, Pasadena,
Texas 77503. $5 for one disk, $8 for both.

Doors to Eden and First Days in Eden; Steven Cheairs, P.O. Box 27547,
Albuquerque, NM 87125, Two games to be used with the TI Adventure Module.
Author asks a $2 donation at the time the games are ordered; 2 disks or 2
cassettes,

Sprint Utility; Ken Houle, 27721 W. Wakefield Rd., Saugus, CA 91350.
Udlity for Aseembly programmers to dump DVBO files to printer or disk.

Printout; Steven Mehr, 633 Hollyburne Lane, Thousand Oaks, CA 91360. XB
utility to printout DV80 files wit printers with many options. $5 plus
disk and mailer.

Pilot 99; by Tom Weithofer (deceased). As a service to the TI community,
Dr. Jim McCulloch (9505 Drake Avenue, Evanston, IL 60203) will send a copy
of this fine programming language to anyone who sends two disks, self-
addressed mailer and sufficient postage.

Fas-Tran; Bill Harms, 6527 Hayes Court, Chino, CA 91710;
checkboo/spreadsheet program with easy linking to Multiplan,

Weather Forecaster; Garry Cox, 3174 Melbourne, Memphis, TN 38127; Graphics
and home weather prediction,

For a complete list of Freeware, send $1 to MICROpendium, P.0. Box 1343,
Round Rock, Texas 78680. The list they have is verified and up-to-date and
now is 10 pages long. Support this valuable source of TI software -
support Freeware.

User Group List
Courtesy of Art Byers and the
Westchester 99er's User Group

Summit 99%ers Users Group
P. 0, Bax 3201
Cuyonhoga Falls, Ohjo 44223

Fox City Users Group
P. 0. Box 2553
Appleton, Wisconsin 54913

Atlanta 99/4A Computer Users
P. 0., Box 1984)
Atlanta, Georgia 30325

North New Jersey TI Users Group
16 Judith Ann Orive
Ringwood, New Jersey (7456

Mid I1linois Computer Resource
P. 0. Box 766

Bloomington, I1linois 61701-0766

Boise 99'ers Computer Club
1331 Colorado Avenue
Boise, [daho B3706

Northtast Iowa Home Computer User'
1528 Longfellow % Terry Maxfield

waterlco, Iowa 50703

Central Chio Ninety-Niners, Inc.

8055 Simfield Road % D. Heim
Dublin, Chio 43017

Airport Area Computer Club
P. 0. Box 710
Coraocpolis, Penn. 15108 7

The Daytona 99ers
P. 0. Box 15232
Daytona Beach, Florida 32015

Rocky Mountain 99ers
P. 0. Box 12605
Denver, Colorado 80212

Central [owa 99/4A Users Group
P. 0. Box 3043
Des Moines, lowa 50316

216-456-0450

414/766/3515

404-233-3096

309/962/9305

208/344/1409

614/868/0632

904/427/8532

303/759/0699

515/266/7788

4-6

Users Group of Qrange County
17301 Santa Isabel Street
Fountain Valley, Calif.92708

L A 99ers Computer Group
P. 0. Box 3547
Gardenia, California 90247-7247

99/4A Minn & Dakota Home User
509 Reeves Orive
Grand Forks, N. Dakota 58201

Grand Rapids 99er Users Group
1419 Laughlin Dr. N. W.
Grand Rapids, Michigan 49504-2423

Johnson Space Center Users Group
2321 Coryell St. % John Qwen
League City, Texas 77573

Net 99er Home Computer Group
P, 0. Box 534
Hurst, Texas 76053

Xankakee TI Users &roup
P. 0. Box 1945
Kankakee, I1linois 60901

Mid Atlantic Ninety Nine'ers
P. 0. Box 267
Leesburg, Virginia 22075

Titex 71 Users Group
36 Fox Place
Hicksville, New York 11801

Kentuckiana 99/4A Computer Society
P. 0. Box 36246
Louisville, Kentucky 40233-6246

St. Louis 99ers
P. 0. Box 63158
St. Louis, Missouri 63163

Greater Orlando 99ers Users Group
P. 0. Box 1381
Maitland, Florida 32751

Greater Omaha TI1-99/4A Usar's Grou
11215 Crippen Circle
Omaha, Nebraska 68138

213/439/0785

213/439/0785

701/772/6180

616/791/0059

777/337/4110

817/656/1473

703-777-2017

516/796/8359

812/923/3888

314/428/0752

305-293-0769

402/556/0702

A-7

Pomona Valley 99/4A Users'Group
1833 E. Princeton St. % C. Perez
Ontario, California 91764

Miami County Area 99/4A Users Grou

P. 0. Box 1194
Peru, Indiana 46970

Bluegrass 39/4 Computer Society
P. 0. Box 11866

Lexington, Kentucky 40578-1866

T. I. Users Group of Will County
P. 0. Box 216R
Romeoville, I1Tingis 60441

Great Lakes Computer Group
P. 0. Box 7151
Roseville, Michigan 48305

MSP 99 Users Group
P. 0. Bax 12351
St. Paul, Minnesota 55112

The Suncoast Beeper
8421 Westridge Drive
Tampa, Florida 33615

N W, Syburban 99 Users Group
-->1 Freeman Road
Hoffman Estates, 111. 60195

Upper Pinellas 99'er User Group
P, Q. Box 3031

Seminogle, Florida 33542
Mid/America 99 Users Group
5936 Hardy

Merriam, Kansas 66202

Lima Area 99/4A User Group
2225 High Ridge
Lima, Ohfo 45805

New Jersey Users Group
49 Pine Grove Ave. X Mel Gary
Somerset New Jersey 08873

W.W. 99'ers of Champaign/Urbana
2020 Rebecca Drive
Champaign, I1linais 61821

714/984-4107

219/563/2213

606/268/0210

815/886/6552

313/623-7926

612/429-5256

813/347-6942

312/980/9234

813/736-1616

201/686/5619

217-344-5281

Tidewater 99/4 Users Group Inc.
P. 0. Box 1935
Newport News, Vir, 23601

Milwaukee Area 99-4 User Group
4122 North Glenway
Wauwatosa, Wisconsin 53222

Cin-Day User's Group
P. 0. Z%o0x 519
West Chester, Ohio 45069-0519

-Town 99/4A Users Group
116 Richards Orive
Oliver Springs, Tenn 37840

Shoals 99'ers
P. 0. Box 2928
Muscle Shoals, Alabama 35662

Long [sland 99'er Users Group
P. 0. Box 544
Deer Park, New York 11729

West Penn 99ers
R. R, 1 Box 73A X J. F, Willforth
Jeanette, Pennysivania 15644

Wiregrass 99'er User's Group
Att . Newsletter 102 Auburn Dr,
Enterprise, Alabama 36330

Jacksonviile TI-99/4a Users Group
P. 0. Box 525
Jacksonville, Arkansas 72076

Bayou 99 Users Group
P. 0, Box 921
Lake Charles, Louisiana 70602

Brazos Valley 99'ers
P. 0. Box 7053
Waco, Texas 76714

Edmonton Users Group
P. 0. Box 11983
Edmonton, Alberta Cana T5J 3L1

The Ottawa T. I. 99/4 Users Group
P. 0. Box 2144 Station D
Qttawa, Ontario Canada K1P 5W3

804/596-6450

414/264/4735

513/777/0110

205-776-2032

516-587-5462

412-271-6283

501/982/9710

318/477/3687

817/848/4589

403/467/6021

613/837-1719

Wichita 99er's Users Group 316/221/7148
R.R.5 Box 13 % Guy Hulsey

Winfield, Kansas 67156

Lower Michigan 99/4A users Group

P. Q. Box 885

Troy, Michigan 48099

NorthWest Chio 99'er News 419/666/4945
5926 Ranbo Lane

Toledo, Ohio 43623

The Central Westchester 99'ers Clu 914/961-5993

1261 Witliams Dr. ¥ A. Byers
Scrub Oak, New York 10588

Magnetic (T1 99/4A)
57 River Road
Andaver, Massachusetts 01810

Amarilio 99/4A User Group 806/359-0380
P. 0. Box 8421

Amarillo, Texas 79114-8421

Quad Cities Computer Ciub

P. 0. Box 1124

Bettendorf, Iowa 52722

Boston Computer Society TI user Group 617/353/7369
One Center Plaza % J. P. Hoddie
Boston, Massachusetts 02108

The Windy City 99 Club 312/337/5997
640 N, LaSalle R. 280 ¥ M. Mickels

Chicago, I1linois 60610

Corpus Christi 99ers Users Group §12-852-4874

5205 Tartan
Corpus Christi, Texas 78403

Decatur 99er Home Computer Users 217/877-1631
P. 0. Box 726
Decatur, I1linois 62525

San Diego Computer Society T [5ig 519-296-9386
P. 0. Box 83821
San Diego, California 92138

Southern California Computer Group 619/462/5802
P. 0. Box 21181
E1 Cajon, California 92021

Eugene 99/4A User Group 503.747-1768

P. 0. Box 11313
tugene, Oregon 97440

A=10

The Forest Lane Users Group
4413 Cornell Orive ¥ J. Gillo
Garland, Texas 75042

Mid-South 99/4A Users Group
P. 0. 3ox 38522
Germantown, Tennessee J38183-0522

Nutmeg TI-99%ers
10 Jolly Road % J. Ryan
E1lington, Connecticut 06029

Hoosier Users Group
P. Q. Box 2222
Indianapolis, Indiana 46206-2222

Dallas TI Home Computer Group
1221 Mosswood Place
Irving, Texas 75061

Kansas City TI99/4A Computer U. G.

P. 0. Box 12591
North XKansas City, Mo. 64116

Syracuse T I 99/4A Users Group
144 Hillside Way
Camillus, New York 13031

Lincoln 99 Computer Club
4501 South 5Qth Street
Lincoln, MNebraska 68516

Puget Scund 99%ers
P, 0. Box 6073
Lynnwood, Washington 98032

Madarea 99'ers
437 W. Gorham X Wisc. Blue Print
Madison, Wisconsin 53703

Miami 99/4A Users Group
19301 NE 19th Avenue
N. Miami Beach, Florida 33179

Texas [nstruments Baltimore Users Group

P. 0. Box 3
Perry Hall, Maryland 21128

Fox Valley Users Group
34W.762 S. James Drive
St. Charles, I1linois 60174

214-480-1302

901/363/6273

203/875/1647

317/631/7255

214/239-6829

913-371-1092

315/625/4409

402-489-2364

608/648-2883

305-257-2102

312/931/0360

Siouxland 99'ers
4604 Bluestem Circle
Sioux Falls, South Dak 57106

The Michiana 99/44 User's Group
911 Dover Drive
South Berd, I[ndiana 46614

Ninety-Niners of the Vancouver Are
P. 0. Box 5C8
vancouver, washington 98666

Northern NJ Ninty Niner Users Group
P. 0. Box 515
Sedminister,, New Jer, 07921515

The Downeast 99%er’'s
P. 0. Bax 542
Westbrook, Maine 04092

Cleveland Area 99/4A Users Group
P. 0. Box 23283
Euclid, Ohio 44123

Cross Roads 99%ers Computer Group
P. 0. Box 293
York, Nebraska 658467

Pekin Users Group

559 Chicago Street
East Peoria, Illinois 61611

Carnation City 99'ers User Group
205 Fernwood g]vd % 0. S. Brain

Alliance, Ohio 44501
Greater Dayton 99'ers

P. 0. Box 248

Englewoad, Ohic 45322-0248

San Fernando 99ers
P. 0. Box 1844
Canyon Country, Calif 91351

The Fort's User Group
P. 0. Box 11212
Fort wayne, Indiania 48856-1212

605/338/7050

219/277/1990

206/693/7070

201.234-1488

216-274-2544

216/823/8958

513/836/5918

818-507-6219

219-432-1228

A-12

FPeeks and PCKES

Compiled by Scott Darling
GEnie ID TIKSCFT

24K OF CATA STORAGE

If you need to work with quite a bit of data or would like to change
programs, but save the data after you press CALL QUIT then you can set up the
24K of High-Memory in the PEB as a single data file called "EXPMEM2", you open
this file just as you would a disk file with one exception - you must PRECEED
th CPEN statement with a CALL LOAD to the location -24574 as follows:

For INT/VAR files - 24
For DIS/VAR files - 16
For INIT/FIX files - 8
For DIS/FIX files - 0

Heres and example:

If you want to open up the Expansion Memory for Display,Variable 80 files
this is what you'd do:

100 CALL INIT

110 CALL LOAD(-24574,1¢)

120 OPEN #l:"EXPMEM2",RELATIVE, UPDATE,DISPLAY,VARIABLE 80

Then continue on as you normally would.

If you want to store both data and assembly language routines at the same
time do this:

10C CALL INIT

110 CALL LOAD(-24574,-16)

120 OPEN #1:"EXPMEM2"

130 CALL LOAD {"DSK1.ASSML")

140 CALL LOAD ("DSKZ.ASSM2")

150 CALL LINK ("™START")

160 REM CONTINUE REST OF PROGRAM

In the above example the 24 K of high-memory was saved for use as a DATA
file (DIS/VAR 80 format) then the assembly routines were lcaded. The camputer
wll look for the best place to put the routines and will adjust the pointer
accordingly. After the routines are loaded, a LINK statement starts the first
rutine and off we go.

If that's not enough for you, you can also use the MINI-MEMORY for 4K more
of storage of assembly routines! Now that's 16K of program space, 12K of
assembly routine space!

AARRRARNRARARARRR AN SRR b b hdb bbb ARA R bk dddhdR i rhdrsir

These are all of the Peeks & Pokes that I have come across for use with X-Basic
and 32K memory expansion (be sure to do a "CALL INIT"). The P & Q variables
are used for "PEEK" - the numbers are for "POKE" or "LOAD".

kAt ddhkddk kb kbbb ddhbdddddbbhdh bbb bbbk s

ADDRESS , VAL..Z(8) MEANING IN EXTENDED BASIC

CALL VERSION(X) IF X=100 100= NEWEST VERSION OF X/B CART

81%z , P USE (PEEX,P) IF P<> 70 OR <>121 THEN DO A CALL INIT
8l34 , FIRST FREE ADDRESS IN LOW MEMORY
gles , LAST FREE ADDRESS IN LOW MEMORY
-28672 , P P=0 SPEECH NMOT ATTACHED Pw=96 OR P=255 SPEECH IS ATTACHED
-31572 , 0 TO 255 VARY KEYBOARD RESPONSE
-31740 , P, Q PUT IN DIFFERENT TO CHANGE BEEPS,WARNINGS, ETC
-31744 , 0 TO 15 CONTINUATION OF LAST SOUND ((=LOUD AND 15=SOFT)
-31748 , 0 TO 255 CHANGE THE CURSOR FLASHING AND RESPONSE TONE RATES
-31788 , 160 BLANK OUT THE SCREEN (MUST PUSH A KEY TO ACTIVATE)

, 192 NO AUTOMATIC SPRITE MOTION OR SOUND

, 224 NORMAL OPERATION

¢ 225 MAGNTFIED SPRITES

¢ 226 DOUBLE SIZE SPRITES

, 227 MAGNIFTED & DOUBLE SIZED SPRITES

¢ 232 MULTICOLOR MODE (48 BY 64 SQUARES)
-31794 , P TIMER FOR CALL SOUND {QOUNTS FROM 255 TO 0)
-31804 , X , ¥ RETURN TO THE TITLE SCREEN (USE "PEEX (2,X,Y)")

¢ P CHANGE THE CURSOR FLASH RATE (0 TO 255)
-31806 , O NORMAL CPERATION

, 16 DISABLE QUIT KEY (FCIN =)

;32 DISABLE SOUND (USE NEG DUR FOR CONTINOUS SOUND)

, 48 DISABLE SOUND & QUIT KEY

; 64 DISABLE AUTC SPRITE MOTION

, 80 DISABLE SPRITES & QUIT KEY

. 96 DISABLE SPRITES AND SOUND

, 128 DISABLE ALL THREE
-31808 , P, Q DOUBLE RANDOM NUMBERS (0 TO 255) NEED "RANDOMIZE"
-31860 , 4 GO FROM EX-BASIC TO CONSOLE BASIC (NEED "NEW™)

, 8 AUTO RUN OF DSKl.LOAD
-31866 , P, Q END OF CPU PROGRAM ADDRESS {P*256+Q)
-31868 , 0 NO "RUN" OR "LIST"™ AFTER "BREAK" IS USED

0,0 TURNS OFF THE 32K MEMORY EXPANSION

, 255 , 231 TURNS ON THE 32K MEMORY EXPANSION
-31873 , 3 TO 30 SCREEN OOLUMN TO START AT WITH A "PRINT"
-31877 , P P§32 = SPRITE QUINCIDENCE P&64 = 5 SPRITES ON A LINE
-31878 , P HIGHEST NMUMBER SPRITE IN MOTION (0 STOPS ALL)
-31879 , P TIMER FOR VDP INTERRUPTS EVERY 1/60 OF A SEC (0 TOP 255)
-31880 , P RANDOM NUMBER (0 TO 99) "RANDOMIZE"
-31884 , 0 TO S CHANGE KEYBCARD MODE (LIKE "CALL KEY(K,...)")
-31888 , 63 , 255 DISABLE ALL DISK DRIVES (USE "NEW®" TO FREE MEMORY)

; 55 , 215 ENABLE ALL DISK DRIVES (USE "NEW" TO FREE DRIVES)
-31931 , 0 UNPROTECT X-B PROTECTICN

;2 SET "ON WARNING NEXT" COMMAND

, 4 SET "ON WARNING STOP" COMMAND

. 14 SET "UNTRACE" COMMAND

+ 15 SET "UNTRACE" OOMMAND & "NUM" COMMAND

¢ 16 SET "TRACE" CCMMAND

, 64 SET "ON BREAK NEXT" O'MMAND

, 128 PROTECT X/B PROGRAM

PEEK P=55 THEN 32K EXPANSION MEMORY IS OFF <>55 MEANS ON

-31952 , P
-31%62 , 32 RETURN TO THE TITLE SCREEN
, 235 RESTART X/B W/DSK1l.LOAD
-31974 , P, Q END OF VDP STACK ADDRESS (P*256+Q)
-32112 , 8 SEARCHES DISK FOR ?
-32114 , 2 RANDOM GARBAGE
, 13 SCREEN GOES WILD
, 119 FRODUCE LINES
-32116 , 2 RANDOM CHARACTERS ON SCREEN
. 4 GO FROM X/BASIC TO BASIC
-32187 , 0 UNPROTECT XB PROGRAM
: 2 SET "ON WARNING NEXT" COMMAND
e 4 SET "ON WARNING STOP" COMMAND
. 9 SET 0 LINE NUMBER
, 14 SET "UNTRACE" COMMAND
¢ L5 SET "UNTRACE" COMMAND & "NUM"™ CUMMAND
. 16 SET "TRACE" CUMMAND
, 64 SET "ON BREAK NEXT" CCOMMAND
, 128 PROTECT XB PROGRAM
-32188 , 1 CHANGE COLOR AND RECEIVE SYNTAX ERRCR
. 127 CHANGE QOLOR AND RECEIVE BREAKPOINT
-32630 , 128 RESET TO TITLE SCREEN
-32699 , 0 UNPROTECT XB PROGRAM
; 2 SET "ON WARNING NEXT® CCMMAND
, 4 SET "ON WARNING STOP" COMMAND
, 14 SET "UNTRACE" COMMAND
, 15 SET "UNTRACE" & "NUM" COMMAND
, 16 SET "TRACE" COMMAND
, 64 SET "ON BREAK NEXT"
, 128 PROTECT XB PROGRAM
-32700 , O CLEARS CREEN FOR AN INSTANT
-32729 , 0 RUN "DSK1.LOAD"
-32730 , 32 RESET TO TITLE SCREEN
-32961 , 5l RESET TO TITLE SCREEN
r 149 SETS "ON BREAK GUTO" LOCKS SYSTEM

The follwoing Loads require E/A or Minimemory:

ADDRESS , VALUE(S) MEANING
USE POKEV(784,P) (WHERE P IS 16 TO 31) CHANGES BACKGROUND

784 , P
COLOR OF CURSOR
-24574 , 8 I THINK THIS ALLOWS THE MINI-MEM TO USE THE 24K FOR STORAGE
-30945 , 0 WHITE EDGES
-32272 , 0, """, -30945 , 0) WILL PUT YOU IN TEXT MDDE
-32766 , O BIT MAP MCOE
-32768 , O GRAPHICS (NORMAL MOCE)
-32280 , O MULTI-QCLOR MODE
-32352 , 107 WILL BLANK THE SCREEN, ANY KEY PRESS WILL RESTORE

* PASCAL LOADS

14586 . 0 . 0 THIS ALLOWS YOU TO DO A "RUN-TIME WARM START" FRCM PASCAL

+—

TI Console Memory Map
Compiled by Robert Coffee

e

Fm

|Communications Register Unit 8K|

-+

Let's run down the CRU again.

>0000-03FE
>0404-10FE
>1100-11FE
>1200-12FE
>1300-13FE
>1400-14FE
>1500-15FE
>1600-16FE
>1700-17FE
>1800-18FE
>1900-19FE

>1AQ0~1AFE
»>1300-1BFE
>1C00-1CFE
>1DO0-1DFE

>1EQ0-1EFE
>1F00-1FFE

o,

CRU ™S 9901 space, required.

For test equipment use on production line.

Disk Controller.

Modem.

Primary RS232, serial ports 1 & 2 and parellel port #l.
Unassigned.

Secondary RS232, serial ports 3 & 4 and parellel port #2.
Unassigned

Hex-bus (tm).

Thermal printer.

EPROM programmer, something that TI planned but never came out
with. .

Unassigned

Unassigned

Video Controller Card.

IEEE 448 Controller Card,apparently samething else that TI didn't
release.

Unassigned

P-Code Card.

+

| VOP RAM 16K |

=

>0000-02FF

>0300-036F

>0370-077F

>0780-07FF

+

SCREEN IMAGE TABLE (.75K)

This portion of VDP Ram contains the characters that you see on
your screen. Hex 0000 is the character in the top-left corner of
the screen. The ascII values have offset value of >60.

SPRITE ATTRIBUTE TABLE (.1K)

This table holds the information for all 28 sprites.

eg. position(dot row, dot colum), character number, and its color.
PATTERN DESCRIPTOR & SPRITE PATTERN TABLE (1K)

Contains the patterns for characters & sprites.

eg. address for the space is (768+8*132=1024).

SPRITE MOTION TABLE (,12K)

This holds row and colum velocities for all 28 sprites and it used
by the Interrupt routine in console ROM. The routine executes 60
times a second(or 60 Bertz)and since it is interrupt driven it will
use the values i this table to update the Sprite Attribute Table.
Each sprite uses 4 bytes. One for row velocity, one for column
velocity, and 2 for the system to use.

A=20

>0800-081F

>0820-35D7

>35D8-3FFF

COLOR TABLE {.03K)

This portion contains the Eoreground and backround cclor
information for each character set. The definition for each color
uses one byte, bytes 0-3 for foreground and 4-7 for backround.
There are 32 bytes in the table.(Sets 1-32). Sets 1-3 aren't used
Set 4(in table) is character set 0, set 5 igs 1, etc. up to set
18(for table) 14 for character set. Sets 19-32 aren’'t used by the
'COLOR' statement in Extended BASIC,

DYNAMIC MEMORY SPACE (11.5K)

This heolds vour program and other things like PAB{Peripheral Access
Block), strings, symbol table, numeric value table,& the line
number table(for finding the lines of your program thats in the
crunched format).Your BASIC program is loaded from >3507(bottom)
and up.Lines appear as they as typed in, not in the order of line
numpers (like 100,110,120).

FILE BUFFERS (2.5K)

CALL FILES(n) will change this starting address but with CALL FILES
{3) it start repectively at >35D8. If the power up routine finds a
disk contreller then the camputer will automatically reserve this
this space for drive control, file allocation, and data buffering.

+

—_

| Console GROM 18K |

+

—

There are 3 GROM chips in our consoles. Each has 8K of space but only 6K is
used. The difference between RCM and GRCM is that GROM automaticallt increments
itself everytime it is accessed.GRCM is also written in GPL (Graphics
Programming Language),which TI wrote themselves. Bere are those 3 GRIM chips:

GRCM 0 >0000-17FF The title screen power up routine, title screen character

set, standard character set(Upper & Lower casd), cassette DSR
messages and the trigonometric functions.

GROM 1 >2000-37FF Vector tables for BASIC, the error messages, and part of the

BATSC interpreter.

GRM 2 >4000-57FF Part of the BASIC interpreter,the reserved word list and

their associated token values.

GRM chips 3-6 (24K)are in the Extended BAISC cartridge and contain the

following:

r_'ma-{ 3 >6000-77FF X/BASIC vector tables, the error statements for X/BASIC and

part of the X/BASIC interpreter.

GROM 4 >8000-97FF Part of the X/BASIC interpreter.

@M 5 >AQQ0-B7FF Part of the X/BASIC interpreter.

GROM 6 >C000-D7FF Part of the X/BASIC interpreter, the reserved word list and

their associated token values. Aol

S +

Video Display Processor RAM for Extended BASIC

VDP , a complete look.
A R +

-+ -t

>0000 VDP SCREEN IMAGE TABLE 768 bytes |

gach screen location takes up 1 byte, the character
value at each location is offset by >60.

LOCATTON=COL+32* (ROW-1)

- +
>(30Q SPRITE ATTRIBUTE TABLE 112 bytes

Each sprite takes up 4 bytes. (room enough for only 28)
These for bytes consist of vertical postion -1, horizontal
position, character # + >60, clock bit, color.

>036F

+ -—

>0370 EXTENDED BASIC SYSTEM BLOCK

>0371 Autc Boot (needed flag)

>0372 Line to start execution at

»0376 Saved symbol table "GLOBAL" pointer (used with
subprograms) .

>0378 Used for CHRS

>0379 Sound blocks

>0382 Saved program pointer for continue and text pointer
for break

>0384 Saved buffer lewvel for continue

>0386 Saved expansion memory for continue

>0388 Saved value stack pointer for continue

>038A ON ERRCR line pointer

>038C Bdit recall start address

>038E Edit recall end address

>0390 Used as temporary storage place

>0392 Saved main symbol table pointer

>0394 Auto load temp for inside error

>0396 Saved last subprogram pointer for continue

>0398 Saved ON WARNING/BEREAK bits for continue

>039A Temp to save subprogram table

>039C Same as above but used in subprograms

>039E Merged temp for PAB (Peripheral Access Block)pointer

>03A0 Random number generator seed 2

>03A5 Rar 'm number generator seed 1

>03AA In: temp for pointer to prompt

>03AC Accept temp pointer

>03AE Try adain(used when you input a string instead of a
number)

>Q3B0 Pointer to standard string in VALIDATE
>03B2 Length of standard string in VALIDATE

>03B6 Size temp for record length. Also temp in relocating

program

>03B7 Accept "TRY AGAIN" flag

>03B8 Saved pointer in SIZE when "TRY AGAIN"
>03BA Used as temp storage place

>03BC Qld top of memory for relocating program / temp for

INPUT
>03BE New top of memory for relocating program

>03C0 Roll out area for scratch pad RAM when certain

operations are performed
>03DC Floating peint sign

+ [—

>03EF
>03F0 PATTERN DESCRIPTOR TABLE 912 bytes
/ SPRITE DESCRIPTOR TABLE
Each character take up 8 bytes. There are 114 characters
here. They are numbered from 30 to 143.
>077F
+ +
>0780 SPRITE MOTION TABLE 128 bytes
Each sprite takes up 4 bytes. These 4 bytes contain the
vertical velocity, horizontal velocity, & the last 2 are
for system use.
>07FF
+ - +
>0800 COLOR TABLE 32 bytes
Each character set requires only 1 byte. This byte is
broken up into the foreground & backround.
: >081F
+ —~+
>0820 CRUNCH BUFFER 160 bytes
This area of VDP is used when the system needs to crunch
ASCII values into token codes.
>08BE
+ —
>08CQ EDIT / RECALL BUFFER 152 bytes
What you type in at the camand line is stored here.
>0957
+ +
>0958 VALUE STACK 16 bytes
Used by these RM routines : SADD, SSUB, SMUL, SDIV, & SOIMP
>Q0967

A=21

+

>0968 11888 bytes

The items in this area move according to the size of the

crunched program & the system always reserves 48 bytes of
area.

The SYMBOL TABLES are generated during the pre-scan perocid
after you type RUN. The strings are placed into memory when
they are assigned.

WITHOUT MEMORY EXPANSION:
-STRINGS
-DYNAMIC SYMBOL TABLE & PABS
-STATIC SYMBOL TABLE
~-LINE NUMBER TABLE
-PROGRAM SPACE(crunched program)

WITH MEMORY EXPANSION:

~-STRINGS

-UYNAMIC SYMBOL TABLE & PABRS
-STATIC SYMBOL TABLE

-Numneric values, line number table,
& program space are moved into
High-mamory expansion{ >A000)

»37D7
>3708 DISK BUFFER ARFA [default 'CALL FILES(3)'] 5 bytes
>37D8 vValidation ocode for the disk controller DSR (>AA)
>3709 Points to TOP of VDP memory (>3FFF)
>3708 CRU base identification
>370C Maximam number of OPENed files (>03 default)
File Control Block for lst file OPENed 518 bytes

>37DD Current Logical record offset
>37DF Sector number location of File Descriptor Record
>37El Logical Record Offset{used woth VARIABLE files only)
>37E2 Drive mumber{using the high order bit)
File Descriptor Record(brought from the disk 256 bytes)
>37E3 File name
>37ED Reserved (>0000)
>37EPF File status flags(file type & write protection)
>37F0 Max number of records per Allocation Unit(l AU=l Sector)
>37F1 number of sectors currently allocated (256 byte blocks)
>37F3 End of File offset within the last used sector
>37F4 Logical record length
>37FS ¥ of FIXED lerght records CR # of sectors for VARIABLE
length
>37F7 Reserved (>0000 >0000 >0000 >0000)
>37FF Pointer blocks
>38E3 Data Buffer area{256 bytes)

-+

+

>39E3 File Control Block for 2nd file OPENed (6 b} s 518 bytes
>39E9 File Desriptor record (256 bytes)
>3AF9 Data Buffer area (256 bytes)
>3BE9 File Control Block for 3rd file OFENed (6 b) 518 bytes
>3BEF File Descriptor record (256 bytes)
>3CEF Data Buffer area (256 bytes)
>3DEE
+ +
»3DEF VDP STACK AREA 252 bytes
»>3EEA
+ +
>3EEB DISK DRIVE INFO 4 bytes
>3EEB Last drive number accessed
>3EEC Last track access on drive #1
>3EED Last track access on drive #2
>3EEE Last track access on drive #3
>3EEE
>3EEF not used by the 4A , it might have been used € bytes
by the 4 (?)
>3EF4
+ +
>3EFS VOLIME INFORMATION BLOCK 256 bytes
An exact copy of sector >0 fram the disk last accessed.
»3FF4
>3FFS FILE NAME QOMPARE BUFFER 11 bytes
Contains disk number & 10 character file name from last
acecess,
>3FFF
+ —+
Referances:
Millers Graphics, "THE SMART PROGRAMMER"
~"MICROpedium®

~-BEditor/Assembler's REFERENCE MANUAL

—"TI-99/4A CONSOLE & PERIPHERAL EXPANSION SYSTEM TECHNICAL DATA"
-'9900 FAMILY SYSTEMS DESIN'

-"TMS 9918A VIDED DISPLAY PROCESSOR DATA MANUAL"

A=25

1983

S36

77

SEPTEMBER 12

by Louls Guion, Startext

!

DISK DRIVE SPECIFICATIONS
VERSICN 1.

T ¥ T TR RN VTR T e Ty
]]
A 1 ;8 1 8 1 g3 g i ;88 5 :
' '] 7 - S aatl o : AN : ‘
[] c] (4 '] ce [X 4 ’] ﬂuw] .w ' v
- T S T et I S PGy 15g “
[}
' ' ot R ' ' Vot) ‘ L ' M ' '
¢ B ot e 1 L B PO B :
1 O o) ' . S A&nu. wo : -2 L . I L
' 59 YU ' e o U Vel e e) BULYY v : :
gl iy o3 B OFOD OSSR “
'EG -1 4 ' m '8 k ' _u ' hru ' _w. X 1 '
S e e e ettt e A e cn rr cr e crer t rn mn e P e PP S T e GF re me o S - — e S e Bt e B T O PSSP PT o mr aa fe te Bn ee e B e e e -
. ' ' ' ' ' ' ' ' '
[")) R.]] 9 1 c.] [} = 1] [} “ !
]
- “ « “ “ “ : i “ “
“xvl. “- " (] w . 9 L} “ “ [} L}
"> ’ ') ' [' ' ' '
RS, g S ' ' 3 ' R : H 1
“ Hullc’hcclnl'l - ot R - . I-l -l - - ot - []] . [} 1] []
't D> ' ' ' ' '
2% - 3 '8 : ; 3 ' i $; :]
“wpllcl - o« | [} .c [] [}
] mn [} L] —] []
[TV XY 1 . b4 1]]
i RSS iE imE mmmm"m~x HE guyrsing :
'@y 00000 OV~ 333 IR O 1 ' '
P e) ' ') n ' ' ’ ’
t o) Doo®:! Y) ' 100 1 ' H i~ '
u --”...--N“H“...- . “'..94 - . wlw““ w““““ . %?“ “ [] % ““ ' “““% ' ” ' “
‘WYY 0D Q0 'ana o1aana Teoana Qo1 oo ' ' -V
201 §8oai GRIDER GIBGS iBo%mSin BSR19 BRGIBREBRisRE & :
rua Mnﬁmuh NDJkuSD 383388 ..u%nzaﬁ.mw.=5m“.% iy N ' ﬂﬁw 8, :
] o -t] [] —] [] (] [] 1]] c!‘ﬁ"lll'
' G..421:42..‘21hu2..‘1nr¢2..4292‘“..429hu2..42nr£2..£2nﬂu TNNNNN I Ny NV I (8 “
] I-//U//.///U/-/UU//-////U.///“/.//U//.//uu ./////—// NN ?
“ H.11-?11.111._.-.1.1—_—.-?11.11.1.1—?.2‘!5-.?1.11—?11.11‘-?-?) odotodotot | oo otod | ot []
' : A : . - B T
] n—"\—- [])) [] m]]]] “ “
T T ' ' ' RN ‘ ' ' 3 1 ' '
]
t Do ' ~ ' o 1 @ ' n ' ' B
" Z rm] an.azl] w] [] ' a&la‘Q. []] “ “
B N n ! SePARIR tiint v 1988 mippgroiyNIRTI 2 1R el :
L -l
' &. .49:1‘.3q:=WSZ“w um 1N o ﬁ4.-q.6nv:us.-=awn20.“ auw. |.uw“w '
| §IDSIYEILTLSY I Tanon 1YVt ICRPEY I TUEEE poo2 padan | Hgsddi g |
P EIRRIIR1eSS=y | TRRRR 49T ILORCR I FUCKE (EEFEr | BURSE I HRISSIE |
' My ')) ' o .-ﬂ-!‘:-J-ﬂ-2-!-:sﬂ::-:-ﬁ-ﬂ;ﬁ-:-:iﬂ!l-l»flﬂ
] [=]]]
POEE P om3ezi A “ ! “ " “ "
' m. v [} Relatnd B ﬂ .liAC_L“" “ " " “ “ .] “
SR S 1e8Cfe) YUICY ! ; ! oaoiw .
' mu.ﬁnn:_m.ﬁ” 303¢3 ' ms.I‘t. xumwvv.nuummmW.mmmwmm. ' .mmmwnm :
) 190 « . GramRLR I n 1~ ' 9>>00 UEUTYI VDUV ' 1 v '
' Z'OCOOQ A U UL geresrare § 40 m“.n I31 3w ’ [] [CM%!.E]
I At ~F v ' Q! ~ W~ «QQ0 ..qm .lmth”] h..mm. m_wmmmm. 'Wwooot &]
h:mhmmwmihmmmmmhmmwnmuNP A3 1 EnNnl) BEarr e,y p ot it o u !

;
;
i
!
|
!

A=256

disk
with

iy

arnered froe
none-the-less

presented, please do

Tour help is appreciated!

pheral Emansion Boxes

orsdtion had been
0 be correct, bdut aust

tion and other typographical errors.

add to the information
artext MC 7733é6.

Since all (nf
it is assumec
due to transcrip
y naz

is intended to help T1-99/4A users (n identif
at §

atible with thier Per:

at

Ray De® co
t disk sy
Lisements,

used with caution
contacting the asuthor

™is {nformation
[f any reader zan {n an

drives that
their presen

vender adver

be
%0 bv

R/D COMPUTING - 1987

the 5 ame i Te a5 Instruments
cassetto rot § e maliing this
FOR CASSETTE UGERS: PY O G Caepy uset friendl .
Secnndl L. LlIre the lovad program
Clyde Colledges bivzh by el how Leer placed i the 32k memory, it
Cassette Loader b, i ters Soha b, Wil " S in RO . .. even 1+ vou
As promised thi= it t h I o atoadentelly Hi “FLIMCT ION QuIT".
continuing with the topic ot CL -7 Just Yo e Ch o LIMEOTONY and vDuw
ioader, Let me say ance agqalhb. .. 14 are reatl to o, youn can't lpse the
vyou are using a cassette svstem, TiHIG "Loauy Proaram” 1 less vouw turn off
PROGRAM IS5 A MUST' It 15 by far ohne the ronsole!
o+ the most impressive cassette
utilities available 'n Hdate! T o TT R U RO to parchase this
While loading Clvde's program 15 progran please =.nd $5H.6d (US) to:
not a difficult piuoeess in itselt,
understanding the procedure {for the WEST PEMM 9% "=
very first time can be a little c/o John F. Wil farth
confusing. With that in mind! R.D. #1 FOX T3A
Instructions-— Jeannette, PA 15644
i. Insert Extended Rasic Module
2. Select Qption #Z2 - Extended ATTN: WEST PFHMN LIBRARIAN
Basic
3. Tvwpe; OLD CSt Editors note: Thiz program ALSO
49, Then: Press EMTER allows rassettse user s to Joad and run
5. Follow the directions as thew proarams LARGER than the 12& limst
appear on vour monitor or TV screern. built into the consonle cassctte
&, Wait for the flashing cursor rouvutines. it DOES require Extended
to appear in the l nwer left-hand FRasic and 32k memary. .. wihiech O
corner of your monitor pr TY sCcreen. can install inside £ O console
7. Typel RUN {refer to issue H#S of R/D Computing).,
a. Then! Press EMTER The advantages of this utility are
?. The computer will then return very obvious. Malkkes life with a
back to the Extended Basic =creen cassette much easier !
with the messane! ¥READY¥ and the
cursor will once again be flashinag in Mext month we promise to publicsh a
the lower left-hand corner of vour schematic to malke adding 32k even
monitor or TV ICreen. Clvde eacier for console owners!

Colledge’s High Speed Cassette Loader
is now loaded.

RENEWALS For many current {986

INSTRUCTIONS FOR LSING CLYDE’S subscribers this is the LAST issue of

LOADER: your paid subscription. If wvou have
not renewed - do so now! Simply drop

1. After vyouw have loaded Clwvde's a cheque for %14.86 US or ®2¢.06 CDM
loader type! CALL LINMNK{*OLD") into the postage paid envelope and’

2. Then: Press EMTER give it to vour mailperson!

3. You can load in any program
which vou have on cassette in half We will see vou with VOLUME 2
the amount of time that it would have ISSUE #H2@ next month. With the
talen vou normally! improved time frame we are now able

4, Just follow the directions as to increase the size of this
‘they appear on vour monitor or TV publication. Flease note that we are
screen. That's all there is to it. at 20 pages starting with this issue.

Clvde's loader has two ver:y Flease help us b submitting
special features that should not go articles, programs and interesting
without mention. First of all... information for other TI1 owners
the high speed routines are exactly around the world.

16

TOKENIZED COMMAND STORAGE by George F. Stefien

Some of you may have heard that there (s a method of using a single key tc
anter a statement when progriasmming. This is naot an advert.sed +feature o the
Tl 99/4!A) hut results from the way T! Basic stores the program. Each
statement 1n the prouram 1% StOored as & Single byte with a value over 137, The
118t o9f values and meanings s Jiver below., HEX 18 the hexadecimal (base &)
value and DEC 18 the decimal value. Mast of those values under |99 are
available directly $rom the keyboara Dy the use of the Control key along with
amother key. When i1n the iasediate mode, 14 you enter a Number, the operating
system assumes that you wish to enter a Basic line. If the line number s
followed by a Basic statement, that statsment is converted tC its value and
atored, I+ vou enter a valid value, the conversion astep 18 Nnot necessary and
the value 18 stored directly., However, 1f you then LIST the line, the meaning
of the statement will De printed. For sxample, Control and Z equals REM;
Control and U eguals RANDQMIZE and Control and ; equals PRINT. You can
sxperiment to find other kays which will squate to stataments.

TOKENIZED COMMAND STORAGE

-HEX DECZ MEANING HMEX DEC ™MEANING HEX DEC MEANING HEX DEC MEANING
B0 128 Note | AQ 1460 CLOSE CO 192 > EQ0 224 MIN 3
81 129 ELSE al le! B €1 193 «+ El 223 RPTs]
BZ 130 11 3 A2 142 DISPLAY C2 194 -~ E2 226 Note !

83 131 ! t | A3 163 IMAGE = C3 195 ¢ 3 227 MNote |

84 132 1F A4 Led ACCEPT 12 CA 196 s E4 228 Notwe |
8% 133 GO AS 143 ERROR = cS 197 ~ EN 229 Nate |
26 134 GOTO abd 16 WARNINGE Cé 198 Note L Eéd 230 Note 1

87 133 GOSUB A7 167 SUMEXITSE C7 199 Note 2 E7 231 Note |
88 13& RETURN AR 168 SUBEND 13 CH 200 Note 3 E8 232 NUMERICE
39 137 LCEF A9 1a% RUN C9 201 MNotmw 4 E? 233 DIGIT =
8A 178 DIMm AR 170 LINPUT CA 202 ECF EA I3J4 UALPHA *
dB 17° END AR 171 Note 1 CE 203 ABS EP 233 SIIE |
8c 140 FOR AC 172 Note 1 £C 204 ATN EC 236 ALL L}
8p 141 LET AD 173 Note | CD 208 COSs ED 237 UBING ¢
dE 142 BREAK AE 174 Note ! CE 206 EXP ERE 238 BEEFP |
B8F (47 UNBREAK AF 175 Note 1 CF 207 INT EF 23Y ERASE ¢
F0 .44 TRACE B0 176 THENM DO 206 LD& ®Q 240 AT 3
F1 143 UNTRACE Bl 177 TO Dt 209 88N K1 241 BABE

2 146 INPUT 22 178 STEP D2 210 BIN F2 242 Note |

3 147 DATR 17y , D3 211 SOR F3I 243 VARIABLE
54 (48 REBTORE B4 100 D4 212 TAN F4 244 PRELATIVE
IS 149 RANDOMIZE S 181 DS 213 LEN FS 247 INTERNAL
96 1350 NEXT o 1802) Dé 214 CHR® Fé 246 SEQUENTIAL
$7 131 READ 7 183 (D7 215 RND F7 247 QUTPUT
I8 132 STOP B8 84 & D8 216 JEGe FR 248 UPDATE
9 1535 DELETE 79 185 Note 1 D® 217 POS F9 249 aPPEND
a4 154 REM BA 186 OR % DA 218 vaL FA 280 FIXED

98 199 ON R 187 AND DB 219 STRe FB 251 PERMANENT
SC 134 PRINT BC 1898 XOR] DC 220 ASC FC 232 TAD

=0 137 CALL BD 189 NOT | DD 221 P FD-253 4 (Files)
SE 138 OPTION BE 190 = DE 222 REC FE 254 VALIDATEZR
FF 199 OPEN BF 191 < DF 223 max 4 FFr 222 Note 1

Note 1. Meaning unkmown, not used 1n Basic or Extended Basic.
Note 2. uUnquoted string.
Note 3. Quated string.
Sfoth the acove are followed Dy One byt® giving the string length and
then By the string. There is no closing quotation mark or end Marxer.
Note Follawing two bytes are line numbaer-—second plus 256 times the first.

n =

Recognized 5y Extended Basic onlv.

A=27

EXTENDED BASIC ERRCR CODES

ERROR CODE LISTING

EDITOR/ASSEMBLER ERRUR CODES

EXECUTION ERRORS

XB_ERROR EQUATES
10 Numeric overflow ERRNO 50200 2 Numeric Overflow O=7 Standard [/0
14 Syntax Error ERRSYN >0300 3 Syntax Error 08 HMemory Full
16 I{Iegal after Sbrtn ERRIBS 50400 4 [11. after Shbprgm 09 Incorrect Statemenr:
19 Name too long ERRNQS 20300 S Unmatched Quotes 0A Illtzal Tag
20 Unrecognized Char > € Name too long 08 Checksum Error
24 $/% Mismatcn ERRSNM 30700 7 %/B Migmatch OC Dup. Definition
B Improperly used name ERROBE >0800 B Option Base Ervor 0D Unresclved Ref,
& Image errar ERRMUV >0900 9 lmproperly used name OE Incorrect Statemet
29 Memory Full ERRIM >0A00 10 Image Error OF Program not founc
40 Stack Overflow ERRMEM 0B)0 11 Memcry Full 10 Incorrect Statemen:
43 Next without For ERRSO »0C00 12 Stack Overflow 11 Bad MName
44 FOR-NEXT Nesting ERRNWF >0D00 13 Next without For 12 Can't Continue
47 Must be in Sbrtn ERRFNN >0EQ0 14 FOUR-NEXT Nesting 13 Bad Value
48 Recursive Shrin CALL ERRSENS OFO00 1S5 Must be in _Sbprgra 14 oer too big
49 Missing SUBEND ERRRSC >1000 16 Recursive Sbprgra 1S String/Number
31 RETURN without GOSUB ERRMS >1100 17 Missing SUBiﬂb & Bad Argument
54 String Truncated ERRRWG >1200 18 RETURN without SOSUB 17 Bad Sybscript
36 Speech 3 too long ERRST 21200 19 String Truncated 18 Name Conflict
37 Bad Subscript ERRRBS >1400 20 Bad Subscript 19 Can't do that
EQ Line not found ERRSSL >1300 21 Speech $ toc long 1A Bad Line Number
61 Bad Line & ERRLNF 51600 22 Line not found 1B FOR MNEXT Error
62 Eino tgawlong ERQB#E >1700 23 Bad Line Number iC 1/0 Error
67 Can’t tinue 21 4 Ling ¢t lon 1D File Error
&9 Command lllegal in Prgra EEE&C >lggg %s tan,t egntxnao IB Ingut rror
70 Only legal in prgra ERRCIP >1A00 26 Illegal in Program IF Data Error
74 Bad Argument 21800 27 Only legal in Program 20 Line too long
78 No Program Present ERREBA >1C00 28 Bad Argument 21 Mewmory Full
73 Bad Value 21000 29 Neo ram Pressent 22 Unknown Error ,de
80 Nil ERRBY Y1EQ0 30 Bad Value
81 Incorrect Argument List ERRIAL >1FO0 31 Incorrect Argument List FZFEITEEEXXLTLLTLILNLCX
82 Nil ERRINP >2000 32 Input Error
82 Input Error ERRDAT 22100 32 Data Error LOADER ERROR CIDI
84 Data Error RRFE 22200 324 Filwe Error
37 Protection Viclation ERRIO 2400 36 1/0 Error 0-7 Standard /0
103 File Error 22300 37 Subprogram not found 8 PMemcory Dverflow
120 170 Ervor EREPV 53700 39 Protection Violation S Not Used
125 Sbrtn mot found ERRINV 52800 40 Unrecognized character 10O IlloEal Tag
HENND >2900 41 Numeric Over flow 11 Checksum Error
WRNST 52400 42 String Truncated 12 Unresclved Ref.
WRNMPP 32BO0O 43 No Program Present ’
WRNINP >2C00 44 Input Error
WRNIO 2000 45 [/Q Error
Tl BASIC ESROR CODES PERTAINING TO DISK SYSTEM T1 WRITER ERRDR CODES
#: FIRST # SECOND # L 0 - Indicates Disk Controller not on;
O: OPEN Can't find specified Disk Drive OR: Diskette not Initialized
vi ZLOSE Disk or grogram is Write Protected & - Ng Disk in Drive; OR:1 Is upside down;
2: INPYUT Bad Open Atfribute OR: Drive is not turned on
3: PEINT ll1legal Operation 7 - No Disk in Drive .
3z RESTORE Disk full or too many files opened 00 - Illo?ai use of LoadF, Printf: CR:
3+ OLD Abtemgt to read past EOF 2 = NG file in Diskette with Filename u<ed
8: SAVE Device Error 04 - Disk is full
7: DELETE File Error 06 = PrintF Command in progress vas
3r EOF interrupted; OR: Disk Door was opened
while Red Light was on
07 ~ Invalid Filename (I.E. Name too long
or using invalid characters)
13 = Invalid Disk Drive Number, or Device
JISK MANAGER ERROR CDDES 1/0 ERRORS
#: FIRST & SECOND » & FIRST # SECOND #
l: OCTHER Rec not found 1 OPEN Device nat found
st SEEK/STEP Cyclic Redundancy 2: CLOSE Write Protected
2: INPYT Lost Data 3: PRINT Invalid [/0 Command .
+: PRINT Write protsct 4: RESTORE QOut of space
S: NIL Write fault % OLD EDF
&: NIL No Disk Drive 6:1 SAVE Device Error
;: :%t Invalid input 7: DELETE File/Data Mismatch
3: Special Errar Code for

Compr ehensive Test

A-28

DISK TRP

by Earl Hall

The +fallowing is a cosplets aad, to the best of ey
knowledge, accurate description of the DOisk Directory
forsat and file storage allocatiom used by the TI-79/4(A)
Earl Hall CospuServe (D - 72746,324

SECTOR 0 - Yoluse [nforsation Block

CONTENTS

SRERERIIETT TIRETERRTETI TR RETLEETENERETESTS

4000-0009 Disk nase - up to 10 characters

4004~0000 Tatal nusber sectors am disk
(701582360, Y0200=720,)03AQ0=1444)

000C Y09 (% of sectors/trk)

0000-0COF 05K’ ()44S3H) 44 S348

0010 Y50 = Disk backup protectmd, Y20 = not
aratactad

001t t of tracks per side ()28s40, 3a%)

12-0013 t of sides/density ()0101s88/53,

) 0201=05/50, »0202=98/08)

1038-end Sector ailocatiom bit sap. See nota beiow

NOTE cn >0038-end: This is a ssctor-by-sactor Dit
3ap of sector usei ‘=sector usad, (wsactor available.
The first svte .s for sectors O through 7, the sacond for
sectors 9 througn !5, and sa on. Uithin each byts, the
hits correspond to the sectors fros right to left. For
examgle, if hyte Y0038 coatained YCFOO them the first
byte equals 1100 {111, This esams that sectors 0 through
7 are used, sectors ¢ and S unusad and sactors & and 7
ysed. [nforsation for the 2nd side of a D8/S) disk
starts it dyte 0045 and ends at byts Y0091,

SECTOR | - Directory Link

Cach '4-dit word lists the sector nusber of the File
Jescriaptor Secord for an allocated file, in alphabetical
arder of the file nases. The list is terainated by 4
word containing (00005 therefore, the eaxisua nusber of
files per disk s 127 ((Z88/2)-11. [f the alphadetical
jrder s corrupted (by & systaa crash during nase change,
for :nstance), the binary search esthod used to locate
ileg will Je a¢4ected and ‘iles say hecome unavailable.

SECTOR 2 T0 XU - File Descriator Recor:s

ADORESS COFBAS

SEDESETER ST IR R T TIERETSR
0000=-0007 File nase - up to 10 charatters
000C File type: Y01 sProgria (sescry-isage
Y00=818/F11 02s{NT/FII
>80=DIS/VAR Y82=(NT/VAR

File deletion praotection invoked by Disk
Ranager 2 will be showa by)08 added to the
am.

0000 ¢ of (MIRELSIZE) records/sector

000E-000F Nusher of sectors allocated ta the file.
{Disk Mamager 7 will list one agre than
this nusber, theredy including this sector
in the sactor count) .

0010 For sesory-isage prograa files and
variable-iength data files, this contains
the nuster of hytes used in the last dist
sactor. This is usad to determine

ed-of-fila.
oot MAXRECSIZE of data fila.
0012-0013 Fila record count, but with the second byta
baing the high-arder dyts of the valus.
001C - end Block Lint (see natel

Nots oa file storage: Files are placed cn the disk
in first-coms / first-served sanner. The first file
witten will start at sector 0022, and wsach subsequent
file will bde placed after it. [f the first file is
deleted, a newer file will be witten in the space it
occupied.

If this space isa’t big enough. the file wmll be
'fractured’, ind the resainder will de placed in the next
available block of sectors. The Dlock link sap reess
track of this fracturing. Each block link is I Dbytes
long. T™e value of the Ind digit of the secoad dvte
followed by the 2 digits of the first byta is the iddress
of the first sector of this extent. The value of the Jrd
byte foilowed by the st digit of the 2ad ldyte is the
nusher of additiomal sectors sithin this extent,

Sectors 2 through 21 are reserved for File
Descriptor Records and are allocated for file data oalv
if no other available sectors axist. [f sore than (2
files are stored on a disk, additional File tham 22 files
are stored oa a disk, additional File Descriptor Recaris
will be allocated as nesded, one sector it i tise, fras
the qeneral available sector jocl.

(reprinted fros the newslstter of the Central destclester
9 ers.)

A=29

FORMAT FOR DISK DIRECTORY/ALLOCATION OF FILE STORAGE
From: "The paper Peripheral" Central Texas 99/4A Users Group

The following is a complete ard, “o the best of mny knowl edge,
accurate description of the ditk «directory format and file storage
allocation used by the 99/4A computer.

SECTOR @ CONTAINS THE VOLUME INFORMATION BLOCK
Addreass Contents

JOIJ-0132? Disk name——up to 1@ characters
GeNa-2I¢8 Total number of sectors on disk <>0168B=348, >@200= /29,

>@5AD=1440
o2aC 09 <¥# of sectors/trk)
DAAD-9AFF “DSK’ <>445348)
0213 >59=Disk backup protected, >20=not protected
oat1 # of tracks per side <{>28=40, >23=3%)
Co12-2013 # cof sides/density <>01@1=85/5SD, >@0201=DS5/DD, >0202=DS5/DD
@338~2nd Sector allocation bit majy. See note below.

Note on >2838-end: This is a sector-by-sector bit map of sec
uses l=sector usaed, O9mggctor available. The +irst byte is for secto
? through 7, the second for sectors 8 through 15, and so on. With,
wach bhute ihe bits correspond to the sectors from right to left. For
exampia t¥ 4w te 3338 contained >CFP@ then the first byte equals 11@9
T, This mzans that sectors @ through 3 are used, at byte >@0%1.

SECTOR 1 CONTAINS THE DIRECTOR LINK

Each 14-bit word 1lists the sector number of the File Describtcr
Record for an alocated file, in alphabetical crder of the +file names.
The 1list is terminated by a work containing >2000; therefore, the
maximum number of files per disk is 127 C[(125/2)-11]. If the
alphebetical order is corrupted (by a system crash during name changs,
for instance), the binary search method used to locate files will be
2f “ected and files may become unavailable.

DISK ALLOCATION (CONT.)
SECTORS 2 TO 21 CONTAIN THE FILE DESCRIPTOR RECORDS

Address Contents

0909-90299 File nase——up to 19 characters

@@eC Filetype: >P09=DIS/FIX, >éi=Progran (mamory-image),
Q2= INT/FIX,

>B@=DIS/VAR, >82=INT/VAR
File deletion protection invoked by Disk Manager 2 will be
shown by >80 added to the above.

3ddD ¥ of {MAXRELCSIZE> record/sactor.

OO00E-200F # of sectors allocated to this file. (Disk Manager 2 will
list one mors than this nuaber, thereby including this
sgctor in the ssctor count.)}

ed1o For semory—image program files and variable-length data
files, this contains the nuaber of bytes used in the last
disk sector. This is used to deteraine end-of-fila.

a911 MAXRECZIZE of data file. :

0012-90913 file record count, but with the second byte being the
high—order byte of the value.

2@1C—end Block Link. See note below.

Note on file storage: Files are placed on the disk in
first—come/first-served manner. Tha first file witten will start at
sector @922, and each subsaquent file will be placed after it. I1f the
first file is deleted, a newer file will be witten in the space it
occupid. If this space isn’t big enough, the file will be ’fractured’,
and the remainder will be placed in the next available block of
sectors. The Dblock link map keeps track of this fracturing. Each
block link is 3 bytes long. The value of the 2nd digit of the second
byte followed by the 2 digits of the firat byte is the address of the
first sector of the axtent. The value of the 3rd byte followad by the
first digit of the 2nd byte is the number of additional sectors within
this sxtant. Sectors 2 through 21 are resarved for File Descriptor
Records and are allocated for file data only if no other available
sactors exist. If aore than 32 files are stored on a disk, additional
File Descriptor Records will be allocated as needed, one sector at a
time from the general available sector pool.

A=31
A 32,33 reserved

Fixing Blown Disks
TERRY ATKINSON

ovou nave hag a disk drive for any length of tise,
ShANCES are ou have encIuntered such devastating eessiges
48 'glek Aot initialized® when vou know full well 1t 18!),
ar ‘srcgrae agt faund * ‘when /Oy know 1t 18 suppased 0 be
there !, Or, pernaps, /ou have accidentally deleted 2
Jrogras and want ‘o get 1t dack. ALl of the adove can de
resedied.

FIXING THE DISK BiT MAP 'AYOQ)

AUO, or Sector O contains the disk bit sap, and 1f the
charactors *DSK are altered, sou will De unable to catalog
or capy the disk. Indeed, & °*DISK NOT IMITIALIZED® error
#1]] show up. You can, however, retriave prograas and files
indrvigudlly and transfer thes 2 anaother disk. That is, if
you KNEW the names of ALL the prograas/files on that disk.
There 18 a dettar way which eliminates the possidility that
you “forgot® about a particular progres.

Boot up vour disk fixer and load sector 0 froe a disk.
ANY disk will do. Then write the good sector 0 to the dud
disk. This restoras AUO on the bad disk, dut the bit sap is
NOT correct, but this does not satter. All you want to de
ls to be able to catalog and copy the disk using DN2. Use
DE2 (not FORTH) to copy the entire disk to a new disk. You
can then initialize the bad disk. That is all there is te
i1t,

Ruined bit aaps say not de discovered until it is toe
late. Any naw prograas saved to 4 disk with & ruined dit
088 May write over older prograss or data. Gooddy alder
prograa. Thera’s agthing .ou can da about it

Another possidility is that sector O has been dassqed,
perhags By sagnetisa or i scratch on the surface. In this
case, vyou'll find out when vou try to read/write sector 0.
You wan’t be able to. Mow you have a prodles, Dut net
insursguntable. The anly ‘*fix* for this is to copy all
fectors froe the bad disk to a good disk, sector-by-sector.
A tedious chore to Dde sure, but at least vou can get all
your prograas back. It will still de necessary to proceed
is dbove to qet vour prograss back, as the bt sap on the
new gisk will not de correct. Now, ! as not sure hew FORTH
would behave under this circusstasce. [tmew FORTN will
‘thoke® when 1t trias to copy & dasaged secter, But whether
or not it will continue to copy the “geod® sectors and put
then into their praper places oa the new disk, is deyoad se.
! wouldn’t chance it. Batter to e safe thas sorry amd
stick to tried and proven sethods. (Of cowrss, you could
wpertsent. [f it werks, lot us all know. 1f sose of you
FORTH addicts out thers could shed sese light on the
subjact, vour coasents would de sost welcose.

FIXING THE DIRECTORY LINK NAP-(MJ])

S1 kesps track (alphabetically) of all the
prograss/files on the disk. Bad s1's could produce errors
such that attespts to catalog the dist will produce a
heading, but no oragraes, or saybe just “soee® prograss will

be listad,
Here's howt

First, lock at AUO, Read the bit sap to detera:n
which sectors Dbetwesn 2 and 33 inclusive 0232 are
flagged as used. Make a list of these sectors in a1 coluen,
Now, load each of thess sectors in turn, ind exasine °“e
first 10 dytes of wach. Copy the Bytes down Ddeside *¢
relevant used sector. Detersins the alphabetical order 3¢
these prograas seraly By readiing the nuserical values. "he
lower the nusber, the closer to the front of the alphadet :°
is. Now, produce a list of these sectors arranged
ilphadetically. Here's a4 short exasples

To fid this, though, is extresel, siap!

Sector used Mex Values in [st 10 dytes ()) Prograe Nase

2 4920 20 20 20 20 20 20 20 20 4

3 4920202020 20 20 20 20 20 !

5 4 20 20 20 20 20 20 20 20 20 L

) 41 20 20 20 20 20 20 20 20 20 A

A 4120 20 20 20 20 20 20 20 20 AB
Re-arranging the adove alphadetically by sector would

produces §,A,3,2,3 which are going to fors the dirsctory
link sap 1A WORD.

Next, copy sector | from ANY frashly initialized disk
and wite it to the dad disk. This is the easiest wiy to
‘restore® 81 to all ero’s. MNow, use the (A)iter coseand,
and change the first, and sach successive werd to proov
the alphabetical pointers. For sxasple: 0004 000A 0003 0G.
0003 0000, Note the 0000 at the md. The directory link
089 st e terminated with the value, New, write this
sector to the dad disk, and you're in business.

] Yy’ ! AN

Men you have a progras in eain sescry, and tipe ‘nes’,
the progras is not erased. Only the pointers are changed,
but the progras is still in oeesory., A knowiedgeadle
programser Couid actually ‘unnew® 3 progras, although not
withowt #ifficulty,

The sane appliies if you “delete* a2 prograa fros the
disk, Only pointers are changed, and the progras is still
on the disk provided you have net perforaed 2 ‘save’ since
the deletion. Umlike eain sesery, retriaval of & deletw
prograa frem disk is extresely easy.

Locate the sector containing the deleted file's
firectory (detwesn ()2-)21). You cam d@ this by using the
*FIND STRING® comsand, or, if your disk fizer doss not have
this coasand, serely 1044 thes in one at 4 tise and look for
your ‘deleted” progras’s nase in the first 10 dytes. Change
the progras nase to °IIIII1I111° (MEY code, of course).
Now, wite that sector back to it’s proger spot. Load-1n
sector | and locats the first word coataining 0000 »
replace it with the directory sactor § of your delm
prograa. Eneure the next word ig 0000, Now, exit the OF
and load the subject program as per normal, Exit the
disk~fixer and load the program as norsal and save 1t BACK
to the sase disk under the sase progras nase (11111I1NIL).
Why? Becausa this will autosatically update the disk dit sap
(AUO). Now use DN2 to chanqe the progras nase back to it's
original nase and the task is cosslete.

A-34

A BRIEF ANNOTATED BIBLIOGRAPHY OF BOCKS RELATING TO THE TI-99/4A
(fram the personal library of Barry A. Traver)

Assembly Language for the TI-99/4A

*Lottrup, Peter M.L. Begimner's Guide to Assembly Language on the
TI-99/4A. Compute! Books, 1985. Although oriented toward Mini-Memory, this
book is excellent for beginners, with very clear explanations and lots of short
but useful program examples,

*McComic, Ira. Learning TI 99/4A Home Computer Assembly Langquage
Programming. Prentice-Hall, 1984. A good bock for beginners who
have the Editor/Assembler but no previous experience in assembly language,

*Molesworth, Ralph. Introduction to Assembly Language for the TI Home
Compyter. Steve Davis Publishing, 1983. Primarily for use with the
Bditor/Assembler, but also can be used with Mini-Memory. Moves faster and
further than the McCoamic bock.

*Morley, M.S. Fundamentals of TI-99/4A Assembly language. TAB Books,
1984. A good book for those who have the Mini-Memory Cartridge but not the
Editor/Assembler.

BASIC Programs and Programming for the TI-99/4A

Ahl, favid H. The Texas Instruments Hame Computer Idea Book. Creative
Computing Press, 1983. "Includes 50 Ready-to-Run Bducational Programs,” but
most of them seem to be written in minimal BASIC and make no use of the
special features of the TI-99/4A.

*Carlson, BEdward H. Kids and the TT 99/4A. DATAMOST, 1982. This book
is truly "not just for kids," but one of the *best* introductions to learning
how to program in TI BASIC.

Casciato, Carol Ann, and Don Horsfall. TI-99/4A: 24 BASIC Programe.
Howard W, Sams, 1983, Available with optional program cassette. Games,
finances, home management, personal records, and utilities are included, all
in TI BASIC.

*Compute!'s TI Collection: Volune One. A worthwhile collection of “over
30 TI-99/4A games, applications, utilities, and tutorials — most never before
published, " including a word processor, a data base management system, an
electronic spreadsheet, several games, helpful programming tricks, and a super
graphics program called "Superfont.”

Creative Programming for Young Minds...on the TI-99/4A. Creative
Programming, 1982-1983. Several volumes in series. Hands-on instruction in
TI BASIC (plus some small later reference to TI Extended BASIC). This
series—like Carlson's bock—is "not just for kids."

"Davis, Steve, ed. Programs for the TI Home Computer. Steve Davis
Publishing, 1983. Four dozen programs that *do* make use of the special
fsatures of the TI-99/4A. Most of the programs only require TI BASIC and
cassette system, though some make use of TI Extended BASIC, disk system,
memory expansion, or Terminal Pmilator 2 and speech synthesizer.

D'Ignazio, Fred. TI in Wonderland. Hayden Book Company, 1984. "21
programs for learning and fun,” intended for youngsters, by the popular author
of Katie and the Camputer.

D'Ignazio, Fred. The TT Playground. Hayden Book Carmpany, 1984, 23
programs for learning and fun," intended for young children.

Dusthimer, Dave and Ted Buchholz. The Tool Kit Series: TI-99/4A
Bdition. Howard W. Sams, 1984. Brief S- to 15-line subroutines—dealing with
celor, sound and music, graphics, animation, and camputation--that can be
combined to form the basis of educational programs and computer games.

Engel, C.W. Stimulating Simulations for the TI-99/4A. Hayden Bock
Coampany, 1984. 11 "similation game programs” in TTI BASIC, 2 in TI Extended
BASIC, adapted from a popular book first published in 1977.

*Flynn, Brian. 33 Programs for the TI-99/4A, Compute! Books, 1984.
Although this book contains a few games, including a version of “"Champ" called
"Vanilla Cockie," it is primarily concerned with mathematically-oriented
programs, including money management and business programs, curve-fitting
routines, matrix manipulations, statistics, and nunerical analysis, all in
Extended BASIC.

*Flynn, Christopher. Extended BASIC Home Applications on the TI-99/4A.
Compute! Books, 1984. An excellent book containing data file management
utilities, bar graph programs, an electronic card file, an appointment
calendar, and two electronic spreadsheets. Flynn's programs always allow data
to be saved on either tape or disk.

*Grille, John P., and others. Data and File Management for the TI-%9/4A.
Wn, C. Brown Publishers, 1984. "Includes 48 programs to give the more
advanced user techniques for information management.” All programs are in TI
Extended BASIC, and many make use of diak. Topics included: pointers,
sorting, strings, linear and linked lists, sequential access files, direct
access files, trees, and inverted files.

Grillo, John P., and others. Introduction to Graphics for the TI-99/4A.
Wn. C. Brown, 1984. Includes 38 programs in TI Extended BASIC, sawe making
use of disk, BUT note this camment by the authors: "In this bock, we have
limited our discussion to low-resolution graphics only. We do not discuss the
color, sound, joystick, and lightpen features of this fine machine., We hope
to cover these topics in a subsequent book."

Herold, Raymond J. TI-99/4A Sound and Graphics. A fairly good guide to
sound, graphics, and speech synthesis on the TI-99/4A (including coverage of
TI's text-to-speech diskette). Of the games, "Alphabet Invasion® and "Slot
Machine" are done quite well.

Holtz, Prederick. Using & Programning the TI-99/4A Including
Ready-to-Run Programs. TAB Books, 1983, Although this book is widely
distributed, many chapters are either toc elementary or too advanced to be of
benefit to the average TI-99/4A owner.

A-36

Inman, Don, and others. Introduction to TI BASIC. Hayden Book Company,
1980, A straight-forward textbock on TI BASIC which does not go very far
beyond the two manuals supplied with the TI-59/4A.

Xnight, Timothy Orr. TI-99/4A Graphics and Sounds. Howard W. Sams,
1984, Available with optional program cassette. 37 sample {ard simple) TI
BASIC programs, originally written for the Commodore €4, most of which are
rather trivial in nature,

Knight, Timothy Orr, and Darren laBatt. TI-99/4A BASIC Programs.
Howard W. Sams, 1984. Available with optional program cassette. Although
these 30 TI BASIC programs were also originally written for the Commodore 64,
they are more substantial than those contained in the other book by Rnight.

Kreutner, Donald C. TI-99/4A Favorite Programs Explained. Que
Corporation, 1983. 40 practical and entertaining programs in T BASIC, with
explanations.

*Loreto, Remo A., ed., The TI-93/4A in Bits and Bytes. Remo A. Loreto,
1983. A hodge-podge collection, but one containing within it a number of
worthwhile programs (same in Extended BASIC) and programming hints.

Peckham, Herbert D. Programming BASIC with the TT Home Computer.
McGraw-Hill Book Company, 1979. Another straight-forward textboock on TI
BASIC, going a bit further than Inman's book.

Regena, C. BASIC Programs for Small Computers., Compute! Publications,
1984, Although this book contains "things to do in 4K or less® for other
computers (notably the Vic-20 and TRS-80), it also contains programs in TI
BASIC for the TI-99/4A.

Regena, C. Programmer's Reference Guide to the TI-99/4A. Campute!
Publications, 1983, Not so mich a reference quide as an instruction manual on
how to program in TI BASIC, this book contains 48 programs by popular
columist Cheryl Whitelaw (or "Regena® of 99'er and Compute! fame).

Rugg, Tom, and others. 32 BASIC Programs for the TI-99/4A. dilithium
Press, 1984. Programs include applications, education, games, graphics
display, and mathematics. 30 programs in TI BASIC, 2 in TI Extended BASIC.
(The programs can be ordered on disk or cassette.)

Sanders, William B. The Elementary TI-99/4A. DATAMOST, 1983. Contains
uaseful chapters on "Data and Text Files" and "You and Your Printer," topics
usually ignored in similar books.

Schechter, Gil M. TI-99/4A: 51 Fun and Bducational Programs. Howard .
W. Sams, 1983. Available with cptional program cassette. All programs are in
TI BASIC, and all are probably 4K or less in size.

Schreiber, Linda M. and Allen R. The last Word on the TI-99/4A. TAB

Books, 1984. "S55 practical and entertaining programs, all written in TT
Extended BASIC," perhaps the best of which are "Battleship” and "Towers Game."

(Programs are available on tape.)

*Sternberg, Charles D. TI BASIC Camputer Programs for the Home. Hayden
Book Company, 1984. Programs include automobile, conversion, home finances,
<itchen helpmates, list, tutorial, and others, and each program is documented
with description, symbol table, and output sample. The book is an adapration
for the TI-99/4A of Sternberg's BASIC Camputer Programs for the Home; now if
only samecne will do an adaptation of his excellent two volumes on BASIC
Computer Programs for Business!

Turmer, Len. 101 Programming Tips & Tricks for the Texas Instruments
TI-99/4A Home Camputer. ARCsoft Publications, 1983. An unimpressive book
carried in many bockstores,

Turner, Len. 36 Texas Instruments TI-99/4A Programs for Home, School &
Office, ARCsoft, 1983. Many other booka on this list contain a much better
selection of programs in TI BASIC.

*Winter, Mary Jean. Camputer Playground on the TI 99/4A. A colerful
collection of TI BASIC computer activities intended for children in grades 2
through 6. Adapted for the TI-99/4A by Marcia Carrozzo.

“Watt, Allen. BASIC Tricks for the TI-99/4A. Howard W. Sams, 1984.
Availaple with optional program cassette. A good collection of 28 useful
subroutines dealing with selective input, rounding, dollars and cents, report
formatting, time and dates, upper ard lower cases, sorting, and menus,

*Zaks, Rodnay. Your First TI 99/4A Program. Like anything done by Zaks,
this book is clearly written and well done. It is, however, ask the title
indicates, a book for those who are just beginning to learn "the basics of
BASIC."

Games in TI BASIC or TI Extended BASIC

Holtz, Frederick. TI-99/4A Game Programs. TAB Books, 1983. 32 "games,
puzzles, and brain teasers" in TT BASIC, with explanations.

*Ingalls, Fobert P. T1 Games for Kids. Computel Publications, 1984. An
excellent collection of 32 educational game programs in TI BASIC for children

ages 2 to 17.

McEvoy, Seth. Creating Arcade Games on the TI-99/4A. Campute!l
Publications, 1984, With the exception of cne chapter devoted to TI Extended
BASIC, this book tells "how to" write arcade games in TI BASIC, and includes
eight finished games.

*Mullish, Henry, and Don Kruger. Zappers: Having Fun Programming and
Playing 23 Games for the TI-99/4A. Simon & Schuster, 1984, Many favorites in
TI BASIC, including "Blackjack,” "Hangman," "Hidden Word Search," "Othello”
("Flip-a-Disk"}, "Simon," and "Tic Tac Toe.”

*Regena, C. TI Games. Compute! Publications, 1983. About 30 games for

the TI-99/4A, mostly in TI BASIC, but including 7 in TI Extended BASIC,
including the excellent "Mystery Spell®” and "Mosaic Puzzle.”

A=38

Renko, Hal, and Sam Edwards. Terrific Games for the TI 99/4A.
Addison-Wesley Publishing Company, 1983. A mixed bag of 30-some unusual game
programs from the Netherlands in TI BASIC and TI Extended BASIC. ‘

*Singer, Scott L., and Tony E. Bartels. Games TIs Play. DATAMOST, 1983.
32 TI BASIC game programs based on the book Games Apples Play by Mark James
Capella and Michael D. Weinstock. (Programs are available on disk.

*Ton, Ehoa, and Quyen Ton. Entertainment Games in TTI RASIC and Extended
BASIC. Howard W. Sams, 1983, Available with optional program cassette, One
of the *hest* program collections available; "Frogger"-lockalike "HomeBound"
is excellent. Book also contains a few non-game programs, e.g., "Address
Inventory" and "Auto Sprite Editor."

LOGO Programe and Programming for the TI-99/4A

*Abelson, Harold. TI LOGO. McoGraw-Hill Book Company, 1984. If you have
TI LOGD II, you already have this excellent bock, but if you have TI LOGD (I),
get it!

Bearden, Donna. 1, 2, 3, My Computer & Me. Prentice-Hall, 1983,
Though not just for the TI, this "LOGD funbook for kids" contains an appendix
on "editing features for Apple LOGO, MIT LOGO, and TI LOGO."

*Conlan, Jim, and Don Lnman. Sprites, A Turtle, and TT LOGO.
Prentice-Hall, 1984, "A friendly, playful introduction to the TI LOGD
computer language,” very well done.

*Programming Discovery in TI LOGO. Texas Instruments, 1982, This
attractive "student guide” was used by Texas Instruments with their Computer
Advantage Clubs and is very well designed.

Ross, Peter. Introducing LOGD: For the Apple II Camputer, Texas
Instruments 99/4A, and Tandy Color Computer. Ross comments that "TI LOGO
differs from Terrain LOGO and Apple LOGO in several important ways.... The
main difference is that TI OGO has 'sprites' and 'tiles' as well as the
turtle.” TI LOGO II also has music. Rosa's book is useful, but
unspectacular., :

Thormburg, David D. Computer Art and Animstion: A User's Guide to
TI-99/4A Color 1LOGO. Addison—Wesley Publishing Company, 1984. This book is
also an introduction to TI LOGO, more general in content than the title might

suggest.

"Watt, Daniel. Learning with LOGO, McGraw-Hill, 1983. Although
primarily concerned with Terrapin/Krell LOGO and secondarily with TI LOGO,
this is one of the best and most cawprehensive books on LOGD presently
available.

Miscellanecus Books for the TI-99/4A

*The Best of 99'er: Volume 1. Bmerald Valley Publishing, 1983. A very
worthwhile collection of articles on "Starting Out," "Programming Techniques
and Lanquages,” "Inside BASIC and Extended BASIC," "LOGO," "Assembly
Language," "Computer-Assisted Instruction,” "Computer Gaming," and
"Applications and tilities.”

A=39

Blackadar, Thomas. The Best of TI 99/4A Cartridges. SYBEX, 1984. As
the title indicates, this book only covers some of the cartridges (but, in y
opinion, not always the best). Nevertheless, this is one of the few books that
has any significant treatment of cartridges for the TI.

Brewer, Bill. The TI-99/4A User's Guide. Macmillan, 1983, How can you
not like a book whose cover blurb says this?: "There is only one home computer
priced below $100 that has a microprocessor as powerful as the expensive IEM
FC's. And that home computer has more educational cartridges produced for it
than for any other system. It's the TI 99/4A, the best computer value for its
price on the market today."

*Casciato, Carol Ann, and Donald J. Horsfall, The TI-99/4A User's Guide.
Howard W. Sams, 1983. An excellent book, carefully done, by two authors who
know the TI-99/4A well.

Garrison, Paul., The Last Whole TI 99/4A Book: Programs and
Possibilities. Wiley Press, 1984. Contrary to the promises on the cover, this
15 not "the only book you need,” although it does cover a lot of ground (with a
few inaccuracies here and there),

*Heller, David and Dorothy. Free Software for Your TI-99/4A. Although
the information is not always entirely accurate, this book contains much
information not readily available elsewhere,

Micronova's Home Computer Directory for the TI 99/4(A). Micronova,
1983, A very useful book when it first appeared, although some of the
information is now significantly dated.

The User's Glide to Texas Instruments TI-99/4A Camputer, Software, &
Peripherals. Beckman House, 1983. A useful guide "by the editors of Consumer
Guide," t-.3 book has appeared in several different formats.

Willis, Jerry, and others. Things to Do with Your TI-99/4A Compauter.
New American Library, 1983. Part of a saries prepared by dilithium Press, this
book is fairly competent as an outside lock, but unimpressive.

Albright, Ron. The Orphan Chronicles. Millers Graphics, 1985. A history
of the TI Hcme Camputer and sources of information about it.

*Especially recommended.
This list (prepared by Barry Traver, 835 Green Valley Orive, Philadelphia,

PA 19128) is not camplete, but should prove useful to those who are interested
in knowing more about some of the bocks that are available for the TI-99/4A.

A=40

A Description and Commentary on the Geneve Computer
Some I[mplications for us all
by Chris Bobbitt
President, Asgard Software

Caopyright Chris Bobbitt 1986

At its introductign, the Myarc Geneve computer will be among the most
advanced <computers available, and definitely the most advanced "home
computer® in histary. [t is more powerful than many minicomputers, byt
is available at a price that would have been unheard of 3 years ago.

The following is a description of some of the capabilities of this
remarkable devige.

MICROPROCESSOR:

The TMS59995 CPU is 5 to 6 times faster than a TMS9900, the processor
found in the TI99/4A, This processor is only slightly slower than the
68000 CPU, yet is much simpler to use, more accurate mathematically, and
contains a smaller instruction set. The advantages of this smaller
instruction set is an article in itself. Suffice it to say that this
technigue, called RISC, 1is getting a Tlot of attention in programming
circles.

MEMORY :

The standard Geneve Computer comes with 640K of RAM. This is expandable
to 2 Megabytes using special memory expansion devices. A Myarc 512K card
can be made to work with the Geneve with simple modifications. The Myarc
512K card memory may be directly accessed by programs.

GRAPHICS

The Geneve uses the Yamaha 9938 graphics processor. The 9918 processor
was designed by Texas Instruments and Microsoft Incorporated. The
computer waorld will discover this chip and its capabilities much in the
same way that they proudly announced 16 bit computing for microcomputers,
years after Tl had introduced the TI99/4A. This graphics processor
supports a variety of different modes for graphics and text.

TEXT

The Geneve supports both 40 AND 80 column modes. The 40 column mode is
similar to that of the 99/4A, so none of your current word processing
software 1{s obsolete. However, text, foreground and background colors
may be any of 512 colors. 256 patterns are available for redefinition.
One of the 80 column modes is the same, while another supports blinking
text and multi-color text. Some limitations apply, but this permits
programmers of the system to use many of the advanced human factors
graphics = techniques just now being developed. The use of color to impart
information, much in the nature of peripheral vision can make word
processing tasks was well as the initfal learning process easier. Your
Geneve computer will be able to keep up with this emerging technology for

A~4l

some time. Indeed the rich resgurces of the Tl programming community may
well resylt in some breakthroughs in graphics presentation. [t is
reasonably well known that some organizations in the community are
working hard in this area. Since each of these various screens, occupies
very Jittle memory of the 128K of standard video RAM found on the Geneve,
up to 32 screens of text can be stored in memory at once. A1l of this
information is directly addressable by the programmer. This bodes well
to provide a rich environment for the system and applications programmer
and thus the user,

The Geneve supports every text mode of the 99/4A, as well as many new
modes that use much of the available memory. One of the more interesting
modes supports a resolution of 256 by 216 pixels. Each pixel can be any
of 256 «colors. This mode also supports multi-color sprites. Each pixel
row of the sprite can be any of two colors. Another interesting graphics
mode supports 512 by 424 pixels with each pixel any of 16 colors. The on-
screen display of a maximum of 16 different colors can be selected from a
pallet of 512 colors. This mode is the same resolution as the Apple
MacIntosh computer, yet the system still finds the capabilty to support
sprites, which the MacIntosh does not. The 9938 chip has built in
commands for line drawing, block moves and copies at hardware speeds.
Programmers will have a rich, challenging environment for creativity, all
at an affordable price for 99/4a owner and convert alike.

INTERFACES

The Geneve has a number of ports., For video, there is a port for an
analog RGB monitor. The analog RGB monitor is more advanced than the
digital ones used by the TI Professional Computer. Texas Instruments
used the quality of the TI PRO monitor as a major component in its "Dare
to Compare" campaign against the inferior IBM PC display system, An
Amiga monitor displays the power of the Geneve guite well, and 1s readily
available. However, an additional port permits the use of your existing
TI99/4A videg monitor, Therefore, your current equipment 1is not
obsoleted by the new machine, allowing you the Tluxury of lefsurely
getting the best price for your existing monitor and cutting the best
possibte deal for your upgrade. Indeed, some are already at work seeking
to separate early dropouts in the Amiga world from their monitors. The
Geneve also supports the Amiga mouse. Other monitors of the serial RGB
type work, however, so do not pay extra simply because the name on the
front.

Your 99/4A console can be used as a stand alone device with the purchase
of the Geneve. The Geneve comes equipped with an [BM style keyboard.
Other keyboards, costing from $50 to $500 will also work just fine,
Since the Geneve replicates the functions of the console, you will only
need the expansion system or one of the inexpensive expansion kits.

A multifunction port permits even more access to the Geneve., While
labeled as being for the Amiga mouse mentioned earlier, also can support
sophisticated applications input from equipment both exotic and common.
A video digitizer, for instance. Pictures taken from a video camera can
be fed into the system. A digitizing tablet, which turns the Geneve into
an elaborate data collection system or a component of a computer aided

design (CAD) sytem is fully supportable, given proper software. Light
pens are of course appropriate input devices as is information from a
video cassette recorder or a video camera, Indeed, with external
converter devices available on the market, you can pipe in television
signals and enjoy crisp resolution and vibrant colors never seen before
from a commercial television set, thus putting your RGB monitor on
overtime.

HARDWARE COMPARISONS

Ta put this 1in perspective, compare the Geneve to other computers. The
Geneve comes with 640K of RAM, equivalent to a fully confiqured [8M PC
XT. This memory is expandable to 2 megabytes, twice the standard memory
of an Atari 1040 ST. The Atari ST, of course, is one of the more popular
"'non IBM machines"” on the market. The Atari ST is the fastest
microcomputer available in its price range. The Geneve is roughly
equivalent., The makers of the Geneve have gone to the extra expense of
installing special purpose chips to handle, among other things, input
from disks, lightpens, and other devices. In a similar vein, these
special purpose chips handle output to screen, disk and elsewhere. And
what about graphics? Again expensive special purpose redundance pays
off. Therefore, in graphics, input and output, the Geneve runs circles
around the Atari ST. The Geveve deploys eight times as many colors as
the Commodore Amiga. The Amiga is the superior machine in these
respects. The Geneve, unlike the Amiga and the IBM PC AT, supports
graphics with a ‘true aspect' ratio. This is the superior form, and
gives higher resolution through the use of square pixels, the tiny dots
used to give your computer screen, even your television its color and
appearance of depth.

The Geneve rates highl{ as a smoothly upgradeable machine. It obviously
will be compatable "with the newly developed Myarc disk controller card.
In disk drives supported, the Geneve with the Myvarc disk controller card
will defeat the [BM PC AT. Four 20 megabyte hard disks can be supported
with this upgraded configuration, not to mention that the same scheme
will control four (or less) double sided QUAD density floppie drives of
the conventional 5 1/4 inch size. The drives that use the new plastic
bound three inch disks are supported as well. Knowing the market, the
Geneve makers realised they needed a system that would obsolete
gracefully, as has the 99/4A.

Features of the 99/4A which still challenge the marketplace are
retained. An example 1is the 99/4A's well known device independant
operating system. Virtually any peripheral can be attached, unlike
almost all other computers including those costing thousands. Device
independence is a feature you (the 99/4A owner) have purchased years ago
and one that should not be discarded in the name of progress. Therefore,
the Geneve 1is superior to most every micropcomputer in graphics, speed,
memory capacity, and in versatility.

A full blown Geneve system would contain a Geneve computer, a WDS model
hard and floppy disk controller, a TI RS232 card, plus a 3 slot expansion
kit, linked to two full blown 720 kilobyte floppy disk drives and a high
resolution serial RGB monitor. If bought all at the same time, using all

A=d3

new components, your system would cost Tess than $1,000. One of the
finest features of such a System is that it can and probably should be
acquired incrementally, particularly if you currently own an expanded
99/4A system. For a machine of this class, this is an incredible price.
The Atari 1040 ST is well known as the first computer that cost less than
Gne dollar for each one thousand bytes of memory, new. The Geneve may be
the first machine to drive that cost down to fifty cents per thousand.

SOFTWARE

The Geneve will come bundled with a new version of Extended BASIC on disk
which is fully 6 times faster than TI Extended BASIC. Also included will
be a MS-DOS 1ike operating system, The package is called "DOS like"
because the commands used will be very close to MS-D0S. However, the
internal workings of the system will not resemble nor be compatable with
M5-005. This will be a boon for those who have had to struggle through
learning MS-00S at work or on another machine. In the package also will
be an 80 column version of TI-Writer with a larger memory.

A number of other products specifically designed for the Geneve will be
available at or near the release of the Geneve. A number of 'C’
compilers will be available by all expectations. C is & very popular
Tanguage on 32 bit machines and is now beginning to appear in micro
computers in the last few years. Some business software will be readily
available. UCSD Pascal, actually a Tlanguage within its own operating
system, will also be standard. Software developed on many machines,
inctuding the IBM PC, Apple, and others which use this system will run
without medification on the Geneve.

The new Geneve software will allow users to set up directories as an aid
ta manage muitiple files. A software RAMdisk will also be available,
where the user can deal with a notional or in-software emulation of a
disk, All interaction on this RAMdisk wiil be in memory, thus wil)
operate at extremely high speed. Print spoolers will be available.
People still pay $200 for print spoolers, which merely are hardware
systems, now software, that fool both the computer and the printer. The
printer is wired to signal the computer to stop sending data while the
printer repositions the print head, or rolls up the platen. Meanwhile
the computer is burning up thousands of cycles waiting for printer to get
ready to receive data again. A spooler is nothing but an ever ready
printer to the computer and a patient computer to the printer. The job
is transmitted to the spooler in a second or two and you are ready to go
again while the printer chunks away.

Tl BUSINESS MACHINES-The Geneve 1{s assembly language compatable to the TI
mini computer world, and awaits a member of that community to make that
software run.

There is one silver lining in the “"Perils of Pauline® development path of
the Geneve, so fraught with delays. Time to think about the new arrival
has been purchased with the sweat of the developer in a process which
would normally have been extremely secret and quickly sprung on the
unsuspecting community with 1ittle warning.

NEW QFFERINGS

One new company has been started specificly to develop Geneve software.
A true muiti-tasking operating system is among the goals of this firm.
Multi-tasking to a wuser means that several programs can be run at the
same time. Multitasking is at the heart of such programs such as
Sidekick for the [BM where various panels, or windows are pulled down to
allow notes and other activities to take place,

Yet another goal for this new developer is a macro-assembler. Macrao-
assemblers are small utility oprograms that can be strung together to
achieve a varijety of goals. In the mini computer world, programmers
adroit in the macros of their particular machine rarely had to write much
original code to achieve powerful results. This capability will soon
arrive for you with the Geneve.

Soon after shipments of the Geneve begin, BASIC and Pascal compilers will
be made available by this startup firm., A compiler may not be a familiar
concept to all who read this, though it is simple to pick up. When your
99/4A receives the run command, it wakes up and "interprets" the program
you have told it to run; Every single time. You probably are aware that
assembly Tlanguage is faster. The reason for this is that it is closer to
machine language and therefore requires minimal "interpretation." BASIC,
however, along with a host of other languages is not that close to
machine language., Easier to remember and use, but requiring some form of
intervention. The finterpreter is often used for BASIC., While it gives
instant feedback, an interpreter is slower than a compiled program which
is a machine or assembly language program. You write the program as
usual, then run the program through a compiler. That program compiles a
collection of assembly language or machine code commands. That
"compilation" is what you then use when you need that program. The
compilation is much faster, almost indistfnguishable from a program
written in assembly language. The 99/4A only recently got an example of
a compiled BASIC and a compiled C. If you have yet to experience the
utility of compilers, you will certainly enjoy the Geneve. The increased
memory will, of course, make these compilers superior in performance to
anything currently on the 99/4A.

YET ANOTHER HMUGE LIBRARY-Not one but two major resources are in the game
plan for this firm. CP/M is an operating system that has its own cult
following, and s stil1l supported by a major commercial and cottage
industry. Transfer of CP/M (and yes, [BM) disks to the Geneve is in the
works. The firm 1is called Access Engineering, and is Tocated in the
Washingtn D.C, area,

A HOST OF GENEVE SPECIFIC PROGRAMS are to come. Lou Phillips of Myarc
has estimated that four to five years of effort wil] be needed to
complete the full sweep of programs needed to truely tax the Geneve
system and the chips associated with it. DOuring that period, if a new
design comes along, the card, not the entire structure can be modified.
Almost immediately however, terminal emulators, word processing programs
that support such sophisticated typesetting concepts as proportional
spacing will begin to arrive,

A-43

‘“CGoodbye *til we meet..."”’

