TEXAS INSTRUMENTS COMPACT
| COMPUTER 40
USER'S GUIDE



ADDENDUM
The Wafertape™ Digital Tape Drive is not available.

PN 1063135-0001



ADDENDUM

Texas Instruments Compact Computer 40 User’'s Guide
Caution: Read the information on static electricity on page 1-4
before working with your computer.

The following notes provide additional information about using and
programming your Texas Instruments Compact Computer 40.

Page 1-7
The optional AC adapter referred to is the Texas Instruments
model AC9201; use only the AC9201 with your CC-40.

Page 5-34
Add the following sentence to the end of the third paragraph.
110 error-type 255 is returned as 0.

Page 5-43
The following paragraph provides more information on
GETMEM.

The memory reserved by GETMEM can be released during
program execution by a call to RELMEM. Any of the following
actions cause the reserved memory to be released.

e Editing the program or subprogram.

e Entering a NEW, OLD, RENUMBER, RUN, SAVE, or
VERIFY command.

o Listing the program to a peripheral device.
e Calling the ADDMEM or CLEANUP subprogram.
e Turning the system off or pressing the reset key.

Page 5-48
The example at line 290 should be as shown below.

290 IF A$="Y" THEN COUNT = COUNT + 1:DISPLAY
AT(4),"Enter value: ";:GOTO 400

Page 5-65

The following paragraph provides more information on status-
variable.

When CALL KEY is executed, the keyboard is scanned for
input. Status-variable is used to store a value that represents
the status of the scan. A value of 0 means no key was
pressed. A value of 1 means a different key was pressed since
the last time the keyboard was scanned for input (e.g., since
CALL KEY, KEY$, INPUT, or ACCEPT was last executed). A
value of —1 means the same key was pressed.

(continued)



The following program segment provides more information on
the use of the CALL KEY subprogram. This segment prompts
twice for a key to be pressed. To determine that the
responses are distinct, the status variable is compared to 1
(S<>1) intines 520 and 560.

500 PRINT "MORE ENTRIES? (Y OR N)"

510 CALL KEY(K,S)

520 IF S<>1 THEN 510

530 IF K= ASC("Y") OR K= ASC("y") THEN 400
540 PRINT "END SESSION? (Y OR N)"

550 CALL KEY(K,S)

560 IF S<>1 THEN 550

570 IF K= ASC("Y") OR K= ASC("y") THEN STOP

Page 5-133
The example for line 330 should be as follows.
330 SUB PAYCHECK(DATE,Q, SSN;PAYRATE, TABLE(, ))

Marks the beginning of a subprogram. The variables DATE, Q,
SSN, PAYRATE, and the array TABLE with two dimensions
may be used and/or have their values changed in the
subprogram and their corresponding arguments in the calling
statement changed. However, if the corresponding argument
of DATE, Q, SSN, or PAYRATE is enclosed in parentheses in
the CALL statement, the value of that argument cannot be
changed. The corresponding array argument of TABLE must
be passed by reference in the CALL statement and therefore
any of its values can be changed in the subprogram.

Page I-4 (Appendix)

In the fifth line from the top, the address is the second
breakpoint set, as shown below.

where nnnn is the address of the second breakpoint set.

Pages I-3,4

The following problem can occur when a breakpoint is set in
assembly language software by either the breakpoint
command or the single step command. If the register ftile
stack is at register 9 and a breakpoint is executed, the
program counter is destroyed. The most significant byte of the
program counter is changed to the least significant byte plus
one.

For example, if the breakpoint is set at address 12354, the
breakpoint message is 3635 st 09:, where st is the
appropriate status register value. The PC commapd can be
used to change the program counter back to the correct
address and program execution can continue. :



To avoid this problem, use one of the following methods to be
sure that the stack pointer does not point to register 9 when a
breakpoint is executed.

o Begin the register file stack at register A4g instead of at
register 1.

e |If the position of the stack cannot be altered, add PUSH
and POP instructions to the code to ensure that the
stack does not use register 9 within the section of code
being debugged. The added instructions can be removed
after the code is debugged.

o Write the assembly language software such that the
stack pointer stays on even byte boundaries.

Page I-5
The last paragraph should begin as shown below.
Then B can be typed to continue program execution...

Page K-6
The fifth error message paragraph should be changed as
shown below.
e Invalid character in statement. For example
“O%7U N, ete., are valid only within quoted
strings or in an IMAGE or REM statement.

Copyright © 1983 by Texas Instruments Incorporated

Printed in the U.S.A. 10055825-4



TEXAS INSTRUMENTS COMPACT
COMPUTER 40
USER'S GUIDE



This book was developed and written by:

Nancy Bain Barnett
John T. Baker
Robert E. Whitsitt, I

With contributions by:

Tom M. Ferrio
Bud Gerwig
Craig Benson
David G. Thomas

Artwork and layout were coordinated and executed by:
Gaither and Davy, Inc;

ISBN 0-89512-057-7
Library of Congress Catalog Card Number 82-74472

Copyright © 1983 by Texas Instruments Incorporated



TABLE OF CONTENTS

Chapter 1—Getting Acquainted ........ .. ... ..., 11
Introduction . ... ..o i i i ittt c e 1-1
FeatUreS . . o i ittt i i it tie et a s 1-2
UsingthisManual .. ... ... ... i iiiiiiaiiiinannnnn 13
CareoftheCC-40 ... ... . i i i iieiiananncann 14
SettinguptheCG-40 ... ... . . i iiiiieaaaanans 14

BatteryReplacement ... .. ..ottt i 15
Peripheral Port ... ... i i it 16
ACAdapterSocket ...... ... ittt iiianannn 17
DisplayContrastControl . ..........c.ccoiiiiiiiennn.. 17
Cartridge Port ... ... ... i i it i 1.7
Keyboard Tour . ..ooo ittt ittt iia e ciannananaans 17
1. [ON)aNd[OFFTKeYS . .« ittt iiaiiicennancnnen 110
2. Typewriter Keys. .. ..o ittt ittt cnccaenacanans 111
AlphanumericKeys . ...... oottt iaaaaann. 111
SpaceBar ...... .. i i it 111
ISHIFTTKEY ot ie e iiie e ceieaens 111
[UCL] (UpperCaseLock)Key........cc.cocivnnnnn. 112
IENTERIKEY ..ttt iinnncicaanananns 112

3. NumericKeyPad. .........iiiiiiiiininennnnanns . 112
Numeric Keys ...... et iiiiiiieiaaeeaaas 112
Arithmetic OperatorKeys . .. .....cciiiiniacannnn 113
EditKeys . ..ottt it e 113

4. Shift, Function,and ControlKeys ................... 1-15
ISHIFTIKRY « o it ittt i it teae e ienanaaaans 115
[FNI{Function)Key .....cccuiiiiiiiiiiiariannnnnns 115
fCTLI(ControhKey ... ..o rieaetacann 1-16

B RUNIKEY ..ottt it i ittt e caanaaaan 1-16
B.BREAK] KeY. .. i iit ittt iieiiteiinreinaaaannnnn 1-16
7.[CLRJ(CleanKey .......cviiiiiuiiieenniaeennnnnnn 1-16
B.ResetKeY. ..o i i 117
9.BASICKeywordKeys . .......c.coiiiiiiiiiiennnn. 117
L0 1T T 117
11.DISPIaY . . e 1-18
User-Assigned Strings. ... ..o iei ittt iiia e 1-18

Chapter 2—Performing Calculations . ....................... 21
Introduction . ... ... . e 21
EnteringNumericData ............ ... ... ciiiiiiiinans 21
Numeric Variable Assignments ................ccovnn-. 21
Simple Arithmetic Calculations ............... ... ... 22
Orderof Operations. . ....oovviieeteainneinienaeaneans 22
ScientificNotation ........ ..ottt i i 24



TABLE OF CONTENTS

Mathematical Functions.............ccei... 25
SquareRoot ......coiiiiiii it e 25
Logarithms and Antilogarithms............. . Cerreenas 26
TrigonometricFunctions ............ccoeeieiinaa... 26

ChainCalculations ....... ... ittt 28

Repetitive Calculations. .......... .. ... ..o, 210
Playback ......ccoiiiiii ittt iiiaeaa 210
User-AssignedKeys .........ccoieiiiiiiinnnnen cunnn. 211

Chapter 3—Using Optional Cartridges & Peripheral Devices . ... . 31

Introduction . . ... ... i e 31

Caring for Cartridges and Peripherals .. ................... 32

Instatling or Replacinga Cartridge. . ...................... 32

Using Sofid State Software™ Programs and Subprograms .... 34

Using Memory Expansion Cartridges ..................... 34

Set-Up Instructions for Peripherals ....................... 35
Connecting PeripheralDevices .................cccn... 35
Checking the Operation of a Peripheral ................. 38

Chapter4—BASICProgramming .............coiiiniiinnn.. 41

Introduction . ......c.viiiiiii i i i e 41

GettingStarted ......... .. i e 4.2
Writing, Running, and ListingaProgram ................ 42
BASIC Proagramming Procedures ...................... 43
LinesandLineNumbering..............cciiiiiio.t. 43
KeyWords. .. ...ttt ittt it 44

Statements ..... ... ... .. i it i 45
Functions.......coviiiiiiiiiiiiiiiiii ., 45
Commands ......ccoiiiiiiiii e e 45
Usinga FunctioninaProgram ............ccooevvina... 46
EndingaProgram..........coiiiiiiiiii i, 46
Kindsof Entries ........cooviiniiiiiieiiiiiinennnn.. 47

ProgramLings ...........iiiiiiiiiiiii it e 47
Line Numbering ............ e et e, 47
AutomaticLineNumbering ................. ..., 47
Renumbering ProgramLines ..............cvvvuiienn.. 47
Linelength . ... ... i i 48
Lines ContainingRemarks. .............cvveeeennn... 48
Multiple StatementLines .. .............. . i, 48

Program Storageand Execution. ............ccoueeuun..... 4,8
SavingaProgram ......... ... i it 49
ExecutingaStoredProgram .......................... 49



TABLE OF CONTENTS

Editing ProgrambLines............oiiiiiiiiiiiiiii i 410
The Right Arrow Key— = .. ... ... 410
The Left ArowKey— € .............. ..ot 410
The Up Arrow Key— . ... ... ittt 410
The Down Arrow Key— ¥ .. ... . i, 410
Characterinsert—[SHIFTIINS] ........................ 411
Character Delete—[SHIFTI[DEL] ............couevurn.. 411
Playback—[SHIFTIIPB] . . ..ottt eanee 411
L Lo R (o 1 8 [ 411
Back Tab—[CTL) € .. ......iiiii ittt i iiaaanns 4-11
HOmMeEe—[CTL . oo e ittt it 412
EraseField—[CTLI Y. . .. ... ... ittt i 412
LineDelete—DELETE ........ccvitviriinennrnnnnennns 412

ErrorHandling . ...ooin i e i e e 412

ConstantsandVariables..................... .. . i, 413
Constants ... ... i e e e e e, 413

NumericConstants.................c.ciivan. ... 413
StringConstants .. ...........coiiiiiiiiin .. 414
Variables ..........: e e et ee e 414
NumericVariables ................ ... ... ... ... 415
StringVariables. ........ ... i it 415
Assigning ValuestoVariables . ................... 415
L ¢ £ - S 4-16
TheDIMStatement ................. .. ... ..., 4-16
A One-Dimensional Array . ..........ccovviviean.. 416
ATwo-Dimensional Array .. ..........ccviiiennnn. 417
USINGAIAYS ...ooiiir it it ie e ieeeiiaeannnn 417
READand DATAStatements ............ccooiaaa.. .. 418
READ and DATA with the RESTORE Statement........... 419

EXPresSSIONS . ... ii ittt e e e 4-20
NuUmeriC EXpressions . . ...t n it iiiiaenenn 4-20
StriNg EXPressions ... ..ot inii ittt i 421
Relational Expressions ... ... AN 421

NumericComparisons ...........ccoeeeennnoan.. 422
String Comparisons . ........covieiiiiinenniinn.n 422
Logical EXpressions . . ... ... i e e 422
Order of Execution ot Expressions ..................... 424

input/Qutput Statements ............. ..ot 424
The PAUSE Statement ........................ S 425
InputStatements ............ ... i i i, 426

ThelNPUTStatement ........................... 426



TABLE OF CONTENTS

The LINPUT Statement . ................... .. 427
The ACCEPTStatement ..........cociiiiniinn... 427
TheKEY$Function ...........oooiiiiiiiiiinn., 427
OutputStatements ............coiiiiiiiiiiin ... 428
The PRINT and DISPLAY Statements .............. 428
USING with the PRINT and DISPLAY Statements .. 429
TAB with the PRINT and DISPLAY Statements...... 429
Pending PRINT and DISPLAY Statements ........ 430
ControlStatements . . ......ovvieeiiinniiiinennn, e 431
The FORTO STEP Statement ...... e e 4-31
NestedLOOPS .+ v vvvviii i i 432
TheGOTOStatement .. ................e.. e 432
ThelF THENELSEStatement .............. ... . ..., 433
TheONGOTOStatement..............cvcveniiin.nn. 433
Strings and String Manipulation.............. ... .o 434
Converting a Character to ASCIl Code—ASC ............ 435
Converting a Number to Its Corresponding
Character—CHRS. .. ...... ... . it 435
Finding the Lengthofa String—LEN ................... 435
RepeatingaString—RPTS .. ........coiviiiii i, 4-36
Finding a String WithinaString—POS . ... .............. 4.36
Getting a SubstringofaString—SEGS$ .................. 4-36
Converting a Number toa String—STR$ ................ 4-36
Converting aStringtoa Number—VAL ................. 4-36
Testing a String for a Numeric Constant—NUMERIC ... ... 4.37
Built-inBASICFunctions ........ccooiiiiiiiniiiiia, 4-37
ManipulatingNumbers. ......... . ... . oo, 4-37
Generating Random Numbers . . ... ... ... o o, 4.38
SUDrOUtINES . ...t e it 4-39
TheGOSUBStatement. . ......... oot nnan.. 439
The ONGOSUB Statement .................coiiiaa.. 439
£ST1] o] o] oY -1 1 -7 G 4-40
CC-40BASICSubprograms .............cciviiinnnnnn. 440
ArgumentList ... ... ... . 440
Passing Arguments by Reference ............... 441
Passing ArgumentsbyValue ................... 4-41
The ATTACH and RELEASE Statements............ 442
Built-inSubprograms .. ... ... e e e 442
ExpandingMemory . ...ttt 442
UsingMemory ... ... 4-42
TheFREFunction . ...t 442

vi



TABLE OF CONTENTS

The GETMEM Subprogram . .......cccveeenuennnn 443

The POKESubprogram........cocvveeierennnen 443

The PEEKSubprogram ...........coivennnnn. 443

The LOAD Subprogram . ......ccveveereecnvnnnn. 443

The EXECSubprogram .........ccevvennnennnn. 443

The lOSubprogram ......ccvereiennarieccnennan 443

The RELMEM Subprogram . .................... 443

Language Prompting ............... fetaeaeaeaa 444

Display Assignments ............cceviiieieinnn 444

The CHARSubprogram ............coceeeieenn. 444

The INDICSubprogram . .........ceveveeenaann. 444

The KEYSubprogram .........cceiieieennnnnnnns 446

The VERSION Subprogram. . ......covvvevvnnnnnn. 446

The CLEANUPSubprogram ..........covvevennnn. 446

The DEBUG Subprogram ..........ccvevennennnnn 446
Handling Errors ina BASICProgram ............... ... ... 4-46
Handling Breaksina BASICProgram ..................... 4-47
Handling WarningsinaBASIGProgram ................... 448
971470 T To 11T« AR 448
FINAdINgBUGS . . oo eeie it iiei ittt iiiennnrroneneannns 448
Debugging Aids .........ciiiiiiiiiiiiii it 448
UsingExternal Devices .. .....cooiiiiiiiiiiiencneaannnn 449
DataFormat ........coiiiiiiiiiiiiieneinnanannaanns 450
DataRecords ......ccciiiiiiiiini i e iaanann 451
Recordlength........cvtiiiniiiiiiiiiaiiaanans 451
FileOrganization ...........cciiiiiiririnecncnnannns 452
File Processing Keywords . .......coiiiiiiiininnnnnnns 4.52
The FORMATCommand...........ccceceencannn. 4.52

The DELETEStatement ........ ..., 453

The OPENStatement ........ .. .. oo, 453
TheINPUT #Statement. . ..... ..., 455

Filling the INPUT Variable-List.................. 455

Pending Input Conditions .. . .......ccevvana... 456
INPUT#andDataFormats..................... 457

The LINPUT #Statement ...........cciveniian.t. 458

The PRINT #Statement. . ................ ... .. ... 458
Pending Print Conditions ...................... 458
PRINT#andDataFormats..................... 459

The CLOSE Statement ..........ccoiiieiiiaiannn 460
TheEOFFuUNCtiON ... .ottt ittt iierennnn 460

The RESTOREStatement ........ ..o, 461

vii



TABLE OF CONTENTS

Chapter 5—ReferenceSection ......... ..., 51
ABS . . e ettt 52
- 0 ] = i 53
ACS . i e i 56
ADDMEMSubprogram . .........c.oiiiiiiiiiiniaaanann 57
. o 58
ASN e e 59
- 510
ATTACH .. e e e et 511
BREAK ... . i i it i e 513
L7 1 N 514
CHARSubprogram ............cvvevenn... [ 515
07 o | 518
CLEANUPSubprogram . . ... ... .ciiiiiiiiiiiin .. 519
L7 0 1 U PP §-20
CONTINUE ... i i e e e iiaanaen 521
L0 0 RN 5-22
DAT A et §-23
DEBUG Subprogram . .......coiiiiririiiaiiaennnannann 525
DEG ..ol i it et e i, 5-26
DELETE ...ttt ittt ettt e e iaeannaans 527
3 T 529
DISPLAY .. e i et 5-30
END .. ittt 532
BOF ot e e it 533
ERRSUubprogram .........cciiiir ittt iee it ieeiaennn 6-34
EXECSubprogram. ....... ... ..ottt 5-35
EXP . e e 5-36
FORTO STEP. ...ttt ittt iar i ceeaannananns 5-37
FORMAT .. i e ittt eitaaaaaannans 539
FRE . . i i ittt ettt e 5-40
GETLANGSUbprogram . .....coiiiii et ie i eacaennnn 541
GETMEMSubprogram .........cciiiiiirininnnennannnsn 542
GOSUB . ... i i e e ettt 544
110 2 1 © 2 AU 545
GRAD .. i et ieiaa e 5-46
IFTHENELSE ......ciitiiiiii i i aaaneanaaenn 547
IMAGE ... e et e 549
INDICSubprogram .. .......ciiiiiiiiiennraaaennannnnn 554
INPUT (withkeyboard). .. ... .. ..ttt 6§55
INPUT(withfiles) . . . ... .ot i it 558

viii



TABLE OF CONTENTS

INT i i i ittt e e e e et tiaaaanaaan .. 561
INTRND ..ottt i ittt i et e et e aiaeaaaannn ann 562
IO Subprogram. ... ... i i it i ieeeaaaan 563
KEY Subprogram ... ... .. iii it iiiiie it cieiaeaaa. 565
KEY S . o i i i e it it 566
= 567
G 568
LINPUT . i it eec ettt eieaaannnans 569
1 A 571
0 - 572
LOAD SUbprogram ........cceiiiiiiiinannnncaaennnanas 573
0 U P 574
1311 53 575
NEXT i i i i i a it 676
NUMBER ... ittt iiiiiaiiaaaaanienacnacanannnnnn 577
NUMERIC . ... i i ittt it aaannnannns 578
0 T8 0 NN 579
ONBREAK ... ittt it et cairaannneananneaas 5-80
ONERROR. ... .t iiiiiiiiiiiiiaercarennnnncaaaaannnas 582
ONGOSUB. ... ittt it irrectenanarannaaanees 584
ONGOTO...... e et i ie e aeeettrecaeaatataaeeaaaaan 585
ONWARNING . ... ittt iiiiiiiaaannneaananann 586
OPEN ..t ii i iiereceaantnetnaneananaaaas 588
PAUSE ...ttt it ettt 591
PEEK SUbprogram. ... ..couiitii i iciiiiiaaannnnn - 503
A 594
POKE SUDPIOgram .. .uiiiiiiiietneennerinerenennnanns 595
POS . . et et i i 596
PRINT (withdisplay) ......c.oiiiiiiiiiiiiiiiiianaannnnn 597
PRINT (withfiles) . . .. ...t e e it ineeannas 5101
RAD L i i i ittt aaaa s 5105
RANDOMIZE ... ... i iiiiiiiiii ittt aaeeianannnnnes 5106
READ .. ittt it ettt e e e 5-107
RELEASE ... o ittt iiiietee et ienenaannnnnnnnas 5-108
RELMEM Subprogram ... ....cciiiiiiiiniinainacnnnnnes 5110
REM . i e e e 5111
RENUMBER . ... . ittt ittt eeieeaaaeiananaas 5112
RESTORE ... .ottt ittt teinceaiananaianaanannns 5113
RETURN(WithGOSUB) . . ... ittt ittt ciiinnnaanns 5115
RETURN(WIthONERROR) . . ... .. ittt iiianiaannn 5116
L2121 0 g 5118



TABLE OF CONTENTS

21 IS 5119
RUN ittt it ie et eciceaanaeeeateannanens 5120
£57 N 2 5122
(5] = C 1 YU GOSN 5123
SETLANG SUbprogram . .....coiiiiinniiiiiciannaaannns 5-124
£ N 5125
<] | U 5126
2] = P 5127
£ 10 ] > G 5-128
STR .ttt ittt e et aeeee e 5129
£33 1] = 2 AP 5-130
SUBEND .. ittt ittt ieeanacanceeaennaanananas 5-134
SUBEXIT it ii i iiiiercnitcsntanssnasstsnnronannennns 5135
171 27 5-136
17V S 5-138
UNBREAK ... ittt cietiaaetaanacnnnaens 5139
USING . .ottt it tiaeieiecaeeecanneeaaaeanann 5140
7 S 5-141
VERIFY . ittt e it teee et caaanenans 5-142
VERSIONSUbProgram .......cciiinirniraniinnaanannes 5-143
Appendix A—Commands & Statements ..................... A1
COMMANOS. ..ttt ii i iie et iieaatcrtaanaraoncennnannns A1
Statements ... ... i i i e e A1
Appendix B—Built-in Functions . .......cccoiiii it B-1
Appendix C—ReservedWords ............ciiiiiiiininn.. C-1
Appendix D—ASCI Codes & Keycodes List .................. D1
Appendix E—Trigonometric Calculations & Restrictions........ E-1
Restrictions for SIN, COS, TAN . ... .. .. iiiiieninnnan, E1
Restrictions for Inverse Trigonometric Functions ........... E1
Trigonometric Identities ......... ... o i, E2
Radian, Degree, and Grad Conversions . . ...........cc.veen- E-2
Appendix F—Accuracy Information .. ........... . ..o oL F-1
Calculation ACCUIaCY .. .vviiieiiiiiaraaaaannnacnnnn F-1
Internal Numeric Representation...............iciioannn F2.
Appendix G—System Power Up & Down Procedure ............ » G-1
SystemPowerUp. ... .. . i i it G-1
Warmstart . ... .. i it G-1
Coldstart .. ... ..ottt i i i ettt G-2
Partial Initialization ........ .. .. . i it G-2

X



TABLE OF CONTENTS

System PowerDown . ... coviii it e et G-2
Appendix H—Logical OperationsonNumbers ................ H1
BinaryNotation .............cooiiiiiiiiiiii H1
LogicalOperations ............. ciiiiiiienieanannnnnn. H-2
Appendix I—DEBUGMoONItor ...... ... innnnenn -1
Runningthe DEBUG Monitor ........ ..., -1
Displaying Memory—TheDCommand .................... I-1
Examining and Modifying Memory—The M Command ....... -2
CopyingMemory—TheCCommand .........ccoevviinian. -2
Modifying Processor Information—The PCommand......... I-3
Setting Break Points—TheBCommand ................... -3
Single Stepping—TheSCommand ............c.cc.anne.. -4
Executing—TheECommand ..............cooeivvvrennn. -4
Paging—TheRCommand ........ .. ... . ..cciiiiiaa., I-4
Help—The?2Command. .......ccciiiiininnnnneannnnannn -5
Exiting—TheQCommand ..........ooiiiiineneiniiannn, I-5
Appendix J—Technical Information......................... J-1
CC-A0Hardware. .......coovt ittt iiiiiiieaaa i iaaaans J-1
CC-40MemoryOrganization.........c.coviiinnennaniannn. J-2
TheRegisterFile. ...t iiiiiiiieieinianann. J-3
ThePeripheralFile ..........ccooiiiiiiiinnniennn. J4
System BRAM ... . i i e e e J-6
BASICProgramimage . ......coovvivveninnnernnrnnnans J7
Runtime DataStructures... ..., J-8
Memory EXpansion .......veeiiiie e innenneacannannns J-9
System CommandlLevel ............cciiiiiiiiiinian., J-10
The HEX-BUS™ Intelligent Peripheral Interface ............. J-11
Appendix K—ErmorMessages . .. covveeiiiiiineiinaannnannen K-1
Messages Listed Alphabetically ................ .ot K-2
Error Codes List in AscendingOrder ...................... K-11
I/O Error Codes ..... e e K-13
Appendix L—Service & Warranty Information ................. L1
InCaseof Difficulty .. ...t L1
Returning YourComputer . ...t L-2
Exchange Centers . ... ...ttt e e eannenns L-2

If You Have Questions or Need Assistance ... .............. L-3
90-Day LimitedWarranty. .. ......c.oiiiiniiininnannnns L-4
Appendix M—INdeX . .....c.oiir ittt ittt it M-1

Xi



CHAPTER |
GETTING ACQUAINTED

Introduction

The Texas Instruments Compact Computer Model CC-40 is an
affordable, textbook-size computer that puts the computing
power of large systems right at your fingertips. With its
advanced calculation capability, enhanced BASIC language,
and flexible peripheral expansion, the CC-40 lets you perform
data processing anywhere you need to.

In addition to its computer capabilities, the CC-40 provides
calculator features from simple addition and subtraction to
complex problem solving. Plug-in cartridges offer built-in
problem solutions for business, engineering, scientific, and
mathematical needs. A wide range of accessories, including a
printer and a high-speed Wafertape™ digital tape drive,
increases the capabilities and versatility of the CC-40.

The growing importance of computers in our lives is making it
increasingly necessary that everyone become familiar and
comfortable with computers. With the CC-40 you will discover
how easy it is to use a computer to solve problems.



CHAPTER |
GETTING ACQUAINTED

Features

¢ Textbook-size computer with a 2.5MHz TMS70C20 CMOS 8-bit
microprocessor and 34K (over 34,000) bytes of Read-Only
Memory (ROM).

* Memory expandable with installation of cartridges.

¢ Preprogrammed Solid State Software™ cartridges.

« International-language prompting in selected cartridges
(available separately).

e Constant Memory™ feature that retains information stored in
memory when the computer is turned off.

¢ Long battery life with inexpensive AA alkaline batteries.

¢ Optional AC adapter to extend battery life.

e Standard typewriter keyboard layout plus quick-entry numeric
key pad and special keys.

* Keys that repeat when held down for approximately half a
second.

¢ 31-character 5-by-8 dot matrix Liquid Crystal Display (LCD)
that scrolls to show an 80-character line.

e Adjustable display contrast.

® ASCIl character set, including both upper- and lower-case
alphabetic characters. Special display characters include
Greek letters, Japanese characters, plus characters you can
define.

® Peripheral port for printers, mass storage devices, and other
accessories.

¢ Enhanced BASIC language for easy programming and quick
problem solving.

¢ Descriptive error messages.

® Fold-out tilt-stand for easy desk-top use.

e Audible tone for use in prompting.

e Assembly language programming capability with the optional
Editor/Assembler cartridge.



CHAPTER |
GETTING ACQUAINTED

Using this Manual
This manual explains how to use all the features of the CC-40.
This chapter explains how to set up and care for the CC-40 and
provides an introduction to the keyboard. Reading it will provide
you with the fundamentals necessary to operate the CC-40.

The second chapter discusses how to use the CC-40 as a
calculator. You'll find that the CC-40 can be used as a
calculator for your quick calculation needs in addition to its
use as a computer.

The third chapter discusses using optional cartridges and
peripheral devices. Solid State Software™ cartridges offer a
wide variety of professionally written programs and Memory
Expansion cartridges are used to increase the memory capacity
of the CC-40. Peripheral devices can greatly increase the
flexibility and versatility of the CC40.

The fourth chapter provides an overview of the CC-40's BASIC
programming capability. If you are unfamiliar with BASIC, the
book Learn BASIC: A Guide to Programming the Texas
Instruments Compact Computer is available from local dealers.
Even if you already know how to program, reading chapter 4
carefully will help you to use the features of the CC-40 which
are not available on other computers.

The final chapter is an alphabetical reference section for BASIC
programming with detailed explanations of each command,
statement, and function.

The appendices contain information such as mathematical
functions and error messages. Technical data is also provided
for experienced computer users.

13



CHAPTER |
GETTING ACQUAINTED

Care of the CC-40

With proper care your CC-40 will give you years of trouble-free

operation. Treat your CC-40 and cartridges with the same care

you give other precision electronic products.

* Avoid exposing your CC-40 to moisture, extreme
temperatures, or dust.

¢ Use a damp lint-free cloth to clean your CC-40. Do not use
solvents.

¢ Do not place objects other than cartridges in the cartridge
port.

CAUTION: Electronic equipment can be damaged by static
electricity discharges. To remove static charges, touch a metal
object (such as a doorknob, a desk lamp, etc.) before working
with your computer, connecting peripheral devices, handling a
cartridge, inserting a cartridge, etc. Failure to do so may cause
damage to the cartridge or the computer.

Setting Up the CC-40

The battery compartment is located on the back of the CC-40
as shown in the illustration.

BATTERY COMPARTMENT

14



CHAPTER |
GETTING ACQUAINTED

Battery Replacement

Your CC-40 requires four AA alkaline batteries. Replace the
batteries when the low battery indicator is displayed or the
display remains blank and cannot be made visible with the
contrast control. Several hours of battery use remain when the
low battery indicator first appears.

The battery replacement procedure is as follows.

1. Insert your thumbnail in the recess in front of the arrow.
Press in the direction indicated by the arrow until the
opposite end of the cover is released. Then remove the cover.

2. Remove the four batteries from the battery compartment.

3. Place four AA alkaline batteries in the battery compartment,
as indicated in the bottom of the compartment.

4. Slide the arrow end of the cover under the unnotched side of
the compartment. Press the loose end of the cover down until
it snaps into place.



CHAPTER |
GETTING ACQUAINTED

Peripheral Port

The peripheral port is located next to the AC adapter socket on
the back of the CC-40. The larger opening is the peripheral port.
It is used to connect peripheral devices to the CC-40.

Caution: The electronic components of the peripheral port can
be damaged by discharges of static electricity. To avoid
damage, do not touch the connector contacts or expose them
to static electricity.

CARTRIDGE PORT

AC ADAPTER SOCKET

DIS
PERIPHERAL PORT CONTRAST CONTROL

16



CHAPTER |
GETTING ACQUAINTED

AC Adapter Socket

The AC adapter socket is next to the peripheral port. The AC
adapter allows the computer to operate from standard AC
power instead of batteries.

Display Contrast Control

The display contrast control is located on the left side of the
CC-40. It allows you to adjust the display contrast for your
viewing angle.

Cartridge Port

The cartridge port, which accepts Solid State Software and
Memory Expansion cartridges, is in the upper right corner of
the CC-40. See chapter 3 for information on installing and using
cartridges.

Keyboard Tour
The CC-40 keyboard resembles a typewriter keyboard. The
CC-40, however, has additional keys to perform calculations,
edit program lines, and quickly access BASIC commands,
statements, and functions. The edit keys and all of the keys
that enter characters in the display repeat as long as they are
held down.

In this manual a key with a label that contains more than one
character is represented by brackets [] with the symbol of the
key printed inside the brackets such as [ON], [ENTER], [SHIFT],
and [FN]. A key whose label is a single character is in bold face,
such as A, 8, and 2.

The next two pages show a diagram of the keyboard with its
parts labeled. Following that are explanations of each part
along with examples to help you become familiar with the
features of the CC-40. Place the overlay provided with your
CC-40 over the keys. The text and the examples that follow
refer to this overlay. Try the examples to see what happens.
You can’t damage the CC-40 by pressing its keys.



CHAPTER |

GETTING ACQUAINTED

14

_EEE_I

Nvd < ww.m ..—|=|
_axxmu ;| _oNisA ’=’.‘ ! @ [‘_D..D

Ll

EI...

- ﬂﬂj@

L

(o]

1-8



CHAPTER |

GETTING ACQUAINTED

Aeyds|qg -

1081n)

(Ae)19A0 uo) shay piomiay DISYE
Aoy 1988y

£ay} (Jes|0) [¥19l

£ay| Invaual

Aoy [INNY)

£ay (j0nuod) (110}
Koy (uonound) (NJ)
Aayy LLAIHS)

$4A9)) j01)u0D pue ‘uojjoung ‘YIUS ‘b

sAey up3
848 Jojeliad0 dnBWYILIY
sA9) ouswINN

ped Aoy olLlsWNN ¢

Aoy [431N3)
Koy (4007 eseQ Jeddn) [10n]
Ay [14IHS]
Jeg eoedg
s/Aay) ouswnueyd|y
shoy) 18jumadA) ‘2

shay [440] pue INOI] 'L

19



CHAPTER |
GETTING ACQUAINTED

1. [ON] and [OFF] Keys

The [ON] key turns the CC-40 on. When the computer is turned
on, memory content is checked for loss of information. If no
toss of memory is detected, the flashing cursor is displayed in
column one. This cursor informs you that you may enter
information from the keyboard.

If there is a memory loss, the memory is cleared and the
message System initialized is displayed. To proceed, press
the [CLR] key. The display is cleared and the flashing cursor
appears in column one.

If programs and data may have been lost from memory, the
CC-40 warns you with the message Memory contents may be
lost. (Pressing the reset key usually causes this message to be
displayed.) You may then choose either to use what is in
memory or to clear memory. To clear the warning message
from the display, press [CLR]. Then if you wish to clear the
contents of memory, type NEW ALL or NEW and press [ENTER].

The [OFF) key turns the CC-40 off. To conserve battery life, the
Automatic Power Down™ (APD) feature turns the computer off
automatically after approximately ten minutes of waiting for
input. The effect is the same as pressing the [OFF] key.
However, the CC-40 cannot be turned off by either the APD
feature or the [OFF] key when a program is running.

Note: The APD feature can be disabled by typing CALL
POKE(2096,1) and pressing [ENTER]. The APD feature is restored
when the system is initialized or you enter NEW ALL or CALL
POKE(2096,0).

When the CC-40 is turned off, the Constant Memory™ feature
retains programs, user-assigned strings, and assembly
language subprograms stored in memory. It does not retain the
values of variables or the contents of the display.

1-10



CHAPTER |
GETTING ACQUAINTED

2. Typewriter Keys

The keyboard is used to enter information such as data, BASIC
program lines, messages, and formulas into your computer. The
information typed appears in the display, character by
character, just as you type it. The computer does not use the
data in the display until you press [ENTER], so the display con-
tents can be edited, as described later, before you press
[ENTER].

These keys are arranged like the keys of a standard typewriter.
The number and punctuation keys are across the top row.

Alphanumeric Keys

In computer usage, the letter, digit, sign, and symbol keys are
called alphanumeric keys. Alphanumeric keys are used the
same as standard typewriter keys. For example, type the word
hello by pressing the appropriate keys and hello appears in the
display. To clear the display, press the [CLR] key. Enter the
number 456398 by pressing the top row of numeric keys. To
clear the display, press [CLR].

Space Bar

The space bar places a space In the display. If the space bar is
pressed while the cursor is positioned over another character,
that character is replaced with a blank.

[SHIFT] Key

You can type capital letters and the special characters above
the numeric and punctuation keys by pressing [SHIFT] and the
desired key. Note that there is only one [SHIFT] key.

When [SHIFT] is pressed, the SHIFT indicator appears in the
display to indicate that the shift state is in effect so that the
next key you press is shifted. The shift state is in effect until
another key is pressed. The shift state can be cancelled by
pressing [SHIFT] a second time. The [SHIFT] key may be held
down simultaneously with the desired keys.

For example, type the following using the [SHIFT] key as
needed.

How are you?
To clear the display, press [CLR].

11



CHAPTER |
GETTING ACQUAINTED

[uCL] Upper Case Lock) Key

There is no shift lock key on the CC-40. However, the Upper
Case Lock [UCL] key is similar to a shift lock key. Upper Case
Lock causes all alphabetic keys to be interpreted as upper case
and the [SHIFT] key to be ignored if it is pressed before an
alphabetic key. Upper Case Lock does not affect the operation
of punctuation or number keys.

To activate the Upper Case Lock, press the [SHIFT] key and then
the [CLR] key. The UCL indicator appears in the display to
indicate that the Upper Case Lock state is in effect. Press
[SHIFT] [UCL] again to cancel the Upper Case Lock state.

Type the following after pressing [SHIFT] (UCL]. You will have to
use the [SHIFT] key to type the |, ”, and #.

UCL TYPES CAPS, NOT !, ”, OR #
To clear the display, press [CLR].

[ENTER] Key

The {ENTER] key is located at the right of the keyboard. [ENTER]
is used to indicate that you have finished typing the data on
the current line and are ready for it to be processed.

3. Numeric Key Pad

The right side of the keyboard consists of digit keys arranged
in calculator format, edit keys for correcting entries, arithmetic
operator keys, and the [FN] key.

Numeric Keys

The numeric keys are arranged in calculator format to provide
for rapid entry of numbers. This set of numeric keys and the set
on the top row of the typewriter keyboard can be used
interchangeably. The special characters above the numeric keys
of the typewriter keyboard are also available with the keys on
the numeric key pad.

Type the following using elther set of numeric keys.
2301.5713

To clear the display, press [CLR].

112



CHAPTER |
GETTING ACQUAINTED

Arithmetic Operator Keys

The arithmetic operator keys are used to perform simple
arithmetic. To add, use the + key. To subtract, use the - key.
To multiply,-usé the » key. To divide, use the / key. You can
raise a number to a power or calculate a root by pressing the
[SHIFT] and A keys. These keys are described in chapter 2.

For example, to find 2+ 25, type the following.
2+2A5

To display the answer, 34, press [ENTER]. To clear the display,
press [CLR].

Edit Keys

The edit keys, =, €, [SHIFT] [INS], [SHIFT] [DEL], and [SHIFT] [PB),
are used to change the characters in the display. The cursor
does not have to be repositioned to the end of the line before
pressing [ENTER].'

=>(right arrow) moves the cursor one position to the right. The
cursor does not erase or change characters as It passes over
them. When the cursor reaches the right side of the display,
holding < down scrolls the disp/ay to the left until the end of
the 80-character line is reached.

€(left arrow) moves the cursor one position to the left. The
cursor does not erase or change characters as it passes over
them. If the cursor is at the beginning of a line, holding € down
does not move it.

For example, type the following.
Information Is 555-1212

Press and hold -» until all the displayed text has scrolled to the
left. Notice the left arrow indicator in the display is turned on to
inform you that text has scrolled to the left. Next hold down €
until the text is again displayed. The left arrow indicator is
turned off.

To change the text in the display to Information: 555-1212,
press € or @ until the cursor is positioned in the column after
Information. Press {SHIFT) : and the space bar twice. To clear
the display, press [CLR].

113



CHAPTER |
GETTING ACQUAINTED

[SHIFT][INS] (insert) is used to insert characters. Each
subsequent key that you type is inserted at the current cursor
position, shifting all characters following the inserted
character(s) one position to the right. Insertion continues with
each character typed until [ENTER], {CLR], [BREAK],&, or s
pressed. If insertions cause the line to exceed its 80-character
limit, the characters at the end are lost.

[SHIFT] [DEL] (delete) deletes the character that the cursor is on
and shifts all characters to the right of the cursor one position
to the left.

For example, type the following (do not press [ENTER]).
2+ 2isnotequalto 5.

To change this entry to But 2 + 2 is equal to 4., first position
the cursor over the first 2. Press [SHIFT] {INS} and then type But
followed by a space. Move the cursor to the n in not. Press and
hold [SHIFT] as you press [DEL] four times to delete not and the
space. Move the cursor over the 5 and type 4. To clear the
display, press [CLR].

[SHIFT] [PB] is used to exchange the last serles of characters
entered in the display with the current display contents.

For example, type the following.
§+ 255 - 37545

Press [ENTER] and the answer, -1615, appears in the display.
Press {SHIFT] [PB] to recall the series of characters that you
entered. To aiter the calculation by changing the 375 to 365,
position the cursor over the 7 and press 6. Press [ENTER] to
display the answer, -1565. To clear the display, press [CLR].

Note: The characters recalled by [SHIFT] [PB] are normally the
last characters you typed. However, if a PRINT or DISPLAY
statement has placed characters in the display (see chapters 4
and 5), then those characters are recalled.

114



CHAPTER|
GETTING ACQUAINTED

4. Shift, Function, and Control Keys
The [SHIFT}, [FN], and [CTL] keys can be pressed and released
before or at the same time as the keys they modify.

[SHIFT] Key

The [SHIFT] key is used to allow the entry of “shifted”
characters in the display from both the typewriter keyboard and
the numeric key pad. When [SHIFT] is pressed, the SHIFT display
indicator appears In the display, the same as with the [FN] and
[CTL] keys. The shift state can be cancelled by pressing [SHIFT]
a second time. If [SHIFT] is held down while several other keys
are pressed, the SHIFT indicator is turned off after the first key.
Howaever, the shift state remains in effect until [SHIFT] is
released.

[FN] (Function) Key

The [FN] (Function) key is used to enter certain BASIC keywords
into the display. These keywords appear on the separate
keyboard overlay above the alphabetic and punctuation
characters. When [FN] is pressed, the FN display indicator
appears in the display, the same as with the [SHIFT] and [CTL]
keys. The function state can be cancelled by pressing [FN] a
second time. If [FN] is held down while several other keys are
pressed, the FN indicator is turned off after the first key.
However, the function state remains in effect until [FN] is
released.

To access one of the BASIC keywords printed on the overlay,
press [FN] and then the key corresponding to the desired
keyword. For example, to find the square root of 9, press the
following keys.

[FN] T (which is usually denoted [FN] [SQR(].)

SQR( appears in the display. Type 9 and ). To have the CC-40
process the data you have typed, press [ENTER]. The answer, 3,
is displayed. To clear the display, press [CLR].

[FN] can also be used to assign a series of characters to the
numeric keys. This feature is discussed later in this chapter.

1-15



CHAPTER |
GETTING ACQUAINTED

[CTL] (Control) Key

The [CTL} (Control) key allows the use of speclal control
functions. When [CTL] is pressed, the CTL display indicator
appears in the display, the same as with the [FN] and ISHIFT]
keys. The control state can be cancelled by pressing [CTL] &
second time. If [CTL] is held down while several other keys are
pressed, the CTL indicator is turned off after the first key.
However, the control state remains in effect until [CTL] is
released.

For example, press [CTL] and hold down 6 until the display fills
with underlines. Press [CTL] - (tab) and the display moves to
the next higher tab position. The left arrow display indicator is
turned on to show that text has scrolled off the display. To
clear the display, press the [CLR] key. A list of all of the
character codes that can be accessed with the [CTL] key is In
appendix D.

5. [RUN] Key

The [RUN] key followed by [ENTER] causes the computer to
perform or execute the program that Is stored in memory. [RUN])
can also be followed by several options. It can be followed by a
line number to start program execution at a specific line, a
device and filename to load and execute a program from an
external storage device, or a program name to run a program
from a Solid State Software cartridge (see chapter 3).

6. [BREAK] Key
The [BREAK] key Is used to stop a program that is executing.

7. [CLR] (Clear) Key

The [CLR] (Clear) key clears all the characters from the display
when no program is running. When a program is waiting for
input, the characters in the input field are cleared.

1-16



CHAPTER |
GETTING ACQUAINTED

8. Reset Key

Reset is used to restart the computer when a problem occurs in
which normal operation is interrupted. Pressing the reset key
usually causés the message Memory contents may be lost to be
displayed. You must determine if the situation which caused
you to press reset was likely to have destroyed the memory
contents. The reset key is flush with the case so that you will
not press it accidentally.

9. BASIC Keyword Keys

The BASIC keyword keys provide a convenient entry method for
BASIC commands, statements, and functions.

Some BASIC keywords are printed on the separate keyboard
overlay. To access these keywords, press the [FN] key and the
key below the desired keyword.

For example, one of the BASIC keywords Is PRINT. To access
this keyword, rather than typing each letter, you can press [FN]
[PRINT]. The word PRINT appears in the display. Type the
following using the BASIC keyword PRINT and the appropriate
keys and then press [ENTER].

PRINT “The answer Is”
To clear the display, press [CLR].

10. Cursor

There are two cursors. One is a flashing rectangle that
indicates you can enter data. The other is an underline that
indicates the system is waiting for you to acknowledge a pause
by pressing [ENTER] or [CLR].

117



CHAPTER |
GETTING ACQUAINTED

11. Display
The display shows 31 characters of the 80-character line.

Eighteen display indicators are provided to indicate certain
conditions. These indicators appear if certain controls are in
effect, such as SHIFT, DEG, and FN. The display of the CC40 is
shown below with labels and descriptions.

1 2 3 4 5 6 7 8
AN NN SN SN SN N

11—+¢ swer  chL N 0EG  AAD  GRAD 1/ L p4~12
B
ERROR - - - - - T w
| I {
10 13 9

Indicator Meaning

1. SHIFT The shift state is in effect.

2. CTL The control state is in effect.

3. FN The function state is in effect.

4. DEG The unit of angular measure is degrees.

5. RAD The unit of angular measure is radians.

6. GRAD The unit of angular measure is grads.

7. 10 Peripheral input or output is in progress.

8. UCL Upper Case Lock is in effect.

9. Low Battery power is low.

10. ERROR An error has been detected.

1. 4 Text has scrolled off the display to the left.
12.) Text has scrolled off the display to the right.
13. - An indicator that has been set. See chapter 4

and INDIC in chapter 5.
User-Assigned Strings

The user-assigned string feature of the CC-40 allows you to
assign text to each of the number keys 0 through 9. Commonly
used numbers, expressions, and text assigned to these keys
can later be recalled from the keyboard using the [FN] key. The
assigned text is retained even when the CC-40 is turned off.

To assign text to a number key use the following procedure.
1. Place up to 80 displayable characters in the display.

2. Hold down [SHIFT] and [FN] simultaneously until both the
SHIFT and FN indicators appear in the display. Then release
the keys.

118



CHAPTER |
GETTING ACQUAINTED

3. Press the desired digit key. The characters are assigned to
the indicated digit, the display is blanked, and the SHIFT and
FN display indicators are turned off.

To display the assigned text, press [FN] and the digit key that
was assigned. The text is placed in the display, starting at the
current cursor position. You may repeat this key sequence as
often as you wish to display the assigned text.

For example, assign the message “Frank — —556-1212" to digit
key 6 using the procedure below.

Press Display Comments
1. Frank--565-1212 Frank--555-1212
2.[SHIFT]IFN]8  blank Hold down both [SHIFT]

and {FN] until the SHIFT
and FN indicators
appear In the display,
then press 6.

3.[FN] 6 Frank--555-1212 Assigned characters
are displayed.

You can delete a user-assigned string by performing the
assignment when the display Is blank. For example, if [SHIFT]
[FN] 6 is pressed when the display is blank, the string assigned
to key 6 is deleted. All user-assigned strings are cleared when
NEW ALL Is entered or the system is initialized.

The following examples illustrate other kinds of text that can
be assigned to the number keys.

Examples Comment

LIST "50.R=C" Frequently used commands
RUN "1 .MYFILE" and statements
FV=PV*(1+1)An Commonly used mathematical
SQR(aAR+bA2) expressions

100 INPUT "Variable= ";X BASIC program lines
330 ACCEPT AT(15) BEEP,N

179.234%3422.14-A Repetitive calculations
PV/(1+.10) A 10
Ambulance 555-1212 Memos

Budget meeting at 4 pm

119



CHAPTER I
PERFORMING CALCULATIONS

Introduction

The calculating capabilities of the CC-40 are enhanced by a
wide range of built-in mathematical functions. These functions
range from simple arithmetic operators to logarithmic and
trigonometric functions. You can use these functions in a
BASIC program as well as directly from the keyboard.
Repetitive calculations are easily performed on the CC-40.

Entering Numeric Data
The number keys, 0 through 9, are located both on the right side
of the console (catled the numeric keypad) and across the top
row of the keyboard and can be used interchangeably. The
decimal point on the numeric keypad and the period on the
keyboard can also be used interchangeably.

The value = to eleven decimal places, equal to 3.14159265359,
can be included in a calculation by typing PI. (Note that the
value of = is displayed as 3.141592654.) The value of 7 is
substituted for PI when a calculation is performed.

Negative values are entered into the display by preceding the
number with the minus (—) sign located on the numeric keypad.

If you need to correct an erroneous entry, use the €,-», [SHIFT]
[INS), and [SHIFT] [DEL] keys. See chapter 1.

Numeric Variable Assignments

Numeric values can be used directly in a calculation or can be
assigned to variables for use in later calculations. For example,
entering X=3 stores the value 3 in the variable X. Then X can be
used in a calculation such as X2+ 3X - 2 (entered as

X A2+3+x-2), giving a result of 16.

The result of an equation or calculation can also be assigned
to a variable. For example, Y =m=x + b assigns the result of the
equation m«x + b to the variable Y. The previously defined
variables m, x, and b supply the data necessary to evaluate the
equation. See chapter 4 for details concerning variable
assignments.

21



CHAPTER ||
PERFORMING CALCULATIONS

Simple Arithmetic Calculations
The +, =, +, |, and [SHIFT] A keys are used to perform simple
arithmetic calculations. The following examples show how to
use these keys.

Example Press Display Comment
2+3 2+3[ENTER] 5 Addition
145-98 145-98 [ENTER] 47 Subtraction
3945x -5 3945+ -5

[ENTER] -19725 Multiplication
7+x 7/P1 [ENTER] 2.228169203 Division
5-3.25 5A=-325

[ENTER] .0053499224 Exponentiation
s 8A(13) [ENTER] 2 Root

A problem is evaluated when the [ENTER] key Is pressed. You
do not need to press the = key.

Note: A negative value cannot be raised to a non-integer power.

Order of Operations
The CC-40 uses standard algebraic hierarchy to evaluate
mathematical problems. This evaluation method permits you to
enter an equation or problem into the display in an order
similar to the way It is written on paper—from left to right.

The CC-40 uses the following order of precedence when
evaluating mathematical operations.

Operation Example Entry
1. Functions V25 SQR(25)
2. Exponentiation 80”3 8A(113)
3. Unary minus -17 -17
4, Multiplication and division  6+4+3 6+4/3

5. Addition and subtraction 3+7-2 3+7-2

When [ENTER] is pressed, the CC-40 employs these rules to
evaluate the problem in the display. Operations with the same
priority are evaluated from left to right.

22



CHAPTER i
PERFORMING CALCULATIONS

For example, to evaluate 2 + 3+8/22 — 4, the CC-40 first performs
exponentiation, followed by multiplication and division, and
then addition and subtraction. This problem is evaluated in the
following manner.

Problem 2+3+82A2-4
Exponentiation first 2+3+8/4-4
Multiplication/division from left to right 2+ 24/4—-4
2+6-4
Addition/subtraction from left to right 8-4
4

You can change the normal order of evaluation by enclosing
part of a calculation in parentheses. Any expression in
parentheses is evaluated first. For example, to calculate

2+(8 + 3)+2, the CC-40 first evaluates the contents of the
parentheses. This problem is evaluated in the following manner.

Problem 2+(8 + 3)+2
Contents of parentheses evaluated 2+11+2
Multiplication/division from left to right 222

44

23



CHAPTER Il
PERFOBMING CALCULATIONS

Scientific Notation
Scientific notation allows you to represent very small and very
large numbers in an easy-to-read format. Scientific notation is
especially useful in scientific and engineering applications,
where such numbers are often used.

These numbers are expressed in a format in which a number
(the mantissa) is multiplied by 10 raised to a power (the
exponent). For example, the sun is approximately 92,900,000
miles away from the earth. This number can be represented in
scientific notation as 9.29 x 107 where 9.29 is the mantissa and
7 is the exponent.

Numbers in scientific notation are entered into the display of
the CC-40 with the mantissa followed by E (or €) and the
exponent. For example, 9.29 x 107 can be expressed as
9.29E + 07 or, more conveniently, as 9.29¢7. Like other numbers,
values expressed in scientific notation must not contain
spaces. The following table gives other examples of scientific

notation.
Standard Notation Scientific Notation
— 512340000000 -5.1234E + 11
.00000000000188 1.88E-12
-.000000000000123 -1.23E-13

Scientific notation allows you to enter and evaluate
calculations on numbers with magnitudes as small as

+1E- 128 or as large as +9.9999399999999E + 127. The
computer automatically displays numbers in scientific notation
when more significant digits can be displayed than in the usual
ten-digit format.

24



CHAPTER I
PERFORMING CALCULATIONS

Mathematical Functions
There are two ways to access the mathematical functions of
the CC-40. You can either type the function name or press [FN]
and the alphabetic key under the desired function shown on the
overlay, as described in chapter 1. Note that some functions
are not available using the [FN] key; you have to type them.

Several of the mathematical functions are described below. For
more information on these and the other functions (listed in
appendix B), see chapter 5.

When the [FN] key is used, the keystrokes shown in the
examples describe the function accessed and not the key
actually pressed. For example, pressing [FN] and then R to
access Pl is shown as [FN] [PI].

Many mathematical functions require an argument. If an
argument is required, it must be enclosed in a set of
parentheses. For example, ABS(- 4) calculates the absolute
value of —4. Both the open and close parentheses are required.
The message Unmatched parenthesis is displayed when a
parenthesis is omitted.

If you use the [FN] key to place a function name, such as ABS,
into the display, the computer provides the open parenthesis.
Thus, pressing [FN] [ABS(] places ABS( in the display. You then
provide the argument and ¢losing parenthesis, and press
[ENTER] to evaluate the expression.

Square Root
SQOR is used to calculate the square root of a number.

Example Press Display
V5 [FN] [SOR(] SQR( '
5) SQR(5)
[ENTER] 2.236067978
V25 SQR(25)[ENTER] 5

The first example illustrates using the [FN] [SQR(]) sequence to
calculate the square root. In the second example, the [FN] key
is not used.

25



CHAPTER I
PERFORMING CALCULATIONS

Logarithms and Antilogarithms
LOG is used to calculate the common logarithm (base 10) of X.
Ten raised to a number is used to calculate the common

antilogarithm.
Example Press Display
LOG(2.4) LOG(2.4) [ENTER]  .3802112417
10117 10 A1.17 [ENTER]  14.79108388

LN is used to calculate the natural logarithm (base €) of X. EXP
(the exponential function, e} is used to calculate the natural
antilogarithm of X.

Example Press Display
LN(2.4) LN(2.4) [ENTER] 8754687374
e EXP(25) [ENTER]  1.284025417

Trigonometric Functions

The CC-40 evaluates trigonometric functions in either radian,
degree, or grad (RAD, DEG, or GRAD) angle units. The RAD angle
setting is selected when NEW ALL is entered or the system is
initialized. The angle setting remains in effect until you change
it or the system is initialized.

When you use a trigonometric function, check the angle setting
indicator in the display to make certain that the desired angle
setting has been selected. If you wish to choose a different
setting, you may either use the [FN] key or manually type the
desired setting as RAD, DEG, or GRAD,

26



CHAPTER II
PERFORMING CALCULATIONS

SIN, COS, and TAN are used to compute the sine, cosine, and
tangent of an angle. The angles are measured in the units of
the indicated angle setting. The following example finds the
sine of 50 degrees.
Example Press Display Comments

[DEG] [ENTER] DEG indicator set Set degree mode.
SIN(50°) SIN(50) [ENTER] .7660444431 Sine of 50°.

The formulas for secant, cosecant, cotangent, and hyperbolic
functions are given in appendix E.

ASN, ACS, and ATN are used to compute the arcsine (sin~1),
arccosine (cos~ 1), and arctangent (tan—") of a value. The result
is calculated according to the angle units (RAD, DEG, or GRAD)
selected prior to using these functions. The following example
finds the arcsine of .5 with radians as the trigonometric unit.
Example Press Display Comments

[RAD] [ENTER} RAD indicator set Select radian mode.
ASN(5) ASN(5) [ENTER] .5235987756 Arcsine of 5.
The formulas for arcsecant, arccosecant, arccotangent, and
Inverse hyperbolic functions are given in appendix E.

27



CHAPTERMII
PERFORMING CALCULATIONS

Chain Calculations
The CC-40 provides you with the capability to chain keyboard
calculations. Chain calculations are often used when the result
of one calculation is needed in another calculation. A loss of
accuracy occasionally results when you chain calculations.
See appendix F for accuracy information.

When the result of a keyboard calculation is displayed, it is
followed by the flashing cursor. You can press any of the
arithmetic operators (+, -, », /, or A), or the [SHIFT] [INS],, or €
keys to use the displayed result in another calculation. If an
alphanumeric key Is pressed, the display is cleared and that key
entered into the display. If [SHIFT] [INS] is pressed, the cursor is
automatically positioned to column 1, where characters can be
inserted.

28



CHAPTER II

PERFORMING CALCULATIONS

For example, the formula h=+a2+ b? is used to calculate the
length of the hypotenuse of a right triangle. When a=3 and

b =4, h can be calculated by entering SQR(3A 2+4 A 2). To
illustrate how ta chain calculations, this problem is divided into
three steps. First, 3 A 2 is calculated. Next, the resuit of 4 A 2
is added to the displayed result of 3 A 2. Then the square root
of that sum is calculated.

Press Display Comment

3A2 3A2

[ENTER] 9 Result of 32 followed by the
flashing cursor.

+4A2 G4 A2

[ENTER] 25 Result of 32 + 42 followed by the
ftashing cursor.

[SHIFT] [INS]) Flashing cursor moves to
column 1.

[SQR(] SQR(25 Insert SQR(.

> SQR(25 Move cursor past the 5.

) SQR(25)  Enter close parenthesis.

[ENTER] 5 Result of SQR(3? + 4?) followed by

the flashing cursor.

If no other calculations are to be performed, press [CLR] to

clear the display.

29



CHAPTER i
PERFORMING CALCULATIONS

Repetitive Calculations
The CC-40 provides two ways to perform repetitive calculations.
The [SHIFT] [PB] key can be used to display the contents of the
previous display, or the user-assigned keys can be used to store
and recall frequently used expressions and data.

Playback

The playback feature can be used when you need to perform
the same calculation repeatedly with different values. When a
keyboard calculation is performed, the result is displayed and
you can press [SHIFT] [PB] to recall the calculation that was last
in the display. The calculation can be altered using the edit
keys and a new result obtained.

For example, suppose you want to find the equivalent Celsius
temperature for a Fahrenheit temperature. The formula for
converting to Celsius is shown below.

C=(F-32)+5/9

To convert 212° Fahrenheit to Celsius, enter the following.
(212-32)*5/9

The answer, 100, is displayed.

To change another Fahrenheit reading to Celsius, press [SHIFT]
(PB) to display the last line that was entered, (212-32)%5/9. Use
the edit keys to change 212 to 100 and press [ENTER]. The
result of this calculation, 37.77777778, is displayed.

To change another Fahrenheit reading to Celsius, press [SHIFT]
{PB] to display the last line that was entered, (100-32)%5/9, and
use the edit keys to change the 100 to another temperature.

This type of repetitive calculation is appropriate when you do
not have to enter values for variables. When you enter a value,
that value becomes the contents of the last display, and will be
displayed when [SHIFT] [PB] is pressed. To perform a repetitive
calculation with variables, use the user-assigned keys.

210



CHAPTER Ii
PERFORMING CALCULATIONS

User-Assigned Keys

User-assigned keys are used to reduce time spent typing
commonly used expressions or strings. You can assign a string
of up to 80 eharacters to each of the number keys 0 through 9
and recall those characters with the [FN] key (see chapter 1).
This capability is especially useful for storing mathematical
expressions.

For example, the following formula can be used to calculate
the inverse secant.

SGN(X)* ACS(1/X)
You can calculate the inverse secant for different values of X
by assigning this formula to a numeric key (0-9) and then
entering different values for X. The following example illustrates
assigning the formula to key 1 and finding the inverse secant of
5 and 10 in radians.

Press Comments
SGN(X)«ACS(1) Place string in the display.
[SHIFT] [FN} 1 Hold down both [SHIFT] and [FN)

until the SHIFT and FN indicators
appear in the display, then press 1.

[RAD] [ENTER] Select radian mode.

X =5 [ENTER) Define X to be 5.

[FN] 1 Recall string.

[ENTER] Displays 1.369438406.
X=10 [ENTER] Define X to be 10.

[FN] 1 Recall string.

[ENTER] Displays 1.470628906.

All user-assigned strings are cleared when NEW ALL is entered
or the system is initialized.

21



CHAPTER Il
USING OPTIONAL CARTRIDGES
& PERIPHERAL DEVICES

Introduction
The memory capacity and problem-solving capabilities of the
CG-40 can be greatly increased by installing optional Sofid
State Software™ or Memory Expansion cartridges in Its
cartridge port. The peripheral devices available for use with the
CC-40 also enhance its versatility and usefulness.

Solid State Software cartridges give you rapid access to
professionally-written programs in areas such as mathematics,
engineering, and finance. The programs in these cartridges take
full advantage of the alphanumeric display capability of the
CG-40 to provide descriptive prompting for data entries and
labeling of results. lllustrative examples and detailed
instructions for using each of the cartridge programs are.
provided in the owner's manual supplied with each cartridge.

Memory Expansion cartridges can increase the Random Access
Memory (RAM) capacity of your CC-40. Like the Solid State
Software cartridges, Memory Expansion cartridges are installed
In the cartridge port of the CC-40.

Peripheral devices available for use with the CC-40 atlow you to
expand the capabilities of the computer. The peripheral
expansion flexibility of the CC-40 enables you to expand your
system to print information, store and retrieve programs and
data, communicate with other computers, print graphs and
charts, and view data on a CRT (television) display. The
computer communicates with peripheral devices through the Tl
HEX-BUS™ |ntelligent Peripheral Interface (the peripheral port).
The HEX-BUS Interface is a standardized interconnection
system with a uniform set of cabling conventions, ¢control
signals, and message structures.

31



CHAPTER lll
USING OPTIONAL CARTRIDGES
& PERIPHERAL DEVICES

Caring for Cartridges and Peripherals
Even though the cartridges and peripherals are durable devices,
you should handie them with care. Follow these precautions
when handling cartridges or peripherals.

o BE SURE THAT YOUR BODY IS FREE OF STATIC
ELECTRICITY. Prior to handling any cartridge or peripheral,
touch some metal object to discharge any static electricity
you may be carrying.

¢ Keep the cartridge port cover secure on the computer to keep
the cartridge port dust-free.

o Keep the contact area of the cartridges clean. A buildup of
debris or foreign particles on the contacts ¢can impair their
operation. Keep the cartridges stored either in the original
container or in the computer’s cartridge port.

* Use a cotton swab soaked in alcohol to clean the cartridge
and cartridge port contacts when necessary. After the alcohol
has dried, remove any remaining lint with a clean, soft-
bristled brush.

CAUTION: Do not use any other liquid substance to clean the
contacts.

e Check the peripheral manuals for special maintenance
instructions for the peripherals.

Installing or Replacing a Cartridge
Both Solid State Software™ and Memory Expansion cartridges
are installed in the cartridge port of the CC-40. Turn the
computer off when installing or replacing a cartridge. Installing
a cariridge while the computer is on may resuit in memory loss.
Use the following procedure when installing a cartridge.
1. Turn the computer off.

32



CHAPTER Il
USING OPTIONAL CARTRIDGES
& PERIPHERAL DEVICES

2. Slide the cartridge port cover back and remove it from the
computer as shown in the diagram below.

lr_lﬂl_rﬂﬂﬁﬂr—lﬂr—im—rﬂ i

3. If a cartridge is already installed, remove it by pushing the
cartridge away from the keyboard until it is released. Lift the
cartridge from the cartridge port.

4. Lay the cartridge to be installed in the cartridge port, with the
cartridge name facing up and toward the keyboard.

5. Press firmly on the back of the cartridge and slide it toward
the keyboard until the tabs on the cartridge enter the slots
provided and the cartridge locks into place. Replace the
cartridge port cover and check that its tabs also fit into the
slots.

TABS MUST FIT
INTO SLOTS

= ﬁiﬁ:l!ﬁlml_iﬂ

33



CHAPTER ill

USING OPTIONAL CARTRIDGES
& PERIPHERAL DEVICES

Using Solid State Software Programs and
Subprograms
The programs in some Solid State Software™ cartridges start
running as soon as you turn on the computer. Instead of a
blank display with the cursor, you see a message. See the
owner’'s manual that comes with the cartridge for instructions
on how to proceed.

You must run the programs in other cartridges by typing RUN,
quotation marks, the name of the program, and quotation
marks, and then pressing [ENTER]. The owner's manual gives
the name of the program that you need to run and describes
how to use the program.

Most cartridges contain several programs and subprograms,
each described in the owner's manual. You can run the
programs from the keyboard or from a program. Subprograms
are called from programs. Refer to chapter 4 for how to run
programs and use subprograms in a program.

To run a program in a Solid State Software cartridge, type RUN,
quotation marks, the program name, and quotation marks, and
then press [ENTER]. For example, you can run the normal
distribution program in the Statistics cartridge by typing RUN
“normal” and then pressing [ENTER]. If the cartridge is installed,
NORMAL DISTRIBUTION is displayed. If the cartridge is not
installed, Program not found is displayed.

Using Memory Expansion Cartridges
Memory Expansion cartridges can be installed In the cartridge
port of the CC-40 to expand the resident memory and allow you
to write and use larger programs. Cartridge memory is
appended to the resident memory when the ADDMEM
subprogram is called (see chapter 5). This link between resident
memory and cartridge memory is broken when NEW ALL is
entered, the reset key is pressed, or the cartridge is removed.



CHAPTER lil
USING OPTIONAL CARTRIDGES
& PERIPHERAL DEVICES

Set-up Instructions for Peripherals
Setting up the CC-40 peripherals is a simple process. First you
connect the device to the HEX-BUS™ Intelligent Peripheral
Interface; then you check its operation. This section describes
the steps involved in setting up peripherals.

Connecting Peripheral Devices

The devices in the TI HEX-BUS system have identical eight-pin
recessed connectors for the cable through which they
communicate. The computer has one such connector, while
each peripheral device has two of them 80 that a series of
devices may be attached to the computer.

Before connecting any peripherals, turn off the computer. Then
wait for all peripheral activity to cease before you turn off the
peripherals. You may link peripherals to the computer in any
order. The first peripheral is plugged directly into the computer
using a cable. Then another cable is plugged into the other
connector on the peripheral. The other end of the cable is
plugged into the next peripheral you are connecting. The plugs
are keyed so that you can insert them only one way. The last
peripheral has one connector free.

35



CHAPTER IlI

USING OPTIONAL CARTRIDGES
& PERIPHERAL DEVICES

Peripherals are normally arranged in a stack next to the
computer, using the cables supplied with the peripheral
devices. Longer cables are available separately if you prefer to
arrange the peripherals differently.

CAUTION

To prevent damage, disconnect all devices
before moving any part of the HEX-BUS
system. Even though the computer and
peripherals are light and portable and easily
carried in a briefcase, the cables and
connectors are subject to accidental strain if
not detached. For shipment over long
distances, repack the system securely,
preferably in its original packing materials.

Checking the Operation of a Peripheral

The 10 subprogram in the CC-40 can be used to determine if a
peripheral is attached correctly to the computer. The 10
subprogram is accessed by entering CALL 10 with the device
number of the peripheral you are testing. For example, CALL
10(1,1) is used to test peripheral device 1 and CALL 10{7,1) is used
to test peripheral device 7. Refer to the peripheral manuals for
the device numbers of your peripherals.

36



CHAPTER Il

USING OPTIONAL CARTRIDGES
& PERIPHERAL DEVICES

Use the following procedure to check if a peripheral is

connected correctly.

1. Turn on the peripherals and the computer. All attached
peripherals should be turned on for proper operation.

2. To test a peripheral device, enter CALL 10 with the number of
the device. For example, to test device 20 (the RS232
peripheral), type CALL 10(20,1) and press [ENTER]. The ERROR
indicator is turned on and the following message is then
displayed if the peripheral is attached correctly.

I/0 error 4 "20" ‘
Note: CALL 10{20,1) is an attempt to end access to the RS232
peripheral. Since it has just been turned on at this point, the
device is not yet enabled for access. In returning error code 4
(device not open), the peripheral is operating as it should.

3. Press [CLR] to clear the error message and restore the cursor.
The peripheral is ready for use.

if the correct error code is not displayed when the CALL 10
instruction is entered, the device may not be connected
properly. Check the cabling between the computer and the
peripheral. Refer to the peripheral manual for more information.

if the I/0 display indicator stays on while the rest of the
display remains blank, the system has “locked up” at some
point in the test sequence. The computer cannot respond to
input from the keyboard while in this state. Turn the peripheral
off momentarily to clear the condition. Then check the cabling
connection and try the operational check once more. If this
procedure does not correct the situation, you may have a
hardware problem in the cable or the peripheral. Refer to In
Case of Difficulty in the peripheral manual for information.

37



CHAPTER IV
BASIC PROGRAMMING

Introduction
The BASIC programming language was developed at Dartmouth
College in the 1960s. The word BASIC is an acronym for
Beginner's Afl-purpose Symbolic Instruction Code. BASIC is the
language most commonly used on personal and home
computers and is increasingly accepted on larger machines.
The Texas Instruments Compact Computer Model CC-40 uses
an advanced version of BASIC called CC-40 BASIC. Programs
written in other versions of BASIC, including T! BASIC and Tl
Extended BASIC (used on the Texas Instruments Home
Computer), may have to be modified for use on the CC-40.

This chapter provides an introduction to BASIC that enables
you to use the BASIC programming features immediately. It
contains overviews of what a program is, how to write a
program, the rules and syntax of CC-40 BASIC commands,
statements, and functions, what input and output are, the
various parts of a program, how to edit a program, how to save
a program, and how to debug (or find the errors in) a program.
Each of the elements that makes up the CC-40 BASIC language
is mentioned, and some are explained in detail. For details on
syntax and additional examples, see chapter §, which is an
alphabetical listing of all the CC-40 BASIC commands,
statements, and functions.

If you have not used BASIC before, the book Learn BASIC: A
Guide to Programming the Texas Instruments Compact
Computer is available from local dealers. The only way to learn
to program is to actually program. Try the examples in this
book. Don’t worry about making mistakes when you begin. You
can always cancel any operation by pressing [BREAK] and [CLR).

If you are already familiar with some version of BASIC, this
chapter is a quick refresher. Be sure to review the topics that
are marked with the Tl logo ( & ) for features of CC-40 BASIC
that may differ from other versions of BASIC.

41



CHAPTER IV
BASIC PROGRAMMING

Getting Started

A program is a series of instructions that the computer can
perform. You tell the computer what to do by typing
instructions on the keyboard and then pressing [ENTER]. These
instructions are performed only when you run or execute the
program by typing RUN and pressing [ENTER]. When you run a
program, the instructions are performed or executed one at a
time.

The computer has its own set of words, called keywords, that
it knows how to perform. There are not many such words, but
taken together these words let you perform virtually any
computational task.

As a simple example, you can write a program to muiltiply 25
times 7 and print the answer. A program to do this is shown in
the following section.

Writing, Running, and Listing a Program

Turn on the CC-40. Either a message is displayed or there is a
flashing cursor in column 1. To clear the message from the
display, press the [CLR] key. Then in both cases, type NEW and
press [ENTER].

Type the following line exactly as shown, including spaces. As
you type, the cursor moves to the right to show where the next
character is placed. If you make a mistake typing, use the edit
keys (described in chapter 1) to correct the line, or press the
[CLR] key to start over.

100 PRINT 25+7

Press [ENTER] for the computer to store the instruction in its
memory. Type the next line exactly as shown.

110 PAUSE
Press [ENTER] for this instruction to be stored.

The computer has now stored two instructions or lines in its
memory. To have the computer perform these instructions,
you must run the program by typing RUN and pressing [ENTER].

42



CHAPTER IV
BASIC PROGRAMMING

The computer calculates 25 times 7 and prints the answer,
175, in the display. It then pauses so you can see the answer.
The result is preceded by an underline cursor in column 1. The
underline cursor indicates that the computer is waiting for the
{CLR] or [ENTER] key to be pressed. To leave the pause, press
{CLR). The flashing cursor appears in column 1 to indicate that
you can enter information from the keyboard.

Note: You can leave any BASIC program that Is running by
pressing [BREAK].

To look at the program in the CC-40, type LIST and press
[ENTER]. The CC-40 prints the first line of the program.

100 PRINT 25%7

Press [ENTER] to display the next line.
110 PAUSE

Press [ENTER] again and the flashing cursor appears on a blank
line. The blank line means there are no more program lines
stored in memory. You can now proceed to enter information.

If you are in the middle of a listing and do not want to see the
rest of a program, press [BREAK] to end the listing.

BASIC Programming Procedures

The two-line program you just entered, executed, and listed
shows many of the procedures to follow as you write BASIC
programs. Remember—before you enter a program in the
'CC-40, type NEW and press [ENTER] to be sure that memory has
been cleared.

The rules for entering program instructions are described briefly
in the following sections.

Lines and Line Numbering

100 PRINT 25%7 is called a line of a program. This line instructs
the computer to calculate 25 times 7 and print the answer. The

computer recognizes * as multiplication and the word PRINT as
a task to perform.

The 100 is the line number. Every line of a program must have a
line number from 1 through 32766, followed by a space. The
CGC-40 executes program lines in numerical order, regardless of
the order in which they are entered.

43



CHAPTER IV
BASIC PROGRAMMING

It is good programming practice to have unused line numbers
between the lines of a program. You can then insert additional
lines in the program. For example, suppose you want to
perform one more calculation in the program, 25 times 6. Enter
the following two lines.

105 PAUSE

108 PRINT 25+6

If you LIST the program, you will find that the two lines have
been added to the program in memory. The computer
sequences the lines by their line numbers. To run the program,
be sure the display is clear and then type RUN and press
[ENTER]. When the computer pauses while displaying the first
answer, 175, press [ENTER] to display the next answer, 150.
Then press [ENTER] again.

If you enter a line with the same line number as one already
stored in memory, the new line replaces the old one. For
example, type the following line and then press [ENTER].

100 PRINT 256-25

When you list the program, you will find the last line entered as
100 is the one that is now stored in memory.

Note: When entering any information into the computer, always
press [ENTER] after you have finished typing. In the rest of this
chapter, any references to enter any information assume that
the [ENTER] key is pressed after you have finished typing.

Keywords.

Following the line numbers in the program just executed are
English words that the CC-40 recognizes and knows how to
perform or execute. All program lines contain characters that
resemble algebraic formulas and/or English words. These
English words correspond to single tasks and are called
keywords. When entering keywords in the CC-40, you can type
them using either upper- or lower-case characters. When the
program is LISTed, these words are always displayed in upper-
case letters. The different types of keywords are discussed in
the following sections.



CHAPTER IV
BASIC PROGRAMMING

Statements

Statement keywords are elements of a program line that cause
an action, such as PRINT and PAUSE. Statement keywords
must be followed by a space in the program line. For example,
the CC-40 recognizes the statement 10 PRINT 2 but not 10
PRINT2. The CC-40 performs statements in a program only when
you execute the program.

Many statement keywords can also be executed immediately by
entering them without a line number. The statement is executed
as soon as the [ENTER] key is pressed. For example, enter the
following in your CC-40.

PRINT 25+7
The answer 175 is displayed immediately.

A list of all the statement keywords, indicating which ones can
be executed immediately as well as used in program lines, is
given in appendix A. For simple calculations such as the one
above, it is usually more practical to use the calculator features
of your CC-40 (refer to chapter 2). However, when you want to
perform the same series of calculations repeatedly, you can
often save time and effort by writing these calculations as a
program for the CC-40 to perform.

Functions

The function keywords perform specialized routines and return
a value. Most functions require that a value {called an
argument) be given to the function. There are function keywords
for many mathematical functions such as square root,
logarithm, and sine.

All of the functions available with the CC-40 are listed in
appendix B and many are discussed in this chapter in sections
that deal with similar instructions. All of the functions can be
used in program lines and most of them can be executed
immediately.

Commands

The command keywords, such as NEW and LIST, are always
executed immediately. These keywords may not be used in a
program line. The commands available on the CC-40 are listed
in appendix A and are discussed throughout this chapter.

45



CHAPTER IV
BASIC PROGRAMMING

Using a Function in a Program

The program below calculates and displays the square roots of
the first 25 whole numbers. To obtain these answers without a
program would require making 25 separate calculations. Enter
the program shown betow in your CC-40. (Remember to type
NEW and press [ENTER} before you enter the program, and to
press [ENTER] after you have typed each line.)

100 FORA=1TO 25
110 PRINT A; SQR(A)
120 PAUSE 1
130 NEXT A

In line 100, the FOR statement sets up a loop, a group of
statements that are repeated a specific number of times. The
loop consists of the statement immediately following the FOR
statement and all the statements down to a NEXT statement. In
this case, the letter A is the counter that starts at 1 and goes
TO 25 by ones.

Line 110 tells the computer to print the value of the counter A
and the square root of the counter. The first time line 110 is
executed, the value of the counter is 1.

Line 120 tells the computer to pause for 1 second after it prints
an answer so that you have time to see it.

Line 130 is the last statement in the loop. The counter, A, Is
incremented by one and the CC-40 goes back and repeats lines
110, 120, and then 130, where the counter is again incremented.
The loop is repeated until the counter is incremented past the
number 25, which is the number following the word TO in line
100. Thus, this loop is executed 25 times.

Enter RUN to execute the program. The CC-40 displays the first
twenty-five whole numbers and their square roots, pausing one
second to display each.

Ending a Program

A program normally stops running after the last line in the
program has been executed. However, if you wish, you can
enter an END statement as the last statement in your pro'gram.
The STOP statement can be entered anywhere in your program
that you want the program to stop execution.

46



CHAPTER IV
BASIC PROGRAMMING

Kinds of Entries

Everything entered in the CC-40 is determined by the CC-40 to

be one of two kinds of entries.

1. An entry that begins with a number from 1 through 32766
foliowed by a space and an alphabetic character (or an at
sign, the underscore, or an exclamation point) is treated as a
program line that is stored in memory.

2. Any other entry is assumed to be a command, a statement,
or a calculation that is executed immediately. Calculations
are discussed in chapter 2.

Program Lines

This section describes the requirements and restrictions of
program lines including line numbering, line length, lines
containing remarks, and multiple statement lines.

Line Numbering

Each line in a program must begin with a number followed by a
space. Line numbers can be any integer from 1 through 32766.
It is good practice to number lines in multiples of 10 in case
you need to insert lines.

Automatic Line Numbering

You can have the CC-40 supply line numbers by entering the
command NUM (for NUMBER). The CC-40 displays 100 followed
by a space. The cursor is positioned where the first character
of the line starts. After you type the statement and press
[ENTER], the CC-40 displays 110 followed by a space and waits
for you to enter the statement for that line. When you have
finished entering all of the program lines, press either [ENTER]
or [BREAK] when the next line number appears.

You can also use NUM to tell the CC-40 where to start
numbering and what increment you want. For example, entering
NUM 10,20 starts numbering the lines at 10 and increments each
succeeding line number by 20.

Renumbering Program Lines

After editing a program, you may want to renumber the program
lines. The CC-40 automatically renumbers the lines in a
program when you use the RENUMBER (or REN) command.

47



CHAPTER IV
BASIC PROGRAMMING

Line Length

A line may be up to 80 characters long, including the line
number. Additional characters typed at the end of the line
replace the 80th character.

Lines Containing Remarks

You can include explanations and comments in a program by
using remarks. A remark is not executed, but it is stored in
memory. Enter remarks either by typing REM followed by a
space and the explanatory remark or by typing an exclamation
point and the explanatory remark as shown in lines 100 and 110
below.

100 REM THIS LINE IS A REMARK AND IS NOT EXECUTED
110 ! NEITHER 1S THIS ONE

The exclamation point can also be used as a tail remark
symbol by following the statements on a line with the
exclamation mark (!) and the explanatory remark, as shown
below.

120 FOR A=1TO 25 | SET UP LOOP

Multiple Statement Lines
Each program line may contain more than one statement by
separating the statements with colons. For example, the
program that calculated the square roots of the first 25 whole
numbers could be written on one line as shown below.
100 FOR A =1 TO 25:PRINT A;SQR(A):PAUSE 1:NEXT A ! PRINT
SQUARE ROOTS

The line begins with a line number followed by a space. The
statement FOR A=1 TO 25 is followed by a colon to signal the
CC-40 that there is another statement, PRINT A; SQR(A). There
are four statements in the line. The tail remark symbol (!) tells
the CC-40 that the rest of the program line is an explanatory
remark which is not to be executed when the program is run.

Program Storage and Execution

You can save a program that you want to keep by using the
SAVE command. To execute a program that has been stgred,
use the RUN statement or the OLD command and RUN.

48



CHAPTER IV
BASIC PROGRAMMING

Saving a Program
The SAVE command is used to copy a program in memory to
an external storage device. To store a program on a new tape,
you must first format the tape. If you format a tape that already
has Information on it, all the data Is erased. The example below
illustrates how to save a program on a new tape.

FORMAT 1

SAVE “1.MYPROG"

The tape on device 1 is formatted and the program in memory
is written to the tape with the filename MYPROG. To save a
program on a tape that contains other programs, be sure to
give the program in memory a name that does not already exist
for a program on the tape.

You can also protect a program when you save it by using
PROTECTED in the SAVE command. If the SAVE command
includes the option PROTECTED, the saved copy ¢an not be
listed, edited, or stored. For example, the following SAVE
command places a protected copy of the program in memory
on external device 1.

SAVE “1.MYPROG",PROTECTED

Note: Since a protected program can never be listed, edited, or
stored, be sure to save an unprotected copy.

Executing a Stored Program
To execute a program stored on a peripheral device, the
program must be loaded into memory by using the OLD
command or the RUN statement. The OLD command is used
when you want to edit the program or verify that it was loaded
into memory correctly. The commands shown below load a
program into memory and verify that it was loaded correctly.
OLD “1.MYPROG”
VERIFY “1.MYPROG"”

To execute the program, enter [RUN].

The RUN statement can be used to execute a program stored
on a peripheral device. The statement below loads a program
into memory from peripheral device 1 and then executes it.

RUN “1.MYPROG"

49



CHAPTER IV
BASIC PROGRAMMING

3

Editing Program Lines
After you enter a program, it is often useful to check the
program lines for errors by using LIST or the edit keys. Many of
the editing features are obtained using the [SHIFT], [CTL], and

[FN] keys. By using these keys, you can display lines, delete
lines and portions of lines, and move the cursor within a line.

Note: In CC-40 BASIC you cannot delete a line by entering its
line number alone. You must use the DELETE keyword
described later in this section.

The Right Arrow Key— =

The right arrow key moves the flashing cursor one position to the
right. If you press and hold the 9 key, the cursor continues to
move to the right to column 31 and then scrolls the display to the
left until column 80 is reached or until the key is released.

The Left Arrow Key— €

The left arrow key moves the flashing cursor one position to
the left. If you press and hold the € key, the cursor continues
to move to the left until it reaches column 1 or until the key is
released.

The Up Arrow Key— 4

The up arrow key is used to display the next lower-numbered
program line. if 4 is pressed with the first line of the program
in the display, the CC-40 displays the flashing cursor on a
blank line. If you press 4 again, the highest-numbered
program line is displayed. You can also use the P key to
display a specific program line by typing the line number and
pressing .

The Down Arrow Key— ¥

The down arrow key is used to display the next higher-
numbered program line. If & is pressed with the last line of
the program in the display, the CC-40 dispiays the flashlpg
curscr on a blank line. If ¥ is pressed again, the lowest-
numbered program line is displayed. You can also use the ¥
key to display a specific program line by typing the line
number and pressing ¥.

410



CHAPTER IV
BASIC PROGRAMMING

Character Insert—[SHIFT] [INS]
{SHIFT] [INS] Is used to Insert characters in a line. The following
keys can be used to end an insert.

> leaves the edited line in the display and moves the
cursor one position to the right.

€ leaves the edited line in the display and moves the
cursor one position to the left.

1 enters the edited line. If the line was a program
line, the next lower-numbered program line is
displayed.

& enters the edited line. If the line was a program
line, the next higher-numbered program line is
displayed.

[ENTER] enters the edited line. If the line was a program
line, the display is cleared. if LIST is in effect, the
next higher-numbered program line is displayed.

Character Delete—[SHIFT] [DEL]

[SHIFT] [DEL] is used to remove the character at the position
occupied by the flashing cursor. If you press [SHIFT) and then
press and hold [DEL], the computer continues to delete
characters, one at a time, until [DEL] is released. If you press
[SHIFT] [DEL] when you are inserting characters, the insert is
ended.

Playback—[SHIFT] [PB]

[SHIFT] [PB] causes the previous display contents to reappear. if
you want to enter a line similar to the most recently entered
line, press [SHIFT] [PB] and edit the line using the edit keys. The
[PB] key can be used to avoid retyping a long line. If you press
[SHIFT] [PB] when you are inserting characters, the insert is
ended.

Tab—[CTL] 2
[CTL] > shifts the display to the next higher-numbered tab
position. Tab positions are set at 1, 25, and 50.

Back Tab—[CTL] €

[CTL] € shifts the display to the next lower-numbered tab
position.

411



CHAPTER IV
BASIC PROGRAMMING

Home—[CTL] 4
[CTL] P moves the cursor to position 1 of the line.

Erase Field—[CTL] ¥

[CTL] ¥ clears the display from the current cursor position to
the end of the line.

Line Delete—DELETE

The DELETE (or DEL) keyword is used to delete a group of
program lines. DELETE can be accessed by pressing [FN] [DEL]
or by typing DELETE or DEL. You can delete a single line or a
group(s) of lines by entering DELETE (or DEL) followed by one
or more of the line groups shown below.

Linegroup Effect

a single line number Deletes that line.

line number — Deletes that line and all following
lines.

— line number Deletes that line and all preceding
lines.

line number — line number  Deletes that inclusive range of
{ines.

If more than one line number group is used, use commas to
separate the groups. For example, DEL 150,320-350,560- deletes
line 150, lines 320 through 350, and lines 560 through the end of
the program.

Error Handling

As you begin to write BASIC programs, you may make mistakes
as you enter instructions. The computer tells you through error
messages what is wrong. Sometimes a line can not be stored

in memory because you have made an error in typing It.
Sometimes a program may not work the first time you attempt
to execute it. By using the error messages that the computer
displays, you can determine what corrections to make.

For example, the following program has two errors in it.
100 FOR A=1TO025
110 PRINT A; SQR(A
120 PAUSE 1
130 NEXT A

4-12



CHAPTER IV
BASIC PROGRAMMING

When you enter lines 100, 120, and 130, they are stored in
memory. However, line 110 causes an error when you try to
enter it. The error indicator in the display is turned on and the
error message Unmatched parenthesis is displayed. To correct
this line, press [SHIFT] [PB] to display it, and then add a
parenthesis after the last A.

If you try to run the program, the error message Illegal syntax
Is displayed. When an error message is displayed, press < to
display the error code and the number of the erroneous line. In
this case, the error code that is displayed is E1 and the number
of the erroneous line is 100.

Press 4 or ¥ to display the erroneous line. Between the word
TO and the number 25 there must be a space. Use the edit keys
to place a space there. You can then run the program.

Refer to appendix K for a list of the error codes and messages.
You can handle errors which occur while a program is running
by using the error processing statements available in CC-40
‘BASIC. Refer to Handling Errors in a BASIC Program in this
chapter.

Constants and Variables

The data used by BASIC keywords may be either constants or
variables. The rules and conventions used are described in the
following sections.

Constants

A constant is a value that does not change throughout the
entire execution of a program. There are two kinds of
constants, numeric and string.

Numeric Constants

A numeric constant Is either a positive or negative real number
or zero. Positive numbers may optionally be written with a +
sign. Negative numbers must be preceded by a minus sign.
Commas and spaces are not allowed in numbers.

Constants may be entered with any number of digits, but they
are rounded to 13 or 14 digits due to the internal storage
method used by the CC-40. Only ten digits of a constant are
displayed when a program is running, but all 13 or 14 digits are

413



CHAPTER IV
BASIC PROGRAMMING

used in calculations and are displayed when a program is
listed.

Numbers are normally stored and displayed in standard
notation. Very large or small nhumbers are stored and displayed
In scientific notation, which is described in chapter 2.

For example, if you enter a constant as 3E4, it is retained In
memory and displayed when the program is listed or run as
30000.

The following are examples of valid numeric constants.

5

25.7

3.598E4 (which Is retained internally as 35980)
-1900

String Constants

A string constant Is a series of characters usually enclosed in
quotation marks. The quotation marks may be omitted when a
string constant is used in a DATA or IMAGE statement. To
include leading and trailing blanks in a string constant, you
must use quotation marks. A quotation mark within a quoted
string constant is represented by two quotation marks. To
include a quotation mark at the beginning or end of a string
constant, you use three quotation marks. The CC-40 does not
change any lower-case alphabetic characters to upper-case
characters in string constants.

The following are examples of valid string constants and the
way they would appear if printed.
String Constant Example Appears In Print

Hello""Goodbye Hello""Goodbye

uunHeIlouneoodbye“"u "HellonGoodbye"

Hello Goodbye Hello Goodbye

“ Hello Goodbye” Hello Goodbye
Variables

A variable is a name given to a memory location in the CC-40.
You can store a value in that location, and later change the
value of the variable by storing a different value in the location.

A variable name can consist of up to 15 characters, the first of
which must be a letter of the alphabet, an underline {_), or the

4-14



CHAPTER IV
BASIC PROGRAMMING

at sign (@). The remaining 14 characters can be alphanumeric,
the underline, or @. A program can include up to 95 variable
names. The keywords that are reserved for use by CC-40 BASIC
may not be used as variable names, but they may make up part
of a variable name. See appendix C for a complete list of the
words reserved for CC-40 BASIC.

There are two kinds of variables, numeric and string.

Numeric Variables

A numeric variable is a name given to a location that stores a
numeric value. The following are valid numeric variable names.

X, AS, @ALPHA, BASE__PAY, __@TABLE4

String Varlables

A string variable is a name given to a location that stores any
combination of characters (letters, numbers, and other
symbols). The string variable name must end with a $, which is
counted as one of the 15 characters allowed. The following are
-examples of valid string variable names.

N$, YZ28, NAME@$, Q__505$, ADDRESS$

Assigning Values to Variables

Before values are assigned, numeric variables are equal to zero
and string variables are assumed to have no characters (or be
null). You can set the value of a variable to be either a constant
or the result of a calculation by using an assignment
statement. You can also set the value of a variable with READ
and DATA statements or by various input statements.
Assigning values using READ and DATA statements and input
statements is discussed later in this chapter.

In the example below, a 5 is put or stored in the location called
K when line 210 is executed and the characters File- are stored
in the location called K$ when line 220 is executed. When line
230 is executed, the value of K+10 (50) is stored in locations A,
B, and C.

20K=5

220 K$ = “File-”

230 AB,C=K+10

415



CHAPTER IV
BASIC PROGRAMMING

You can also use the optional keyword LET in an assignment
statement. The following statement stores the result of 25.5
times 3 in the location called A when the line is executed.

250 LET A=25.5+3

Arrays

An array is a group of values given the same variable name.
Each value is an element of the array. The elements are in an
ordered sequence to provide easy access to any value in the
array. When a variable name is chosen for an array, that name
must always refer to the array. For example, if A is chosen as
the name for an array, then A cannot appear as a simple
variable elsewhere in the program.

To tell the computer which element you are using, you need a
pointer. The pointer, called a subscript, is a value enclosed in
parentheses immediately following the name of the array. In
CC-40 BASIC an array begins with element 0.

The DIM Statement

To have the CC-40 reserve space for an array, specify the array
in a DIM statement such as 130 DIM C(5) which reserves six
locations, C(0) through C(5) for the array C. The CC-40 chooses
a memory location, names it C, and reserves enough space for
array C. You can use an array without including it in a DIM
statement if you do not require more than 11 elements.

A One-Dimensional Array
Suppose the array C has had the following values assigned to
the elements.
ARRAYC: CO) C(1) C2 C@3 C4 Cb5)
Value: 0 10 25 30 45 90
Then C(2) refers to the third element in array C, which has a

value of 25 in this example. If M =4, then C(M) refers to the
fifth element of array C, which has a value of 45.

An example of a string array is shown below.

ARRAY NM$: NMS$(0) NMS$(1) NM$2) NM$3E) NMS$@4)
Value: Bob Tom Bud Nancy John

416



CHAPTER IV
BASIC PROGRAMMING

A Two-Dimensional Array

You can extend an array to include information from a table
which has rows and columns. A two-dimensional array has two
subscripts that refer to the element’s row and column. Suppose
the array B is specified in the statement DIM B(2,2). Then the
CC-40 reserves 9 locations for the 9 elements in array B.
Suppose these locations have the values as shown below.
ARRAY B

B(0,0) 15 B(0,1) 18 B(0,2) 21

B(1,0) 24 B(1,1) 272 B(1,2) 30

B(2,0) 33 B(2,1) 36 B(2,2) 39
Then you refer to the element of array B that has a value of 30
as B(1,2). Refer to the element of array B that has a value of 18
as B(0,1). You can refer to any element of array B as B(R,C),
where R is equal to the row and C is equal to the column of the
element.

in CC40 BASIC you can have an array with up to 3 dimensions.

V Using Arrays
Enter the following program in the CC-40. (Remember to type
NEW and press [ENTER) before you start.)

100 DIM A(5),8(5)
Line 100 reserves six locations for array A and six for

array B.

110 A(1)=2:A(2) = 4:A(3) = 6:A(4) = 8:A(5) =10 1A(0) Is not used
Line 110 has several assignment statements, assigning
values to A(1) through A(5).

120 B(1),8(2),B(3) = 2:B(4) = 3E — 5:B(5) = 10 1B{0) Is not used
Line 120 has several statements to store values in array
B.

130 FORC=1TO5
Line 130 sets up a loop which is executed 5 times.

140 PRINT “A«B = ";A(C)+B(C):PAUSE 2.5
Line 140 prints the string constant A*B= in the display,
followed by the product of the array elements that the
counter C refers to. The PAUSE statement holds the
answer in the display for 2.5 seconds so you can see the
answer.

417



CHAPTER IV
BASIC PROGRAMMING

150 PRINT “A/B = ";A(C)/B(C):PAUSE 2.5
Line 150 prints the string constant A/B= followed by the
quotient of the elements of the arrays and then pauses
for you to read the answer.

160 NEXT C
Line 160 is the last line of the loop.

To list the program, type LIST and then press [ENTER] to see
each succeeding line. To execute the program, enter [RUN]. The
CC-40 displays the following products and quotients: 4 and 1; 8
and 2; 12 and 3; .00024 and 266666.6667; and 100 and 1.

READ and DATA Statements

When you have many values to assign to variables, you can
easily assign them using READ and DATA statements. Each
time a READ statement is executed, it reads data from a DATA
statement. The values are written in a DATA statement(s) which
may appear anywhere in your program.

A READ statement can read data into any number of variables.
The data in the DATA statement is read from left to right. If
necessary, a READ statement reads from more than one DATA
statement. More than one READ statement can assign the
values in a DATA statement; each READ statement assigns the
first unread data value.

The previous example could use the READ and DATA
statements instead of arrays and multiple assignment
statements, as shown below.

100 DATA 2,2,4,2,6,2,8,3E - 5,10,10
Line 100 lists the first value of A followed by the first
value of B and then repeats values of A and B for all five
pairs of numbers.

110FORC=1T05
Line 110 sets up a loop to be executed five times.

120 READ A,B
Line 120 stores the first value from the DATA statement in,
A and the next value in B. Each time line 120 is executed,
the next pair of values in the DATA statement is stofed in
A and B.

418



CHAPTER IV
BASIC PROGRAMMING

130 PRINT “A+B =";A+B:PAUSE 2.5
Line 130 prints A*B= followed by the product of A and B
and then pauses 2.5 seconds for you to see the answer.

140 PRINT “A7B = ";A/B:PAUSE 2.5
Line 140 prints A/B= followed by the quotient of A and B
and pauses 2.5 seconds.

150 NEXT C
Line 150 ends the toop.

To run this program, enter [RUN] and you will get the same
answers as in the previous example.

READ and DATA with the RESTORE Statement

You can also cause a READ statement to assign values from
the first DATA statement again or from other DATA statements
by using the RESTORE statement.

The following program reads the first five pairs of values from
the first DATA statement and reads the next two pairs from the
-second DATA statement. After the products and quotients have
been displayed, the RESTORE statement in line 160 causes the
next READ statement executed to start assigning values from
the first value in the first DATA statement.

All the values in the two DATA statements are assigned and
the sums printed. The RESTORE statement in line 210 causes
the next READ statement executed to start assigning values
from the first value in the DATA statement in line 105.

100 DATA 2,24,2,6,2,8,3E - 5,10,10

105 DATA 30,40,5,20

110 FORC=1T07

120 READ A,B

130 PRINT “A«B =";A«B:PAUSE 2.5

140 PRINT “A/B =",A/B:PAUSE 2.5

150 NEXT C

160 RESTORE

170 FORC=1T07

180 READ AB

190 PRINT A + B:PAUSE 25

200 NEXT C

210 RESTORE 105

220 READ A,B,C,D

230 PRINT A;B;C;D:PAUSE 2.5

419



CHAPTER IV
BASIC PROGRAMMING

When you run this program, the following answers are
displayed.

\JSMODH“\

.00024
266666.6667
100

1

1200

15

100

.25

4

6

8

8.00003

20

70

25

30 40 5 20

Expressions

In BASIC, calculations are performed by writing them as
expressions. Expressions are constructed from constants,
variables, and functions. There are four types of expressions:
numeric, string, refational, and logical.

Numeric Expressions

A numeric expression is a series of one or more constants,
variables, and/or functions connected by any of five arithmetic
operators: +, —, *, /, A. An operator must appear between
each pair of numeric constants, variables, and/or functions.
When a numeric expression is evaluated, the result is always a
number. CC-40 BASIC uses standard algebraic hierarchy jn

420



CHAPTER IV
BASIC PROGRAMMING

evaluating numeric expressions in the order glven below. Refer
to chapter 2 for a discussion of this order.

1. Calculations within parentheses are evaluated first.

2. Exponentiation is performed next.

3. Negation is performed next.

4. Multiplication/division from left to right is performed.

5. Addition/subtraction from left to right is performed last.

String Expressions
String expressions are constructed from string variables, string
constants, and function references using the operation for
concatenation (&) which combines or links strings. If the string
length exceeds 255 characters, characters on the right are lost
and the warning String truncation is displayed. The following
Is an example of string concatenation.

ABS="THIS IS AN EXAMPLE "

BB$ =“OF STRING CONCATENATION"

STRINGS =ABS & BBS

PRINT STRINGS

Enter the above four lines in the CC-40 and It displays
THIS IS AN EXAMPLE OF STRING CONCATENATION.

Relational Expressions

Relational expresslons are constructed from variables,
constants, and functions to compare two values, using the
following six relational operators.

= (equal to)

<> (not equal to)

< (less than)

< = (less than or equal to)

> (greater than)

> = (greater than or equal to)

The result of the comparison Is elther true or false. A relational
expression has a value of —1 if it is true. A relational
expression has a value of 0 if it is false.

Relational expressions are most often used in the IF THEN
ELSE statement (described later in this chapter), but may be
used anywhere that a numeric expression is allowed. The
values compared must be either both numeric or both string.

421



CHAPTER IV
BASIC PROGRAMMING

Numeric Comparisons

Relational expressions are evaluated from left to right after all
arithmetic operations within the expression are completed. The
following examples illustrate the use of relational expressions
to compare numeric values.

150 IF X<Y THEN 200
If X is less than Y, control transfers to statement 200. If X
is greater than or equal to Y, control continues with the
statement after line 150.

200 A=2<5

210 PRINT A:PAUSE
Sets A equal to —1 since it is true that 2 is less than 6
and prints the value of A.

100 PRINT 2>5:PAUSE
Prints 0 since it is false that 2 is greater than 5.

String Comparisons

Comparisons of string values are performed by taking one
character at a time from each string and comparing their ASCil
codes. Leading and trailing blanks are significant. (See
appendix D for a complete list of ASCII codes.) If the ASCII
codes differ, the string with the lower code is less than the
string with the higher code. If all the ASCIl codes are the same,
the strings are equal. For strings of unequal length, the
comparison is performed for as many characters as there are in
the shorter string. If all the ASCII codes are the same, the
longer string is considered greater. The null string (“”) is less
than every other string.

100 PRINT “THIS” = “THAT":PAUSE

Prints 0 since it is not true that “THIS” Is equal to
"THAT".

110 PRINT “ABC”<“ABCD”":PAUSE
Prints -1 since it is true that “ABC” is less than “ABCD"”.

Logical Expressions

The logical operators (AND, OR, NOT, and XOR) are generally
used with relational expressions. The logical operators cag also
be used to manipulate data on a bit basis. Refer to appendix H
for a description of using the logical operators in this way.

422



CHAPTER IV
BASIC PROGRAMMING

The order of precedence for logical operators, from highest to
lowest, is NOT, XOR, AND, and OR. The following examples
lilustrate the use of logical operators with relational
expressions to form logical expressions. These logical
expressions have a value of either true or false.

A logical expression with AND is true if the conditions on both
its left and right sides are true.

100 IF 3<4 AND 5<6 THEN L=7
Sets L equal to 7 since 3 Is less than 4 and § is less than
6.

110 IF 3<4 ANDS>6 THEN L=7
Does not set L equal to 7 because 3 is less than 4, but 5
is not greater than 6.

A logical expression with OR is true if either the condition on
Its left side is true, the condition on its right side is true, or
both the conditions are true.

120 IF 3<4 OR 5>6 THEN L=7
Sets L equal to 7 because 3 is less than 4.

A logical expression with XOR (exclusive or) is true if either the
condition on its left side is true, the condition on its right side
Is true, but not If both the conditions are true.

130 {F 3<4 XOR 5>6 THEN L =7
Sets L equal to 7 because 3 Is less than 4 and 5 Is not
greater than 6.

140 IF 3<4 XOR 5<6 THEN L=7
Does not set L equal to 7 because 3 is less than 4 and 5 is
less than 6.

A logical expression with NOT is true if the condition following
it is not true.

150 IF NOT 3=4 THENL =7
Sets L equal to 7 because 3 is not equal to 4.

Note: NOT 3=4 is equivalent to 3< >4.

160 IF NOT 3=4 AND (NOT 6=5 XOR 2=2) THEN 200
Does not pass control to line 200 because while it is true
that 3 Is not equal to 4, it is true that both 6 is not equal to 5
and 2 is equal to 2, so the condition in parentheses is not
true.

4-23



CHAPTER IV
BASIC PROGRAMMING

Order of Execution of Expressions

The order of operations within arithmetic, relational, and logical
expressions was given in the discussion for each type of
expression. The order of precedence for evaluating expressions
is given below.

® Functions are evaluated first.

¢ Arithmetic operations are performed next.

¢ String operations are performed next.

¢ Relational operations are performed next.

e Logical operations are performed last.

Input/Output Statements

Before data can be processed, it must be transferred into the
computer. Data can be transferred into the computer by using
assignment statements, READ and DATA statements, the KEY$
function, or some form of input statement. In CC-40 BASIC the
input statements are INPUT, LINPUT, and ACCEPT.

After the data has been processed, you either want to view it or
store it for future use. To display or store the processed data,
use some form of output statement. The output statements are
PRINT and DISPLAY.

Using input and output statements with the display Is
described below. Using input and output statements with
external devices such as printers and tape drives is described
in this chapter under “Using External Devices”.

424



CHAPTER IV
BASIC PROGRAMMING

U
The PAUSE Statement

The CC-40 displays printed items so quickly that you can not
see them. There are three ways to have items remain in the
display long enough so that you can read them.

First, you may have the computer pause after each statement
that displays items by putting the statement PAUSE ALL in the
program before any output statement. During a pause, the
underline cursor is displayed in column 1 waiting for you to
acknowledge the pause by pressing [ENTER] or [CLR]. After
either of the keys is pressed, the computer resumes execution
of the program with the next statement.

Second, you may have the computer pause after a specific
statement by following that statement with PAUSE and the
number of seconds that the pause is to last. In this case the
cursor Is not displayed. After the number of seconds specified
has passed, the program resumes execution. If you use PAUSE
with no time parameter, the cursor is displayed in column 1 and
the program resumes execution after [ENTER] or [CLR] Is
pressed.

Finally, to keep a prompt for an ACCEPT statement in the
display, you can follow the PRINT or DISPLAY statement with a
comma or a semicolon to create a pending print (described
later under “Pending PRINT and DISPLAY Statements”).

425



CHAPTER IV
BASIC PROGRAMMING

Input Statements

The input statements allow a program to get data from the
keyboard. The INPUT, LINPUT, and ACCEPT statements store
the value(s) entered from the keyboard into the variable(s) listed
in the statement. Only one value can be entered at a time. The -
KEY$ function is used to halt program execution until a key is
pressed.

Each statement is discussed briefly in the section below. Refer
to chapter 5 for a detailed explanation of each input statement.

The INPUT Statement

You can put values typed on the keyboard into variables by
using the INPUT statement. For example, enter the following
program in the CC-40.

100 INPUT K

110 INPUT “ENTER DEGREES: "D
120 INPUT A, BS

130 PRINT K;D;A;BS:PAUSE

When the program is run, the INPUT statement in line 100 halts
program execution, displays a ? in column 1, and waits for a
value to be entered from the keyboard. When a value is entered,
it is stored in variable K.

Line 110 displays ENTER DEGREES: and waits for you to enter
a value to be stored in D.

Line 120 displays a ? in column 1 and waits for you to enter a
value for A. When a value is entered, it is stored in A. A
question mark is displayed again to prompt you for a value for
B$.

4-26



CHAPTER IV
BASIC PROGRAMMING

The LINPUT Statement

The LINPUT statement assigns any series of characters entered
from the keyboard to a string variable. Therefore, you can enter
commas and |leading and trailing spaces which are not allowed
In the INPUT statement unless they are enclosed in quotes.

120 LINPUT “NAME: ";NEM$

displays NAME: and waits for a value to be entered that will be
stored in NEMS.

The ACCEPT Statement

The ACCEPT statement glves more control over data that is
input from the keyboard. The options available in ACCEPT
allow you to sound a tone, erase all or part of the display, limit
the number and type of characters, and specify the column
where they can be entered. For example, when the following
line is executed, the computer beeps, erases the display,
positions the cursor at column 10, and waits for you to enter a
value with up to 4 characters for DEG. As you type the value,
each character is tested to see If it is numeric (0-9, +, —, ., E)
- before it can be entered from the keyboard.

100 ACCEPT AT(10) VALIDATE(NUMERIC) BEEP ERASE ALL SIZE(4),
DEG

The KEY$ Function

The KEY$ function aliows you to halt program execution until a
key is pressed. KEY$ returns a one character string that
corresponds to the key that was pressed. For example, when
the following statement is executed, program execution halts
until a key is pressed. The character corresponding to the key
that was pressed is then stored in K$. Refer to appendix D for
a list of keycodes.

150 K$ =KEY$

427



CHAPTER IV
BASIC PROGRAMMING

Output Statemients

The output statements allow you to write data in many different
ways and on different media. Each statement is discussed
briefly in the section below. Refer to chapter 5 for a detailed
explanation of each output statement.

The PRINT and DISPLAY Statements

The PRINT statement allows you to print numbers and strings
in the display. Negative values are preceded by a minus sign
and nonnegative numbers are preceded by a space (instead of a
plus sign). Numeric values are followed by a space.

When several values are to be displayed on a line, they are
separated in the output statement with a semicolon or a
comma. The semicolon causes the next value to be printed
immediately after the preceding one. The comma causes the
next value to be printed in the next field. The display is divided
into fields 15 characters long. The fields start at columns 1, 16,
31, 46, 61, and 76.

The following statements print the output shown if X equals
—7 and Y equals 13.

Statement Output
100 PRINT X; Y:PAUSE -7 13
110 PRINT X, Y:PAUSE -7 13

You can also display string constants in an output statement.
Unlike numeric values, string values have no leading signs and
no trailing spaces. For example, the following statements print
the output shown.

Statement Output
180 X$=“X IS ":X=10:Y$=“ Y IS ™
Y=20
180 PRINT X$;X;YS$;Y:PAUSE XIS 10 YIS 20

The DISPLAY statement gives you more control than the PRINT
statement over data that is displayed. The options available in
DISPLAY allow you to sound a tone, erase the display, spgcify
the size of items displayed, and specify the columns where

4-28



CHAPTER IV
BASIC PROGRAMMING

values are displayed. For example, when line 120 is executed,
the computer beeps, erases the display, and displays the value
of A$ at column 3 followed by the value of B as shown below.

Statements Output
110 A$ ="The answer Is ":B =15.55
120 DISPLAY AT(3) BEEP ERASE
ALLASB The angwer 1s 15.55
130 PAUSE

USING with the PRINT and DISPLAY Statements

The PRINT and DISPLAY statements may optionally include a
USING clause that allows you to display the numbers with a
specific format. Pound signs (#) are used to show how many
digits to use in printing the number. The format can be
specified in the PRINT or DISPLAY statement itself or can be
written in an IMAGE statement. For example, the following
program uses the USING option in a PRINT statement.

100 INPUT “Enter Starting Mileage: ”;SMILE

110 INPUT “Enter Ending Mlleage: ";EMILE

120 INPUT “Enter Gallons Used: ";GALL

130 MPG = (EMILE - SMILE)/GALL

140 PRINT USING “MiIles per gallon = ##il.##";MPQ

150 PAUSE
If you run this program and enter values of 5405.7, 5807.8, and
18.3, then Miles per gallon = 21.98 is displayed. Without the
USING clause, the MPG would have been displayed as
21.97814208.

You could use the IMAGE statement by adding line 132 and
changing line 140 as shown below.

132 IMAGE Miles per gallon = ##i#.##

140 PRINT USING 132,MPG

TAB with the PRINT and DISPLAY Statements

The TAB function is used with the PRINT and DISPLAY
statements to format data, much as the TAB key on a
typewriter does. TAB displays enough spaces to make the next
value printed appear in a specific column.

The last example can be changed to use the TAB function to
display values starting in a specific column. In the following

423



CHAPTER IV
BASIC PROGRAMMING

program, lines 134 and 136 have been added to use the TAB
function.

100 INPUT “Enter Starting Mileage: ";SMILE

110 INPUT “Enter Ending Mileage: ";EMILE

120 INPUT “Enter Gallons Used: ”;GALL

130 MPG =(EMILE — SMILE)/GALL

132 IMAGE Miles per gallon =###.##

134 PRINT “Miles traveled: *;TAB(20);EMILE — SMILE:PAUSE 2.5

136 PRINT “Gallons used: ";TAB(20);GALL:PAUSE 2.5

140 PRINT USING 132,MPG

150 PAUSE

If you enter the same values as before, 5405.7, 5807.9, and 18.3,
the display shows

Miles traveled: 402.2 (for 2.5 seconds)

Gallons used: 18.3 (for 2.5 seconds)

Miles per gallon = 21.98

Pending PRINT and DISPLAY Statements

The PRINT statements used in the examples have displayed
exactly one line. Sometimes you may want to have several
PRINT or DISPLAY statements display information on the same
line. A pending print is created when a PRINT or a DISPLAY
statement ends with a comma or semicolon. If a comma ends
the statement, the computer spaces over to the next field; if a
semicolon ends the statement, the computer does not space
over. Then the next PRINT or DISPLAY statement prints on the
same line at the current column position.

The program above can be changed to print the mileage and
the gallons on the same line by changing lines 134 and 136 as
shown below.

100 INPUT “Enter Starting Mileage: ";SMILE

110 INPUT “Enter Ending Mileage: ";EMILE

120 INPUT “Enter Gallons Used ”;GALL

130 MPG =(EMILE - SMILE)/GALL

132 IMAGE Miles per galion = #i##.##

134 PRINT “Miles =";EMILE — SMILE;

138 PRINT “Gallons =";GALL:PAUSE 2.5

140 PRINT USING 132;MPG

150 PAUSE

430



CHAPTER IV
BASIC PROGRAMMING

Control Statements

Most of the programs you have run on the CC-40 started
executing the first statement and continued executing each
sequential line to the last. The flow of the program or flow of
control has gone from the first statement to the last.

Control statements are used to direct the flow of the program.
Some statements form a loop and cause some lines to be
repeated a specified number of times. You have already used
two of these statements, the FOR TO STEP and NEXT
statements. Some statements compare data and cause
program execution to jump or branch to another line rather
than go to the next program statement. This section describes
the various control statements available in CC-40 BASIC.

The FOR TO STEP Statement

You have already used the FOR TO and NEXT statements in a
program to create a loop. The FOR TO statement has another
option that allows you to increment the counter other than by 1.
For example, entering

100 FOR COUNT =2 TO 100 STEP 2

starts a loop where the counter begins at 2 and Is incremented
by 2 each time. The loop is repeated until the counter is greater
than 100.

If the starting value of the counter is greater than the limit
value, the loop is not executed. If the starting value and the
limit value of the counter are the same, the loop is executed
one time.

You can also use a negative value for STEP. The counter of the
FOR statement is decreased each time the loop is executed. If

the starting value of the counter is less than the limit value, the
loop is not executed. If the starting value and the limit value of

the counter are the same, the loop is executed one time.

Enter the following program. The CC-40 displays the steps It
calculates in the loop.

100 FORA=6 TO 4 STEP ~-.25

110 DISPLAY AT(10) BEEP,"A= ";A:PAUSE 2.1

120 NEXT A

43



CHAPTER IV
BASIC PROGRAMMING

You should not transfer control into the middle of a 1oop from
the outside. The counter or control variable is set up only when
the FOR TO statement is executed. You may transfer control
out of a loop with a GOTO, GOSUB, ON GOTO, or ON GOSUB
statement and then transfer back in.

Nested Loops

A FOR TO NEXT loop can be contained within another loop.
The loop that is inside is called a nested loop. A nested loop
must always be entirely inside the outer loop. For example, in
the program above, the value of the counter can be displayed in
successive columns by adding statements 105 and 130 and by
changing statements 110 and 120 as shown below.

100 FOR A=6 TO 4 STEP ~.25

105 FORB=1TO 7 STEP 3

110 DISPLAY AT(B) BEEP,"A= ";A:PAUSE 2.t
120 NEXT B

130 NEXT A

The GOTO Statement

The GOTO statement tells the computer what line in a program
to execute next. The following program uses a GOTO statement
to read all the data in the DATA statement.

100 DATA 5,10,3.5,420,55.25
110 READ R

120 PRINT R, 2+PI+R:PAUSE 2
130 GOTO 110

Each time line 130 is executed, control is transferred back to
line 110 which is executed again. When line 110 tries to read
past the data in the DATA statement, an error occurs and the
message DATA error is displayed. To determine when to stop
reading data, a dummy value (a value you know marks the end
of the data) can be inserted in the DATA statement and the IF
THEN ELSE statement used to test it.

432



CHAPTER IV
BASIC PROGRAMMING

The IF THEN ELSE Statement

The IF THEN ELSE statement allows you to compare data in a
program. The data compared can be constants, variables,
and/or expressions. If the comparison or condition being tested
is true, the statement(s) fotllowing the word THEN are executed.
If the comparison is false, the statement(s) following the word
ELSE are executed. If the comparison is false and there is no
ELSE, the line following the IF statement is executed.

In the following program a check is made on the data read. If
the dummy value (a value less than zero) has been read, an end
of data message is printed. If the dummy value has not been
read, the result of the calculation is printed. After [ENTER] is
pressed, the next value in the DATA statement is read.

100 PAUSE ALL

110 DATA 5,10,3.5,420,565.25, - 5
120 READ R

130 IF R<0 THEN 160

140 PRINT R, 2+PI-R

150 GOTO 120

160 PRINT “END OF DATA”

The following are examples of IF THEN ELSE statements.

400 IF D =999 THEN DISPLAY “ARE YOU FINISHED?” ELSE 150
The computer checks the value in location D to determine
if it is 999. If D is 999, the computer displays ARE YOU
FINISHED? and executes the next line. If D is not 999, the
computer executes line 150.

510 JF L(C) <> 12 THEN C=S+1 ELSE COUNT =COUNT + 1:GOTO 140
The computer checks the value in L(C) and if it is not
equal to 12, then C is set equal to S+ 1 and the next line
is executed. If L(C) is equal to 12, then COUNT is set
equal to COUNT plus 1 and line 140 is then executed.

The ON GOTO Statement

Another control statement is ON GOTO. The ON GOTO
statement is used to transfer control to a program line based
on whether the value of the variable following the word ON is 1,
2,3, etc.

4-33



CHAPTER IV
BASIC PROGRAMMING

100 REM THIS PROGRAM IS A DEMONSTRATION

110 1 OF THE ON GOTO STATEMENT

120 PRINT *1 for LOG, 2 for LN, 3 for EXP”;

130 ACCEPT AT(31) SIZE(1) BEEP VALIDATE(*123"),CODE
140 DISPLAY ERASE ALL, “ENTER ARGUMENT:";

150 ACCEPT BEEP, ARG

160 IF ARG< 0 THEN 140

170 ON CODE GOTO 180, 200, 220

180 PRINT “LOG of ;ARG;"“is ”;LOG(ARG)-PAUSE

190 GOTO 120

200 PRINT “LN of ";ARG;"is ";LN(ARG):PAUSE
210 GOTO 120

220 PRINT “EXP of ";ARG;"Is ";EXP(ARG).PAUSE
230 GOTO 120

The program above accepts a 1, 2, or 3 for the variable CODE.
The PRINT statement displays a prompt and the ACCEPT
statement halts program execution until a value is entered for
ARG. If the value of ARG is negative, the prompt is again
displayed and the ACCEPT statement waits for another value
for ARG. When a nonnegative value is entered for ARG, the
program calculates the LOG, LN, or EXP of ARG depending
upon the value entered for CODE.

Strings and String Manipulation
String constants and string variables have already been defined
in this chapter. However, you may find that you need to be able
to manipulate a string. This section describes strings and the
functions you can use on the CC40 to manipulate them.

Each character is stored in the CC40 as a number from 0
through 255. The number is called the ASCII character code.
For example, the string values “BASIC” and “Basic” are
represented as shown below. The string BASIC is less than the
string Basic because the ASCIl code for A is less than the
ASCII code for a.

B A S | C B a s i ¢

66 65 83 73 67 66 97 115 105 99



CHAPTER IV
BASIC PROGRAMMING

Converting a Character to ASCIl Code—ASC

You can convert the first character in a string to its ASCII
character code by using ASC.
100 NUMB1 =ASC(“H")
110 NUMB2 = ASC("hello”)
120 NUMB3 =ASC(*%")
Assign NUMB1 the value 72, NUMB2 the value 104, and
NUMBS the value 37.

Converting a Number to its Corresponding
Character—CHR$

You can convert a number (from 0 through 255) to the character
that Is designated by the number according to ASCI
conventions.

100 A$ =CHR$(42)
Assigns the character * to A$.

The following program accepts a value from the keyboard. If the
value s a lower-case character, it is changed to upper-case.
The value is then printed and control returns to statement 100.
To terminate the program, press [BREAK].

100 PRINT “Press a key: "

110 AS =KEY$

120 IF ASC(AS$) <97 OR ASC(AS)>122 THEN 140

130 A$ = CHR$(ASC(AS) - 32)

140 PRINT “The character Is now ";A$:PAUSE 2 GOTO 100

Finding the Length of a String—LEN

You can determine the length of a string by using the LEN
function.

100 ALBS$ =“LIST 10"

110 N = LEN(ALBS)
Define the string ALB$ and assign the number of
characters in ALB$ to the variable N. In this case N has a
value of 7.



CHAPTER IV
BASIC PROGRAMMING

Repeating a String—RPT$
You can repeat a string by using the RPT$ function.

130 PRINT RPT$(“BASIC ”,5)::PAUSE
Displays the string BASIC BASIC BASIC BASIC BASIC .

Finding a String within a String—POS
You can determine the position of one string within another
string by using the POS function.

140 BB = POS(ALBS,“ST”,1)
Assigns the variable BB the position in string ALB$ where
the string “ST” first occurred. From the example above,
ALBS is equal to “LIST 10" and the position where the
string “ST” first occurs in ALB$ is 3.

Getting a Substring of a String—SEGS$

You can get a substring of a string by using the SEG$ function.

190 CC$ =SEGS$(ALBS,4,3)
Assigns the variable CC$ three characters from the string
ALBS$ starting at the fourth character. If ALB$ is equal to
“LIST 10", CC$ is set equal to T 1.

Converting a Number to a String—STR$
You can convert a number to a string by using the STR$
function.

150 BB=17

160 VALUES = STR$(BB)
Converts the number in BB to a string that represents that
number and assigns it to VALUES. In this case VALUE$
contains the string “17".

Converting a Siring to a Number— VAL

You can convert a string to a number by using the VAL
function.

170 NUMBRE = VAL(VALUES)
Converts the string representing a number in VALUE$
(which is “17") to the number and assigns it to NUMBRE.
In this case, NUMBRE has a value of 17.



CHAPTER IV
BASIC PROGRAMMING

Mg

Testing a String for a Numeric
Constant—NUMERIC

You can test a string to determine if it is a valid representation
of a numeric constant by using the NUMERIC function.
NUMERIC returns a value of —1 (true) if the string is a valid
representation of a numeric constant and a value of 0 (false) if
it is not. NUMERIC can be used on a string to see if VAL will
convert it to a numeric value.

The statements below are used to test if A$ is a valid
representation of a numeric string before the VAL function is
used to change the string to a number.
160 IF NUMERIC(AS) THEN A=VAL(AS) ELSE PRINT “NOT A
NUMBER”:PAUSE

Built-in BASIC Functions

All of the CC-40 BASIC functions may be used in a program
line. The trigonometric and logarithmic/exponential functions
have been discussed in chapter 2. Some CC-40 functions are
described in this chapter in sections that deal with similar
instructions. The functions available on the CC-40 to
manipulate numbers and generate random numbers are
described below.

Manipulating Numbers
The absolute value of an expression can be obtained by using
ABS. In the example below, K is set equal to 20. ABS always
returns a positive value or zero.

100 K=ABS(—4+5)
The sign of a number can be determined by using SGN. In the
example below, K is set equal to 1 if C is positive, 0 if C is zero,
and —1if C is negative.

110 K=SGN(C)
The INT function is used to find the largest integer that is less
than or equal to a number. In the example below, K is set equal
to 23 and L Is set equal to —5.

120 K =1NT(23.99999)

130 L=INT(—-4.1)

4.37



CHAPTER IV
BASIC PROGRAMMING

Generating Random Numbers
You can have the CC-40 generate random numbers for
programs involving statistical analysis, games, and simulations.
The CC-40 produces random numbers from 0 to 1 when RND is
used. For example, the program below generates 10 random
numbers.

100 FOR 4=1TO 10

110 PRINT RND:PAUSE 1.5

120 NEXT J

The same series of random numbers is generated each time
you run a program unless a RANDOMIZE statement is executed
before generating the random numbers.

The program betow prompts for the number of random numbers
to be generated. The random numbers are printed one at a time
followed by their average. Press [BREAK] to stop the program.
Note: The average of many random numbers is approximately
.5.

100 INPUT “ENTER NUMBER OF VALUES: ”;QUAN
110 AVER=0

120 FOR A=1 70 QUAN

130 D=RND:PRINT D:PAUSE 2

140 AVER=AVER +D

150 NEXT A '

160 PRINT “Average is ”;AVER/QUAN:PAUSE

170 GOTO 100

To generate a sequence of integer random numbers, you can
use INTRND. INTRND generates a random number between 1
and the number that you give it. For example, the program
below generates ten random numbers between 1 and 100.

100 FORJ=1TO 10
110 PRINT INTRND(100):PAUSE 1.5
120 NEXT J

438



CHAPTER IV
BASIC PROGRAMMING

Subroutines
Many times in a program you may find that you need to use the
same group of lines in several places. By writing these lines as
a subroutine, you can eliminate the need to duplicate them.
Then when you need to execute these lines, you transfer
control to the subroutine. When the subroutine has finished
executing, control is transferred back.

The GOSUB Statement

To transfer control to a subroutine, you can use the GOSUB
statement followed by a line number. The line number is the
first program line in the subroutine. The last line of a
subroutine must be a RETURN statement that transfers control
back to the statement after the GOSUB statement. A subroutine
may also transfer control to another subroutine, allowing
nesting of subroutines. Refer to chapter 5 for a description of
GOSUB.

A subroutine can use and change the values of any variables in
the main program which includes it.

When the GOSUB statement is executed, the following process
takes place.

1. A pointer to the statement after the GOSUB statement is
stored by the computer.

2. Program control transfers to the line specified by the GOSUB
statement.

3. The statements of the subroutine are executed.

4. Program control transfers to the address contained in the
pointer when the RETURN statement is encountered.

5. Execution resumes with the statement following the GOSUB
statement.

The ON GOSUB Statement

The ON GOSUB statement is another way to call a subroutine.
ON GOSUB determines which subroutine to call according to
the value of the variable following the word ON.

439



CHAPTER IV
BASIC PROGRAMMING

100 ON XVAL GOSUB 200, 400, 600
Transfers control to the subroutine at line 200 if XVAL is
1, to line 400 if XVAL is 2, and to line 600 if XVAL is 3.

XVAL is rounded to the nearest integer.

Subprograms
Like subroutines, subprograms eliminate the need to write
duplicate program lines. However, subprograms operate very
differently from subroutines. Subprograms are executed by
using the CALL statement followed by the subprogram's name
and, optionally, a list of arguments enclosed in parentheses.
When a program includes subprograms, they must follow the
main program.

CC-40 BASIC Subprograms

The first statement in a subprogram must be the SUB
statement followed by an optional list of parameters. i a
subprogram needs data from the main program, the data must
be passed through the parameters. The variables in a main
program are restricted for use by the main program and any
subroutines in the main program. The variables in a
subprogram are restricted for use in the subprogram and any
subroutines within the subprogram. Therefore, variable names
may be duplicated in a main program and a subprogram. A
subprogram may call other subprograms, but must not call
itself, either directly or indirectly.

The last statement in a subprogram must be a SUBEND. When
the SUBEND statement is executed, control returns to the
statement following the CALL statement that called the
subprogram. Control may also be returned by the SUBEXIT
statement before the end of the subprogram.

Argument List

Data is passed to the subprogram through the argument list of
the CALL statement. Each argument in the argument list has a
corresponding variable in the parameter list of the subprogram.
The arguments of the argument list can be constants, variables,
arrays, or expressions. Arguments can be passed by reference
or by value.

440



CHAPTER IV
BASIC PROGRAMMING

Passing Arguments By Reference

Arguments that are passed by reference can be variables or
arrays. Arrays are always passed by reference. When
arguments are passed by reference, the subprogram uses those
variables or arrays from the calling program. If a parameter in a
subprogram is changed, its corresponding argument in the
calling program is also changed.

In the program segment below, the subprogram uses the
variables A, B, and L(3) and can change the stored values of
these variables. When the SUBEND statement at line 990 is
executed, program control returns to line 210 in the main
program.

200 CALL MARINE(A,B,L(3))

210..

900 SUB MARINE(F,L,2)
990 SUBEND

Passing Arguments By Value

Arguments that are passed by value can be variables,
constants, or expressions. To pass a variable by value, the
variable must be enclosed in a set of parentheses. Constants
and expressions are always passed by vaiue. When arguments
are passed by value, the subprogram can use the values of the
arguments, but the subprogram cannot alter the values of the
arguments.

In the program segment below, the values of the variables A
and L(3) and the expression L(3)+ 1 are passed by value to the
subprogram TRACTION, along with the constant 17. TRACTION
cannot alter the values of the variables A and L(3} in the calling
program or subprogram, but it can alter the value of the
variable B. When the SUBEND statement at line 990 is
executed, program control returns to line 210 in the calling
program or subprogram.

200 CALL TRACTION((A),B,(L(3)),17,L(3) + 1)

210 ...

900 SUB TRACTION(N,L,Z,D,P)
990 SUBEND



CHAPTER IV
BASIC PROGRAMMING

The ATTACH and RELEASE Statements

You can reduce the execution time of a program that repeatedly
calls a subprogram by using the ATTACH statement when you
have sufficient free memory. When a subprogram is attached,
the variables are initialized when the ATTACH is executed and
not each time the subprogram is called. The vatues of the
variables are maintained when the subprogram terminates.

To release the memory that is used when a subprogram is
attached, use the RELEASE statement. The variables in the
subprogram are then initialized each time the subprogram is
called, and are not maintained when the subprogram
terminates.

Built-in Subprograms
The CC-40 has many built-in subprograms that you can access.
The following sections describe these subprograms.

Expanding Memory

You can add to the internal memory of the CC-40 by using
CALL ADDMEM. CALL ADDMEM appends the Random Access
Memory (RAM) in the Memory Expansion cartridge to resident
memory. See chapter 3 and appendix J for a description of
memory expansion.

Using Memory

The CC-40 provides the capability of using assembly language
programs and subprograms. The function FRE can be used to
determine the amount of memory available and the following
BASIC subprograms can be used to access it: GETMEM, POKE,
PEEK, EXEC, LOAD, |10, and RELMEM. Refer to chapter 5 for
more information.

The FRE Function

The FRE function is used to determine how much memory is
being used for the operating system and the program in
memory and how much memory is available.

442



CHAPTER IV
BASIC PROGRAMMING

The GETMEM Subprogram

The GETMEM subprogram is used to reserve the memory that
you have determined is avaitable from the FRE function. You
can store data and assembly language programs and
subprograms there. The amount of memory reserved should be
significantly less than the largest block available. Sufficient
memory space must remain available for statements that
require additional temporary memory. GETMEM requires four
bytes of memory for its own operation.

The POKE Subprogram

The POKE subprogram is used to write data or an assembly
language program or subprogram in reserved memory. If you
use POKE indiscriminately, you may erase programs and/or
files. You cannot do any physical harm to the CC-40 with POKE,
but you may have to reset the system.

The PEEK Subprogram

The PEEK subprogram is used to read the data in memory
locations.

The LOAD Subprogram

The LOAD subprogram is used to load into computer memory
an assembly language subprogram from external storage. More
than one subprogram may be loaded into memory and if space
permits, they may reside in memory with a BASIC program.

The EXEC Subprogram

The EXEC subprogram is used to execute an assembly
language program or subprogram.

The 10 Subprogram

The 10 subprogram is used to perform control operations on
peripheral devices.

The RELMEM Subprogram

The RELMEM subprogram is used to release the memory you
reserved with GETMEM.



CHAPTER IV
BASIC PROGRAMMING

Language Prompting
You can use SETLANG to display system messages in either
English or German. Many of the Solid State Software™
cartridges provide messages in languages in addition to
English. By using GETLANG, you can determine which
language is currently in use. The statement below sets the
language code to German.

CALL SETLANG(1)
To reset the language code to English, enter CALL SETLANG(0).

Display Assignments

With CALL CHAR you can define your own displayable
characters. With CALL INDIC you can turn the display
indicators on and off.

The CHAR Subprogram
CALL CHAR can define up to 7 disptayable characters at one
time. in the example below, character codes 1 and 2 are
defined to be up and down arrows by using CALL CHAR. For a
description of CALL CHAR, refer to chapter 5.

100 CALL CHAR(1,“040404041F1FOEQ04™)

110 CALL CHAR(2,“040E1F1F04040404")

The INDIC Subprogram

There are 17 indicators in the display that you can turn on and
off. The six indicators at the bottom of the display are reserved
for your use. If the other indicators are turned on and off,
undesirable results may occur. For more information on CALL
INDIC, refer to chapter 5.

To turn on indicator one, the following statement can be used.
130 CALL INDIC(1)

The program below uses both CALL CHAR and CALL INDIC.
CALL CHAR is used to define up and down arrows for
character codes 1 and 2. The user is allowed six chances to
guess the number the computer has stored. Each time a wrong
guess is made, one of the six indicators in the display is turned
on by CALL INDIC. When the number is guessed or when the
six chances have been used, a message is printed.



CHAPTER IV
BASIC PROGRAMMING

100 CALL CHAR(1,“040404041F1FOED4")

110 CALL CHAR(2,“040E1F1F04040404")

120 DISPLAY BEEP,“GUESS A NUMBER BETWEEN 1 AND
25”:PAUSE 1.5

130 DISPLAY BEEP,“YOU HAVE 6 CHANCES”:PAUSE 1

140 DISPLAY BEEP,“INDICATORS RECORD YOUR
GUESSES”:PAUSE 1

150 COUNT =1

160 RANDOMIZE

170 SNUM =INTRND{(25)

180 PRINT “ENTER YOUR GUESS *;

190 ACCEPT AT(28)VALIDATE(DIGIT),GUESS

200 IF GUESS = SNUM THEN 280

210 CALL INDIC(COUNT)

220 IF COUNT =6 THEN 380

230 IF GUESS < SNUM THEN 260

240 PRINT CHR$(1;GUESS;“Try a smaller number”;

250 COUNT =COUNT + 1:GOTO 190

260 PRINT CHR$(2;GUESS;"Try a larger number”;

270 COUNT =COUNT + 1:GOTO 190

280 PRINT “WOW!!+e+";GUESS;"“+++ i3 comrect”:PAUSE 2

290 FOR A=1 TO 0 STEP - :X=1

300 FORB=1TO®6

310 CALL INDIC(B,A):PAUSE .1

320 DISPLAY AT(X)BEEP,“YEA!":X=X+5

330 NEXT B

340 NEXT A

350 GOTO 420

360 PRINT “8 Chances!”;SNUM;“was the number”:PAUSE 4

370 FOR A=1 TO 30 STEP 10

380-DISPLAY AT(A) BEEP,“BOO!"”:PAUSE 2:NEXT A

390 FOR J=1 TO COUNT

400 CALL INDIC(J,0)

410 NEXT J

420 PRINT “Press ENTER to play again”:PAUSE

430 GOTO 150

445



CHAPTER IV
BASIC PROGRAMMING

The KEY Subprogram

The KEY subprogram is used to determine which key, if any, is
pressed. For example, CALL KEY(K,S) assigns to K the ASCH
code of the current key that is pressed. S is set equal to 1 if the
key pressed is different from the one the last time the KEY
subprogram was called. S is set equal to — 1 if the same key is
pressed that the last call to KEY returned, and to 0 if no key is
pressed.

For example, the following section of a program waits for a key
to be pressed and then checks if the key was Y or y.

150 CALL KEY(K,S)
160 IF S=0 THEN 150
170 IF K = ASC(“y") or K = ASC(“Y") THEN 250

The VERSION Subprogram

The VERSION subprogram is used to determine the version of
BASIC that is being used. CALL VERSION(V) sets V equal to 10,
the BASIC used on the CC-40.

The CLEANUP Subprogram

You can eliminate any variables that are not being used in the
current program in memory by calling the subprogram
CLEANUP. CLEANUP cannot be called from a program.

The DEBUG Subprogram

The DEBUG subprogram is used to access the debug monitor
to allow you to read and change memory locations and run and
debug your assembly language programs and subprograms.
Refer to appendix | for a description of DEBUG.

Handling Errors in a BASIC Program

The CC-40 provides a means of processing errors in a BASIC
program by using the ON ERROR statement and the ERR
subprogram. When a program is executed, the error handler is
automatically set to display a message and stop program
execution when an error occurs. However, you can modifi' the
error handler to cause it to execute a subroutine when an error
occurs by using ON ERROR followed by a line number.

446



CHAPTER IV
BASIC PROGRAMMING

The line number must be the beginning of a subroutine. In the
subroutine, you can call the ERR subprogram to obtain the
error code of the esror that occurred. You can then compare
error codes In the subroutine and determine what caused the
error. The subroutine must end with a RETURN statement.
Refer to appendix K for a complete list of the error codes.

For example, in the following program, the ON ERROR
statement causes any errors that occur to be handled by the
subroutine starting at line 300. The program accepts the name
of the next program to run. The computer searches for the
program. If the program is not found, an error occurs. The
subroutine prints a prompt for another program name to be
entered. The program continues execution when the program to
be executed is found. If the error occurred for any other reason,
the error code and the line number are printed and the program
stops.

180 ON ERROR 300

200 INPUT “ENTER PROGRAM NAME ";PROGS

210 RUN PROGS

300 REM ERROR HANDLING SUBROUTINE

310 CALL ERR(CODE,TYPE,FILE,LINE)

320 IF LINE<>210 THEN RETURN 360

330 IF CODE<>15 THEN RETURN 360

340 PRINT “Prog. not found, press CLR":PAUSE

350 RETURN 190

360 REM PRINT ERROR SUBROUTINE

370 PRINT “ERROR”;CODE;" IN LINE”;LINE:PAUSE

Handling Breaks in a BASIC Program
The CC-40 provides a means of processing breakpoints that
occur in a BASIC program. When a program is executed, the
computer automatically halts program execution and displays a
message when a breakpoint occurs. However, by using ON
BREAK, you can cause breakpoints to be ignored (including the
[BREAK] key) or to be treated as errors. If breakpoints are
treated as errors, the ON ERROR statement can process them
as described above. See ON BREAK in chapter 5 for more
information.

447



CHAPTER IV
BASIC PROGRAMMING

Handling Warnings in a BASIC Program
The CC-40 provides a way to handle warnings that occur in a
BASIC program. When a warning occurs while a program is
executing, the computer automatically displays a warning
message and then continues program execution when [CLR] or
[ENTER] is pressed . However, by using ON WARNING, you can
cause a warning message not to be displayed or a warning to
be treated as an error.

Debugging
You may find that a program does not work the way you
intended. The errors that are in it are logical errors, called
“bugs” in computer usage. Testing a program to find these
bugs is called “debugging” a program.

Finding Bugs

Remember that a program Is doing exactly what it was told to
do. When the program Is not working properly, think about what
could be going wrong, then devise tests to perform within the
program to aid you in finding the bugs.

Debugging Aids
When you are debugging a program, you can use the following
aids to help track down the error.

The IBREAK] key stops program execution when the key is
pressed. At this point you can clear the break message and
print or change the values of variables.

The BREAK statement allows you to stop a program at specific
lines to determine what is happening in the program. You can
print or change the values of the variables.

130 BREAK
Stops the program when the BREAK statement is
executed.

230 BREAK 240,250
Sets breakpoints immediately before lines 240 and 250.

BREAK 300,350,380
Can be entered for immediate execution either before you
RUN a program or while you are in the middie of a break
to set breakpoints before lines 300, 350 and 380.

4-48



CHAPTER IV
BASIC PROGRAMMING

The CONTINUE command causes the computer to continue
program execution after a breakpoint. Press [CLR] and type
CONTINUE (or CON) and press [ENTER].

The UNBREAK statement is used to remove the breakpoints
you have set in a program. The only breakpoints that are
removed are the ones that are set immediately before a line. In
lines 130 and 230 in the previous example, UNBREAK can only
remove the breakpoints set before lines 240 ang 250. Line 130
always halts program execution when it is executed.

Using External Devices
Programs can be saved on external devices and then reloaded
into memory and run. Data can be stored on external devices
such as the Tl Wafertape™ peripheral and programs created to
update this data. External devices such as printers can be used
to provide information in a form you can read. When the
computer is transmitting data to or receiving data from an
external device, the I/O display indicator is tumed on. You
cannot use the keyboard at this time (including the [OFF] key).

If a file is open when you press the [OFF] key, the file is
automatically closed before the computer Is turned off.
(Generally the term file refers to data stored on a mass storage
device. However, in CC-40 BASIC a file refers to any information
sent to an external device, even a printer.)

You can save programs on an external device and later run
these saved programs by using the SAVE and OLD commands
and the RUN statement. SAVE writes the program in memory to
an external device in the internal machine format. The OLD
command is used to load a SAVEd program into memory when
you want to edit the program or VERIFY that it was loaded
correctly. To execute the program, use the RUN statement.

Note: If you attempt to load (with OLD) or RUN a data file rather
than a program file, you may have to press the reset key to
reset the sytem.

You can list a program to an external device such as a printer
by using the LIST command. LIST writes the program in
memory to an external device in ASCII characters, the same
form you see in the display.

4-49



CHAPTER IV
BASIC PROGRAMMING

You can store, update, and print data to an external device by
using the BASIC input/output statements. You must first open a
file on an external device with the OPEN statement before you
can use a BASIC input/output statement to access the file. The
OPEN statement is used to inform the computer how the data
on the file is stored and the number that you will use 10 access
the file. You do not use the OPEN statement when you use the
BASIC commands, SAVE, OLD, or LIST.

Data Format

If data is to be stored, updated, or printed, you must specify to
the computer the data format or how the data is recorded.
When data is printed for people to read, the data should be
written in ASCII characters (like the characters you see in the
display). This type of data format is catled display. When
display-type data is printed, the numeric and string items are
written according to the specifications in PRINT and appear the
same as if the items were displayed in the CC-40.

if the data is stored on a mass storage device, the data should
be recorded in the internal machine-code format. Data written
in this internal-type format Is stored in binary code, the type the
computer uses to process data. Storing data in this format
expedites processing and reduces the storage space required
because the computer does not have to convert internal format
to display characters and back again. When internal-type data
is used, the numeric and string items are stored as shown
below.

* Numeric items are stored in a form which occupies from 3
through 9 bytes of memory. The first byte is used to store the
length of the numeric data item and the remaining 2 through
8 bytes are used to store the data value.

Numeric
items: HENEEER

Jt—

designates length  value of item
of item

450



CHAPTER IV
BASIC PROGRAMMING

e String data Is stored in the same manner, except that the
maximum length for a string item extends through 256 bytes.
The first byte is used to store the length of the string data
and the remaining 0 through 255 bytes are used to store the
string value.

e HENEENEESEEE

) T
designates length value of item
of item

Data Records

Data is stored, updated, and printed in a form called a record. A
record consists of one or more of the processing units called
fields and a collection of records is called a fife. Records are
numbered from 0 through 32767 where record #0 is the first
record of the file, record #1 is the second record of the file, and
s0 on. After a file is created, the CC-40 retrieves and updates
data from the file in terms of records.

Record Length

When you write records to an external device, you can specify
the maximum length for the records. If you do not specify a
maximum record length, the computer assumes a default value
according to the peripheral device you are using. When you
design your records, be familiar with the lengths of the fields
that make up a record. Plan your record so that you allow for
the largest length needed.

The record length you specify determines how much space is
reserved in the computer for storing a record of the file. If you
attempt to write a record that is longer than the record length
you specified, the computer breaks the record into smaller
parts as described in PRINT (with files) in chapter 5. If you write
a record that is smaller than the record length you specified,
the record occupies only as much space in the file as is
required to write its fields of data. When a record is read from a
mass storage device, the computer determines the length of the
record by indicators that were written when the record was
created.

451



CHAPTER IV
BASIC PROGRAMMING

File Organization

When you store and update files on mass storage devices, the
records can be arranged in sequence or in random order. If you
want data to be stored so that you read it in sequence from the
beginning, the file should be organized sequentially. Data
stored in a sequential file is read the same as you would read
data in a DATA statement. Files kept on tape must be
sequential files. When you use external devices to print data for
people to read, the records are always processed in sequence
beginning with the first record.

If you want to process data directly without reading through all
the data in sequence, the file should be organized as a relative
(or random access) file. You specify that a file is a relative one
when you use the OPEN statement to open the file. With
relative files, you can access a particular record by using the
REC clause in the INPUT, LINPUT, PRINT, and RESTORE
statements. Relative files can also be accessed sequentially.
Only certain types of devices support relative files.

File Processing Keywords

CC-40 BASIC provides an extensive range of file-processing
features including sequential and random file organization and
processing, variable length records, display and Internal data
formats, and file accessibility. This section describes the CC-40
BASIC keywords which are provided to facilitate file
processing—FORMAT, DELETE, OPEN, INPUT, LINPUT, PRINT,
CLOSE, EOF, and RESTORE. Refer to chapter 5 for a complete
description of these keywords.

The FORMAT Command

The FORMAT command initializes the medium on an external
storage device. You must format a new medium (such as a
tape) before writing on it. If you format a medium that has data
already written on it, all the data is erased. For example, the
command below formats the tape on device 1.

FORMAT 1

452



CHAPTER IV
BASIC PROGRAMMING

The DELETE Statement
The DELETE statement can be used to delete a file from an
external storage device, as well as to delete lines from a
program (described earlier in “Editing Program Lines”).
DELETE “2.MFILE”
Deletes the file named MFILE on device 2.

The OPEN Statement

The OPEN statement sets up a link between a peripheral device
and a file number to be used in all the BASIC statements that
refer to the file. In the OPEN statement you specify file
attributes such as file accessibility, file organization, record
length, and file type. The computer then creates the file
according to the specifications in the OPEN statement. When
you use the OPEN statement to open a file that already exists,
the file attributes you specify must match those you used when
the file was created (except how the file can be accessed).

For each opened file, the computer keeps an internal counter
that points to the next record to be accessed. The counter is
incremented by 1 each time a record is read or written. For
random access files, be sure to use the REC clause if you read
and write records on the same file within a program. Since the
same internal counter is incremented when records are either
read from or written to the same file, you could skip some
records and write over others if REC is not used.

453



CHAPTER IV

BASIC PROGRAMMING

The following section describes the attributes that can be
specified in the OPEN statement and the default values that
are assumed if an attribute is omitted.

File Accessibility:

The open-mode attribute of the
OPEN statement specifies how the
file can be accessed. UPDATE is
assumed if no open-mode is
specified.

Open-Mode Attribute File Accessibility

INPUT The computer can only read from
the file.

OUTPUT The computer can only write to the
file.

UPDATE The computer can both read from
and write to the file.

APPEND The computer can write data only at

File Organization:
File Types (Data Formats):

Record Length:

454

the end of the file. The records that
already exist on the file cannot be
accessed.

RELATIVE for random access file or
omitted for sequential file.

DISPLAY or INTERNAL. If file type
is omitted, DISPLAY is assumed.
VARIABLE followed by a numeric
expression for the record length. If
this option is omitted, the
maximum record length is
established by the peripheral
device.



CHAPTER IV
BASIC PROGRAMMING

In the example below, the OPEN statement opens a file that is
to be referenced as #5 in all of the BASIC statements that
access the file. The file is opened on device 100 (which is
assumed to-support relative files) with the file-name AFILE. The
attributes of the file are relative (random access) organization,
internal data format, INPUT open-mode, and a maximum record
length of 64 bytes.

100 OPEN #5,“100.AFILE”, RELATIVE, INTERNAL, INPUT,
VARIABLE 64

The statement below opens a file named BFILE on device 1 as
#7. The file can be both read from and written to (UPDATE
open-mode), has sequential organization, and is recorded in
display-type data.

150 OPEN #7,“1.BFILE”

The INPUT # Statement

The INPUT # statement is used to read data values from a file.
You must use the same file-number to read this file as you did
to open the file. When the INPUT # statement is executed, the

data read from the file is assigned to the variables listed in the
INPUT # statement.

Filling the INPUT # Variable-List

When the computer reads a file, it retrieves and stores an entire
record in a temporary storage area called an input/output (//0)
buffer. Values are then assigned to the variables in the variable-
list from left to right, using the data items (or fields) in the /O
buffer. A separate buffer is provided for each opened file.

if the variable-list of the INPUT statement is longer than the
number of fields held in the /O buffer, the computer retrieves
the next record from the file and uses its fields to complete the
variable-list. When a variable-list has been filled with the
corresponding values, the fields left in the buffer are discarded
unless the INPUT statement ends with a comma (as described
later in “Pending Input Conditions”).

455



CHAPTER IV
BASIC PROGRAMMING

The statements'below open a file that is referred to as #3. The
computer reads a record into the input buffer and assigns the
fields in the record to the variables in the INPUT statement. If
there are more fields in the buffer than are needed to assign to
the variables, the remaining fields are discarded. If there are
not enough fields to assign, the computer reads another record.

100 OPEN #3,“1.MYFILE”,INTERNAL,VARIABLE 64
110 INPUT #3,AS,J.K,L,BS,P,Q,R

Pending Input Conditions

An INPUT statement that ends with a comma creates a pending
input condition. Any remaining fields in the input bufier are
maintained for the next INPUT statement that reads the file. If
this next INPUT statement has no REC clause, the computer
starts assigning the remaining fields in the buffer to the
variables in the INPUT statement. If the INPUT statement
contains a REC clause, the remaining fields are discarded and
the specified record is read into the I/O buffer. If a pending
input condition exists when a PRINT, RESTORE, or CLOSE
statement accesses the file, the remaining fields are also
discarded.

The statements below open a file and create a pending input
condition. After the variables are assigned in the first INPUT
statement, any fields left in the input buffer are retained. When
the next INPUT statement is executed, the remaining fields are
assigned to the variables.

100 OPEN #3,“1.MYFILE”,INTERNAL,VARIABLE 64
110 INPUT #3,A$,J,K,L,BS,P,Q,R,
120 INPUT #3,C$,A,B,C

4-56



CHAPTER IV
BASIC PROGRAMMING

Input # and Data Formats

When the INPUT statement reads display-type data, the fields
are separated by the commas that appear between the fields.
Display-type records look like the data in a DATA statement.
Numeric and string items must appear with their separators.
Each field in a display-type record is checked to ensure that
numeric values are placed in numeric variables.

in the example below, the first time the INPUT statement is
executed, it assigns the fields in the first record to the
variables. The second time the INPUT statement is executed,
the fields in the second record are assigned to the variables.
Note that there is no field in the buffer for the last variable, so
the next record is read. When the INPUT statement attempts to
assign a field to the last variable, an error occurs. The variable
is a numeric variable but the field is not a numeric value.

(Record #0 on file #3) Jones, 95,98,65,32,78

(Record #1 on file #3) Smith, 67,87,66,90

(Record #2 on file #3)} Lee,89,88,90,67,90

100 OPEN #3,“1.MYFILE”,INTERNAL,VARIABLE 64
110 INPUT #3,NAMES,A,B,C,D,E
120 GOTO 110

When the INPUT statement reads internal-type data, the length
byte stored with each data item is used to separate the fields.
The only validation performed on internal-type data is to ensure
that numeric data is from 2 through 8 characters long.

457



CHAPTER IV
BASIC PROGRAMMING

The LINPUT # Statement

Like the INPUT # statement, the LINPUT # statement is used to
read records from a file. However, LINPUT places all commas,
leading and trailing spaces, semicolons, and quotation marks
into string variables. The INPUT statement places these
symbols into variables only if they are enclosed in quotation
marks.

The PRINT # Statement

The PRINT # statement writes data values to a file. You must
use the same file-number in opening and writing to the file.
When the PRINT # statement is executed, the values of the
items in the print-list are written to the file.

To write a record to the end of a sequential file, you can use
the open-mode APPEND (but you cannot access the other
records in the file). For UPDATE mode you must first read to
the end of a sequential file before you write the new record.
Using the PRINT statement before the end-of-file is reached
results in a loss of data because the PRINT statement always
defines a new end-of-file each time it is executed.

The values of the variables in the PRINT statement are written
in a temporary storage area called an /O buffer. A separate
buffer is provided for each open file number. If the PRINT
statement ends with a comma or a semicolon, a pending print
is created.

Pending Print Conditions

When a PRINT statement ends with a comma or semicolon, the
values of the print-list are retained in the IO buffer for the next
PRINT statement that writes to the file. If this next PRINT
statement has no REC clause, the computer places the values
of the print-list into the I/O buffer immediately following the
fields already there. If the PRINT statement has a REC clause,
the computer writes the pending print *hat is in the I/O buffer to
the file at the position indicated by the internal counter. Then
the new PRINT statement is executed.

458



CHAPTER IV
BASIC PROGRAMMING

If a pending print condition exists and an INPUT statement that
accesses the file is encountered, the pending print record is
written to the file at the position indicated by the internal
counter and the internal counter is incremented. Then the
INPUT statement is performed as usual. if a pending print
exists when a CLOSE or RESTORE statement accesses the file,
the pending print is written before the file is closed or restored.

For example, the following statements open a file for output,
accept data from the keyboard, and write it to the file until a
$END is entered.

100 OPEN #6,“1.PENDING"”,INTERNAL,OUTPUT

110 INPUT AS

120 IF A$=“$SEND” THEN CLOSE #6:STOP

130 INPUT D,E

140 PRINT #6,A$,0,E,

150 GOTO 110

PRINT # and Data Formats

Refer to PRINT (with files) for information on how the PRINT
statement writes a record in internal- or display-type data
format. Note that if you print a file in display-type format that
the computer will later read, the file must look the same as it
does in a DATA statement. You must include the comma
separators and quotation marks needed by the INPUT
statement. When the data is read from the file, the computer
separates the fields by the comma separators placed between
them.

If the file in the example above had been opened with a display-
type data format, the PRINT to the file must write print
separators between the values for them to be read later.

100 OPEN #6,“1.PENDING”,DISPLAY,OUTPUT
110 INPUT AS

120 IF A$ =“SEND” THEN CLOSE #6:STOP
130 INPUT D,E

140 PRINT #6,AS; “,”;D; “,”; E; “,” ;

150 GOTO 110

459



CHAPTER IV
BASIC PROGRAMMING

The CLOSE Statement

The CLOSE statement breaks the link between the filenumber
and the peripheral device. You cannot access this file until you
OPEN it again. If you attempt to close a file that is not open,
an error occurs. The CLOSE statement can be used to delete a
file on some peripheral devices.

The following statements open the file CFILE on device 2, read
three fields, and close the file.

100 OPEN #3,“2.CFILE”,INTERNAL
110 INPUT #3, AS,D.E
120 CLOSE #3

The EOF Function

The EOF function determines if an end-of-file has been reached.
The EOF function can be placed before an INPUT statement to
test the file status before attempting to read from the file. The
value that is returned by EOF is 0 if you are not at the end of
the file and —1 if you are at the end of the file.

For example, the statements below open a file and check if the
end-of-file has been reached before trying to read a record.
When the end-of-file is reached, the file is closed.

100 OPEN #3,“2.CFILE”,INTERNAL
105 IF EOF(3) THEN CLOSE #3:STOP
110 INPUT #3, AS$,D,E

115 PRINT AS$;D;E:PAUSE 1

117 GOTO 105

460



CHAPTER IV
BASIC PROGRAMMING

The RESTORE Statement

The RESTORE statement can be used to reposition an open file
at record zero (for a sequential file} or at a specific record (for a
relative file). {f RESTORE refers to a relative file and the REC
clause is not used, the fiile is repositioned to record zero.

For example, the statements below open a file referred to as
#5, accept data from the keyboard and write the processed data
to the fite. The file is then repositioned to the first record. A
printer is opened with a file nhumber of 1. The data is read from
file #5 and printed on file #1. When the end-of-file is reached,
the message End of data is displayed.

100 OPEN #5,“1.RESFILE”,INTERNAL

110 INPUT “Enter street: *;ST$

120 INPUT “Name: ";AS$

130 IF A$ =“ENDS$” THEN 170

140 INPUT “Address: ”;BS$,“Zip: ”;C$

150 PRINT #5,A$&“family”,BS$&* "&STS$;“7947&C$
160 GOTO 110

170 RESTORE #5

180 OPEN #1,50”,0UTPUT

180 IF EOF(5) THEN PRINT “End of data”;PAUSE:CLOSE #5:STOP
200 INPUT #5,NAMES,STS$,ZIPS

210 PRINT #1,NAMES,ST$,ZIP$

220 GOTO 190



CHAPTER V
REFERENCE SECTION

This chapter is an alphabetical list of the CC-40 BASIC
command, statement, and function keywords. Each keyword is
explained in the following sections.

The Format section gives the complete syntax of the keyword,
using the following conventions.

* KEYWORDS are capitalized.
e Variables are in italics.

¢ All parentheses are mandatory. Parentheses included with
an optional element must be included when the optional
element is used.

e Optional elements are enclosed in [brackets].

* ltems that may be repeated are indicated by ellipses (...).

® ltems representing alternative forms are presented one
above the other and are enclosed in {braces}.

The Description gives the keyword's use or function and
includes the options that the keyword can use.

The Cross Reference section refers to similar and
complementary keywords, where appropriate.

The Example section gives examples of the keyword’s use,
where appropriate.

51



CHAPTER V
REFERENCE SECTION

ABS

Format
ABS(numeric-expression)

Description
The ABS function gives the absolute value of numeric-
expression. \f numeric-expression is positive or zero, ABS
returns the value of numeric-expression. If numeric-expression
is negative, ABS returns the negative of the value. The result of
ABS is always positive or zero.

Examples

370 PRINT ABS(42.3):PAUSE
Prints 42.3.

140 VV=ABS(~6.124)
Sets VV equal to 6.124.

52



CHAPTER V
REFERENCE SECTION

ACCEPT

ACCEPT [ [AT(column)] [SIZE(numeric-expression)] [BEEP]
[ERASE ALL]} [VALIDATE(data-type, ...) ] [NULL(expression)] |]
variable

Description
The ACCEPT statement suspends program execution until data
is entered from the keyboard. The options available with
ACCEPT make it more versatile for keyboard entry than the
INPUT statement. ACCEPT can accept data at any display
position, sound an audible tone (beep), erase all or part of the
display, limit the number and type of characters accepted, and
provide a default value for the input variable.

AT{(column) positions the cursor and the beginning of the input
field at the specified column, which must be from 1 to 31. If AT
is omitted, input begins in column one unless a previous
input/output statement left the cursor positioned in columns 2
through 31, in which case input is accepted at the cursor
location.

SIZE(numeric-expression) allows up to the absolute value of
numeric-expression characters to be input. If numeric-
expression is positive, the input field is cleared before Input is
accepted. If numeric-expression is negative, the input field is
not cleared, thus allowing a default value previously placed into
the field by a DISPLAY or PRINT statement to be entered. If
SIZE is omitted, the ACCEPT statement clears the display from
the current cursor position to the end of the 80-column line. If
SIZE is used, the cursor is left in the first position following the
input field for subsequent input/output statements.

BEEP sounds a short tone for each BEEP in the statement, to
indicate that the computer is ready to accept input.

ERASE ALL clears the entire display before accepting input,

and positions the cursor to column one. If AT is used, the data

Is accepted starting at the position specified by column.
(continued}



CHAPTER V
REFERENCE SECTION

ACCEPT

{continued)

VALIDATE(data-type) allows only certain characters to be
entered from the keyboard. Note that default values are not
validated. Data-type specifies which characters are acceptable.

Data-type can be a string expression which specifies the
characters that are permitted. Only one string expression may
be specified for data-type. The following can also be used as
data-types. If more than one data-type is specified, a character
from any of the types specified is acceptable.

ALPHA permits all alphabetic characters.

UALPHA permits only uppercase alphabetic
characters.

DIGIT permits 0 through 9.

NUMERIC permits O through 9, “.”, “+ ", “-", and “E".

ALPHANUM permits all alphabetic characters and 0
through 9.

UALPHANUM permits only uppercase alphabetic
characters and 0 through 9.

NULL{(expression) provides a default value to be assigned to the
variable if [ENTER] is pressed with a blank (or null) input field.

During the execution of an ACCEPT statement, the following
types of entries are also permitted.

* The [FN] key can be used to input keywords and user-
assigned strings from the keyboard.

* A numeric expression can be entered if variable is numeric.
The expression is evaluated and the result is assigned to
variable.

* [SHIFT] [ENTER] can be pressed to cause the input data to
be ignored, the value of variable to remain unchanged, and
the program to proceed to the next statement. 1f NULL is
included, it is also ignored.

Note: When an ACCEPT statement is waiting for data, [CLR]
clears only the input field, [CTL] ® (home) and [CTL] € (batk tab)
move the cursor to the beginning of the input field, and [CTL] >

(right arrow) has no effect.
(continued)

54



CHAPTER V
REFERENCE SECTION

ACCEPT

(continued)

Cross Reference
INPUT, LINPUT

Examples

100 ACCEPT AT(3) ERASE ALL,T
Clears the display, accepts data starting in column 3, and

places the data into variable T.

320 ACCEPT VALIDATE("yn") SIZE(1),A$
Accepts a one character field consisting of either y or n
into the variable AS$.

430 ACCEPT AT(3) SIZE(-5) BEEP VALIDATE(DIGIT,"+-"),X
Beeps, then accepts up to 5 characters for the variable X,
starting at column 3. The input characters must consist of
digits or the characters + or ~. Because the SIZE
specification is negative, the input field is not erased prior
to accepting input.

570 ACCEPT NULL(PI),C
Accepts data for C. If no data has been entered when
[ENTER] is pressed, the value of Pl is stored in the
variable C.

55



CHAPTER V
REFERENCE SECTION

ACS

Format
ACS(numeric-expression)

Description
The ACS (arccosine) function calculates the angle whose
cosine is numeric-expression. The result is calculated accord-
ing to the angle units (RAD, DEG, or GRAD) selected prior to
using this function. The range of values given by the ACS func-
tion for the three angle settings is shown below.

Range of
Units Calculated Angles
Degrees 0 < ACS(X) <180
Radians 0 < ACS(X) <PI
Grads 0 < ACS(X) <200
Examples
100 DEG

Selects DEG angle setting.
110 PRINT ACS(1) : PAUSE
Prints 0.

220 RAD
Selects RAD angle setting.
230 T=ACS(0.75)
Sets T equal to .72273424781339.



CHAPTER V

REFERENCE SECTION
SUBPROGRAM ADDI\/I EM
Format
CALL ADDMEM
Description

The ADDMEM subprogram allows the Random Access Memory
(RAM) contained in an installed Memory Expansion cartridge to
be appended to the useable resident memory. The amount of
memory added is described in appendix J.

CALL ADDMEM cannot be used in a program. The error message
No RAM in cartridge is displayed if no Memory Expansion
cartridge is installed when CALL ADDMEM Is executed.

When the memory In a Memory Expansion cartridge has been
appended to resident memory, the system is Initialized If a loss
of memory is detected (l.e. power Is lost or the cartridge Is
removed) or the reset key Is pressed.

The memory in a Memory Expansion cartridge remains
appended to the resident memory until a NEW ALL command Is
executed, the computer Is turned on without the cartridge
Installed, the batteries are removed, or the system is initialized.

Example
CALL ADDMEM
Allows the use of memory supplied by the installed
Memory Expansion cartridge. See chapter 3 or appendix J
for more information.

57



CHAPTER V
REFERENCE SECTION

ASC

Format
ASC(string-expression)

Description
The ASC function returns the ASCII character code of the first
character of string-expression. The message Bad argument is
displayed if string-expression is a null string. A list of the ASCII
codes is given in appendix D. The ASC function is the inverse

of the CHR$ function.

Cross Reference
CHR$

Examples
100 PRINT ASC("A"):PAUSE
Prints 65.
130 B=ASC("1")
Sets B equal to 49.
790 DISPLAY ASC("HELLO"):PAUSE
Displays 72.



CHAPTER V
REFERENCE SECTION

AN

Format
ASN(numeric-expression)

Description

The ASN (arcsine) function calculates the angle whose sine is
numeric-expression. The result is calculated according to the
angle units (RAD, DEG, or GRAD) selected prior to using this
function. The range of values given by the ASN function for the
three angle settings is shown below.

Range of
Units Calculated Angles
Degrees ~90 < ASN(X)=90
Radians - Pl/2 < ASN(X) < PI/2
Grads - 100 = ASN(X) = 100
Examples
140 DEG

Selects DEG angle setting.
150 PRINT ASN(1):PAUSE

Prints 90.
240 RAD

Selects RAD angle setting.
250 B=ASN(.9)
Sets B equal to 1.119769514999.

59



CHAPTER V
REFERENCE SECTION

AN

Format
ATN(numeric-expression)

Description

The ATN (arctangent) function calculates the angle whose
tangent is numeric-expression. The result is calculated
according to the angle units (RAD, DEG, or GRAD) selected
prior to using this function. The range of values given by the
ATN function for the three angle settings is shown below.

Range of
Units Calculated Angles
Degrees —-90 < ATN(X) <90
Radians —Pli2 < ATN(X) < PI/2
Grads —100 < ATN(X) <100
Examples
130 GRAD
Selects GRAD angle setting.
140 PRINT ATN(30):PAUSE
Prints 97.87871952.
810 RAD

Selects RAD angle setting.
820 Q=ATN(2.5)

Sets Q equal to 1.190289949683.

510



CHAPTER V
REFERENCE SECTION

ATTACH

Format
ATTACH sut-name1 [, sub-name2 ..}

Description
The ATTACH statement is used to preserve the values of
variables used in subprogram(s) between calls to the
subprogram(s). When the ATTACH statement is executed,
memory space is allocated for the variables and the values are
initialized. The variables are not initialized when the
subprogram is called and are not destroyed when the
subprogram terminates.

An ATTACH statement may appear in the main program or in
any subprogram. A subprogram can ATTACH itself. The
message Program not found is displayed if a specified sub-
name cannot be found. If a specified sub-name is an assembly
language subprogram, the message Bad program type Is
displayed.

Attaching a repeatedly used subprogram reduces execution
time. However, while the subprogram remains attached, the
memory space for the variables remains allocated. ATTACH
should be used only when sufficient memory space is available.
(Refer to FRE for more information.)

The RELEASE statement is used to release an attached
subprogram.

Cross Reference
FRE, RELEASE

{continued)

511



CHAPTER V
REFERENCE SECTION

ATACH

(continued)

Example
The following program illustrates how to attach a subprogram.

100 FOR J=1 TO 5

110 CALL X

120 NEXT J
Prints 0 0 0 0 0 because the variable values In
subprogram X are initialized each time it is called.

130 ATTACH X:PRINT
Attaches subprogram X and clears the display.

140 FOR J=1 TO 5

150 CALL X

160 NEXT J
Prints 0 1 2 3 4 because the variable values are not
initialized when X is called and are not destroyed when X
is terminated.

170 SUB X

180 PRINT J; : PAUSE 2

190 J=J+1

200 SUBEND

512



CHAPTER V
REFERENCE SECTION

BIREAK

Format
BREAK [l/ine-number-list}

Description
The BREAK statement is used to suspend program execution at
specific points, called breakpoints, in a program. Breakpoints
can be specified in two ways. If line-number-list is not given
with the BREAK statement, a breakpoint occurs when the
BREAK statement is executed. If /line-number-list is given with
the BREAK statement, breakpoint(s) are set immediately before
the line(s) listed in line-number-list. The [BREAK] key also
causes the program to stop as if a BREAK statement had been
executed.

When a breakpoint occurs, the message BREAK is displayed.

A breakpoint set immediately before a program line remains in
the program until the UNBREAK statement is used to remove it
or until the line is edited or deleted.

BREAK is useful in debugging a program. When program
execution halts at a breakpoint, variables can be printed and
calculations can be performed to determine why a program is
not executing correctly. The CONTINUE command can be used
to resume program execution.

Cross Reference
CONTINUE, ON BREAK, UNBREAK

Examples

150 BREAK
Causes a breakpoint when the BREAK statement is
executed.

100 BREAK 120,130
Causes breakpoints before execution of lines 120 and 130.

BREAK 10,400,130
Causes breakpoints before execution of lines 10, 400, and
130.

513



CHAPTER V
REFERENCE SECTION

CALL

Format
CALL subprogram-name [(argument-list)]

Description

The CALL statement transfers control to a subprogram. The
first subprogram found with the given subprogram-name is
executed. After the subprogram is executed, program control
returns to the first statement following the CALL statement.
The valid types of subprograms are listed below in the order in
which the search for the subprogram is performed.

1. Built-in subprograms

2.Assembly language subprograms which are loaded with

CALL LOAD
3.BASIC subprograms defined using SUB
4.Subprograms located in Solid State Software cartiidges

Argument-list is used to pass data to the subprogram. The
number and types of arguments in argument-list must match
the parameters in the parameter-list of the subprogram or an
error Occurs.

Each bullt-in subprogram is discussed under its own entry In
this manual. Assembly language subprograms are discussed in
the Editor/Assembler manual. BASIC subprograms are
discussed in chapter 4 and in this chapter under SUB.

Cross Reference
SuB

Examples
CALL CLEANUP
Deletes unused variable names from the system.

100 CALL SETLANG(1)
Changes the language setting to German. This
subprogram requires a language number parameter.

514



CHAPTER V
REFERENCE SECTION

SUBPROGRAM Cl_lAR

Format
CALL CHAR(character-code, pattern-identifier)

Description

The CHAR subprogram defines special display characters. The
characters are defined in a 5-by-8 grid by specifying which dots
are “on” and which are “off.” Up to seven special characters
can be defined at one time. The characters can be displayed by
using CHR$ in a DISPLAY or PRINT statement. If a special
character is in the display when the pattern definition is
changed, the displayed character changes immediately.

Note: Characters defined with the CHAR subprogram are not
retained when the computer is turned off.

Character-code specifies which special display character is to
be defined. Character-code must be a value from O through 6.

Pattern-identifier is a string expression whose value defines the
pattern for one or more special display characters.

» The first 16 characters of pattern-identifier define the
specified character-code. If pattern-identifier is less than
16 characters, the remaining characters are considered to
be zeros.

« |f pattern-identifier Is greater than 16 characters, the extra
characters define the next sequential character-code, until
all the pattern-identifier characters have been assigned to
a character-code.

o |f pattern-identifier has enough characters to define past
character-code 6, the extra characters are ignored.

¢ |f pattern-identifier is a null string, an error occurs.

Each pair of characters in pattern-identifier describes the
pattern in one row of the grid. The left character is 1 or O,
indicating that the left block is “on or “off,” respectively. The
right character is a hexadecimal digit (0 through F) whose
binary equivalent is used to determine which dots are on and
off, as described above. The rows are described from top to
bottom. Note that there is a slight break in the display between
the top seven rows and the eighth row.

(continued)

515



CHAPTER V
REFERENCE SECTION

CHAI? | SUBPROGRAM

{continued)

The following table shows all possible on/off conditions for
each row, and the binary and hexadecimal codes for each

condition.
Binary Code Hexadecimal

Dot Pattern (0 =0Off: 1=0n) Code
00000 00

X% 00001 01

X 00010 02

X% 00011 03

x 00100 04

LI LS 00101 05

x| %k 00110 06

x| k| k 00111 07

X 01000 08

X X 01001 09

x| |k 01010 0A
LIIREIES 01011 0B

X % 01100 0C

L3R SIRE S 01101 0D
EENES 01110 OE

X | X | A |k 01111 OF

X 10000 10
X X 10001 1
x X 10010 12
bed X | % 10011 13
x| |k 10100 14
x| |k X 10101 15
x| K[k 10110 16
x| kpk|x 10111 17
x| % 11000 18
]k * 11001 19
x| k| |* 11010 1A
x| k| %] % 1101 1B
HEIE 11100 1C
EIEIEINE 11101 1D
X |k k| %k 11110 1E
x| k|| k| %k 11111 1F

(continued)

5-16



CHAPTER V
REFERENCE SECTION

SUBPROGRAM CHAR

{continued)

Cross Reference
CHR$

Examples
To define the dot pattern pictured below, type the following fine.
CALL CHAR(0,“04150E04040E1504")

Left | Right Hex
Block | Blocks  Codes

ROW 1 X 04
ROW 2 X[ |k {*] 15
ROW 3 X[ %] % OE
ROW 4 x 04
ROW 5 X 04
ROW 6 x|k % OE
ROW 7 x| || [*] 15
ROW 8 X 04

To display the special character, enter PRINT CHR$(0). Note that
the underline cursor also appears in the display in this case.

To define the dot pattern pictured below, type the following line.
CALL CHAR(@4,“0A110B12”)

Left | Right Hex
Block | Blocks  Codes
ROW 1 x| |* 0A
ROW 2 X Xt 11
ROW 3 X| |Xk[*i OB
ROW 4 X * 12
ROW 5 00
ROW 6 00
ROW 7 00
ROW 8 00
Since rows 5 through 8 are not specified, they are assumed to

be zeros.

To display the special character, enter PRINT CHR$(4). Note that
the underline cursor also appears in the display in this case.

517



CHAPTER V
REFERENCE SECTION

CHRS

Format
CHRS$(numeric-expression)

Description
The CHR$ function returns the character corresponding to the
ASCII character code specified by numeric-expression. The
CHRS$ function is the inverse of the ASC function. A list of the
ASCII character codes for each character in the standard
character set is given in appendix D.

CHRS$ is used in PRINT and DISPLAY statements to display
special characters defined with the CHAR subprogram or the
extended character set not available on the keyboard (see
appendix D). With peripherals, CHR$ can be used for control
operations such as advancing a printer to a new page.

Cross Reference
ASC, CHAR

Examples
840 PRINT CHR$(72):PAUSE
Prints H.

900 X$=CHR$(33)
Sets X$ equal to !.

518



CHAPTER V

REFERENCE SECTION
CLEANUP
Format

CALL CLEANUP
Description

The CLEANUP subprogram deletes unused variable names from
the system. When CALL CLEANUP is executed, all variable
names which are not used in the program currently in memory
are removed and all open files are closed. if CALI. CLEANUP is
executed when a program is stopped at a breakpoint, the
CONTINUE command cannot be used to resume program
execution.

CALL CLEANUP cannot be used in a program.

519



CHAPTER V
REFERENCE SECTION

ClOSE

Format

CLOSE #file-number [, DELETE]

Description

The CLOSE statement terminates the association between a
file and its current file-number. The file or device cannot be
accessed by the program unless it is reopened. After a file is
closed, file-number can be assigned to another file or device. If
an attempt is made to CLOSE a file that is not open, an error
occurs.

Any of the following actions close all open files.
¢ Editing the program or subprogram.
* Entering a NEW, RENUMBER, RUN, OLD, SAVE, or VERIFY
command.
e Listing the program to a peripheral device.
¢ Calling the ADDMEM or CLEANUP subprogram.
¢ Turning the system off or pressing the reset key.

Normal program termination also closes all open files.
Some peripheral devices allow a file to be deleted at the time it

is closed by adding DELETE to the statement. The manual for
each peripheral device describes the use of DELETE.

Cross Reference

OPEN

Example

790 CLOSE #6
Closes file #6.

5-20



CHAPTER V
REFERENCE SECTION

CONTINUE

Format ‘
CONTINUE [line-number]

Description
The CONTINUE (or CON) command is used to resume
execution after a breakpoint occurs. A program or subprogram
may be continued at the line specified by line-number. Line-
number must refer to a line number in the main program if the
main program is stopped. if a subprogram is stopped, /ine-
number must refer to a line number in that subprogram. Using
an improper line-number produces unpredictable results.

The following actions do not allow a CONTINUE to resume
execution after a breakpoint:

e Editing the program or subprogram.

e Entering a NEW, OLD, RENUMBER, RUN, SAVE, or
VERIFY command.

e Listing the program to a peripheral device.

e Calling the ADDMEM or CLEANUP subprogram.

¢ Turning the system off or pressing the reset key.

Cross Reference
BREAK

5-21



CHAPTER V
REFERENCE SECTION

COS

Format
COS(numeric-expression)

Description
The COS function calculates the trigonometric cosine of
numeric-expression. The result is calculated according to the
angle units (RAD, DEG, or GRAD) selected prior to using this
function. See appendix E for a description of the limits of
numeric-expression.

Examples
140 GRAD
Selects GRAD angle setting.
150 PRINT C0S(30):PAUSE
Prints .8910065242.

240 RAD

Selects RAD angle setting.
300 T=COS(PI)

Sets T equal to - 1.

§-22



CHAPTER V
REFERENCE SECTION

DAIA

Format
DATA data-list

Description
The DATA statement is used with the READ statement to
assign values to variables. When a READ statement is
executed, the values in data-list are assigned to the variables
specified in the variable-list of the READ statement. Data-list
consists of numeric or string constants, separated by commas.
Leading and trailing spaces are ignored. A string constant that
contains commas or leading or trailing spaces must be
enclosed in quotes. A quotation mark within a quoted string is
represented by two quotation marks. A null string Is
represented by two adjacent commas.

A DATA statement must be the only statement on a line. It may
be located anywhere in a program or subprogram. If a program
has more than one DATA statement, the DATA statements are
read in sequential order beginning with the lowest numbered
line.

The RESTORE statement can be used to reread DATA
statements or to alter the order in which DATA statements are
read.

Cross Reference
READ, RESTORE

(continued)

5-23



CHAPTER V
REFERENCE SECTION

DAIA

(continued)

Example
The program below reads and prints several numeric and string
constants.

100 FOR A=1TO 5

110 READ B,C

120 PRINT B;C:PAUSE 1.1

130 NEXT A
Lines 100 through 130 read five sets of data and print
their values, two to a line.

140 DATA 2,4,6,7,8

150 DATA 1,2,3,4,5

160 DATA """THIS HAS QUOTES" "™

170 DATA "NO QUOTES HERE"

180 DATA NO QUOTES HERE EITHER

190 FOR A=1 TO 7

200 READ B$

210 PRINT B$:PAUSE 1.1

220 NEXT A
Lines 190 through 220 read seven data elements and print
each on its own line.

230 DATA 1, NUMBER, ,TI

524



CHAPTER V

REFERENCE SECTION
SUBPROGRAM DEBUG
Format
CALL DEBUG
Description

The DEBUG subprogram is used to test assembly language
subprograms. CALL DEBUG allows access to the assembly
language debugger, which is briefly described in appendix I.
Refer to the Editor/Assembler manual for more information.

525



CHAPTER V
REFERENCE SECTION

DEG

Format
DEG

Description

The DEG statement sets the units for angle calculations to
degrees. After the DEG angle setting is selected, all entered and
calculated angles are measured in degrees. This setting is
changed to RAD when NEW ALL is entered or the system is
initialized.

Cross Reference
GRAD, RAD

526



CHAPTER V
REFERENCE SECTION

DELETE

Format
DELETE {””“9' oup [, line-group .|

“device.filename”

Description
The DELETE (or DEL) statement is used to remove lines from a
program in memory or to remove a file from external storage.
Line-group specifies program lines to be deleted and may
consist of the following.

Line-group Etfect

a single line number Deletes that line.

line number — Deletes that line and all following lines.

— line number Deletes that line and all preceding
lines.

line number - line
number Deletes that Inclusive range of lines.

DELETE line-group cannot be used in a program line.

If line-group specifies a single line number that does not exist,
the message Line not found is displayed. However, any
remaining /ine-groups are deleted when the [ENTER] or [CLR] key
is pressed. If the initial line of a range does not exist, the next
higher numbered line is used as the initial line. If the final line
does not exist, the next lower numbered line is used as the
final line.

Device.filename is used to delete a file from an external storage
device. Device is the number associated with the physical
device and can be from 1 through 255. Filename identifies the
particular file. Device.filename may be a string expression.
Refer to the peripheral manuals for the device number for each
peripheral device and for specific information about the form of
filename.

You may also delete data files on some peripheral devices by
using DELETE in the CLOSE statement. Refer to the ap-
propriate peripheral manual for more information.

(continued)

527



CHAPTER V
REFERENCE SECTION

DELETE

{continued)

Cross Reference
CLOSE

Examples

DELETE 10-50,90,110-220
Deletes lines 10 through 50, 90, and 110 through 220.

DELETE 900~
Deletes lines 900 through the end of the program.

DELETE -500, 750
Deletes all lines through 500 and line 750.

DELETE "1.file"
Deletes “file” from device 1.

528



CHAPTER V
REFERENCE SECTION

DIV

DIM array-n’amé(integeﬂ [, integer?] |, integer3]) [,..]

Description
The DIM statement specifies the characteristics of an array and
reserves the necessary memory space for it. Array-name is a
string or numeric variable name. The number of values in paren-
theses following array-name determines the number of dimen-
sions in the array. Arrays with up to three dimensions are atlow-
ed. The values in parentheses represent the maximum values of
the subscripts in each dimension of the array.

The lowest value of a subscript is zero. Therefore, the number
of elements in each dimension is one more than the maximum
subscript. For example, an array defined by DIM A(6) is a one
dimensional array with seven elements, A(0) through A(6). If an
array is not defined in a DIM statement, the maximum value of
each subscript is 10.

When execution of a program begins, each element of a
numeric array is set to zero, and each element of a string array
Is set to the null string.

An array can be dimensioned only once. A DIM statement must
appear in the program at a lower numbered line than any other
reference to its array. Remarks (REM) and tail remarks (!) are
the only statements which may appear after a DIM statement
on a multiple statement line. A DIM statement cannot appear in
an IF THEN ELSE statement.

Examples
120 DIM X$(30)
Reserves space in the computer’s memory for 31 elements
of the array called X$. Each element is initialized to the
null string.

430 DIM D(100),B(10,9)
Reserves space in the computer’'s memory for 101
elements of the array called D and 110 (11 times 10)
elements of the array called B. Each element of each ar-
ray is initialized to zero.

529



CHAPTER V
REFERENCE SECTION

DISPLAY

Format
DISPLAY [ [AT(column)] [BEEP] [ERASE ALL)

line-number -~
[SIZE(numeric-expression)} [USING string-expression J lprint-list]

Description
The DISPLAY statement formats and displays the value(s) in-
cluded in print-list. The options available with DISPLAY can be
used to display data starting at any column position, sound an
audible tone (beep), erase all or part of the display, limit the
total number of characters displayed, and specify the format of
the display.

AT(column) positions the cursor and the beginning of the
display field at the specified column position from 1 through

The evaluation of the TAB function and comma separators is
relative to the specified starting position. However, if SIZE is
not specified and the evaluation of print-list continues on a new
line, the new line begins in column 1, not in the column
specified by AT.

When AT is omitted, output starts at the current cursor position
as left by previous input/output statements. If the current posi-
tion is greater than 80, the cursor is reset to column 1. When
AT is omitted, the TAB function and comma separators are
always relative to column 1.

BEEP sounds a short tone for each BEEP in the statement.

ERASE ALL clears the entire 80-column line. If AT is omitted,
the cursor position Is set to column 1.

SIZE(numeric-expression) limits the total number of characters
to the absolute value of numeric-expression. If numeric-
expression is larger than the number of remaining positions,
the display field extends from the current cursor position to the
end of the 80-column line. The length of the display field ,

defined by SIZE becomes the new record length for purposes of
(continued)

530



CHAPTER V
REFERENCE SECTION

DISPLAY

evaluating the TAB function and comma separators in print-list.
The specified field is always cleared prior to displaying data.
Termination of the DISPLAY statement leaves the cursor in the
first position following the display field. If SIZE is omitted and
there is no trailing separator after print-list, termination of the
DISPLAY statement clears the display from the last item
displayed to the end of the 80-column line.

(continued)

USING may be used to specify an exact format for the output.
If USING is specified, it must appear last In the option list.
Refer to IMAGE and USING for a description of format
definition and its effect upon the output of the DISPLAY
statement.

Print-list consists of numeric and string expressions, separated
by commas or semlcolons. For more details, see PRINT.

Cross Reference
IMAGE, PAUSE, PRINT, TAB, USING

Examples

120 DISPLAY AT(7),Y :PAUSE
Displays the value of Y starting at column 7 and clears
everything following the number. The value actually
appears in column 8 since the sign precedes the number.

150 DISPLAY N :PAUSE
Displays the value of N in column 1 of the display and
clears the rest of the display.

190 DISPLAY ERASE ALL,B:PAUSE
Clears the entire display before displaying the value of B.

370 DISPLAY AT(C) SIZE(19) BEEP,X:PAUSE
Clears 19 characters starting at position C, beeps, and
displays the value of X starting at position C.

531



CHAPTER V
REFERENCE SECTION

END

Format
END

Description
The END statement terminates a program and may be used
interchangeably with the STOP statement. Although the END
statement may appear anywhere, it is usually placed as the last
line in a program. The END statement is not required. A
program automatically stops when the highest numbered line is
executed.

The END statement closes all open files.

Cross Reference
STOP

632



CHAPTER V
REFERENCE SECTION

OB

Format
EOF(file-nuniben)

Description

The EOF function is used to test whether there is another
record to be read from a file. The value of file-number indicates
the file to be tested and must correspond to the number of an
open file. EOF returns a value which indicates the current
position in the file as follows.

Value Position

0 Not end-of-file
-1 Logical end-of-file

The logical end-of-flle occurs when all records on the file have
been input.

When using pending INPUT (see chapter 4), EOF does not
Indicate whether pending input data remains in memory.

Cross Reference
INPUT (with files)

Examples
140 PRINT EOF(3):PAUSE
Prints -1 if file #3 has reach the end-of-file and 0 if it has
not reached the end-of-file.

710 IF EOF(27) THEN 1150
Transfers control to line 1150 if the end-of-file has been
reached for file #27.

6-33



CHAPTER V
REFERENCE SECTION

E I? R SUBPROGRAM

Format
CALL ERR(error-code, error-type [, file-number, line-number] )

Description
The ERR subprogram returns the error code, error type and,
optionally, the file number and line number of the last
uncleared error. When an error occurs, a subroutine can be
called (see ON ERROR) that contains CALL ERR. The error is
cleared when this error-processing subroutine terminates. with a
RETURN.

Error-codes range from 0 through 127. The ' meaning of each
error code is listed in appendix K.

Error-type s always 0 unless error-code is 0, which is an
input/output (VO) error. For an /O error, error-type is an (/O error
code specified by each /O device. The range for I/O error codes
is 1 through 2565.

File-number is 0 unless the error is an /O error. For an VO error,
file-number is the file number used in the I/O statement that
caused the error.

Line-number is the number of the line being executed when the
error occurred. It is not always the line that is the source of the
problem since an error may occur because of values generated
or actions taken elsewhere in a program.

If no error has occured, CALL ERR returns all values as zeros.

Cross Reference
ON ERROR, RETURN (with ON ERROR)

Examples
170 CALL ERR(A,B)
Sets A equal to the error-code and B equal to the error-
type of the most recent uncleared error.

390 CALL ERR(W,X,Y,Z2)
Sets W equal to the error-code, X equal to the error-type, Y
equal to the file-number, and Z equal to the tine-number of
the most recent uncleared error.

5-34



CHAPTER V
REFERENCE SECTION

SUBPROGRAM E><EC

Format
CALL EXEC(execution-address [, argument-list] )

Description
The EXEC subprogram is used to execute assembly language
subprograms located at specific memory addresses. Normally,
the POKE statement has been used to store these subprograms
in memory that has been reserved by a CALL GETMEM
statement. Execution-address is the memory address at which
subprogram execution is to begin and must be a numeric
expression from 0 through 65535. '

Argument-list is used to pass values to and from the
subprogram being executed.

Details on writing assembly language subprograms are
provided in the Editor/Assembler manual.

Cross Reference
GETMEM, PEEK, POKE, RELMEM

5-35



CHAPTER V
REFERENCE SECTION

XP

Format
EXP(numeric-expression)

Description
The EXP function returns the result of eX, where x is numeric-
expression. The value of e is 2.71828182846.

Examples
150 Y=EXP(7)
Sets Y equal to the value of e raised to the seventh
power, which is 1096.633158429.
390 L=EXP(4.394960467)
Sets L equal to the value of e raised to the 4.394960467
power, which Is 81.04142688867.

§-36



CHAPTER V
REFERENCE SECTION

FOR 10 SIEP

FOR controf-variable = initial-value TO limit [STEP increment)

Description
The FOR TO STEP statement is used with the NEXT statement
to form a loop, which is a series of statements performed a
specific number of times. Controlvariable is an unsubscripted
numeric variable that acts as a counter for the loop. Initial-
value, limit, and increment are numeric expressions.

When the FOR statement is executed, initial-value is assigned
to control-variable. \f initial-value exceeds limit, the loop is skip-
ped and execution continues with the statement after the NEXT
statement. Otherwise, the statements following the FOR state-
ment are executed until the corresponding NEXT statement is
executed. Increment is then added to control-variable. If control-
variable is not greater than Jlimit, execution returns to the state-
ment following the FOR statement.

When control-variable becomes greater than limit, control
transfers to the statement following the NEXT statement.
Control-variable then equals the value it had the last pass
through the loop plus the value of increment.

A loop that is contained entirely within another loop is called a
nested loop. Nested loops must use different control variables.
Program execution can be transferred out of a loop using
GOTO, GOSUB, or IF THEN ELSE and then returned back into
the loop.

If a NEXT statement is executed before its corresponding FOR
statement, an error occurs.

STEP specifies the increment that is added to control-variable
each time the loop is executed. If STEP is omitted, the incre-
ment is one. If the increment is negative, control-variable is
decreased each time through the loop and /imit shouid be less
than initial-value. The loop is skipped if initial-value is less than
limit. Otherwise, the loop is executed until control-variable is

less than fimit.
{continued)

§37



CHAPTER V
REFERENCE SECTION

FOR 1O STEP

(continued)

Cross Reference
NEXT

Examples
140 FOR A=1 TO 5 STEP 2

190 NEXT A
Executes the statements between FOR and NEXT A three
times, with A having values of 1, 3, and 5. After the loop is
finished, A has a value of 7.

250 FOR J=7 T0 -5 STEP -.5

350 NEXT J
Executes the statements between FOR and NEXT J 25
times, with J having values of 7, 6.5, 6, ..., —4, —45, and
—5. After the loop is finished, J has a value of —5&.5.

700 FOR X=1 T0 2 STEP -1
780 NEXT X

.

Does not execute the loop because increment is negative
and the initial-value is already less than the limit.



CHAPTER V
REFERENCE SECTION

FORMAT

Format
FORMAT device

Description
The FORMAT statement initializes the current medium on an
external storage device. Formatting a storage medium destroys
all previously stored data.

Device is the number associated with each physical device and
can be from 1 through 255. Refer to the peripheral manuals to
obtain the device code for each peripheral device.

Example

140 FORMAT 1
Initializes the tape currently in the Wafertape drive. All
data previously stored on the tape is destroyed.

539



CHAPTER V
REFERENCE SECTION

HRE

Format
FRE(numeric-expression)

Description

The FRE function returns information about the current use of
memory in the computer. Memory space is divided into four
types as follows.

* Space reserved for operation of the system.

¢ Space occupied by the current program in memory.

® Space temporarily reserved by a running program.

* Space currently available (free space).

The value of numeric-expression specifies the type of
Information desired as follows.

Value Meaning
0 Total memory space not reserved for system
operation.
1 Total space occupied by the program currently in
memory. The value returned includes 11 bytes for
program overhead.

2 Total amount of free space and temporarily reserved
space.
3 Size of the largest block of free memory space.
4 Total amount of free memory space.
5 Number of individual blocks of free memory space.
Example
300 A=FRE(3)

Sets A equal to the number of bytes available in the
largest contiguous block of free memory. This statement
is useful for determining how much memory can be
reserved by the GETMEM subprogram.



CHAPTER V
REFERENCE SECTION

SUBPROGRAM G EH_AN G

Format _
CALL GETLANG(numeric-variable)

Description
The GETLANG subprogram places the code of the international
language being used to display system messages and errors
into numeric-variable. The language identification code is set
using the SETLANG subprogram. The language is set to
English when the system is initialized.

The following are the assigned language codes.

0=English

1=German

2=French

3=ltalian

4 = Dutch

5 =Swedish

6 = Spanish

Cross Reference
SETLANG

Example

120 CALL GETLANG(A)
Places the code of the current language setting into A.

541



CHAPTER V
REFERENCE SECTION

GE—H\/I EM SUBPROGRAM

Format
CALL GETMEM(numeric-expression, numeric-variable)

Description
The GETMEM subprogram is used to reserve memory space for
storing data and assembly language programs. Numeric-
expression specifies the number of bytes to reserve and must
be a value from 1 through 32765. The error message Menory
full is displayed if the number of bytes specified is not
available.

The lowest address of the reserved memory space is stored in
numeric-variable. This value must be retained if RELMEM is to
be used to release the memory for other uses. The highest
address of the reserved memory space can be calculated as
follows.
highest memory address = numeric-variable + numeric-
expression -1

When space has been reserved, CALL POKE and CALL PEEK
can be used to access the memory directly. Data may be
placed in the reserved area one byte at a time with the CALL
POKE subprogram and read with the CALL PEEK subprogram.
If an assembly language subprogram is loaded into reserved
memory using CALL POKE, CALL EXEC may be used to
execute it. The assembly language program must not use
memory space outside of the reserved area.

In addition to the requested amount of memory, GETMEM
requires four bytes of memory for its own operation. Thus, if
the FRE function is used to obtain the size of the largest
available block of memory, that value must be reduced by four
to obtain the largest block which can be allocated by GETMEM.

The largest block of memory allocated by GETMEM should be
significantly less than the largest block available. Sufficient:
memory space must remain available for statements that

require additional temporary memory.
(continued)

542



CHAPTER V
REFERENCE SECTION

SUBPROGRAM GEI_I\/I EI\/I

{continued)

Cross Reference
EXEC, FRE, PEEK, POKE, RELMEM

Example

140 CALL GETMEM(100, ADDRESS)
Reserves a block of 100 bytes of memory and places the
lowest address of the reserved memory area into
ADDRESS.

543



CHAPTERV
REFERENCE SECTION

GOSUB

Format
GOSUB line-number

Description
The GOSUB statement transfers control to the subroutine that
begins at /ine-number. The statements of the subroutine are
executed until a RETURN statement is encountered. A RETURN
statement returns control to the statement immediately
following the GOSUB statement.

Subroutines may be called any number of times in a program
and may call themselves or other subroutines. The GOSUB
statement cannot be used to transfer control into or out of a
subprogram.

Cross Reference
ON GOSUB, RETURN

Example
100 GOSUB 200
Transfers control to tine 200. The statement at line 200
and all the statements that follow are performed until
RETURN is encountered. RETURN transfers control to the
statement following the GOSUB statement.



CHAPTER V
REFERENCE SECTION

GOIO

Format |
GOTO line-namber

Description

The GOTO statement transfers control unconditionally to
another line within a program. When a GOTO statement is
executed, control is passed to the first statement on the line
specified by line-number.

The GOTO statement cannot be used to transfer control into or
out of a subprogram.

Example
100 GOTO 300
Transfers control to line 300.



CHAPTER V
REFERENCE SECTION

GIRAD

Format
GRAD

Description
The GRAD statement sets the units for angle calculations to
grads. After the GRAD angle setting is selected, all entered and
calculated angles are measured in grads. This setting is
changed to RAD when NEW ALL is entered or the system is
initialized.

Cross Reference
DEG, RAD



CHAPTER V
REFERENCE SECTION

= THEN ELSE

IF condition THEN action? [ELSE action2]

Description
The I[F THEN ELSE statement performs one of two specified
actions based on a specified condition. If condition is true,
action1 is performed. If condition is false, action2 is performed.
If ELSE is omitted and condition is false, control is transferred
to the next line.

Condition can be either a relational expression or a numeric
expression. When a relational expression Is evaluated, the
result is 0 if it is false and —1 if it is true. When a numeric
expression is evaluated, a zero value is considered to be false
and a nonzero value is considered to be true.

Action1 and action2 may be line numbers, statements, or
groups of statements separated by colons. If a line number is
used, control is transferred to that line. If statements are used,
those statements are performed.

The IF THEN ELSE statement must be contained on one line and
is terminated by the end of the line. IF THEN ELSE statements
can be nested by including an IF THEN ELSE statement in
actiont1 or action2. If a nested IF THEN ELSE statement does not
contain the same number of THEN and ELSE clauses, each
ELSE is matched with the closest unmatched THEN.

IF THEN ELSE statements cannot contain DIM, IMAGE, SUB, or
SUBEND statements.

Examples
100 IF Y<5 THEN 150
If the value of Y is less than 5, statement 150 is executed.
If Y is greater than or equal to 5, the next statement is

executed.
(continued)

547



CHAPTER V
REFERENCE SECTION

-

THEN ELSF

(continued)

140 IF MBB=0 THEN 200

150 PRINT "NON-ZERO" :PAUSE 2
If MBB is zero, control passes to line 200. If MBB is not
zero, NON-ZERO is displayed and program execution halts
for 2 seconds before executing the next statement.

230 IF X>5 THEN GOSUB 300 ELSE X=X+5
If the value of X is greater than 5, GOSUB 300 is
executed. When the subroutine is completed, control
returns to the line following the IF THEN ELSE statement.
If X is 5 or less, X is set equal to X+ 5 and control passes
to the next line.

250 IF Q THEN C=C+1:GOTO 500 ELSE L=L/C:GOTO 300
If Q is not zero (true), C is set equal to C+1 and control is
transferred to line 500. If Q is zero (false), L is set equal to
L/C and control is transferred to line 300.

290 IF A$="Y" THEN COUNT=COUNT+1:DISPLAY AT(4), "HERE WE
GO AGAIN!":PAUSE 1.5:G0TO 400
If AS$ is equal to “Y”, COUNT is incremented by 1,a
message is displayed, and control is transferred to line
400. If A$ is not equal to “Y”, control passes to the next
line.

350 IF HRS <=40 THEN PAY=HRS*WAGE ELSE
PAY=HRS*WAGE+.5*WAGE *(HRS-40) :0T=1
If HRS is less than or equal to 40, PAY is set equal to
HRS*WAGE and control passes to the next line. If HRS is
greater than 40, PAY is set equal to
HRS*WAGE + 5*WAGE*(HRS — 40), OT is set equal to 1,
and control passes to the next line.

700 IF A=1 THEN IF B=2 THEN C=3 ELSE D=4
If Ais equal to 1 and B s equal to 2, C is set equal to 3
and control passes to the next line. If A is equal to 1 and
B is not equal to 2, D is set equa! to 4 and control passes.
to the next line. If A is not equal to 1, control passes to
the next line.

548



CHAPTER V
REFERENCE SECTION

MAGE

Format
IMAGE string-constant

Description
The IMAGE statement is used to define an output format. The
format is used by placing the line number of the IMAGE
statement in the USING option of DISPLAY or PRINT (see
USING in this chapter). String-constant may be enclosed in
quotation marks. If string-constant is not enclosed in quotation
marks, leading and trailing blanks are ignored.

The IMAGE statement must be the only statement on a
program line and must appear in the program or subprogram
which uses it. When an IMAGE statement is encountered,
execution immediately continues with the next line of the
program.

A format definition is divided into format fields and literal
fields. When a PRINT or DISPLAY statement uses a format
definition, the format fields are replaced by the values of the
print items and the literal fields are printed as they appear in
the format definition. An explanation of a format definition is
given below.

Format Definition

The three characters which may be used to define a format
field are the number sign (#), the decimal point (), and the
exponentiation symbol (A). The number sign defines a character
position in the format field. It is replaced by one of the
characters from the ASCII representation of the value of the
print item. The decimal point is used in a decimal format field
to specify the position of the decimal point. The exponentiation
symbol (A) is used in an exponential format field to specify the
number of positions in which to print the exponent value. All
other characters are literal and thus form literal fields.

The five types of fields in a format definition are integer,
decimal, exponential, string, and literal. The rules which apply

to each type are listed below.
{continued)

5-49



CHAPTER V
REFERENCE SECTION

MAGE

(continued)

Integer Field

* Up to 14 significant digits may be specified.

¢ An integer field is composed of number signs.

e When the number does not fill the field, the number is right-
justified.

¢ When the number is longer than the field, asterisks (») are
printed in place of the value.

* Non-integer values are rounded to the nearest integer.

e When the number is negative, one number sign is used for
the minus sign.

Decimal Field

¢ Up to 14 significant digits may be specified.

e A decimal field is composed of number signs and a single
decimal point. The decimal point may appear anywhere in the
format field.

e The number is placed with the decimal point in the specified
position.

e When the integer part of the value is longer than the integer
part of the format, asterisks (*) are printed instead of the
value.

e The number is rounded to the number of places specified to
the right of the decimal point.

* When the number is negative, at least one number sign must
precede the decimal point to be used for the minus sign.

Exponential Field

¢ Up to 14 significant digits may be specified.

® An exponential field consists of a decimal or integer field,
which defines the mantissa, followed by 4 or 5 exponentiation
symbols which define the exponent. When fewer than 4 are
used, they are treated as literal characters. When more than 5
are used, the first 5 are used to define the exponential field, '
and the remainder are considered to be literal characters.

¢ The number is rounded according to the mantissa definitién,
(continued)

560



CHAPTER V
REFERENCE SECTION

IMAGE

* When the mantissa definition specifies positions to the left of
the decimal point, one of these positions is always used for
the sign, which is a minus sign if negative and a space if
positive.

String Field

¢ The size of the field is limited only by the size of the string
which defines the format.

e A string field is an integer, decimal, or exponential field. In
addition to the number signs, the decimal point and the
exponentiation symbols define character positions.

¢ When the string is shorter than the field, it is left-justified.

* When the string is longer than the field, asterisks(+) are
printed instead of the value.

Literat Field

* The size of the field is limited only by the size of the string
which defines the format.

* A literal field is composed of characters which are not format
characters. However, decimal points and exponentiation
symbols may also appear in literal fields.

e Literal fields appear in the printed output exactly as they
appear in the format definition.

{continued)

Cross Reference
DISPLAY, PRINT, USING

(continued)

551



CHAPTER V
REFERENCE SECTION

IMAGE

fcontinued)

Examples
The following program prints two numbers per line using the
IMAGE statement.

100 FOR COUNT=1 TO 6

110 READ 4,B

120 PRINT USING 150;A,B:PAUSE

130 NEXT COUNT

140 DATA -99,-9.99,-7,-3.459,0,0,14.8,12.75,795,852,
-984,64.7

150 IMAGE THE ANSWERS ARE ### AND ##.##

The following show the results with the given values.
Values Appearance
—-99 -9.99 THE ANSWERS ARE -99 AND -9.99
-7 -3459 THE ANSWERS ARE -7 AND -3.46
0 0 THE ANSWERS ARE 0 AND .00
148 1275 THE ANSWERS ARE 15 AND 12.75
795 852 THE ANSWERS ARE 795 AND %¥XXx%
-984 64.7 THE ANSWERS ARE *%¥ AND 64.70

A program similar to the one above allows the use of
characters with IMAGE DEAR #####,. The following show the
results with certain values.

Value Appearance

JOHN DEAR JOHN ,

NANCY DEAR NANCY,

KENNETH DEAR *%%%¥,

{continued)

552



CHAPTER V
REFERENCE SECTION

IMAGE

(continued)

The prograrﬁ below illustrates a use of IMAGE. It reads and
prints seven numbers and their total. The amounts are printed
with the decimal points lined up.

100 IMAGE $#### . ##

110 IMAGE " #### . ##"
Lines 100 and 110 set up the images. They are the same
except for the dollar sign. To keep the blank space where
the dollar sign was, the string-constant in line 110 is
enclosed in quotation marks.

120 DATA 233.45,-147.95,8.4, 37.263,-51.299,85.2,464

130 TOTAL=0

140 FOR A=1 TO 7

150 READ AMOUNT

160 TOTAL=TOTAL+AMOUNT

170 IF A=1 THEN PRINT USING 100, AMOUNT:PAUSE ELSE PRINT

USING 110, AMOUNT:PAUSE

Prints the values using the IMAGE statements.

180 NEXT A

190 PRINT USING "$####.##", TOTAL: PAUSE
Uses the format directly in the PRINT statement.

563



CHAPTER V
REFERENCE SECTION

I N D I C SUBPROGRAM

Format
CALL INDIC(indicator-number |, indicator-state] )

Description
The INDIC subprogram turns the display indicators on or off.
Indicator-number identifies a specific indicator and must be a

numeric expression which rounds to an integer value from 0
through 17.

Indicator-state is used to turn the indicator on or off. A non-zero
value turns the indicator on and a zero value turns it off. If
indicator-state is omitted, the indicator is turned on.

Indicator-numbers 1 through 6 are available for definition in a
program. They are turned off when a new program is run or the
computer is reset.

The other indicators are used by the system. Changing the
status of a system indicator can cause erroneous results.

The numbers assigned to the display indicators are listed below.
Value Indicator

0 ERROR
16 User indicators
7 LOW

8 ¢

9 SHIFT
10 CTL

11 FN

12 DEG

13 RAD

14 GRAD
15 /0

16 UCL

17 )



CHAPTER V
REFERENCE SECTION

WITH KEYBOARD ”\I PUT

Format _
INPUT [input-prompt;) variable-list {, input-prompt; variable-list]
[-]

Description
The INPUT statement is used to enter data from the keyboard.
When INPUT is executed, program execution is suspended until
data is entered.

Input-prompt is a string expression that must be followed by a
semicolon. If a string constant is used, it must be enclosed in
quotes. Input-prompt is displayed beginning at the current
cursor position as left by previous input/output statements. If
input-prompt is omitted, a question mark followed by a space is
used for the prompt.

Following the prompt, the flashing cursor is displayed. If the
resuitant cursor position is greater than 31, the display is
cleared and the cursor position is set to column 1 prior to
displaying the prompt. When input-prompt is greater than 30
characters, it is truncated to 30 characters.

Variable-list is a list of variables separated by commas. The
variables may be numeric or string, subscripted or
unsubscripted. When more than one variable follows input-
prompt, the prompt is displayed for the first variable only.
Thereafter, the question mark prompt is used until another
input-prompt is encountered. Each value is assigned to the
corresponding variable name before the computer prompts for
the next vaiue.

When entering numeric variables, a numeric expression can be
entered instead of a numeric constant. The expression is
evaluated and the result is assigned to the variable. When
entering string variables, leading and trailing spaces are
ignored. Thus, if a string value includes commas, leading
spaces, or trailing spaces, it must be enclosed in quotes. A
quotation mark within a quoted string is represented by two

quotation marks.
{continued)

5-55



CHAPTER V
REFERENCE SECTION

| N PUT | WITH KEYBOARD

fcontinued)

tf [SHIFT] [ENTER] is pressed during data entry, the input is
ignored and the value of the variable remains unchanged.
Execution proceeds to the next prompt or variable or to the
next statement if the INPUT statement is completed.

If an error occurs during data entry, a descriptive error message
is displayed. After the {ENTER] or {CLR]) key is pressed, the
INPUT statement reprompts and the data can be entered in the
correct form.

When data is entered, the following validations are made.

o |f more than one value at a time is entered, the message
Illegal syntax is displayed and the data must be reentered
one at a time.

e |f a string constant is entered for a numeric variable, the
message String-number mismatch is displayed and a numeric
value must be entered.

¢ |f a number whose absolute value is greater than
9.9999999999999E + 127 is entered, the message Overflov is
displayed and the value must be reentered.

¢ If a number whose absolute value is less than tE—128 is
entered, the value is replaced with 0 and no message is
displayed.

Note: When an INPUT statement Is waiting for data, [CLR]

clears only the input field, [CTL] 4 (home) and [CTL) € (back tab)

move the cursor to the beginning of the input field, and [CTL] -

(right arrow) has no effect.
{continued)

556



CHAPTER V
REFERENCE SECTION

WITH KEYBOARD IN PUT

(continued)

Cross Reference
ACCEPT, INPUT (with fies), LINPUT

Examples
100 INPUT X
Causes the computer to display the question-mark prompt
and wait for aninput value. When [ENTER] is pressed, the
entered value is stored in the variable X.

100 INPUT X$,Y,"ENTER Z";Z(A)
Causes the computer to display the question-mark prompt
and wait for an input value for X$. When [ENTER] is
pressed, the entered value is assigned to X$. The
question-mark prompt is again displayed and the
computer waits for a value to be entered for Y. Then
ENTER Z is displayed and the computer waits for an input
value for Z(A). The subscript is evaluated for Z(A) before
the data value is stored.

§-57



CHAPTER V
REFERENCE SECTION

N PUT WITH FILES

“ormat
INPUT #file-number [, REC numeric-expression), variable-list

Jescription

The INPUT statement is used to read data from files that have
been opened In INPUT or UPDATE mode. Each variable in
variable-list is assigned a value from the file.

File-number Is a number from 0 through 255 that refers to an
open file or device. File number 0 refers to the keyboard and
display and is always open. See INPUT (with keyboard). File-
number is rounded to the nearest integer.

Variable-list Is a list of variables separated by commas. The
variables may be numeric or string, subscripted or
unsubscripted. The data values In the current record are
assigned to the varlables In the list. If the current record does
not contain enough data, another record is read. Successive
records are read until each of the variables Is assigned a value
or the end-of-file is encountered.

The computer interprets data differently when reading DISPLAY
and INTERNAL type data. See “Using External Devices” in
chapter 4.

Display-type data has the same form as data entered from the
keyboard. The values in each record are separated by commas.
Leading and trailing spaces are ignored unless they are part of
a string value enclosed in quotation marks. A quotation mark
within a quoted string is represented by two quotation marks.
When the INPUT statement encounters two adjacent commas,
a null string is assigned to the variable. Each item is checked
to ensure that numeric values are placed in numeric variables
and string values in string variables.

Internal-type data is in binary format, the format used internally
during execution. Each value is preceded by its length. The
INPUT statement uses the lengths to separate and assign the
values to the variables. The only validation performed by the ?
INPUT statement is to ensure that numeric data is from 2 to 8
bytes long.

fcontinued)

568



CHAPTERV
REFERENCE SECTION

WITH FILES ”\l PUT

(continued)

When an INPUT statement terminates, any remaining data
values in the current record are ignored. The next INPUT
statement which accesses the file reads another record.
However, when variable-list ends with a comma, the input is left
pending. That is, the remaining values in the current record are
maintained. The next INPUT statement which accesses the file
assigns the next available data value.

If pending Input data exists when a PRINT, RESTORE, or
CLOSE statement accesses the file, the pending data Is
discarded. If pending output data exists when an INPUT
statement is encountered, the pending data Is output before the
INPUT statement is executed.

REC numeric-expression is used when file-number refers to a
relative record file. Numeric-expression specifies the record to
be read from the file. The first record of a file is record zero.
See “Using External Devices” in chapter 4 and refer to
individual peripheral manuals for information about relative
record flles and the use of the REC clause.

Cross Reference

CLOSE, INPUT, OPEN, PRINT, RESTORE
{continued)

859



CHAPTER V
REFERENCE SECTION

”\l PUT WITH FILES

{continued)

Examples
100 INPUT #1,X$
Stores in X$ the next value available in the file that was
opened as #1.

250 INPUT #23,X,A,1L$
Stores in X, A, and LL$ the next three values from the file
that was opened as #23.

320 INPUT #3,4,B,C,
Stores in A, B, and C the next three values from the file
that was opened as #3. The comma after C creates a
pending input condition.

The following program formats the tape in the Wafertape
peripheral (thereby destroying any data that was previously on
the tape), opens it in update mode, and prints five values to the
file MYFILE on the tape. The values are then reread and
displayed.

100 FORMAT 1

110 OPEN #1,"1.MYFILE", INTERNAL, UPDATE

120 FOR A=1 TO 5

130 READ DATAOUT

140 PRINT #1,DATAQOUT
Lines 120 through 140 read five records from the DATA
statement and write them to file #1.

150 PRINT DATAOUT;"IS WRITTEN TO FILE #1.":PAUSE 1.5

160 NEXT A

170 RESTORE #1

180 FORB=1TO 5

190 INPUT #1,DATAIN

200 PRINT DATAIN;"IS RECORD #";B:PAUSE 1.5

210 NEXT B
Lines 180 through 210 read the five records that were
written on file #1 and then display their values.

220 CLOSE #1, DELETE
Deletes the file.

230 DATA 15,30,72,36,94

560



CHAPTER V
REFERENCE SECTION

INT

Format )
INT(numeric-expression)

Description
The INT function returns the largest integer less than or equal
to numeric-expression.

Examples
250 P=INT(3.999999999)
. Sets P equal to 3.

470 DISPLAY AT(7),INT(4.0) :PAUSE
Displays 4 in column 8.

610 K=INT(-3.0000001)
Sets K equal to —4.

561



CHAPTER V
REFERENCE SECTION

INTIRND

Format
INTRND(numeric-expression)

Description
The INTRND function returns an integer random number
between 1 and the rounded value of numeric-expression. The
message Bad argument is displayed if numeric-expression
rounds to a value less than one.

This function is equivalent to the expression
INT(RND*INT(X + .5))+ 1.

Examples
170 A=INTRND(5*EXP(2))
Sets A equal to a random Integer value between 1 and 37.

330 PRINT INTRND(53) : PAUSE
Prints & random integer value between 1 and 53.

562



CHAPTER V

REFERENCE SECTION
SUBPROGRAM IO
Format )
(device, command [, status-variable) )
CALL 10 (string-variable [, status-variable] )
Description

The 1Q subprogram performs special control operations which
are not available in CC-40 BASIC, but may be supported by
some peripherals. Proper use of this subprogram requires
knowledge of input/output (I/O) data structures and specific
peripheral capabilities. Refer to the peripheral manuals for
examples on the use of the 10 subprogram and the Editor/
Assembler manual for more information.

Device Is the number associated with the peripheral device and
can be from 1 through 255.

Command is a numeric code that specifies the operation to be
performed by the device.

String-variable contains from 2 through 12 characters which
represent the data required for the /O operation. The data
passed to the 10 subprogram are interpreted as binary values.
The string-variable is always returned with 12 characters. The
data length and status may be modified. The format of the
string is shown below.

Field Field

Name Length Description

device 1 peripheral device code

command 1 operation command code

file number 1 file number as assigned in BASIC
record number 2 record number within a file

buffer length 2 size of the buffer for data received

from the peripheral

data length 2 number of characters to be sent to
the peripheral
status 1 status code returned by the device
buffer pointer 2 highest address of the buffer
{continued)

563



CHAPTER V
REFERENCE SECTION

IO SUBPROGRAM

(continued)

Specific requirements for this data are given in the peripherals
manuals and the Editor/Assembler manual.

Status-variable is a numeric variable in which information
regarding the result of the operation is stored. If no IO error
occurred, status-variable is zero. If an /O error occurred, status-
varfable contains the corresponding error code. The inclusion of
a status-variable atfects the computer’'s response to the
occurrence of an /O error. If an /O error occurs when status-
variable is given, no error message is displayed and the eror
cannot be handled by ON ERROR. If an error occurs when
status-variable is omitted, the message is displayed or the error
can be handled by ON ERROR.

Cross Reference
ON ERROR

Example

140 CALL 10(1,1)
Closes device 1. (A command code of 1 is a CLOSE
operation.)



CHAPTER V
REFERENCE SECTION

SUBPROGRAM KEY

Format
CALL KEY(return-variable, status-variable)

Description
The KEY subprogram assigns the ASCIl code of a key pressed
from the keyboard to return-variable. If no key is pressed,
return-variable is set equal to 255. See appendix D for a list of
the ASCII codes. '

Status-variable is used to store a value which represents the
status of the key pressed. A value of 1 means a new key was
pressed since the last CALL KEY was executed. A value of -1
means the same key was pressed as was returned in the
previous CALL KEY. A value of 0 means no key was pressed.

Example
340 CALL KEY(K,S)
350 IF S=0 THEN 340
360 PRINT K;CHR$(K)
370 PAUSE
Returns in K the ASCIl code of any key pressed and in S a
value indicating the status of the key pressed.



CHAPTER V
REFERENCE SECTION

KEYS

Format
KEYS$

Description
The KEY$ function halts program execution until a single key is
pressed. When a key is pressed, execution of the program
continues immediately and KEY$ returns a one character string
that corresponds to the key pressed. Refer to appendix D for a
list of the ASCII character codes.

If [BREAK] is pressed while KEY$ is waliting for a response, the
break occurs as usual.

Example
The following program continues if Y is pressed and stops if N
Is pressed.

100 PRINT "Press Y to continue, N to stop"
110 A$=KEY$

120 IF A$="Y" OR A$="y" THEN 140

130 IF A$="N" OR A$="n" THEN 150 ELSE 110
140 PRINT "Continue":PAUSE 1.5 :GOTO 100
150 PRINT "Stop":PAUSE

566



CHAPTER V
REFERENCE SECTION

LEN

Format
LEN(string-éxpression)

Description
The LEN function returns the number of characters in string-
expression. A space counts as a character.

Examples
170 PRINT LEN("ABCDE"):PAUSE
Prints 5.
230 X=LEN("THIS IS A SENTENCE.")
Sets X equal to 19.

910 DISPLAY LEN(""):PAUSE
Displays 0.

567



CHAPTER V

REFERENCE SECTION
Format
numeric-variable [, numeric-variable ...] =
[LET] numeric-expression
string-variable [, string-variable ...} = string-expression

Description

The LET statement assigns the value of an expression to the
specified variable(s). The computer evaluates the expression on
the right and places the result into the variable(s) on the left. If
more than one variable is specified, they must be separated
with commas. The LET is optional, and is omitted in the
examples in this manual. All subscripts on the left are
evaluated before any assignments are made.

Examples

110 LET T=4
Sets T equal to 4.
170 X,Y,Z=12-4
Sets X, Y, and Z equal to 124.
200 A=3<5
Sets A equal to — 1 since it is true that 3 is less than 5.

350 L$,D$,B$="B"
Sets L$, D$, and B$ equal to “B”.



CHAPTER V
REFERENCE SECTION

LINPUT

Format
[input-prompt;) string-variable
LINPUT < [#file-number, {REC numeric-expression,] |
string-variable

Description
The LINPUT statement assigns an entire input record or the
remainder of a pending input record to string-variable. Unlike
INPUT, LINPUT performs no editing on the input data. Thus, all
characters including commas, leading and trailing spaces,
semicolons, and quotation marks are placed into string-
variable.

Input-prompt is a string expression that must be followed by a
semicolon. If a string constant is used, it must be enclosed in
quotes. Input-prompt is displayed beginning at the current
cursor position as left by previous input/output statements. If
input-prompt is omitted, a question mark followed by a space is
used for the prompt.

Following the prompt, the flashing cursor is displayed. If the
resultant cursor position is greater than 31, the display is
cleared and the cursor position is set to column 1 prior to
displaying the prompt. When input-prompt is greater than 30
characters, it is truncated to 30 characters.

LINPUT can also be used to read display-type data from a file
or a device. File-number is the number of an open file. If the
specified file has pending input, the remainder of the pending
record is read. The message Bad input data is displayed if the
record or partial record is longer than 255 characters.

The optional REC clause may be used with devices which
support retative record (random access) files. Numeric-
expression specifies the record to be accessed. Refer to the
appropriate peripheral manual for more information concerning

relative files.
{continued)

5-69



CHAPTER V
REFERENCE SECTION

LINPUT

(continued)

Cross Reference
INPUT

Examples
300 LINPUT 1L$
Causes the computer to display the question-mark prompt
and store the entered data in LS.
470 LINPUT "NAME: ";NM$
Causes the computer to display NAME: and store the
entered data in NM$.

570



CHAPTER V
REFERENCE SECTION

LIST

Format
[line-group}
LIST € [“device.name”]
[“device.name”, line-group])

Description
The LIST command is used to list program lines. If line-group is
not included, the entire program is listed. When line-group is
given, only those lines are listed. Line-group may specify any of
the following line ranges.

Line-group Effect

a single line number Lists that line.

line number —~ Lists that line and all following lines.
— line number Lists that line and all preceding lines.
line number - line

number Lists that inclusive range of lines.

When device.name is given, the lines are listed to the specified
device. If device.name is omitted, the lines are shown in the
display. During a listing to the display, the lines may be edited.

To suspend a listing to a device, press and hold any key until
the listing stops. Pressing the key again resumes the listing.
Pressing [BREAK] terminates any listing. Pressing 4 terminates
a listing to the display.

Examples
LIST 100
Lists line 100 to the disptay.

LIST 100-200
Lists all lines from 100 through 200 to the display.

LIST "50"
Lists the entire program to peripheral device 50
{presumably a printer).

LIST "50.R=C", -200
Lists all lines up to and including line 200 to peripheral
device 50.

571



CHAPTER V
REFERENCE SECTION

LN

Format
LN(numeric-expression)

Description
The LN function calculates the natural logarithm of numeric-
expression. Numeric-expression must be greater than zero or
the error message Bad argument is displayed. The LN function
is the inverse of the EXP function.

Cross Reference
EXP

Examples

710 PRINT LN(3.4) :PAUSE
Prints the natural logarithm of 3.4, which is 1.223775432.

850 X=LN(EXP(2.7))
Sets X equal to the natural logarithm of e raised to the 2.7
power, which equals 2.7.

910 S=LN(SQR(T))
Sets S equal to the natural logarithm of the square root of
the value of T.

572



CHAPTER V
REFERENCE SECTION

SUBPROGRAM I_QA\D

Format .
CALL LOAD(“device.filename”)

Description
The LOAD subprogram loads assembly language subprograms
from an external storage device into computer memory. These
subprograms are run using the CALL EXEC statement.

More than one subprogram may be loaded into memory. When
space permits, assembly language subprograms may reside in
memory in addition to BASIC programs and subprograms.
When loaded in this manner, these subprograms are appended
to the memory space reserved for system operation. ‘

Device.filename identifies the device where the assembly
language subprogram is stored and the particular file to be
loaded. Device is the number associated with the physical
device and can be from 1 through 255. Filename identifies the
particular file. An error occurs if the LOAD subprogram
determines that the contents of the specified file are not an
assembly language subprogram. Refer to the appropriate
peripheral manuals for the proper device code and for specific
information about the form of filename.

Loaded subprograms remain in memory until NEW ALL is
entered or the system is initialized.

Cross Reference
EXEC

Examples

CALL LOAD("1.MYSUBS")
Loads the subprogram in file MYSUBS on device 1 into
memory.

100 INPUT "ENTER FILE NAME",A$

110 CALL LOAD ("1."8&A$)
Loads the assembly language subprogram entered by the
program user.

573



CHAPTER V
REFERENCE SECTION

[OG

Format
LOG(numeric-expression)

Description
The LOG function calculates the common logarithm of numeric-
expression. Numeric-expression must be greater than zero or
the error message Bad argument is displayed.

Examples
150 PRINT LOG(3.4):PAUSE
Prints the common logarithm of 3.4, which is .531478917.

230 S=LOG(SQR(T))
Sets S equal to the common logarithm of the square root
of the value of T.

574



CHAPTER V
REFERENCE SECTION

NEW

Format
NEW [ALL]

Description
The NEW command prepares the computer for a new program
by deleting the program and variables currently in memory. All
open files are closed.

The NEW ALL command deletes the current program and
variables in memory, clears the user-assigned strings and
assembly language subprograms, cancels any expansion of
memory implemenied by CALL ADDMEM, clears all display
indicators, sets the angle mode to RAD, and closes all open
files.

675



CHAPTER V
REFERENCE SECTION

INEXT

Format
NEXT [control-variable]

Description
The NEXT statement is always paired with a FOR TO STEP
statement for construction of a loop. If control-variable is given,
it must be the same as control-variable in the FOR TO STEP
statement. If control-variable is omitted, NEXT is paired with
the most recent, unmatched FOR TO STEP statement. It is
good programming practice to include controf-variable.

When FOR TO STEP...NEXT loops are nested, the NEXT
statement for the inside loop must appear before the NEXT
statement for the outside loop.

See FOR TO STEP for a description of the looping process.

Cross Reference
FOR TO STEP

Example

The program below illustrates a use of the NEXT statement.
The vatues printed are 30 and -2.

100 TOTAL=0

110 FOR COUNT=10 TO O STEP -2
120 TOTAL=TOTAL+COUNT

130 NEXT COUNT

140 PRINT TOTAL; COUNT : PAUSE

576



CHAPTER V
REFERENCE SECTION

NUMBEIR

NUMBER [initial-line] [, increment]

Description
The NUMBER (or NUM) command generates sequenced line
numbers. These line numbers are displayed with a trailing
space for convenience when entering program lines. Al that
needs to be typed in are the statement(s). After [ENTER} is
pressed, the line is stored in memory and the next line number
is displayed.

If initial-line and increment are not specified, the line numbers
start at 100 and increase in increments of 10. Otherwise, lines
are numbered according to the initial-line and increment
specified. If a line already exists, that line is displayed and may
then be replaced or changed using the edit functions. If the line
number is altered, the sequence of generated line numbers
continues from the new line number.

To terminate the numbering process, press [ENTER] when a line
comes up with no statements on it or press [BREAK] when any
line is displayed.

Cross Reference
RENUMBER

Examples
NUM 110
Instructs the computer to number starting at 110 with
increments of 10.
NUM 105,5
Instructs the computer to number starting at line 105 with
increments of 5.

577



CHAPTER V
REFERENCE SECTION

NUMERIC

Format
NUMERIC(string-expression)

Description
The NUMERIC function tests whether string-expression is a
valid representation of a numeric constant. NUMERIC returns a
value of —1 (true) if string-expression is a valid numeric
constant, and O (false) if string-expression is not a valid
numeric constant.

Leading and trailing blanks in string-expression are ignored.
NUMERIC can be used to test if the VAL function will work
correctly on a string which is meant to represent a number.

Cross Reference
VAL

Example
The following program segment determines If an entry from the
keyboard is a valid numeric constant. If it is not, an error
message Is displayed until data Is reentered. If the data Is a
numeric constant, it is stored in variable A.

100 LINPUT "ENTER VALUE: ";A$

110 IF NOT NUMERIC(A$) THEN LINPUT "ERROR, REENTER: ";
A$:GOTO 110

120 A=VAL(A$)

578



CHAPTER V
REFERENCE SECTION

OLD

Format
OLD “device.filename”

Description
The OLD command loads a program from an external device
into memory. OLD closes all open files and removes the
program currently in memory before loading the program. A
BASIC program can be stored on device.filename with the
SAVE command.

Device.filename identifies the device where the program is
stored and the name of the file. Device is the number
associated with the physical device and can be from 1 through
255. Filename identifies the particular file. Refer to the
peripheral manuals for the device code for each peripheral
device and for specific information about the form of filename.

Note: If filename specifies a data file rather than a program file,
it may be necessary to press the reset key.

Cross Reference
SAVE

Example

OLD "1.MYPROG"
Loads the program MYPROG into the computer’'s memory
from peripheral device 1.

579



CHAPTER V
REFERENCE SECTION

ON BREAK

Format STOP
ON BREAK q NEXT
ERROR

Description

The ON BREAK statement determines the action taken when a
breakpoint occurs. After the ON BREAK statement is executed,
breakpoints are handled according to the option selected.

ON BREAK STOP restores the normal function of BREAK,
which is to halt program execution and display the standard
breakpoint message. This option is set when a program is run.

ON BREAK NEXT causes breakpoints to be ignored. When a
breakpoint that immediately precedes a line number is
encountered, the breakpoint is ignored and the program line is
executed. The [BREAK] key is also ignored. However, a BREAK
statement that does not contain a fine-number-list halts the
program even though ON BREAK NEXT is in effect. ON BREAK
NEXT can be used to ignore breakpoints which you have
specified in a program for debugging purposes. Note: Since the
[BREAK] key is ignored, the reset button must be pressed to
stop a program that does not stop normally.

ON BREAK ERROR causes breakpoints to be treated as errors,
which allows the ON ERROR statement to be used to process
breakpoints. See ON ERROR for more information.

The ON BREAK statement remains in effect until another ON
BREAK statement changes it. When a subprogram ends, the
ON BREAK status in effect when the subprogram was called is
again in effect.

Cross Reference

BREAK, ON ERROR

{continued)

580



CHAPTER V
REFERENCE SECTION

ON BREAK

(continued)

Example
The program below iflustrates the use of ON BREAK. When the
message Break is displayed, press [CLR] and enter CONTINUE.

.100 BREAK 140
Sets a breakpoint in line 140.

110 ON BREAK NEXT
Sets breakpoint handling to ignore breakpoints.

120 BREAK
A breakpoint occurs in line 120 in spite of line 110. Press
[CLR] and CONTINUE.

130 FOR A=1 TO 500

140 PRINT " (BREAK) IS DISABLED"

150 NEXT A
The [BREAK]) key does not work while lines 130 through
150 are being executed.

160 ON BREAK STOP
Restores the normal use of [BREAK].

170 FOR A=1 TO 500

180 PRINT "NOW (BREAK) WORKS"

190 NEXT A
The [BREAK] key again works while lines 170 through 190
are being executed.

581



CHAPTERV
REFERENCE SECTION

ON _ERROR

Format

STOP
ON ERROR {Iine-number}

Description
The ON ERROR statement determines the action taken when
an error occurs during the execution of a program. After the ON
ERROR statement is executed, any errors that occur are
handled according to the option selected.

ON ERROR STOP restores the normal way of handling errors
which is to hait program execution and print a descriptive error
message. This option is set when a program is run.

ON ERROR /ine-number transfers control to the specified line
when an error occurs. Line-number must be the beginning of an
error-processing subroutine. Once an error has occurred and
control has been transferred, error handling reverts to ON
ERROR STOP. If the ON BREAK ERROR option was selected, it
is changed to ON BREAK NEXT. For an error-processing
subroutine to handle any new errors, an ON ERROR
line-number must be executed again.

The ON ERROR statement remains In effect untll another ON
ERROR statement changes it. If a subprogram ends, and no
errors occurred while the subprogram was executing, the ON
ERROR status In effect when the subprogram was called is
again In effect. If an error occurred in a subprogram, any
changes in the error handling status made by the error handler
is in effect when the subprogram ends.

The main program and subprograms can share the same error-
processing subroutine. Subroutines called by GOSUB cannot be
shared.

Cross Reference

ON BREAK, ON WARNING, RETURN (with ON ERROR)
(continued)

582



CHAPTER V
REFERENCE SECTION

ON ERROR

{continued)

Example
The program below illustrates the use of ON ERROR.

100 ON ERROR 150
Causes any error to pass control to line 150.
110 X$="Ar
120 X=VAL(X$)
Causes an error.
130 PRINT X;"SQUARED IS";X*X:PAUSE 2
140 STOP
150 REM ERROR SUBROUTINE
160 ON ERROR 220
Causes the next error to pass control to line 220.
170 CALL ERR(CODE,TYPE, FILE,LINE)
Determines the error using CALL ERR.
180 IF LINE< >120 THEN RETURN 220
Transfers control to line 220 if the error is not in the
expected line.
190 IF CODE< >29 THEN RETURN 220
Transfers control to line 220 if the error is not the one
expected.
200 X$="5I'
Changes the value of X$ to an acceptable value.
210 RETURN
Returns control to the line in which the error occurred.
220 REM UNKNOWN ERROR
230 PRINT "ERROR";CODE;" IN LINE";LINE:PAUSE
Reports the nature of the unexpected error and the
program stops.

583



CHAPTER V
REFERENCE SECTION

ON GO0UB

Format

ON numeric-expression GOSUB line-number1 [, line-number2 ...)

Description

The ON GOSUB statement determines which subroutine to
execute by evaluating numeric-expression. If the value of
numeric-expression is 1, the subroutine starting at line-number1
is executed; if 2, the subroutine starting at line-number2 is
executed, and so forth. Each line number must be the first
statement of a subroutine. If numeric-expression is 0, negative,
or larger than the list of line numbers, the error message Bad
value is displayed. If numeric-expression is a decimal number,
it is rounded.

After the RETURN statement of the subroutine Is executed,
control returns to the statement following ON GOSUB. ON
GOSUB may not be used to transfer control into or out of a
subprogram.

Cross Reference

GOSUB, RETURN (with GOSUB)

Examples

140 ON X GOSUB 1000,2000,300
Transfers control to 1000 if X is 1, 2000 if X is 2, and 300 if
Xis 3.

240 ON P-4 GOSUB 200,250,300,800,170
Transfers control to 200 if P-4 is 1 (P is 5), 250 if P-4 is
2,300if P-—4is 3,800 if P-4is4,and 170 if P-4 is 5.

584



CHAPTER V
REFERENCE SECTION

ON GOIO

ON numerie-expression GOTO line-number1 [, line-number2 ..]

Description
The ON GOTO statement determines where to transfer control
by evaluating numeric-expression. If the value of numeric-
expression is 1, control is transferred to line-numbert; if 2,
control is transferred to line-number2, and so forth. If numeric-
expression is 0, negative, or greater than the list of line
numbers, the error message Bad value is displayed. |f numeric-
expression is a decimal number, it is rounded.

ON GOTO may not be used to transfer control into or out of a
subprogram.

Cross Reference
GOTO

Examples
130 ON X GOTO 1000,2000, 300
Transfers control to 1000 if X is 1, 2000 if X is 2, and 300 if
X is 3. The equivalent statement using an IF THEN ELSE
statement is 130 IF X=1 THEN 1000 ELSE IF X=2 THEN 2000
ELSE IF X=3 THEN 300 ELSE PRINT "Bad value":
PAUSE: STOP, which is more than 80 characters.

210 ON P-4 GOTO 200,250, 300,800,170
Transfers control to 200 if P—4is 1 (P is 5), 250 if P—4 is
2,300if P-4is3,800ifP-4is4,and 170 if P-4 is 5.



CHAPTER V
REFERENCE SECTION

ON _WARNING

Format PRINT
ON WARNING
ERHOF!

Description

The ON WARNING statement determines the action taken when
a warning occurs during the execution of a program. After the
ON WARNING statement is executed, any warning is handled
according to the ON WARNING option selected.

ON WARNING PRINT restores the normal use of warnings
which is to print a descriptive warning message and continue
program execution after the [ENTER) or [CLR] key is pressed.
This option is selected when a program is run.

ON WARNING NEXT causes the program to continue execution
without printing any message.

ON WARNING ERROR causes the occurrence of a warning to
be treated as an error, allowing effective handling of warnings
with ON ERROR statements.

The ON WARNING statement remains in effect until another
ON WARNING statement changes it. When a subprogram ends,
the ON WARNING status in effect when the subprogram was
called is again in effect.

Cross Reference

ON ERROR
{continued)



CHAPTER V
REFERENCE SECTION

ON WARNING

{continued)

Example

The program below illustrates the use of ON WARNING.

100 ON WARNING NEXT
Sets warning handling to go to the next statement.

110 PRINT 110,5/0:PAUSE
Prints the result without any message.

120 ON WARNING PRINT
Sets warning handling to the normal option, which is to
print a message and allow execution to continue when a
warning occurs.

130 PRINT 130,5/0:PAUSE
Prints the warning. When [ENTER] or [CLR] is pressed,
prints 130 followed by the value of 5/0.

140 ON WARNING ERROR
Sets warning handling to treat warnings as errors.

150 PRINT 150,5/0:PAUSE
Prints the warning message and treats the warning as an
error.

160 PRINT 160:PAUSE
Not executed because execution stops in line 150.

587



CHAPTER V
REFERENCE SECTION

OPEN

Format
OPEN #file-number, “'device.filename” |, file-organization]
[, file-type} [, open-mode] [, record-length)

Description
The OPEN statement enables a BASIC program to use data
files and peripheral devices by providing a link between file-
number and a file or device. In setting up this link, the OPEN
statement specifies how the file or device can be used (for
input or output) and how the file is organized. The OPEN
statement must be executed before any BASIC statement in a
program attempts to use a file or device requiring a file number.

If an OPEN statement references a file that already exists, the
attributes in the OPEN statement must be the same as the
attributes of the file.

File-number is a number from 1 through 255 that the OPEN
statement associates with a file or device. This file-number is
used by all the input/output statements that access the file or
device. File number 0 is the keyboard and display of the
computer. It cannot be used for other files and is always open.
If file-number specifies a file that is already open, an error
occurs. File-number is rounded to the nearest integer.

Device.tilename is an actual peripheral device number and
other device dependent information. Device.fileiame may be a
string expression. Device is the number associated with the
physical device and can be from 1 through 255. Filename
supplies information to the peripheral device for the OPEN
statement. For example, with an external storage device,
tilename specifies the name of the file. With other devices,
filename specifies options such as parity, data rate, etc. Refer
to the peripheral manuals for the device code for each
peripheral device and for specific information about the form of

filename,
{continued)

5-88



CHAPTER V
REFERENCE SECTION

OPEN

{continued)

The file attributes listed below may be in any order or may be
omitted. When an attribute is omitted, defaults are used.

File-organization specifies either a sequential or a relative
(random access) file. Records in a sequential file are read or
written in sequence from beginning to end. Records in a
RELATIVE (or random access) file can be read or written in any
record order, including sequentially. Omit file-organization for
sequential files or specify RELATIVE for random access files.

File-type may be either DISPLAY or INTERNAL. DISPLAY
specifies that the data is written in ASCIl format. INTERNAL
specifies that the data is written in binary format. Binary
records take up less space, are processed more quickly by the
computer, and are more efficient for recording data on external
storage devices. However, if the information is going to be
printed or displayed for people to read, DISPLAY format should
be used. If file-type is omitted, DISPLAY is assumed.

Open-mode instructs the computer to process the file in
UPDATE, INPUT, OUTPUT, or APPEND mode. UPDATE specifies
that data may be both read from and written to the file. INPUT
specifies that data may only be read from the file. OUTPUT
specifies that data may only be written to the file. APPEND
specifies that data may only be written at the end of the file. If
open-mode is omitted, UPDATE is assumed.

Note that if a file already exists on external storage, specifying
OUTPUT mode resuits in new data being written over the
existing data.

Record-length consists of the word VARIABLE followed by a
numeric expression that specifies the maximum record length
for the file. The maximum allowable record is dependent on the
device used. If record length is omitted, the peripheral device

specifies a default record-length.
{continued)

589



CHAPTER V
REFERENCE SECTION

OPEN

fcontinued)

Cross Reference
CLOSE, INPUT, LINPUT, PRINT, RESTORE (Also see chapter 4.)

Examples
100 OPEN #23,"1.X", INTERNAL, UPDATE
Opens the file named “X"” on peripheral device 1 and
enables any input/output statement to access the file by
using the number 23. The type of the file is INTERNAL.
Since the file is opened in UPDATE mode, data can be
both read from and written to the file.

150 OPEN #243,A%$&" . ABC" , INTERNAL
If A$ equals “1”, opens a file on device 1 with a name of
ABC. The file type is INTERNAL, UPDATE mode i$
assumed, and the device specifies the default record
length.

590



CHAPTER V
REFERENCE SECTION

PAUSE

Format
[lumeric-expression)
PAUSE {[ ALL] }
Description

The PAUSE statement suspends program execution either for a
specified number of seconds or until the [CLR] or [ENTER] key is
pressed. If numeric-expression is omitted, the underline cursor
is displayed in column one to indicate an Indefinite pause is
occurring. The cursor control keys can then be used to view the
contents of the 80-column line. Execution continues when
either [ENTER] or [CLR] is pressed.

If numeric-expression is given, PAUSE suspends program
execution for the number of seconds in the absolute value of
numeric-expression. If numeric-expression is positive, the timed
pause can be overridden by pressing [ENTER] or [CLR]. If
negative, the timed pause cannot be overridden. The effective
resolution is approximately one tenth of a second. If numeric-
expression Is less than .1, the program does not pause. During
a timed pause, the cursor is not displayed and the display
cannot be scrolled.

The PAUSE ALL statement suspends program execution each
time a complete output line is sent to the display. Execution
continues when the [CLR] or [ENTER] key is pressed. PAUSE ALL
remains in effect until a timed PAUSE of length zero is
executed.

PAUSE ALL remains in effect when a subprogram is called. if
PAUSE ALL is modified in a subprogram, it is again in effect
when the subprogram ends.

Cross Reference
DISPLAY, PRINT

{continued)

591



CHAPTER V
REFERENCE SECTION

PAUSE

{continued)

Examples
120 PAUSE 2.2
Halts execution for 22 seconds or until the [CLR] or
[ENTER] key is pressed.

190 PAUSE
Halts execution until the [CLR] or [ENTER] key is pressed.

The following program changes degrees Fahrenheit to degrees
Celsius.

100 PRINT "ENTER DEG: *;
Prints the prompt ENTER DEG: . The pending print, created
by the semicolon at the end of the PRINT statement,
causes the prompt to be displayed until data is entered.

110 ACCEPT DG

120 PRINT DG;"DEG ="; (DG-32)¥5/9; "DEGREES C" : PAUSE
Prints the answer. The PAUSE statement that follows the
PRINT statement causes the answer to be displayed until
the [ENTER] or {CLR] key is pressed.

130 GOTO 100

592



CHAPTER V
REFERENCE SECTION

SUBPROGRAM PE E K

Format ,
CALL PEEK(address, numeric-variable1 |, numeric-variable2 ..] )

Description
The PEEK subprogram is used to read the contents of memory
locations. Starting at the memory location specified by address,
the value of that byte of memory is assigned to numeric-
variable1, the value of the next byte to numeric-variable2, and
s0 forth. The number of variables listed determines how many
bytes are read.

Address must be a numeric expression from 0 to 65535. The
values assigned to the variables are in the range 0 through 255.

Cross Reference
POKE

Example

100 CALL PEEK(2096,;1,X2,X3,X4)
Returns the values in locations 2096, 2097, 2098, and 2099
In variables X1, X2, X3, and X4, respectively.

593



CHAPTER V
REFERENCE SECTION

P

Format
PI

Description
The PI function returns the value of = as 3.14159265359.

Example
130 VOLUME=4/3%PI*R A3
Sets VOLUME equal to four thirds times Pl times the
radius cubed, which is the volume of a sphere with a
radius of R.

5-94



CHAPTER V
REFERENCE SECTION

SUBPROGRAM POKE

Format _
CALL POKE(address, byte? [, byte2..] )

Description
The POKE subprogram is used to write data into memory
locations. The value of byte? is stored in the memory location
specified by address, the value of byte2 is stored in the next
memory location, and so forth.

The value of each data byte can be from 0 through 255. If the
value is greater than 255, it is repeatedly reduced by 256 until it
is from 0 through 255. Using a byte value greater than 32767
causes an error.

Indiscriminate use of this statement may destroy the program
currently in memory and require that the computer be reset to
continue.

Cross Reference
PEEK

Example

200 CALL POKE(ADDR, 162,10,17)
Places the values 162, 10, and 17 in the locations ADDR,
ADDR + 1, and ADDR + 2 respectively.

595



CHAPTER V
REFERENCE SECTION

PO

Format
POS(string1, string2, numeric-expression)

Description
The POS function returns the position of the first occurrence of
string2 in string1. The search begins at the position specified
by numeric-expression. 1f no match is found, the function
returns a value of zero.

Examples

110 X=POS{"PAN","A",1)
Sets X equal to 2 because A is the second letter in PAN.

140 Y=POS("APAN","A",2)
Sets Y equal to 3 because the A in the third position in
APAN Is the first occurrence of A in the portion of APAN
that was searched.

170 Z=POS("PAN","A",3)
Sets Z equal to 0 because A was not in the part of PAN
that was searched.

290 R=POS{"PABNAN","AN",1)
Sets R equal to 5 because the first occurrence of AN
starts with the A in the fifth position in PABNAN.

5-96



CHAPTER V

REFERENCE SECTION
WITH DISPLAY PI? I NT
Format
PRINT [USING [pe-number ion | Wrintlist]
Description

The PRINT statement may be used to format and write data to
the display. USING may be used to specify a format for the
items in print-fist. Refer to IMAGE and USING for a description
of format definition and its effect upon the PRINT statement. If
print-list is omitted, the PRINT statement clears the display.

Print-list consists of print items and print separators. Print
items are numeric and string expressions that are displayed
and TAB functions that control print positioning. Print
separators are commas or semicolons that indicate the
position of print items in the display.

Print Items

During execution of a PRINT statement, the values of the
expressions in print-list are displayed in order from left to right
in the positions determined by the print separators and TAB
functions.

® String expressions are evaluated to produce a string result.
String constants must be enclosed in quotation marks.
Blank spaces are not inserted before or after a string. To
print a blank space before or after a string, include it in the
string or insert it separately with quotes.

e Numeric-expressions are evaluated and displayed with a
trailing space. Positive values are printed with a leading
space (instead of a plus sign) and negative numbers are
printed with a leading minus sign.

* The TAB function specifies the starting position in the
print line for the next item in the print-list. See TAB for

more information.
{continued)

597



CHAPTER V
REFERENCE SECTION

PR' NT | WITH DISPLAY

(continued)

Print Separators

You must place at least one print separator between adjacent
print items. Multiple print separators in a PRINT statement are
evaluated from left to right.

* The semicolon prints the next item in the print-list
immediately after the last print item, with no extra spaces
between the values.

e The comma prints the next print item at the beginning of
the next print field. The print fields are 15 characters long
and are located at columns 1, 16, 31, 46, 61, and 76 for an
80-column line. If the current column position is past the
start of the last print field, the comma causes the next
printed item to be displayed in the next line.

If a print item Is longer than the remainder of the current line, it
is displayed at the start of the next line. If a numeric print item
fits on the current line without its trailing space, it is printed on
the current line. If a print item is longer than 80 characters, the
first 80 characters are printed on one line and the remaining
characters are printed on successive lines, 80 characlers at a
time.

Pending Prints

If the print-list is not followed by a comma or a semicolon,
the remainder of the 80-column line is cleared. Therefore, the
next input/output statement must begin a new line.

Using a comma or a semicolon after print-list creates a pending
print which causes the remainder of the line not to be cleared.
Instead the computer spaces over to the start of the next field
if a comma ended the PRINT statement, or does not space at
all if a semicolon ended the statement. The next /O statement
displays or accepts information beginning at the current
column position unless the statement changes the position. -

A pending print can be used to create an input prompt for the
ACCEPT or INPUT (with display) statement. The next INPUT
statement places its prompt after the pending print. See
ACCEPT and INPUT (with display) for more informatijon.
(continued)

5-98



CHAPTER V
REFERENCE SECTION

WITH DISPLAY PR' N_I_

(continued)

Numeric Formats

Numbers are printed in either normal decimal form or scientific
notation. Scientific notation is used when more significant
digits can be shown.

When a number is printed in normal decimal form, the following
conventions are observed.
¢ Integers are printed without a decimal point.
¢ Non-integers are printed with a decimal point. Trailing
zeros in the fractional part are omitted. If the number has
more than ten significant digits, the value is rounded to
ten digits.
¢ A number whose absolute value is less than one is printed
without a zero to the left of the decimal point.
A number printed in scientific notation is in the following form.
mantissa E exponent
When a number is printed in sclentific notation, the following
conventions are observed.
¢ The mantissa is printed with 7 or fewer digits with one
digit always to the left of the decimal.
¢ Trailing zeros are omitted in the fractional part of the
mantissa. .
* The exponent is displayed with a plus or minus sign
followed by a two or three digit exponent.
¢ When the exponent is two digits, the mantissa Is limited to
seven digits. When the exponent is three digits, the
mantissa is limited to six digits. When necessary, the
mantissa is rounded to the appropriate number of digits.

Cross Reference

ACCEPT, DISPLAY, IMAGE, INPUT, PAUSE, TAB, USING
{continued)



CHAPTER V
REFERENCE SECTION

PR' NT WITH DISPLAY

(continued)

Examples
100 PRINT
Prints a blank line.
210 PRINT "THE ANSWER IS"; ANSWER : PAUSE
Prints THE ANSWER IS immediately followed by the value of
ANSWER.
320 PRINT X,Y/2 : PAUSE
Prints the value of X and in the next field the value of Y/2.
450 PRINT “NAME: ";

460 ACCEPT N§
Prints NAME: and accepts the entry after the prompt.

5-100



CHAPTER V
REFERENCE SECTION

WITH FILES Pl?l N-I_

Format
PRINT #file-number [, REC numeric-expression]

line-number int-li
[, USING string-expression 1L printdist]

Description
The PRINT statement may be used to format and write data to
a file or device. File-number is a number from 0 through 255
that refers to an open file or device. The file must have been
opened in OUTPUT, UPDATE, or APPEND mode. File-number 0
refers to the display, which is always open. File-number is
rounded to the nearest integer.

REC numeric-expression may appear only when file-number
refers to a relative record file. Refer to chapter 4 and the
individual peripheral manuals for information about relative
record files and the proper use of REC. Numeric-expression is
evaluated to designate the specific record number of the file to
which to write.

USING may be used to specify an exact format for a display-
type file. Refer to the IMAGE and USING sections for a
description of format definition and its effect upon the PRINT
statement. Including USING in a reference to an internal-type
data file results in an error.

Print-list consists of print items and print separators. Print

_items are numeric and string expressions that are displayed
and TAB functions that control print positioning. Print
separators are commas or semicolons that indicate the
position of print items in the display.

Print-list is interpreted in order from left to right. The form of
the output depends upon the type (DISPLAY or INTERNAL) of
file or device. See OPEN and chapter 4 for a description of
tile-type.

(continued)

5-101



CHAPTER V
REFERENCE SECTION

Ppl NT WITH FILES

{continued)

Display-type Files
During execution of a PRINT statement that refers to a display-
type file or device, print-list is evaluated as follows.

e String-expressions are evaluated to produce a string result.
String constants must be enclosed in quotation marks.
Blank spaces are not inserted before or after a string. To
print a blank space before or after a string, include it in the
string or insert it separately with quotes.

* Numeric-expressions are evaluated and displayed with a
trailing space. Positive values are printed with a leading
space (instead of a plus sign) and negative numbers are
printed with a leading minus sign.

* The TAB function specifies the starting position in the
print line for the next item In print-list. See TAB for more
information.

You must place at least one print separator between adjacent
print items. Multiple print separators in a PRINT statement are
evaluated from left to right.

¢ The semicolon prints the next item in the print-list
immediately after the last print item, with no extra spaces
between the values.

* The comma prints the next print item at the beginning of
the next print field. The print fields are 15 characters long
and are located at columns 1, 16, 31, and so forth. If the
current column position is past the start of the last print
field, the comma causes the next printed item to be
printed in the next record.

If a print item is longer than the remainder of the current
record, the current record is printed and the print item is
printed at the start of the next record. If a numeric print item
fits in the current record without its trailing space, it is printeg"
in the current record. If a print item is longer than the record
length, it is divided into segments that are the length o?the
record until the last segment is the length of the recard or less.
The segments are then printed in successive records.

(continued)

5-102



CHAPTER V
REFERENCE SECTION

WITH FILES PR! NT

{continued)

Internal-type Files
During execution of a PRINT statement that refers to an
internal-type file or device, print-list is evaluated as follows.
» String expressions are evaluted and printed in the record in
internal string representation.
. Numeric expressions are evaluated and printed in the
record in internal numeric representation.
¢ The TAB function causes an error when used in printing to
an internal-type file.

You must place at least one separator between adjacent print
items. Multiple print separators in a PRINT statement are
evaluated from left to right.
¢ The semicolon prints the next item In the print-list
immediately after the last print item, with no extra spaces
between the values.
e The comma functions exactly the same as the semicolon
separator.

If a print item is longer than the remainder of the current
record, the current record is printed and the print item is written
at the start of the next record. If a print item is longer than the
record length, an error occurs.

Pending Prints

If the print-list ends without a comma or a semicolon, the
record is immediately written to the file. The next input/output
statement which accesses the file begins a new record.

Using a comma or a semicolon after print-list creates a pending
print. If the print-list ends with a comma or semicolon, the
current record is not written. The computer spaces over to the
start of the next field if a comma ended the PRINT statement,
or does not space at all if a semicolon ended the statement.
The next output statement which accesses this file prints data
on this same record, beginning at the current column position

unless the statement changes the position.
(continued)

5103



CHAPTER V
REFERENCE SECTION

PR' NT WITH FILES

{continued)

When print-list is omitted, but there is a pending output record,
the PRINT statement writes the pending record. When there is
no pending record, the result depends upon the file type. if the
file is display-type, the PRINT statement writes a blank (zero
length) record. If the file is internal-type, an error occurs
because internal-type files do not support zero length records.

Cross Reference
IMAGE, INPUT (with files), OPEN, TAB, USING

Examples
150 PRINT #32,4,B,C,
Causes the values of A, B, and C to be printed to the next
record of the file that was opened as number 32. The final
comma creates a pending print condition. The next PRINT
statement accessing file #32 is printed to the same record
as this PRINT statement.

The program below writes data to a file.

100 OPEN #5,"1.MYPROG", INTERNAL, UPDATE
Opens file number 5. MYPROG is created if it does not
already exist on device number 1.
110 DIM A(50)
Dimensions an array for 51 values.
120 B=0
Initializes the summation variable.
130 FOR J=1 TO 50
Lines 130 through 180 facilitate data input.
140 PRINT "ENTER VALUE";
150 ACCEPT A(J)
160 B=B+A(J)
170 PRINT #5, A(J);
Value of A(J) is written to the file.
180 NEXT J
190 PRINT #5,B
Value of summation variable is written to the file.
200 CLOSE #5

5-104



CHAPTER v
REFERENCE SECTION

RAD

Format
RAD

Description

The RAD statement sets the units for angte calculations to
radians. After the RAD angle setting is selected, all entered and
calculated angles are measured in radians. The RAD setting is
selected when NEW ALL is entered or the system is initialized.

Cross Reference
DEG, GRAD

5105



CHAPTER V
REFERENCE SECTION

RANDOMIZE

Format
RANDOMIZE [numeric-expression]

Description
The RANDOMIZE statement sets the random number generator
to an unpredictable sequence.

If RANDOMIZE is followed by a numeric-expression, the same
sequence of random numbers is produced each time the
statement is executed with that value. Different values give
different sequences.

Example
The program below illustrates a use of the RANDOMIZE
statement. It accepts a value for numeric-expression and prints
the first 10 random numbers obtained using the RND function.
Press [BREAK] to stop the program.

100 INPUT "SEED: ";S

110 RANDOMIZE S

120 FOR A=1 TO 10:PRINT A;RND:PAUSE 1.1
130 NEXT A

140 GOTO 100

5-106



CHAPTER V
REFERENCE SECTION

READ

Format
READ variable-list

Description
The READ statement is used with the DATA statement to
assign values to variables. Variable-list consists of string and
numeric variables, either subscripted or unsubscripted,
separated by commas. The value read in the DATA statement
must correspond to the type of the variable to which it is
assigned in READ. Note that any number is a valid string. When
two adjacent commas are encountered in the data list, a null
string is read.

The READ statement begins reading from the first DATA
statement in the current program or subprogram and proceeds
to the next DATA statement when the current data list has
been read. A single READ statement may read from more than
one DATA statement, and several READ statements may read
from a single DATA statement. If a READ statement does not
read all of the current data list, the next READ statement
begins with the first unread item in the list. An attempt to read
data after all the data in the current program or subprogram
has been read results in an error.

The RESTORE statement can be used to alter the order in
which DATA statements are read.

READ can read data only from a DATA statement that is in the
same program or subprogram as the READ statement. Each
time a subprogram is called, data is read from the first DATA
statement whether or not the subprogram has been attached.
(See ATTACH in this chapter.)

Cross Reference
ATTACH, DATA, RESTORE

5107



CHAPTER V
REFERENCE SECTION

[RELEASE

Format

RELEASE sub-name1 |, sub-namez2 ...}

Description

The RELEASE statement is used to release attached
subprograms. (See ATTACH in this chapter). When RELEASE is
executed, the allocated memory space for the subprogram
variables is released, and thus the values are destroyed.

Releasing a repeatedly used subprogram increases execution
time for a program. However, the subprogram variables do not
require memory space between calls to the subprogram.

A RELEASE statement may appear in the main program or in
any subprogram, including a subprogram that it releases. If a
sub-name is specified for an active subprogram, the variables
are not released until the subprogram terminates. If sub-name
specifies an assembly language program, an error occurs. If a
specified sub-name is not attached or does not exist, that sub-
name parameter is ignored.

Cross Reference

ATTACH

(continued)

5-108



CHAPTER V
REFERENCE SECTION

RELEASE

{continued)

Example

The following program illustrates the use of the RELEASE
statement.

100 ATTACH X

110 FOR J=1 TO 5

120 CALL X

130 NEXT J
Prints 0 1 2 3 4 because the variable values are not
initialized when X is called and are not destroyed when X
is terminated.

140 RELEASE X:PRINT
Releases subprogram X and clears the display.

150 FOR J=1 TO 5

160 CALL X

170 NEXT J
Prints 0 0 0 0 0 because the variable values in
subprogram X are initialized each time it is called.

180 SUB X

190 PRINT J; :PAUSE 2

200 J=J+1

210 SUBEND

5-109



CHAPTER V
REFERENCE SECTION

RELMEM

Format
CALL RELMEM(numeric-expression)

Description
The RELMEM subprogram releases memory previously reserved
by the GETMEM subprogram. The value given in numeric-
expression must be the same address returned by GETMEM
when the memory space was reserved. If the wrong value is
specified for numeric-expression, the contents of memory,
including the program, can be lost.

Cross Reference
GETMEM, PEEK, POKE

Example
The following example acquires some memory with a CALL
GETMEM. POKE is used to store an assembly language
program in the memory. When the subprogram is no longer
needed, the memory is returned to the system with CALL
RELMEM.

100 CALL GETMEM (50,ADDR)
110 CALL POKE (ADDR, ...)
120 CALL EXEC (ADDR)

320 CALL RELMEM(ADDR)

5110



CHAPTER V
REFERENCE SECTION

REM

Format
REM [character-string]

Description
The REM statement allows you to enter explanatory remarks
into your program. Remarks may give any type of information,
but usually explain a section of a program. Character-string
may include any displayable character.

Remarks are not executed, but they do take up space In
memory. Any character that follows REM, including the
statement separator symbol () is considered part of the remark.
Therefore, if REM is part of a multiple statement line, it must
be the last statement on the line.

The exclamation point (!) is called a tail remark symbol and
may be used instead of the word REM. The exclamation point
can appear as the first statement on a line or after the last
statement in a multiple statement line. If the exclamation point
appears after a statement, the statement separator () is not
needed. Using the tail remark symbol saves space in the listed
form of the program.

Example
150 REM BEGIN SUBROUTINE
Identifies a section beginning a subroutine.

270 SUBTOTAL=L+B ! Calculate subtotal
Identifies statements which perform a specific
calculation.

5111



CHAPTER V
REFERENCE SECTION

RENUNVIBEIR

Format

RENUMBER [initial-line] [, increment]

Description

The RENUMBER (or REN) command changes the line numbers
of a program. If no initial-line is provided, the renumbering
starts with 100. If no increment is given, an increment of 10 is
used.

REN also changes all references to line numbers so that they
refer to the same lines of code as before. If a statement refers
to a line number that does not exist, a warning is displayed and
the line number is replaced with 32767, which is not a valid line
number.

If the values entered for initial-line and increment result in the
creation of line numbers larger than 32766, the error message
Bad line number is displayed and the program is left
unchanged.

Example

REN
Renumbers all lines to start with 100 and increment by 10.

5112



CHAPTER V
REFERENCE SECTION

RESIORE

Format
] {line-number)
RESTORE [#file-number [, REC numeric-expression] ]}
Description

The RESTORE statement is used to control the order in which
data is read from DATA statements or from a file.

RESTORE specifies that the next READ statement executed
accesses the first item in the DATA statement specified by line-
number. Line-number must be in the same program or
subprogram as the RESTORE statement. If no /ine-number is
given, the DATA statement with the lowest numbered line in the
current program or subprogram is used. If line-number is not a
DATA statement, the next DATA statement following it is used.

RESTORE #file-number positions that file to the first record.
The next input/output statement that refers to file-number
accesses the first record in the file. Any pending output data is
written to the file before the RESTORE statement is executed.
Any pending input data is ignored. File-number 0 refers to a
DATA statement as described above.

REC may be used with devices which support relative record
(random access) files. Numeric-expression specifies the record
to which the random access file is positioned. The next
input/output statement that refers to that file accesses that
record. Refer to the peripheral manuals for information about
relative files.

Note: The first record of a file is record zero.
(continued)

5-113



CHAPTER V
REFERENCE SECTION

RESIORE

{eontinued)

Cross Reference
DATA, INPUT, LINPUT, PRINT, READ

Examples
150 RESTORE
Sets the next DATA statement to be read to the first
DATA statement in the program.

200 RESTORE 130
Sets the next DATA statement to be read to the DATA
statement at line 130 or, if line 130 is not a DATA
statement, to the next DATA statement after line 130.

230 RESTORE #1
Sets file #1 to the first record in the file, which is record 0.

5114



CHAPTER V

REFERENCE SECTION
WITH GOSUB RERJ RN
Format
RETURN
Description

RETURN used with GOSUB transfers control back to the
statement following the GOSUB or ON GOSUB statement which
was last executed. A subroutine may contain more than one
RETURN statement.

Cross Reference
GOSUB, ON GOSUB

5115



CHAPTER V
REFERENCE SECTION

RHU RN WITH ON ERROR

Format

[line-number]

RETURN {[NEXT'

Description

RETURN ends an error-processing subroutine. An error-
processing subroutine is called when an error occurs after an
ON ERROR line-number statement has been executed. The
error-processing subroutine can contain any BASIC statements,
including another ON ERROR statement.

RETURN with no option transfers control to the statement in
which the error occurred and the statement is executed again.

RETURN NEXT transfers control to the statement following the
one in which the error occurred.

RETURN /ine-number transfers control to the line specified. The
specified line must be in the same program or subprogram as
the error-processing subroutine even though the errcr may have
occurred in some other subprogram.

Cross Reference

ON ERROR
{continued)

5116



CHAPTER V

REFERENCE SECTION

RE—I_U RN WITH ON ERROR

{continued)
Example

The program below illustrates the use of RETURN with ON

ERROR.

100 ON ERROR 150

Transfers control to line 150 when an error occurs.
120 X=VAL("D")

Causes an error, so control is transferred to line 160.
130 PRINT "Done":PAUSE 2
Prints Done.
130 STOP
140 REM ERROR HANDLING
150 IF A>4 THEN 200
Checks to see if the error has occurred four times and
transfers control to 200 if it has.
160 A=A+1
Increments the error counter by one.
170 PRINT A;"errors":PAUSE 2
Prints the number of errors which have occurred.
180 ON ERROR 150
Resets the error handling to transfer to line 150.
190 RETURN
Returns to the line that caused the error and executes it
again.
200 PRINT "Last error":PAUSE 2:RETURN NEXT
Is executed only after the error has occurred four times.
Prints Last error and returns to the line following the one
that caused the error.

5117



CHAPTER V
REFERENCE SECTION

RAND

Format
RND

Description

The RND function returns the next pseudo-random number in
the current sequence of pseudo-random numbers. The number
returned is greater than or equal to zero and less than one.
Unless the RANDOMIZE statement is used to create an
unpredictable sequence, RND generates the same sequence
each time a program is run.

Cross Reference
INTRND, RANDOMIZE

Example

100 PRINT 10%RND : PAUSE
Prints a random number greater than or equal to 0 and
less than 10.

5-118



CHAPTER V
REFERENCE SECTION

RPTS

Format
RPT$(string-expression, numeric-expression)

Description
The RPT$ function returns a string that is numeric-expression
repetitions of string-expression. If RPT$ produces a string
longer than 255 characters, the excess characters are
discarded and the warning message String-truncation is
displayed.

Examples

100 M$=RPT$("ABCD",4)
Sets M$ equal to “ABCDABCDABCDABCD”.

100 CALL CHAR(O,RPT$("000OFFFF",8))
Defines characters 0 through 3 with the string
“0000F FFFOO0OF FFFO000FFFFOQ00F FFFOQ00FFFF
0000F FFFO000FFFFO000FFFF™.

100 PRINT USING RPT$("#",40);X$ : PAUSE
Prints the value of X$ using an image that consists of 40
number signs.

5119



CHAPTER V
REFERENCE SECTION

RUN

Format

[fine-number]
RUN < [“program-name”)
[“device.filename”]

Description
The RUN statement starts execution of a program. The
statement RUN entered with no options starts execution of the
program currently in memory beginning with the lowest
numbered line.

RUN fine-number starts execution of the program in memory at
the specified /ine-number.

RUN “program-name” searches the Solid State Soitware™
cartridge and starts execution of program-name when it is
found. If program-name is not found or refers to a subprogram,
an error occurs. A string expression may be used to specify
program-name.

RUN “device.filename” deletes the program currently in
memory, loads the contents of filename from device into
memory, and executes it. A string expression may be used to
specify device.filename. Note: If filename specifies a data file
rather than a program file, it may be necessary to press the
reset key.

Before a program is executed, the following process takes
place.
® Variables are initialized. Numeric variables are set to zero
and string variables are set to null strings.
¢ Certain errors, such as a FOR statement without a NEXT
statement or a line reference out of range, are detected.
e All open files are closed.
o ON BREAK STOP, ON WARNING PRINT, and ON ERRQR
STOP are selected.

® The angle mode selected is left unchanged.
{continued)

5120



CHAPTER V
REFERENCE SECTION

RUN

{continued)

Examples
RUN
Causes the computer to begin execution of the program
in memory, starting with the lowest numbered line.

RUN 200
Causes the computer to begin execution of the program
in memory starting at line 200.

RUN "1.PRG3"
Causes the computer to load and begin execution of the
program in file PRG3 on device 1.

RUN "STAT"
Executes the program STAT in the Solid State Software
cartridge.

The program below Hlustrates the use of the RUN statement to
execute a program from a program. A menu is created to allow
the person using the program to choose what other program to
run. The other programs should run this program rather than
ending in the usual way, so that the menu is given again after
they are finished.

100 PRINT "Enter 1, 2, or 3 for programs":PAUSE 2
110 PRINT *... or enter 4 to stop":PAUSE 2

120 INPUT "YOUR CHOICE: ";

130 IF C=1 THEN RUN "1.PRG1"

140 IF C=2 THEN RUN "1.PRG2"

150 IF C=3 THEN RUN "1.PRG3"

160 IF C=4 THEN STOP

170 GOTO 100

5121



CHAPTER V
REFERENCE SECTION

OAVE

Format
SAVE “device.filename” [, PROTECTED]

Description
The SAVE command allows you to copy the BASIC grogram in
memory to an external device. SAVE removes any variables
from the system which are not used in the program. By using
the OLD command, you can later recall the program into
memory.

Device.filename identifies the device where the program is to
be stored and the file name. Device is the number associated
with the physical device and can be from 1 through 255.
Filename identifies the file which contains the program.

When PROTECTED is specified, the program in memory is left
unprotected but the copy on the external storage device is
saved in protected format. A protected program cannot be
listed, edited, or saved.

Cross Reference
OLD, VERIFY

Examples

SAVE "1,PRG1"
Saves the program in memory to device 1 under the name
PRG1.

SAVE "2.PRG2",PROTECTED
Saves the program in memory to device 2 under the name
PRG2. The program may be loaded into memory and run,
but it may not be edited, listed, or resaved.

5122



CHAPTER YV
REFERENCE SECTION

SEGS

Format |
SEGS$(stringexpression, position, length)

Description
The SEG$ function returns a substring of a string. The string
returned starts at position in string-expression and extends for
length characters. If position is beyond the end of string-
expression, the null string (‘") is returned. if jength extends
beyond the end of string-expression, only the characters
through the end are returned.

Examples
100 X$=SEG$("FIRSTNAME LASTNAME",1,9)
Sets X$ equal to “FIRSTNAME".

200 Y$=SEG$("FIRSTNAME LASTNAME",11,8)
Sets Y$ equal to “LASTNAME".

240 Z$=SEG$("FIRSTNAME LASTNAME",10,1)
Sets Z$ equal to * .

280 PRINT SEG$(A$,B,C):PAUSE
Prints the substring of A$ starting at character B and
extending for C characters.

5123



CHAPTER V
REFERENCE SECTION

SEILANG

SUBPROGRAM

Format

CALL SETLANG(numeric-expression)

Description

The SETLANG subprogram selects the language in which
system messages and errors are displayed. Numeric-expression
is a number that is the code of a specific language. The
following are the assigned language codes.

0=English

1=German

2=French

3 =ltalian

4 = Dutch

5 =Swedish

6 =Spanish

If numeric-expression is 0 or 1, all system messages and errors
are displayed in English or German, respectively. If numeric-
expression selects any other language that is supported in a
Solid State Software™ cartridge, prompts and messages in the
cartridge are displayed in the chosen language, but all system
messages and errors are displayed in English.

The fanguage code is maintained by the Constant Memory™
feature. Therefore, the language code setting is not altered by
turning the computer on or off, and remains in effect until it is
changed or the system is initialized. When the system is
initialized, the language code is set to zero (English).

Cross Reference

GETLANG

5-124



CHAPTER V
REFERENCE SECTION

OGN

Format
SGN(numeric-expression)

Description
The SGN function returns the mathematical signum function. If
numeric-expression is positive, a 1 is returned. If it is zero, a 0
is returned and if it is negative, a -1 is returned.

Examples
140 IF SGN(A)=1 THEN 300 ELSE 400
Transfers control to line 300 if A is positive and to line
400 if A is zero or negative.
790 ON SGN(X)+2 GOTO 200,300,400
Transfers controt to line 200 if X is negative, line 300 if X
is zero, and line 400 if X is positive.

5125



CHAPTER V
REFERENCE SECTION

oIN

Format
SIN(numeric-expression)

Description
The sine function gives the trigonometric sine of numeric-
expression. The expression is interpreted as radians, degrees,
or grads according to the current angle mode in effect (see
DEG, GRAD, and RAD). See appendix E for a description of the
limits of numeric-expression.

Example
150 DEG
160 PRINT SIN(3%21.5+4):PAUSE
Prints .930417568.

5-126



CHAPTER YV
REFERENCE SECTION

R

Format
SQR(numeric-expression)

Description
The SQR function returns the positive square root of numeric-
expression. SQR(X) is equivalent to XA(1/2). Numeric-expression
must not be a negative number.

Examples
150 PRINT SQR(4) :PAUSE
Prints 2.

780 X=SQR(2.57E5) )
Sets X equal to the square root of 257,000, which is
506.9516742255.

5127



CHAPTER V
REFERENCE SECTION

olOP

Format
STOP

Description

The STOP statement stops program execution. it can be used
interchangeably with the END statement except that it may not
be placed after subprograms.

Cross Reference
END

Example

The program below illustrates the use of the STOP statement.
The program adds the numbers from 1 to 100.

100 TOT=0

110 NUMB=1

120 TOT=TOT+NUMB

130 NUMB=NUMB+1

140 IF NUMB>100 THEN PRINT TOT:PAUSE 2:STOP
150 GOTO 120

5128



CHAPTER V
REFERENCE SECTION

STIS

Format
STR$(numeric-expression)

Description
The STR$ function returns the string representation of the value
of numeric-expression. No leading or trailing spaces are
included. The STR$ function is the inverse of the VAL function.

Cross Reference
LEN, VAL

Examples

150 NUM$=STR$(78.6)
Sets NUMS$ equal to “78.6”.

220 LL$=STR$(3E15)
Sets LL$ equal to “3.E+15™.

330 J$=STR$(A*4)
Sets J$ equal to a string equal to the value obtained when
A is multiplied by 4. For instance, if A is equal to -8, J$
is set equal to “—32".

5129



CHAPTER V
REFERENCE SECTION

oUB

Format
SUB subprogram-name [ (parameter-list) ]

Description
The SUB statement is the first statement in a subprogram and
must be the first statement on the line. A subprogram is a
group of statements separated from the main program. A
subprogram is used to perform the same task in several
different places without duplicating the statements in several
places.

Subprograms are accessed by CALL subprogram-name
[(argument-list) }. Subprogram-name consists of 1 to 15
characters. The first character must be an alphabetic character
or an underline. The remaining characters may be alphanumeric
characters or underlines. The CALL statement searches for
subprograms in a specific order (see CALL for the order) and
executes the first subprogram found with subprogram-name. If
the name of one of your subprograms is the same as a built-in
subprogram, the built-in subprogram is executed.

Parameter-list defines the information passed to the
subprogram. A parameter may be a simple string variable, a
simple numeric variable, or an array. An array is listed as a
parameter by writing the array name followed by parentheses. A
one-dimensional array is written as A(), a two-dimensional array
as A(,), and a three-dimensional array as A(,,).

Information is passed to the subprogram through the argument-
list of the CALL statement. The arguments of argument-list and
the parameters of parameter-list need not have the same
names. However, the number and the types of arguments in
argument-list must match the number and types of parameters

in parameter-list of the SUB statement.
(continued)

5130



CHAPTER V
REFERENCE SECTION

oUB

(continued)

Information s passed to a subprogram either by reference or by
value. If an argument is passed by reference, the subprogram
uses the variables from the calling program. If the
corresponding parameter in the subprogram is changed, the
argument in the calling program is also changed. A simple
variable, an element of an array, or an array listed in argument-
list is passed by reference. Arrays are always passed by
reference.

If an argument is passed by value, only the value of the
argument is passed to the subprogram. If the corresponding
parameter in the subprogram is changed, it does not alter the
value of the argument in the calling program. Any type of
expression In argument-list is evaluated and passed by value to
the subprogram. Simple variables may be passed by value by
enclosing them in parentheses.

All variables used in a subprogram other than those in
parameter-list are local to that subprogram, so the same
variable names may be used in the main program and in other
subprograms. Changing the values of local variables in a
program or subprogram does not affect the values of local
variables in any othér program or subprogram.

Any local variables in the subprogram are Initialized each time
the subprogram is called, unless the subprogram has been
attached. Attaching a subprogram causes the values of the
variables to be retained between calls until the subprogram has
been released. See ATTACH and RELEASE.

A subprogram terminates when a SUBEXIT or SUBEND
statement is executed. Control is returned to the statement

following the CALL statement.
fcontinued)

5131



CHAPTER V
REFERENCE SECTION

oUB

(continued)

Subprograms appear after the main program. A subprogram
cannot contain another subprogram. When a SUB statement is
encountered in a main program, it terminates as if a STOP
statement had been executed. Only remarks and END
statements may appear between the SUBEND of one program
and the SUB of the next subprogram.

The ON BREAK, ON WARNING, ON ERROR, and PAUSE ALL
statements in effect when a CALL is executed remain in effect
while the subprogram is executing. If the subprogram changes
any of these statements, they are changed back when the
subprogram terminates. Subprograms cannot share any
subroutines except error-processing subroutines.

Cross Reference
ATTACH, CALL, ON BREAK, ON ERROR, ON WARNING,

RELEASE, RETURN, SUBEND, SUBEXIT
(continued)

5132



CHAPTER V
REFERENCE SECTION

oUB

(continued)

Examples
100 SUB MENU
Marks the beginning of a subprogram. No parameters are
passed or returned.

220 SUB MENU(COUNT, CHOICE)
Marks the beginning of a subprogram. The variables
COUNT and CHOICE may be used and/or have their
values changed in the subprogram and their
corresponding arguments in the calling statement
changed.

330 SUB PAYCHECK(DATE, (Q) ,SSN, PAYRATE, TABLE(, ))
Marks the beginning of a subprogram. The variables
DATE, SSN, PAYRATE, and the array TABLE with two
dimensions may be used and/or haye their values changed
in the subprogram and their corresponding arguments in
the calling statement changed. The variable Q cannot be
altered by the subprogram.

5133



CHAPTER V
REFERENCE SECTION

SUBEND

Format
SUBEND

Description
The SUBEND statement marks the end of a subprogram. When
SUBEND is executed, control is passed to the statement
following the statement that called the subprogram. The
SUBEND statement must always be the last statement in a
subprogram and cannot be in an IF THEN ELSE statement.
Only remarks and END statements may appear between a
SUBEND statement and the next SUB statement.

Cross Reference
SUB, SUBEXIT

5134



CHAPTER YV
REFERENCE SECTION

SUBEXIT

Format
SUBEXIT

Description
The SUBEXIT statement terminates execution of a subprogram.
When it is executed, control is passed to the statement
following the statement that called the subprogram. The
SUBEXIT statement may appear as many times as needed in a
subprogram.

Cross Reference
SUB, SUBEND

R12R



CHAPTER V
REFERENCE SECTION

1AB

Format
TAB(numeric-expression)

Description
The TAB function is used In a PRINT or DISPLAY statement to
select a specific column position for a printed item. If numeric-
expression is less than or equal to zero, the position is set to
one. If numeric-expression is greater than the length of a record
for the device being used, then numeric-expression is
repeatedly reduced by the record length until it is less than the
record length.

If the current position is less than or equal to the specified
position, the TAB function spaces over to the specified
position. If the current position is greater than the specified
position, the TAB function proceeds to the next recard and
spaces over to the specified position.

The TAB function is treated as a print-item and must be
separated from other print items by a print separator. The print
separator before TAB is evaluated before the TAB function and
the print separator following TAB is evaluated after the TAB
tunction. Normally, semicolons are used before and after TAB.

In a DISPLAY statement, the TAB function is relative to the
beginning of the display field. If AT is used, the TAB function is
relative to the specified column position. If more than one line
of output is displayed, subsequent lines begin in column one.
Any TAB functions are then relative to column one.

If SIZE is used, the value specified in SIZE is the absolute fimit
of the number of characters displayed. This limit is the record

length used in evaluating any TAB functions.
{continued)

5-136



CHAPTER V
REFERENCE SECTION

1AB

(continued)

Cross Reference
DISPLAY, PRINT

Examples

100 PRINT TAB(12);35 :PAUSE
Prints the number 35 starting at column 13.

190 PRINT 356; TAB(18); "NAME" : PAUSE
Prints 356 at the beginning of the line and NAME starting at
column 18.

710 DISPLAY AT(10) SIZE(20),"MGB";TAB(10); "ADDR" : PAUSE
Prints MGB starting at column 10 and ADDR starting at
column 19.

§5137



CHAPTER V
REFERENCE SECTION

JAN

Format
TAN(numeric-expression)

Description
The TAN (tangent) function gives the trigonometric tangent of
numeric-expression. The expression is interpreted as radians,
degrees, or grads according to the current angle mode in effect
(see DEG, GRAD, and RAD). See appendix E for a description of
the timits of numeric-expression.

Example

250 RAD
260 PRINT TAN(20):PAUSE
Prints 2.237160944.

5138 -



CHAPTER V
REFERENCE SECTION

UNBIREAK

Format
UNBREAK [line-list]

Description
The UNBREAK statement removes all breakpoints. If /ine-list is
specified, only the breakpoints for those lines listed are
removed.

Cross Reference
BREAK

Examples

UNBREAK
Removes all breakpoints.

400 UNBREAK 100,130
Removes the breakpoints set before lines 100 and 130.

5139



CHAPTER V
REFERENCE SECTION

USING

Format
line-number
USING {string-expression}

Description
USING can be in a PRINT or DISPLAY statement to format the
output. If line-number is given, the format is specified in that
line by an IMAGE statement. Line-number must refer to a line in
the current program or subprogram. See IMAGE. If string-
- expression is given, the format is defined by USING.

When USING is present, the following changes occur in the
evaluation of the print-list of PRINT or DISPLAY.

e Comma print separators are treated as semicolons.

* The TAB function causes an error.

* The print items are formatted according to fields specified
in the format definition. If the number of print items in
print-list exceeds the number of fields in the fomat, the
current formatted record is written. The remaining values
are written in the next record, using the format definition
again, from the beginning. The format is used as many
times as is necessary to complete the print-list. A new
record is generated each time the format is used. When
the number of print items is less than the number of fields
in the definition, output stops when the first field is
encountered for which there is no print item.

¢ If a formatted item is too long for the remainder of the
current record, it is divided into segments. The first
segment fills the remainder of the current record and any
remaining segments are written on the next record.

Cross Reference
DISPLAY, IMAGE, PRINT

5-140



CHAPTER V
REFERENCE SECTION

VAL

Format
VAl(string-expression)

Description
The VAL function returns the numerical value of string-
expression. Leading and trailing spaces are ignored. The VAL
function is the inverse of the STR$ function.

If string-expression is not a valid representation of a number, an
error occurs. To avoid this error, the string-expression may be
checked first with the NUMERIC function.

7oss Reference
NUMERIC, STR$

Examples

170 NUM=VAL("78.6")
Sets NUM equal to 78.6.

190 L1-VAL("3E15")
Sets LL equal to 3.E + 15.

300 PRINT VAL("$3.50") : PAUSE
Causes an error because the string does not represent a
valid numeric constant.

5141



CHAPTER V
REFERENCE SECTION

VERIFY

Format
VERIFY “device.filename” [, PROTECTED]

Description
The VERIFY command checks that data was saved on an
external storage device or was loaded into memory correctly.
VERIFY is used after a SAVE or OLD command to compare the
program in memory to the program on the external storage
device. If a difference Is found, an error message is displayed.
Both input/output errors 12 and 24 indicate a verification error.

Device.filename identifies the device and the file in which the
program is stored. Device is the number associated with the
physical device and can be from 1 through 255. Filename
identifies the file.

Like SAVE, VERIFY removes any variable names which are not
used in the program. If the program is protected, then
PROTECTED must be specified in the VERIFY command.

Cross Reference
OLD, SAVE

Examples
SAVE "1.MYPROG"
Saves the file named MYPROG to device 1.
VERIFY "1.MYPROG"
Verifies whether the file was stored correctly.

OLD "1.STAT"

Reads the file named STAT into memory from device 1.
VERIFY "1.STAT"

Verifies whether the file was read correctly.

5-142



CHAPTER V
REFERENCE SECTION

SUBPROGRAM \/E RS I O N

Format |
CALL VERSION(numeric-variable)

Description
The VERSION subprogram returns a value indicating the

version of BASIC that is being used. The BASIC used on the
CC-40 returns a value of 10.

Example
170 CALL VERSION(V)
Sets V equal to 10.

5143



APPENDIX A

COMMANDS & STATEMENTS

Commands & Statements

The following is a list of all CC-40 BASIC commands and
statements in alphabetical order. Commands are listed first.
Statements-are listed next. Most statements can be executed
immediately as well as used in a program line. Those
statements that can be used only in a program line have an
asterisk (+) after them. Commands and statements that can be
abbreviated have the acceptable abbreviation in italics.

Commands

CALL ADDMEM
CALL CLEANUP
CONTINUE

LIST

NEW

NUMBER

OoLD
RENUMBER
SAVE

VERIFY

Statements

ACCEPT *
ATTACH
BREAK

CALL

CALL CHAR
CLOSE

DATA

CALL DEBUG
DEG

DELETE

DIM

DISPLAY

END

CALL ERR
CALL EXEC
FOR TO STEP
FORMAT

CALL GETLANG
CALL GETMEM
‘GOSUB *

GOTO *
GRAD

IF THEN ELSE
IMAGE

CALL INDIC
INPUT *

CALL 10
CALL KEY
LET

LINPUT *
CALL LOAD
NEXT

ON BREAK
ON ERROR
ON GOSuB *
ON GOTO *
ON WARNING
OPEN

PAUSE

CALL PEEK

CALL POKE
PRINT

RAD
RANDOMIZE
READ *
RELEASE
CALL RELMEM
REM

RESTORE
RETURN *
RUN

CALL SETLANG
STOP

SUB *
SUBEND *
SUBEXIT *
UNBREAK
CALL VERSION



APPENDIX B
BUILT-IN FUNCTIONS

Built-In Functions
The following list gives a brief description of each CC-40 BASIC
function in alphabetical order.

Function Value Returned and Comments

ABS
ACS
ASC
ASN

ATN

CHR$

Cos

EOF
EXP
FRE
INT
INTRND

KEY$

LEN
LN
LOG

Absolute value of a numeric expression.
Trigonometric arccosine of a numeric expression
given in the angular measure indicated in the
display.

The numeric ASCI code of the first character of a
string expression.

Trigonometric arcsine of a numeric expression given
in the angular measure indicated in the display.
Trigonometric arctangent of a numeric expression
given in the angular measure indicated in the
display.

A one-character string that corresponds to an ASCII
code.

Trigonometric cosine of a numeric expression
calculated using the angular measure indicated in
the display. -

End-of-file condition of a file.

Exponential value (eX) of a numeric expression.
Information about available memory.

Integer value of a numeric expression.

Integer random number with a specified maximum
value.

A one-character string that corresponds to a key
pressed.

Number of characters in a string expression.
Natural logarithm of a numeric expression.
Common logarithm of a numeric expression.

NUMERIC Number that denotes whether a string expression is

P!
POS

RND
RPTS

a valid representation of a numeric constant.
The value of 7 (3.14159265359).
Position of the first occurrence of one string
expression within another.
Random number from 0 to 1. )
String that is a specific number of repetitions of a
string expression.
(continued)



APPENDIX B
BUILT-IN FUNCTIONS

(continued)
Function

Value Returned and Comments

SEG$

SGN
SIN

SQR
STR$
TAB

TAN

VAL

Substring of a string expression, starting at a
specified point in that string and ending after a
certain number of characters.

Sign of a numeric expression.

Trigonometric sine of a numeric expression
calculated using the angular measure indicated in
the display.

Square root of a numeric expression.

String equivalent of a numeric expression.

Column position for the next item in the print-list of
PRINT or DISPLAY.,

Trigonometric tangent of a numeric expression
calculated using the angular measure indicated in
the display.

Numeric value of a string expression which
represents a number.

B-2



APPENDIX C

RESERVED WORDS

Reserved Words

The following is a list of all CC-40 BASIC reserved words. A
reserved word may not be used as a variable name, but may be
a portion of a variable name.

ABS
ACCEPT
ACS
ALL
ALPHA
ALPHANUM
AND
APPEND
ASC
ASN

AT

ATN
ATTACH
BEEP
BREAK
CALL
CHR$
CLOSE
CON
CONTINUE
COos
DATA
DEG
DEL
DELETE
DIGIT
DIM
DISPLAY
ELSE
END
EOF
ERASE
ERRCR
EXP
FOR
FORMAT
FRE

C1

GOsuB
GOTO
GRAD

IF
IMAGE
INPUT
INT
INTERNAL
INTRND
KEY$
LEN

LET
LINPUT
LIST

LN

LOG
NEW
NEXT
NOT
NULL
NUM
NUMBER
NUMERIC
OoLD

ON
OPEN
OR
OouTPUT
PAUSE
P

POS
PRINT
PROTECTED
RAD
RANDOMIZE
READ
REC

RELATIVE
RELEASE
REM

REN
RENUMBER
RESTORE
RETURN
RND
RPT$
RUN
SAVE
SEG$
SGN

SIN

SIZE
SQR
STEP
STOoP
STR$
suB
SUBEND
SUBEXIT
TAB

TAN
THEN

TO
UALPHA
UALPHANUM
UNBREAK
UPDATE
USING
VAL
VALIDATE
VARIABLE
VERIFY
WARNING
XOR



APPENDIX D
ASCII CODES & KEYCODES LIST

ASCII Codes and Keycodes

The following table lists the ASCII character codes in decimal
and hexadecimal notation. The ASCII codes produced and/or
character(sy displayed when the key or key sequence is pressed
are shown in the column titled CHARACTER. The characters
that can be displayed using the CHR$ function are shown in
the column titled DISPLAYED USING CHRS$. The keys that are
pressed to generate the ASCII code are shown in the column

titled KEY SEQUENCE.

User-defined character codes (0-6) and the user-assigned keys
(codes 128-137) are shown as two asterisks (**).

ASCIl Code Displayed Key

DEC _ HEX Character Using CHR$ __ Sequence
00 00 NULL . IcTL 0
01 01 SOH ' [CTL]A
02 02 STX . [crus
03 03 ETX . [CTL]IC
04 04 EOT . [cTL D
05 05 ENQ . [CTLIE
06 06 ACK .- [CTLIF
07 07 BEL [CTL G
08 08 BS [CTLIH
09 09 HT [CTL I
10 0A LF [CTL)J
1 0B vT [CTLIK
12 0C FF [CTLL
13 oD CR ICTL] M or [ENTER]
14 OE SO (CTLIN
15 OF SI [CTL] O
16 10 DLE [CTL P
17 11 DC1 [CTLIQ
18 12 DC2 [CTLIR
19 13 DC3 [cTU S
20 14 DC4 [CTL T
21 15 NAK [CTL]U
22 16 SYN [cTyv
23 17 ETB [ICTLIW
24 18 CAN (CTL] X
25 19 EM [CTL]Y
26 1A suB IcTy z

{continued)

D-1



APPENDIX D
ASCII CODES & KEYCODES LIST

{continued)

ASCIl Code Displayed Key
DEC HEX Character Using CHRS __Sequence
27 1B ESC [CTL) [CLR]
28 1C FS [CTL =
29 1D GS [cTL;
30 1E RS {CTL}.
31 1F us [CTL],
32 20 Space Space Space
33 21 1 1 [SHIFT] ¢
34 22 " " [SHIFT} 7
3 23 # # [SHIFT] #
36 24 $ $ [SHIFT] $
37 25 % % [SHIFT)/
38 26 & & [SHIFT] &
39 27 ' ' [SHIFT) ’
40 28 ( ( [SHIFT] (
4 29 ) ) [SHIFT])
42 2A * * .
43 28 + + +
4 2C ’ ’ s
4 2D - - -
4 2E . . .
47 2F / / !
48 30 0 0 0
49 31 1 1 1
50 32 2 2 2
51 33 3 3 3
52 34 4 4 4
53 35 5 5 5
54 36 6 6 6
65 37 7 7 7
56 38 8 8 8
57 39 9 9 9
58 3A : : [SHIFT} :
59 3B ; ; 3
60 3C < < [SHIFT],
61 3D = = =
62 3E > > [SHIFT].
63 3F ? ? ISHIFT] ?

D2

(continued)



APPENDIX D
ASCII CODES & KEYCODES LIST

{continued)

ASCII Code Displayed Key

DEC HEX Character Using CHR$ Sequence
64 40 -8 e [CTL} 2
65 41 A A [SHIFT] A
66 42 B B [SHIFT] B
67 43 C C [SHIFT]I C
68 44 D D [SHIFT] D
69 45 E E [SHIFT] E
70 46 F F [SHIFT] F
71 47 G G [SHIFT] G
72 48 H H [SHIFTIH
73 49 1 I [SHIFT]I
74  4A J J ISHIFT] J
75 4B K K [SHIFT] K
76 AC L L [SHIFT] L
77 4D M M [SHIFT] M
78  4E N N [SHIFT] N
79 4F 0 0 [SHIFT] O
80 50 P P [SHIFT] P
81 51 Q Q [SHIFT] Q
82 52 R R [SHIFT] R
83 53 ) S [SHIFT] S
84 54 T T [SHIFT] T
85 85 U i) {SHIFT] U
86 56 v v [SHIFT]I V
87 57 W W [SHIFI W
88 58 X X [SHIFT] X
89 59 Y Y [SHIFT] Y
90 5A Z Z [SHIFT] Z
91 58 [ [ [CTL] 8
92 5C ¥ ¥ [cTu!

93 5D ] ] [CTL)9
94 5E i [SHIFT] A
95 5F _ - [CTLI 5
96 60 - - [CTL] 3
97 61 a a A

98 62 b b B

99 63 c c [

100 64 d d D

{continued)

D-3



APPENDIX D

ASCIl CODES & KEYCODES LIST

{continued)

ASCIl Code Displayed Key
DEC HEX Character Using CHR$ _ Sequence
101 65 e e E

102 66 f f F

103 67 g g G
104 68 h h H

105 69 i i |

106 6A 5 J J

107 6B k k K

108 6C 1 1 L

109 6D m m M
110 6E n n N

i 6F o o} (o)

112 70 p p P

113 71 q q Q

114 72 T r R

115 73 s 8 ]

116 74 t t T

117 75 u u u

118 76 \' v v

119 77 w w w
120 78 X b'd X

121 79 y y Y

122 7A 2 2 2

123 7B 4 { ICTL] 6
124 7C | | [CTL] 1
125 7D ¥ H [cTLy 7
126 7E <> * [CTL]) 4
127 7F DEL + ISHIFT] Y
128 80 il [FN]JQ
129 81 *e IFN] 1
130 82 b [FN] 2
131 83 . [FN] 3
132 84 e [FN] 4
133 85 e [FN15
134 86 bl [FN16
135 87 b [FN) 7
136 88 e [FN] 8
137 89 . [FN] 8
138 8A

139 8B

D-4

(continued)



APPENDIX D
ASCII CODES & KEYCODES LIST

{continued)

ASCII Code Displayed Key
DEC HEX Character Using CHR$ Sequence
140 8C .

141 8D [SHIFT}!
142 8E [SHIFT] «
143 8F [SHIFT] -
144 90 [SHIFT] +
145 9 [CTL] »
146 92 [CTL] -
147 a3 [CTL] +
148 94 DELETE [FN] ¢«
149 95 [FN1 5
150 96 [FN] 2
151 97 NUMBER [FN] ¥
152 98 VERIFY [FN]/
153 99 SAVE {FN] «
154 9A OLD {FN] -
156 9B LIST {FN] +
156 9C CALL [FN].
157 9D ELSE (FN],
158 9E CHR$( (FN];
153 OF GOTO [FN] =
160 A0 [FN] [CLR]
161 Al ASN{( o [FN] A
162 A2 PAUSE v [FN]1 B
163 A3 GRAD 3 [FN]C
164 A4 ATN( - [FN] D
165 A5 TAN( . IFNJ E
166 A6 ILN( 3 [FN] F
167 A7 LOG( 7 [FN] G
168 A8 LINPUT A [FN]H
169 A9 NEXT b [FN] )
170 AA INPUT T [FN] J
171 AB PRINT b 4 [FN] K
172 AC USING + [FN]I L
173 AD THEN a [FN] M
174 AE IF 3 [FN] N
175 AF GOSUB "w [FN] O
176 BO RETURN - [FN) P
177 B SIN( T [FN] Q
178 B2 PI 1 [FNIR

{continued)

D-5



APPENDIX D
ASCII CODES & KEYCODES LIST

(continued)

ASCl Code Displayed Key

DEC HEX Character Using CHRS _ Sequence
179 B3 ACS( 1 [FN] S

180 B4 SQR( I (FN] T

181 B5 T0 F [FN]J U

182 B6 EXP( b3 [FN] V

183 B? cos( ¥ [FN] W

184 B8 RAD I [FN] X

185 B9 FOR g1 [FN] Y

186 BA DEG 7 [FN) 2

187 B8 BREAK 1)‘ {FN) [BREAK]
188 BC 3 [SHIFT] [RUN]
189 BD = [CTL] [RUN]
190 BE CONTINUE 2 [FN] [RUN}
191 BF RUN ) [RUN]

192 CO0 a [SHIFT] [FN] O
193 €1 ¥ [SHIFT] {FN] 1
194 C2 " [SHIFT] [FN] 2
195 C3 T [SHIFT] [FN] 3
196 C4 b [SHIFT] [FN] 4
197 C5 + {SHIFT] [FN] 5
198 C6 el [SHIFT] [FN] 6
199 C7 7 [SHIFT] [FN] 7
200 C8 T [SHIFT] {FN] 8
20t C9 J [SHIFT] [FN] 9
202 CA n

203 CB -

204 CC 3

205 CD ™

206 CE b

207 CF g

208 DO z

209 D1 s

210 D2 o

211 D3 F

212 D4 t

213 D5 )

214 D6 3

215 D7 3

216 D8 U

217 D9 I

(continued)



APPENDIX D
ASCII CODES & KEYCODES LIST

{continued)
ASCII Code Displayed Key
DEC HEX Character Using CHR$ __ Sequence
218 DA L
219 DB O
220 DC 3
221 DD o
222 DE -
223 DF u
224 EO o
225 FEt a
226 E2 =
227 E3 &
228 E4 u
229 E5 PB G [SHIFT} 4
230 E6 OFF a [OFF)
231 E7 BREAK a {BREAK]
232 EB upP x L
233 E9 DOWN - +
234 EA SHIFT 1 [SHIFT] [ENTER]
235 EB ®
236 EC +
237 ED i
238 EE A
239 FEF o
240 FO t
241 F1 d
242 F2 =]
243 F3 o
244 F4 o
245 F5 i
246 F6 DEL 2 [SHIFT] ¢
247  F7 INS n [SHIFT] >
248 F8 HOME ¥ e+
249 F9 SKIP u [cTu Y
250 FA CLR F [CLR)
251 FB BTAB R [CTL ¢
252 FC €« 2] €
253 FD FTAB = [cTL >
254 FE > >
255 FF

D7



APPENDIX E

TRIGONOMETRIC CALCULATIONS
& RESTRICTIONS

Trigonometric Calculations and Restrictions
The following information provides restrictions for frigonometric
functions, a list of trigonometric identities, and a table of
trigonometric conversions.

Restrictions for SIN, COS, TAN

The approximate valid range for the arguments of SIN, COS,
and TAN is given below for radians, degrees, and grads.

[X| < PI/2+1010 radians
|X| < 90+1070 degrees
[X] < 10'2 grads

Restrictions For Inverse Trigonometric Functions
The largest angle resulting from an arc function is 180°, =
radians, or 200 grads. Because each resultant value has many
angle equivalents (for example, ASN(.5)=30°, 150°, 390°, ...),
angles calculated by inverse trigonometric functions are
restricted as follows.

Range of calculated angles
ARC Function  Degrees Radians Grads

Arcsine (x) -90to90 -x2tox/2 -—100to 100
Arccos (x) 0 to 180 Otor 0 to 200
Arctan (x) -90t090 -x2tox/2 -100to 100

E-1



APPENDIX E

TRIGONOMETRIC CALCULATIONS
& RESTRICTIONS

Trigonometric Identities

The following trigonometric functions are not part of CC-40
BASIC, but may be calculated using the BASIC expressions
described below. The expressions for functions that are
frequently used can be assigned to any of the ten user-
assigned keys as described in chapters 1 and 2.

Function Symbol BASIC Expression Equivalent
Secant SEC(X) 1/COS(X)

Cosecant CSC(X) 1/SIN(X)

Cotangent COT(X) 1TAN(X)

Inverse Secant ARCSEC(X)  SGN(X)*ACS{1/X}

Inverse Cosecant ARCCSC(X}  SGN(X)*ASN(1/X) + (SGN(X) ~1)* Pli2
Inverse Cotangent ARCCOT(X)  Pli2—- ATN(X) or P2+ ATN(-X)
Hyperbolic Sine SINH(X) (EXP(X) - EXP(— X))}/2

Hyperbolic Cosine COSH(X) (EXP{X)+ EXP(~ X))/2

Hyperbolic Tangent COTHX) = 2*EXP(—XY(EXP(X) + EXP(- X)) + 1
Hyperbolic Secant SECH(X) 2(EXP(X) + EXP(— X))

Hyperbolic Cosecant CSCH(X) 2HEXP(X) — EXP(- X))

Hyperbolic Cotangent COTH(X) 2* EXP(— XWEXP(X)- EXP(- X))+ 1
inverse Hyperbolic Sine ARCSINH(X)  LN(X+ SQRX*X + 1))

tnverse Hyperbolic Cosine ARCCOSH(X) LN(X+SQR(X*X-1)

Inverse Hyperbolic Tangent ARCTANH(X) LN{((1+ X)/(1 - X2

Inverse Hyperbolic Secant ARCSECH(X) LN{{1+ SQR(1 - X*X)¥/X)

Inverse Hyperbolic Cosecant ARCCSCH(X) LN{SGN(X)*SQR(X*X + 1)+ 1¥X)
Inverse Hyperbolic Cotangent ARCCOTH(X) - LN((X + 1}{X - 1)¥2

Radian, Degree, and Grad Conversions

It may be necessary to convert angular values from one unit of
angle measurement to another. The following table provides the
factors needed to make these conversions.

From/To | Degrees | Radians | Grads
Degrees xP1/180 | <09
Radians | x 180/PI | x 200/PI
Grads x09 x P1/200

Because these conversions are independent of the computer’s
angle setting, use care when using the results for further
calculations. Before you use the result in subsequent
trigonometric calculations, make certain that the appropriate
angle setting has been selected.



APPENDIX F
ACCURACY INFORMATION

Accuracy Information

Calculation Accuracy

The CC-40, like all computers, operates under a fixed set of
rules within preset limits. The mathematical tolerance of the
computer is controlled by the number of digits it uses for
calculations.

The CC-40 uses a minimum of 13 digits to perform calculations.
The results are rounded to 10 digits when displayed in the
default display format. The computer’s 5/4 rounding technique
adds 1 to the least significant digit of the display if the next
nondisptayed digit is five or more. If this digit is less than five,
no rounding occurs. Without these extra digits, inaccurate
results such as the following would frequently be displayed.

1/3%3=.9999999999

This result occurs because 1/3 is maintained as .3333333333 in
the finite internal representation of a number. However, when
1/3 x 3 is rounded to 10 digits, the answer 1. is displayed.

The more complex mathematical functions are calculated using
iterative and polynomial methods. The cumulative rounding
error is usually kept beyond the tenth digit so that displayed
values are accurate. Normally there is no need to consider the
undisplayed digits. However, certain calculations may cause
the unexpected appearance of these extra digits as shown
below.

2/3 = .66666666666667 and 1/3 = .33333333333333

2/3 - 1/3 - 1/3=.00000000000001 (displayed 1.E — 14)
Such possible discrepancies in the least significant digits of a
calcutated result are important when testing if a calculated

result is equal to another value. In testing for equality,
precautions should be taken to prevent improper evaluation.

A useful technique is to test whether two values are sufficiently
close together rather than absolutely equal as shown below.

Instead of
IF X=Y THEN ...

use
IF ABS(X-Y) <1E~11 THEN ...

F-1



APPENDIX F
ACCURACY INFORMATION

Internal Numeric Representation

The CC-40 uses radix-100 format for internal calculations. A
single radix-100 digit ranges in value from 0 to 99 in base 10.
The computer uses a 7-digit mantissa which results in 13 to 14
digits of decimal precision. A radix-100 exponent ranges in
value from —64 to +63 which yield decimal exponents from
10-128 to 10+ 126, The exponent and the 7-digit mantissa
combine to provide a decimal range from
—9.9999999999999E + 127 through — 1.E — 128; zero; and then
+ 1.E— 128 through + 9.9999999999999E + 127.

The internal representation of the radix-100 format requires
eight bytes. The first byte contains the exponent, and the
algebraic sign of the entire floating-point number. The exponent
is a 7-bit hexadecimal value offset or biased by 40, (the 16
subscript indicates hexadecimal values in this appendix). The
correspondence between exponent values is shown below.

Biased hexadecimal vatue 004 to 40 to 7Fig
Radix-100 value -64 to 0 to +63
Decimal value -128 to 0 to +126

If the floating-point number is negative, the first byte (the
exponent value) is inverted (1's complement). Each byte of the
mantissa contains a radix-100 digit from O to 99 represented in
binary coded decimal (BCD) form. In other words, the most
significant four bits of each byte represent a decimal digit from
0 to 9 and the least significant four bits represent a decimai
digit from 0 to 9. The first byte of the mantissa contains the
most significant digit of the radix-100 number. The number is
normalized so that the decimal point immediately foliows the
most significant radix-100 digit.

The following examples show some decimal values and their
internal representations.

Decimal

Number __Internal Value

1 40 Ol4g 004 0045 0045 0045 004 004
10 40,4 105 0055 00iq 00;5 005 0045 00y
100 414 Ol 00 005 0046 0045 004 .001g
1234 416 1246 344 0045 0045 0045 006 0046
PI 4045 0315 1415 155 92i 655 355 90ig
-PI BFig 0315 1415 155 9215 6515 3515 90sg

F2



APPENDIX G
SYSTEM POWER UP & DOWN
PROCEDURE

System Power Up & Down Procedure
This appendix describes the actions taken when the system is
powered up and down.

System Power Up

When the CC-40 is turned off, the power continues to be
supplied to the CMOS RAM chips as part of the Constant
Memory™ feature. This power supply gives the computer the
capability to retain information in memory even when the
computer is turned off. Pressing the [ON] key turns on the full
power supply and causes the TMS70C20 microprocessor to
execute the power up code. The power up code resets all
hardware with power up defaults and performs several
operations to initialize the system.

Next the power up code checks to see if the expected values
are stored in RAM locations 080244 and 0803,¢ (the 16 subscript
indicates hexadecimal values). One of these locations must be
an A5,¢ and the other a 5A5 or the system is coldstarted as
described below. If the expected values are correct, an
exclusive-OR checksum is calculated for all of the FAM in the
system. This checksum is compared to the checksum value
that was stored when the computer was turned off. If the
checksums are identical, the system is warmstarted as
described below. If the checksums are different and a CALL
ADDMEM is in effect, the system is coldstarted. If the
checksums are different and a CALL ADDMEM is not in effect,
the message Memory contents may be lost is displayed and
only essential parts of the system are initialized. This latter
operation leaves the contents of program memory intact and is
described below under “Partial Initialization”.

Warmstart

When the CC-40 is warmstarted, a bus reset command is sent
over the /O bus. If a CALL ADDMEM is not in effect, the
cartridge port is checked for a cartridge. If one is installed,
pointers to the program/subprogram header list and BASIC
extension information are copied into the system reserved area
and the speed of the system is matched with the cartridge
speed. The cartridge is then checked for a program that is to be
executed at power up. If one exists, it is executed; otherwise,
the system enters the system command level.

G-1



APPENDIX G
SYSTEM POWER UP & DOWN
PROCEDURE

Coldstart

A coldstart of the CC-40 initializes the system by:
¢ Setting the language flag to English

* Initializing the expected values used at power up
¢ |nitializing the BASIC program space

* Initializing the user-defined strings

¢ Initializing all important registers, RAM based trap vectors,
etc.

The 11O bus iIs then reset and the cartridge is checked as in
warmstarting the system. Note: Entering the command NEW ALL
Is the same as coldstarting the system without checking the
cartridge port.

Partlal Inltialization

When the expected values are correct, but the checksum of the
RAM is incorrect and CALL ADDMEM is not in effect, the
message Memory contents may be lost Is displayed. The
system is powered up essentially ’as is’, except that registers
necessary for it to run are initialized and the cartridge port is
checked.

System Power Down

When the [OFF] key is pressed while in system command level,
the power down code is entered. This code closes all open
files, resets the I/O bus, and calculates the exclusive-OR
checksum of memory. This value is stored in memory for the
next power up.



APPENDIX H
LOGICAL OPERATIONS ON NUMBERS

Logical Operations on Numbers
The logical operators AND, OR, NOT, and XOR can be used on
integer numbers in the range — 32768 to 32767. This appendix
briefly describes the binary number system, conversion of
decimal numbers to their binary equivalents, and the operation
of the logical operators.

Binary Notation

Binary (base 2) notation is another way to express the vatue of
a number. Our usual system, decimal (base 10) notation, uses
combinations of the ten digits zero through nine. Numbers
written in binary notation use only the two digits zero and one.
Each position occupied by a binary digit (a 0 or 1) is called a
bit.

In decimal notation, each digit in a number represents a power
of 10. For example, the number 2408 in decimal notation can be
written in expanded form as follows.

(2x 103+ (4 x 102) + (0x 107 + (8 x 109)
This is equal to 2408 as shown below.

2x103=2 x 1000=2000

4x102=4 x 100= 400

0x10'=0x 10= 0

8x100=8 x 1=_38

2408

In binary notation, each digit represents a power of two. For
example, the binary number 101101 can be written as

(IX25)+{0x29)+(1x23)+(1x22)+ (0x 21) + (1 x 20)

For reference purposes, the powers of two and their decimal
values are as follows.

. 21 286 25 24 23 22 21 20

..128 64 32 16 8 4 2 1

The decimal equivalent of 101101 can be calculated as shown
below.

1x26=1%x32=32

0x24=0x16= 0

1x28=1x 8= 8

1X22=1x 4= 4

O0x21=0x 2= 0

1x20=1x 1=_1

5

H-1



APPENDIX H
LOGICAL OPERATIONS ON NUMBERS

To convert a number from decimal notation to binary notation,
repeatedly reduce the decimal number by the greatest power of
2 not larger than the number until there is no remainder.

For example, the decimal number 77 can be converted to binary
notation using the following technique.

The largest power of 2 contained in the number 77 is 64 (26). A
1 is placed in that position of the binary number as shown
below.
128 64 32 6 8 4 2 1

0t 0 0 0 0 0 O

Reducing 77 by 64 leaves a remainder of 13. The largest power
of 2 contained in 13 is 8 (23) and a 1 is placed there. Reducing
13 by 8 leaves a remainder of 5. The largest power of 2
contained in 5 is 4 (22) and a 1 is placed there. Reducing 5 by 4
leaves a remainder of 1. Place a 1 in the 20 position.

The decimal number 77 in binary notation is shown below.

128 64 32 16 8 4 2 1
o1t 0 01 1 0 1

You can check the accuracy of the conversion as follows.
1x26=1x64=64
0x25=0%x32= 0
0x24=0x16= 0
1x28=1x 8= 8
1xXx2=1x 4= 4
0x21=0x 2=
1x20=1x 1=

Logical Operations

When logical operations are performed on numbers within the
valid range, the CC-40 first converts the values to their 16-bit
binary equivalents. The logical operations are performed on a
bit-by-bit basis, and the resulting binary number is converted
back to decimal notation.

The left-most bit is reserved to indicate the sign (0 = positive;
1= negative). Therefore, the largest number.that can be
represented by the remaining 15 bits is 32,767.

If a decimal number with a fractional part is used with a logical
operator, the number is rounded before any logical operation is
performed.



APPENDIX H
LOGICAL OPERATIONS ON NUMBERS

The following are the rules for the four logical operators.
Operator Rule
AND If both bits are 1s, the result is 1.
If either bit is 0, the result is 0.
OR If either bit is a 1, the result is 1.
If both bits are zero, the result is 0.
XOR If either bit, but not both, is 1, the result is 1.
If both bits are the same, the result is 0.
NOT If the bit is 0, the result is 1.
If the bit is 1, the result is 0.

The following table shows the results of the four logicai
operations on all the possible combinations of bits.

AND First bit 6 o0 1

Second bit O

Results

OR  First bit
Second bit
Results

XOR First bit
Second bit
Results

NOT Bit
Results 1

For example, when the logical operations are performed on the
numbers 77 and 67, the numbers are first converted to binary
notation. The number 77 is represented in 16 bits as
0000000001001101 and the number 67 is represented in 16 bits
as 0000000001000011. The results of performing an AND, an
OR, and an XOR on the two values are shown below.

AND OR
(77) 0000000001001101  (77) 0000000001001101
(67) 0000000001000011  (67) 0000000001000011

(65) 0000000001000001  (79) 0000000001001111
XOR

(77) 0000000001001101
(67) 0000000001000011

(14) 0000000000001110 )

The resuits of performing an AND, OR, and an XOR on 77 and

67 can be obtained on your CC-40 by entering the following.
PRINT 77 AND 67; 77 OR 67; 77 XOR 67

“loa 4o olo
O'-b-l alaa -] -

lo oloo oo ©

H-3



APPENDIX H
LOGICAL OPERATIONS ON NUMBERS

Using the logical operator NOT on 77 and 67 is shown below.
NOT 77 NOT 67

77 0000000001001101 (67) _ 0000000001000011

(-78) 1111111110110010 (—68) 1111111110111100

To display the results of NOT 77 and NOT 67, enter the
following. .
PRINT NOT 77; NOT 67

Note that the results of NOT 77 and NOT 67 have a 1 in the left-
most bit which denotes that they represent negative numbers.
In the CC-40 a negative binary number is represented as the
two’'s complement of the absolute value of the number.

To obtain the two's complement of a binary number, change
each 0 bit to 1 and each 1 bit to 0. Then add 1 to this changed
number. For example, the two’s complement of 77 is obtained
as shown below.

77 in binary . 0000000001001101
Change each bit 1111111110110010
add 1 1

—77 in two’s-complement form 1111111110110011 .

A more detailed description of binary arithmetic Iis beyond the
scope of this appendix. Refer to a standard reference book on
this subject for more information.

H4



APPENDIX |
DEBUG MONITOR

DEBUG Monitor

The DEBUG subprogram is used to access the debug monitor.
The debug monitor is designed to be used with the Editor/
Assembler to read and modify memory and to run and debug
assembly language programs and subprograms. More detailed
information on the debug monitor is available in the
Editor/Assembler manual. Indiscriminate use of the debug
monitor may result in loss of data in memory.

Running the DEBUG Monitor

To execute the debug monitor, type CALL DEBUG and press

[ENTER]. The prompt MONITOR: is displayed, followed by the

flashing cursor, to indicate that the debug subprogram is

active. The prompt changes to : after the first command is

entered. CALL DEBUG can be used as a statement in a BASIC

program to allow debugging of assembly language

subprograms called from a BASIC program. The following

notational conventions are used in this appendix.

¢ The characters that are bold in examples must be typed by
the user and if the characters are to be entered, the [ENTER]
key must be pressed.

¢ The space bar and the [ENTER] key are used to execute most
commands.

¢ The [CLR] and [BREAK] keys are used to cancel commands.

¢ The € key can be used to erase the previous character typed
when entering an address or data.

¢ Memory addresses can be entered in either hexadecimal or
decimal notation. A number is assumed to be in hexadecimal
notation unless it is preceded with a decimal point, in which
case it is assumed to be in decimal notation.

Displaying Memory—The D Command
The display command is D. It displays the contents of memory
eight bytes at a time in hexadecimal notation. Execute the
display command by entering

D nnnn
where nnnn is the address of the start of the first eight-byte
block of memory to be displayed.
The monitor responds by displaying

nnnn b0 bl b2 b3 b4 b5 b6 b7

where b0 represents the first byte and b7 represents the eighth
byte.

-1



APPENDIX |
DEBUG MONITOR

The 4 or — key can be used to display the values in the next
lower addresses in multiples of eight. The ¥ or + key or the
space bar can be used to display the values in the next higher
addresses in multiples of eight.

To leave the D command, press the [CLR], [ENTER], or [BREAK]
key.

Examining and Modifying Memory—The M
Command
The examine and modify command is M. It can be used to read
and modify individual bytes of memory. Execute the command
by entering

M nnnn
where nnnn is the address of the first byte to be examined or
modified.

The monitor responds by displaying
nnnn=xx
where nnnn is the address of the byte and xx is the

hexadecimal value stored in that byte. A new value can be
stored in that byte by entering the value.

The 4 or - key can be used to display the value in the next
lower address. The ¥ or + key or the space bar can be used to
display the value in the next higher address.

To leave the M command, press the [CLR], [ENTER], or [BREAK]
key.

Copying Memory—The C Command
The copy command is C. It can be used to copy a block of
memory to a specified location. Execute the copy command by
entering

C ssss dddd Il
where ssss specifies the lowest address of the block to be
copied, dddd specifies the first memory tocation to be copied
to, and lill specifies the number of bytes to copy. lill bytes are
copied one at a time from ssss to dddd.

12



APPENDIX |
DEBUG MONITOR

Modifying Processor Information—The P
Command
The modify program information command is P. It can be used
to modify the microprocessor's program counter (PC), status
register (SR), and stack pointer (SP). Execute the command by
typing

P
The monitor responds by displaying

PC=nnnn
where nnnn is the current hexadecimal value of the program

counter. A new value can be entered for the program counter. {f
the program counter is not to be modified, press the space bar.

The monitor responds by displaying
ST=xx
where xx is the current hexadecimal value of the status

register. A new value can be entered for the status register. If
the status register is not to be modified, press the space bar.

The monitor responds by displaying
Sszy
where yy is the current value of the stack pointer. A new value

can be entered for the stack pointer. If the stack pointer is not
to be modified, press the space bar to exit from the command.

Note: Indiscriminate modification of the program counter or
stack pointer followed by the E commmand may cause
undesirable results.

Setting Break Points—The B Command

The breakpoint command is B. It can be used to set up to two
breakpoints. A breakpoint is set by entering an address for
either of the breakpoints. Entering an address for a breakpoint
causes a break to occur when that location is executed. To set
a breakpoint, type the following.

B
The monitor responds by displaying
B nnnn

where nnnn is the current vatue of the first breakpoint. (A 0000
value means no breakpoint has been set.) To set only one
breakpoint, type the address, press [ENTER], and the monitor
prompts for another command.

I3



APPENDIX |
DEBUG MONITOR

To set a second breakpoint, press the space bar instead of
[ENTER] after the first address has been typed. The monitor
responds by displaying

nnnn

where nnnn is the address of the first breakpoint set. The
address for the second breakpoint can then be entered.

When a break occurs, the monitor displays the prompt

nnn xx yy:
where nnnn is the hexadecimal address where the breakpoint
occurred, xx is the hexadecimal value of the status register at

the time the breakpoint occurred, and yy is the hexadecimal
value of the stack pointer.

Executing a breakpoint automatically clears any breakpoint(s)
set.

Single Stepping—The S Command
The single step command is S. It can be used to execute the
instruction at the address in the program counter. Execute the
command by typing the following.

S

This instruction has the same effect as executing a breakpoint
at the instruction following the current one. (See the B
command.)

Executing—The E Command
The execute command is E. It can be used to start execution at
the address given in the program counter. Execute the
command by entering the following.

E

Paging—The R Command
The page command is R. it can be used to change the page on
which code is executing. The page can be either the system
ROM page or a cartridge page. Execute the command by typing
the following.

R

4



APPENDIX |
DEBUG MONITOR

The monitor respords by displaying

CARTRIDGE PAGE=x
where x is the current page that is selected for the cartridge. If
the cartridge page is not to be modified, press the space bar to
display the system ROM page. Otherwise, type the new
cartridge page number and then press the [ENTER] key to exit
from the command or the space bar to modify the system page.
When the space bar is pressed, the monitor responds by
displaying

SYSTEM PAGE=n
where n is the current system ROM page that is selected while
the machine language program is running. The new system
ROM page can then be entered.

Help—The ? Command
The help command is 2. It can be used to display a list of the
commands used in the debug monitor. Execute the command
by typing the foliowing.
?
The monitor responds by displaying
COMMANDS=Q, B, E, M, C,S,D,P,R
Press the space bar or [ENTER] to leave the command.

Exiting—The Q Command
The exit command is Q. It Is used to leave the debug monitor
by typing the following.
Q
The monitor responds by displaying
:Q ’
B can be typed to continue program execution at the next

BASIC statement or | can be typed to return to system
command level.



APPENDIX J
TECHNICAL INFORMATION

Technical Information

This appendix provides technical information on the Texas
Instruments Compact Computer Model CC-40 and presumes
some knowtedge of digital circuits and assembly language
programming. The CC-40 hardware, memory organization,
memory expansion, system command level, and the HEX-BUS™
interface are described in this appendix. More detailed system
information is given in the Editor/Assembler manual.

CC-40 Hardware

The CC-40 is built around the TMS70C20 CMOS
microprocessor. The 70C20 is an 8-bit microprocessor with 2K
bytes of internal ROM and 128 bytes of RAM (called the
register file). A 256-byte block, starting at 0100,¢ (the subscript
16 indicates a hexadecimal number) is used for memory-
mapped peripheral ports.

Composing the rest of the system is a 32K-byte ROM, up to 18K
bytes of RAM, the display controller subsystem; Liquid Crystal
Display (LCD), keyboard, power supply, and control logic. A
block diagram is shown below.

J——IEH——|2.5 Mhz —— /O bus
_ |CARTRIDGE
CPU |=—»| CONTROL |3——— PORT
1 LoGIC
>~ RAM
DISPLAY
CONTROL [©
KEYBOARD . Rrom
DISPLAY

J-1



APPENDIX J
TECHNICAL INFORMATION

CC-40 Memory Organization

The TMS70C20 microprocessor can access a total of 64K bytes
of memory. This memory is mapped into several distinct
sections.

* A 128-byte register file
* A peripheral file

¢ System RAM

¢ The cartridge port

* System ROM

¢ Processor ROM

Each of these sections is addressed at a specific area in the
memory map as shown in the following table.

Address:
Decimal Hex Description
0 0000 Register
127  Q07F File (128 bytes)
128 0080 unused
255  QOFF (128 bytes)
256 0100 Peripheral s
511  O1FF File {256 bytes)
512 0200 unused
2047  O7FF (1.5K bytes)

2048 0800 System
20479  4FFF RAM  (upto 18K bytes)

20480 5000 Cartridge

53247 CFFF | port (32K bytes)
53248 D000 System

61439 EFFF ROM (8K bytes)
61440  FO00 unused

63487 F7FF (2K byies)
63488 F800 Processor

65535 FFFF ROM (2K bytes)

System Memory Map

J-2



APPENDIX J
TECHNICAL INFORMATION

Note: When a RAM cartridge is added to less than 18K of built-
in RAM, the cartridge overlays the memory starting at 1000,g.

The Register File

The register file contains the following groups of registers used
in BASIC.

1. The A register
2. The B register
3. The assembly language subroutine stack

4. BASIC reserved {program pointer, current program character,
etc.)

5. General purpose temporary registers (floating-point
operations, /O temporaries, etc.)

The general layout of the register file is shown below.

Address:
Decimal Hex Description
43

0 0000 A Register

1 0001 B Register

2 0002 Assembly language
57 0039 subroutine stack

58 003A BASIC statement
74 004A temporaries

75 004B BASIC reserved
87 0057 area

88 0058 General purpose
126 007E temporaries

127 007F Floating-point status

Register File

J3



APPENDIX J
TECHNICAL INFORMATION

The Peripheral File

The TMS70C20 contains special instructions for performing I/O.
These instructions access a particular section of the memory
map called the peripheral file. This area contains several built-
in periphera! registers such as the /O control register, timer
control registers, A and B ports, and the peripheral file
expansion area. The general layout of the peripheral file is
shown below.

Address:
Decimal Hex Description

256 0100 11O contro! register

257 0101 Reserved

258 0102 Timer data register

259 0103 Timer control register

260 0104 A port input data

261 0105 Reserved

262 0106 B port output data

263 0107 unused
271 010F

272 0110 Address control register

273 0111 Power on hold latch

274 0112 1O bus-data

275 0113 /O bus-bus available

276 0114 110 bus-handshake cti

277 0115 Piezo control

(continued)

J-4



APPENDIX J

TECHNICAL INFORMATION
{continued)
Address:
Decimal Hex Description
278 0116 Low battery sense line
279 0117 unused
280 0118
281 0119 Page control register .
282 011A Clock control register
283 011B unused
511 01FF

Peripheral File

J-5



APPENDIX J
TECHNICAL INFORMATION

System RAM

RAM starts at 0800, in the CC-40. The RAM can be increased
by using a Memory Expansion cartridge. A minimum of 402
bytes of the memory is reserved by BASIC for the following.

e RAM-based trap vectors

e | ist pointers

¢ Random number seeds

¢ Permanent buffers (such as the keyboard input buffer)

¢ Other necessary information

The rest of memory is used to store the floating point stack,
the dynamic area, any program in memory, and any user loaded
assembly language subprograms. Each user-assigned string
requires 1 byte plus the length of the string.

The use of RAM is outlined in the table below.

Highest
RAM Program
address Image
Run-time data structures
(dynamic area)
4,\/

I\,
Floating point value and
execution control stack

Table of variable names

User assigned strings

Assembly language
091246 subprograms

System reserved area

RAM Usage

080045

J6



APPENDIX J
TECHNICAL INFORMATION

BASIC Program Image

A BASIC program requires the following quantities of memory.

¢ Eleven bytes for overhead information.

» Four bytes of overhead for each program line.

* Two bytes of overhead plus the length of the variable name
for each variable name. Each additional use of the same
variable name requires only one byte.

® One byte of memory for each use of the following BASIC
program elements.

ABS, ACCEPT, ACS, ALL, AND, APPEND, ASC, ASN, AT, ATN,

ATTACH, BEEP, CALL, CHR$, CLOSE, COS, DATA, DIM,

DISPLAY, END, EOF, ERASE, EXP, FOR, FRE, GOSUB, GOTO,

IF, IMAGE, INPUT, INT, INTERNAL, INTRND, KEYS$, LEN, LET,

LINPUT, LN, LOG, NEXT, NOT, NULL, NUMERIC, ON, OPEN,

OR, OUTPUT, PAUSE, PI, POS, PRINT, RANDOMIZE, READ,

REC, RELATIVE, RELEASE, REM, RESTORE, RETURN, RND,

RPT$, SEG$, SGN, SIN, SIZE, SQR, STEP, STOP, STR$, SUB,

SUBEND, SUBEXIT, TAB, TAN, THEN, TO, UPDATE, USING,

VAL, VALIDATE, VARIABLE, XOR, statement separator :,

comma ,, semicolon ;, left parenthesis (, right parenthesis ),

not-equal < >, less-than-or-equal < =, greater-than-or-equal

> =, equal =, less-than <, greater-than >, concatenation &,

addition or unary plus + , subtraction or unary minus -,

multiplication «, division /, exponentiation A, file number # .

* Two bytes of memory for each use of the following BASIC
program elements.

ALPHA, ALPHANUM, BREAK, CONTINUE (CON), DEG,

DELETE (DEL), DIGIT, ELSE, ERROR, FORMAT, GRAD, LIST,

NEW, NUMBER (NUM), OLD, PROTECTED, RAD, RENUMBER

(REN), RUN, SAVE, UALPHA, UALPHANUM, UNBREAK,

VERIFY, WARNING, tail remark 1 .

® The number of bytes required for the following BASIC
program elements are shown below.

a. Three bytes for each line reference which appears in
control transfer statements such as GOTO, GOSUB, ON
GOTO, ON GOSUB, and IF THEN ELSE. Line references
can also be in statements and commands such as ON
ERROR, RESTORE, RUN, and DELETE.

b. One byte of overhead plus two to eight bytes for each
numeric constant. The number of bytes depends upon the
number of significant digits in the floating-point
representation of the constant. Trailing zeros are truncated
from the normal representation to generate the program
representation.

J-7



APPENDIX J
TECHNICAL INFORMATION

c. Two bytes of overhead plus the length of the string
characters contained between the quotation marks for each
quoted string constant. The length does not include the
quotation marks. Within the quoted string two consecutive
quotation marks count as a single quotation mark.

d. Two bytes of overhead plus the length of the string for
each unquoted string constant. Leading and trailing spaces
are ignored. Subprogram names in SUB, CALL, ATTACH,
and RELEASE statements are unquoted strings. Unquoted
strings also appear in REM, IMAGE, and DATA statements.

Run-time Data Structures

The following memory requirements are necessary to run a
BASIC program. These structures are allocated dynamically
during program execution.

¢ Four bytes of overhead for each variable in the main program.
In addition the following memory is required for those
variables.
a. Eight bytes for each simple numeric variable.

b. Two bytes of overhead for each dimension of each numerlc
array plus 8 bytes for each element value.

¢. Four bytes of overhead for the value of each simple string
variable plus the length of the value. (Exception: If the
variable is assigned a simple constant value in the
program, the overhead for the value is reduced to 2 bytes.
For example, A$ = "HELLO"” requires 4 bytes of overhead
for the variable A$ and 2 bytes of overhead for the value.
A$ ="HELLO"&B$ requires 4 bytes of overhead for A$, plus
4 bytes of overhead for the valuse, plus the length of the
value))

d. Two bytes of overhead for each dimension of a string array
plus 4 bytes of overhead for each element value plus the
length of each element value (see exception above).

® Eleven bytes of overhead for each BASIC subprogram plus 2
bytes for each variable (including arrays), plus 2 bytes for
each dimension of each array. In addition each active and
each attached subprogram has two bytes of overhead plus
memory space for variables as described previously. If the
subprogram is attached, the additional memory space
remains allocated until the subprogram is released.

Otherwise, the memory space is released when the |

subprogram terminates. See the CALL, ATTACH, and

RELEASE statements.

J8



APPENDIX J
TECHNICAL INFORMATION

¢ Twenty-one bytes of overhead for each open file or device
plus the maximum record length specified in the OPEN
statement. If record length Is not specified in the OPEN
statement, it is specified by the device when the OPEN
statement is executed. This memory is released when the file
or device is closed.

e Twenty-four bytes of the execution control stack during
execution of each FOR NEXT loop.

¢ Eight bytes of the execution control stack during execution of
the subroutine for each GOSUB or ON GOSUB.

¢ Sixteen bytes of the execution contro! stack during execution
of the error handling subroutine for ON ERROR line-number.

* Twenty-four bytes of the execution control stack during
execution of the subprogram for each BASIC subprogram
CALL.

¢ Sixteen bytes of the execution control stack for an
occurrence of a breakpoint until the program is continued or
the capability to continue is destroyed.

Memory Expansion

The amount of memory added by a Memory Expansion
cartridge depends upon the amount of resident memory and the
size of the Memory Expansion cartridge. The table below shows
the memory capacities resulting from adding a particular
Memory Expansion cartridge to a specific amount of resident
memory.

Cartridge Memory Size (K bytes)

2| 8| 16

410 | 18

Resident 4] 4|10 | 18
Memory

(K bytes) 4110 { 18

10 410 | 18

18 | 20 | 26 | 34

J9



APPENDIX J
TECHNICAL INFORMATION

System Command Level
The system command level of the BASIC interpreter is a loop
which repetitively performs three phases of operation.

1. An input line is accepted from the keyboard and echoed in
the display.

2. The input line is translated into an internal representation
which can be processed by the execution level of the BASIC
interpreter.

3. Based on the content of the input line and the key used to
terminate the input, the command level determines how to
use the input and processes it accordingly. After processing
the current input line, the command level loops back to the
input phase to accept another line from the user.

The key to the proper functioning of the command level is the
decision concerning how to use the input line. This process
begins in the line compression routine which translates the
input line into its corresponding internal representation. This
routine decides whether or not the input is a BASIC program
line. If the input line begins with a valid line number (an integer
from 1 to 32766), followed by one or more spaces, followed by
an alphabetic character, the at sign, the underline, or tail
remark symbol (!), it is translated as a program line. Otherwise,
the input is translated as a statement (or command) for
immediate execution or an equation for immediate calcutation.

BASIC program lines are edited into the current BASIC program
in memory. If the current program is not a BASIC or a protected
program, an error occurs. If the input is not a program line, the
command level must decide whether it is a statement/command
or an equation. A statement/command is executed immediately
as if it were a one line program. An equation is evaluated and
the result is displayed left justified in the display. Other
calculations may be appended to the result using the +, —, *, /,
and A operators. However, if a new equation or
statement/command is input, the result is automatically cleared
before the input is accepted.

J-10



APPENDIX K
ERROR MESSAGES

Error Messages
The following lists describe the cause of each error message
generated by the CC-40. The first list, arranged alphabetically
by message, provides detailed information about the probable
cause of each error. The second list, arranged In ascending
order by error code, serves as a cross reference to locate the
message associated with a particular error code.

When an error message is displayed, the 9, ¢, 4, ¥, and
{SHIFT] [PB] keys can be used to display additional system error
information and to edit an erroneous line.
[SHIFT] [PB] is used when an error occurs after a line Is
entered. [SHIFT] [PB] displays the erroneous entry
which can then be edited and entered again

> Is used when an error occurs during program
execution. < displays the error code and the line
number of the line being executed (when the
error occurred) in an Enn Lummmm formal where nn
Is the error code and mmmmm s the line number.
{This line Is not necessarily the one that is the
source of the problem since an error may occur
because of values generated or actions taken
elsewhere in the program.)
When an 1/O error occurs, =» displays elther the
error code, file number, and line number In an
EO, xxx #yyy mmmmm format or the error code,
device number, and line number in an £0, xxx
"yyy" mmmmm format. xxx Is the /O error code,
#yyy is the file number or "yyy" is the device
number, and mmmmn is the line number of the line
that was executing when the error occurred.

€ can be used to redisplay the error message
immediately after the < key has been pressed.

“ or ¥ Is used when an error occurs during program
execution to display the program line that was
executing when the error occurred.

Errors can be handled in a program using ON ERROR and
CALL ERR. Refer to chapters 4 and 5 for more information.



APPENDIX K
ERROR’HESSAGES

Messages Listed Alphabetically
Code Message/Cause

29

07

17

18

32

Bad argument

* Invalid argument provided for one of the built-in
nu:,ng:i)c, string, or file functions such as LOG, CHRS,
an F.

* Invalid argument provided for one of the option
clauses in an input/output statement such as AT, SIZE,
VALIDATE, and TAB.

e Arguments in a CALL statement did not match the
requirements for the subprogram called.

Bad INPUT data

* Entered more than one value at a time in an INPUT or
ACCEPT statement.

* Invalid data from a file in an INPUT or LINPUT
statement.

Bad line number

¢ Line number specified in a statement or command was
less than 1 or greater than 32766.

* RENUMBER command generated a line nhumber
greater than 32766.

Bad progran type

¢ Entered a BASIC program line with an assembly
language or other non-BASIC program in memory.

¢ Entered a SAVE, VERIFY, BREAK /ine-list, UNBREAK
line-list, NUMBER, RENUMBER, LIST, CONTINUE /ine-
number, RUN line-number, or DELETE line-group
command with an assembly language or other non-
BASIC program in memory.

e Attempted to CALL a main program or RUN a
subprogram.

¢ Attempted to ATTACH a main program or an assembly
language subprogram.

« File specified for LOAD subprogram did not contain a
relocatable, assembly language subprogram.

Bad subscript

e Subscript value too large.

* Missing comma between subscripts or missing
parentheses around subscripts.

¢ Incorrect number of subscripts.
{continued)

K-2



APPENDIX K
ERROR MESSAGES

(continued)

Code Message/Cause

04

31

37

10

43

K-3

Bad value

¢ Index value in ON GOTO or ON GOSUB statement was
zero or greater than the number of line number entries.

¢ Raised a negative value to a non-integer power.

* invalid value provided for one of the option clauses in
an input/output statement such as AT, SIZE, REC, and
VARIABLE.

e Attempted a logical operation (AND, OR, XOR, or NOT)
with a value less than — 32768 or greater than 32767.

BASIC extension missing

e Attempted to execute an extended BASIC statement or
function without the extension in the system.

® May also occur when the contents of memory have
been improperly modified (see System error).

Break

¢ A breakpoint occurred or the break key was pressed.

Can't do that

o Attempted to perform a string operation as an
immediate calculation.

» Entered CONTINUE command when not stopped at a
breakpoint.

e A SUBEXIT or SUBEND statement was encountered
when no subprogram was called. For example,
CONTINUE tine-number specified a line in a
subprogram after the main program stopped at a
breakpoint.

DATA error

» Out of data in the current program or subprogram.

¢ Improper data list in a DATA statement. For example,
items not separated by commas.

* During an attempt to read a numeric item, the data
read was not a valid representation of a numeric
constant.

Division by zero

e Evaluation of a numeric expression includes division
by zero; result is replaced by 9.9999999999993E + 127

with the appropriate algebraic sign.
{continued)



APPENDIX K
ERROR MESSAGES

{continued)
Code Message/Cause

23

02

24

30

"

Error in image

¢ NuH string provided as image string.

* Numeric format field specified more than 14
significant digits.

® Print-list included a print-item but image string had
only literal characters.

Expression too complex

¢ Too many functions, operators, or levels of
parentheses pending evaluation; expression must be
simplified or must be performed in two or more steps
in separate statements.

File error )

e File-number specified in an OPEN statement refers to
a file already opened.

® File-number in an input/output statement, other than
OPEN, did not refer to an open file.

® File-number or device number in an input/output
statement was greater than 255.

e Attempted to INPUT or LINPUT from a file opened in
OUTPUT or APPEND mode.

o Attempted to LINPUT from an internal-type file.

e Attempted to PRINT to a file opened in INPUT mode.

e Used REC clause in an input/output statement which
accessed a sequential file.

¢ Missing period or comma after device number in
device or filename specification.

FOR without NEXT

* More FOR statements than NEXT statements in a
program or subprogram. Note: the line number
reported is the last line of the current program or
subprogram, not the line containing the unmatched
FOR statement.

I1legal after SUBEND
¢ Statement other than REM, !, END, or SUB used after

a SUBEND statement.
{continued)

K-4



APPENDIX K
ERROR MESSAGES

{continued)

Code Message/Cause

13

19

01

K6

I1llegal FOR-NEXT nesting
* Too many levels of nested FOR NEXT loops.
e Same control variable used in nested FOR NEXT loops.
I1legal in program
e Used CALL ADDMEM, CALL CLEANUP, CONTINUE,
DELETE line-group, LIST, NEW, NUMBER, OLD,
RENUMBER, SAVE, or VERIFY in a program.
Illegal syntax
® Missing parentheses or quotation mark(s).
° ('M)issing statement separator () or tail remark symbol
* Missing or extra comma(s). For example:
—between arguments in argument-list
—between line numbers in line-number-list
—between variables in variable-list
—after fite-number in input/output statements
¢ Missing hyphen in line sequence.

‘e Missing argument or clause. For example:

—no limit value after TO or increment value after STEP

—no line number or statement after THEN or ELSE

—no string-constant following IMAGE

—no line-number or string-expression after USING

—no value before or no value after a binary operator
suchas «,/, A,0r &

—no input variable following INPUT, LINPUT, ACCEPT,
or READ

« Invalid argument or clause. For example:

—a string variable is used as control-variable in FOR

—a numeric variable is used as input variable in
LINPUT

—VALIDATE or NULL is used in a DISPLAY statement

—USING or TAB is used with an internal-type file

—the size of print item exceeds record size for an

internal-type file
fcontinued)



APPENDIX K
ERROR MESSAGES

(continued)
Code Message/Cause
* Missing keyword. For example:
—no TO after FOR
—no THEN after IF
-no GOTO or GOSUB after ON numeric-expression
—no STOP, NEXT, or ERROR after ON BREAK
—no PRINT, NEXT, or ERROR after ON WARNING
¢ Improperly placed keyword. For example:

~-DIM or SUBEND is used after a DIM statement in a
multiple statement line

—a statement begins with a non-statement keyword

. such as TO, ERROR, VARIABLE, SIZE

—a misspelled variable results in a keyword or a
misspelled keyword in a variable

—a keyword is used as a variable, such as ON VAL
GOTO or IF STOP=1 THEN

¢ Duplicated option in input/output statement. For
example:

—more than one AT, SIZE, ERASE ALL is in ACCEPT
or DISPLAY

—more than one string expression is in VALIDATE

—more than one open-mode, file-type, file-organization
is in OPEN

¢ Missing or invalid filename in OLD, SAVE, VERIFY, or
DELETE file command.

¢ |nvalid character in statement. For example “%?”, “?”,
“n, “Q", “C”, etc., are valid only within quoted strings
or in an IMAGE or REM statement.

e [nvalid character within a numeric constant.

08 Invalid dimension
* Specified array dimension was negative or was not a
numeric constant.
* Too many elements specified for an array.
e More than three dimensions specified for an array

¢ Missing comma between dimensions or missing
parentheses around dimensions of an array.

{continued)

K-6



APPENDIX K
ERROR MESSAGES

{continued)
Code Message/Cause

00

16

12

27

35

K-7

1/0 error

= An error was returned by a peripheral device during an
input/output (I/0) statement or command, or while
using the EOF function. A special I/O code is returned
by the device and is displayed after the message.
Common /O error codes are described in the I/O
ERROR CODES section of this appendix.
The error code is followed by the file-number or the
device number, whichever is appropriate to the
statement or command being executed. A number sign
indicates a file-number and quotation marks indicate a
device number. Both the common codes and other
device-dependent /O error codes are described in the
peripheral manuals.

Line not found

¢ Could not find a line number specified in BREAK,
CONTINUE, DELETE, GOSUB, GOTO, ON ERROR,
USING, RESTORE, RUN, or BREAK.

* RENUMBER could not find a referenced line. The
command replaced the reference by 32767, which Is
‘not a valid line number.

Line reference out of range

¢ BASIC statement referred to a line number which was
lower than the first (or higher than the last) line
number of the current program or subprogram.

Line too long

¢ The internal representation of a program line or
immediate statement(s) was too long.

¢ The LIST representation of a program line exceeded 80
characters.

Memory contents may be lost

¢ When the power was turned on, the computer
determined that the contents of the constant memory
were not the same as when the power was turned off.
However, some system data was correct, so the loss
may or may not be serious. This message often
appears when the reset key is pressed while the power
is on. .

{continued)



APPENDIX K
ERROR MESSAGES

{continued)

Code Message/Cause

127

14

42

39

25

28

Memory full
¢ Insufficient space to add, insert, or edit a program line.

¢ insufficient space to allocate variables for a program
or subprogram.

* Insufficient memory to allocate space for a string
value.

* Insufficient space to load a program or subprogram
into memory.

¢ Insufficient space to OPEN a file or device.

* Insufficient space to assign a user-assigned string.

¢ Attempted to allocate more than the largest available
block of memory using the GETMEM subprogram.

Miseing RETURN from error

e An error processing subroutine terminated with a
SUBEXIT or SUBEND statement instead of a RETURN
statement.

Missing SUBEND

e SUBEND missing in a subprogram.

® Encountered a SUB statement within a subprogram; a
subprogram cannot contain another subprogram.

Must be in program

e ACCEPT, CALL with BASIC language subprograms,
GOSUB, GOTO, INPUT, LINPUT, ON ERROR /ine-
number, ON GOSUB, ON GOTO, READ, RESTORE Jine-
number, SUB, SUBEXIT, and SUBEND statements can
be executed only in a program.

Must be in subprogram

o SUBEXIT or SUBEND statement encountered in a main
program.

Name table full

¢ Defined more than 95 variable names. The CLEANUP
subprogram can be used to delete all variable names
not used in the current program in memory.

Name too long

* More than 15 characters in a variable or subprogram
name.
{continued)

K8



APPENDIX K
ERROR MESSAGES

(continued)

Code Message/Cause

06

40

33

15

20

45

05

41

K-9

NEXT without FOR

¢ More NEXT statements than FOR statements in a
program or subprogram.

e Control-variable in NEXT statement did not match
control-variable in corresponding FOR statement.

* Executed a NEXT statement without previously
executing the corresponding FOR statement.

No RAM in cartridge

¢ Called ADDMEM subprogram with no cartridge
installed or with a cartridge which did not contain
RAM memory.

Overflow

¢ A numeric value was entered or a numeric expression
was evaluated which resulted in a number whose
absolute value was greater than
9.9999999999999E + 127; the value is replaced by
9i99999999999995+ 127 with the appropriate algebraic
sign.

Program not found

* RUN statement did not find the specified program.

¢ CALL statement did not find the specified subprogram.

Protection violation ,

¢ Attempted to insert, delete, or edit a line with a
protected program in memory.

o Attempted to LIST, SAVE, NUMBER, or RENUMBER a
protected program.

RETURN without GOSUB

* Executed a RETURN statement without previously
executing the corresponding GOSUB statement.

Stack underflow

¢ Attempted to remove a value from the execution
control stack when it was empty. This error only
occurs when the contents of memory have been
improperly modified (see System error).

Statement must be first on line

e SUB statement used after the first statement in a
multiple statement line.
{continued)



APPENDIX K
ERROR MESSAGES

{continued)

Code Message/Cause

03

36

21

126

String-number mismatch

* Used a string argument where a numeric argument
was expected or a numeric argument where a string
argument was expected.

® Assigned a string value to a numeric variable or a
numeric value to string variable.

¢ A numeric variable or expression was provided as a
prompt in an INPUT or LINPUT statement.

Stri:ng truncation

e String operation (concatenation or RPT$) resulted in a
string with more than 255 characters; the extra
characters are discarded.

Subprogram in use

e Called an active subprogram; subprograms may not
call themselves, directly or indirectly.

System error

¢ This error generally occurs when the contents of
memory have been lost or improperly modified. For
example, memory may be modified by a loss of power
or by improper use of the POKE, RELMEM, EXEG, or
DEBUG subprogram(s).

System initlalized

¢ Displayed when circumstances force the complete
initialization of the system. The system is initialized
when the power is turned on and one of the following
occurs.

~The computer determines that the contents of
memory have been destroyed (may occur after
changing the batteries).

—~The computer determines that previously appended
expansion RAM (through ADDMEM subprogram) is
no longer in the system.

* The message may also appear when the reset button
is pressed because much of the same memory
checking is performed,. (The system Initialization

procedure is described in appendix G.)
(continued)

K-10



APPENDIX K
ERROR MESSAGES

(continued)

Code Message/Cause

26

22

09

Unmatched parenthesis

o A statement or expression did not contain the same
number of left and right parentheses.

» Left and right parentheses in a statement or
expression did not match up. For example,
SIN(1+)PI/2)( where SIN(1+(PI/2)) was intended.

Variable not defined

¢ Attempted to perform a calculation with a variable
which has not been defined.

* Encountered an undefined variable in a program or
subprogram. This error can occur when CONTINUE
line-number specifies a line which is not in the same
program or subprogram where the breakpoint occurred.

Variable previously defined
¢ Variable in a DIM statement appeared previously in the
current program or subprogram.
® Variable referenced using the wrong number of
dimensions. For example, a variable was first used as
a simple variable and later used as an array in the
" same program or subprogram.

Error Codes List in Ascending Order
Code Message

00
01
02
03
04
05
06
07
08
09
10
1"
12
13
14
15

K-11

I1/0 error
Illegal syntax
Expression too complex
String-number mismatch
Bad value
Stack underflow
NEXT without FOR
Bad INPUT data
Invalid dimension
Variable previously defined
Can't do that
T1legal after SUBEND
Line reference out of range
T1llegal FOR-NEXT nesting
Missing RETURN from error
Program not found

(continued)



APPENDIX K
ERROR MESSAGES

{continued)

Code Message

Line not found

Bad 1ine number

Bad program type
I1llegal in program
Protection violation
Subprogram in use
Variable not defined
Error in image

File error

Name table full
Unmatched parenthesis
Line too long

Name too long

Bad argument

FOR without NEXT
BASIC extension missing
Bad subscript
Overflow

Division by zero
Memory contents may be lost
String truncation
Break

System initialized
Must be in subprogram
No RAM in cartridge
Statement must be first on line
Missing SUBEND

DATA error

Must be in program
RETURN without GOSUB
System error

Memory full

K-12



APPENDIX K
ERROR MESSAGES

/0 ERROR CODES

The following list details the standard input/output (I/0) error
codes. Some peripherals may have additional error codes; if so,
they are explained in the peripheral manual.

IO errors are displayed in one of the following forms.

» 1/0 error ccc #fff

® 1/0 error cce "ddd"

where ccc is the I/0 error code listed below or in the peripheral
manual, fff is the file number assigned in an OPEN statement,
and ddd is the device code associated with the peripheral
device.

Code Definition

1 DEVICE/FILE OPTIONS ERROR

¢ Incorrect or invalid option specified in
“device.filename”.

® Filename too long or missing in “device.filename”.

2 ERROR IN ATTRIBUTES
* In an OPEN statement, incorrect attributes (file-type,
file-organization, open-mode, record-length) were
specified for an existing file.
3 FILE NOT FOUND
¢ The file specified in one of the following operations
does not exist.
—OPEN statement using the INPUT attribute
—OLD “device.filename”
—RUN “device.filename”
—DELETE *device.filename”
—CALL LOAD(" device.tilename™)

4 DEVICE/FILE NOT OPEN

e Attempted to access a closed file with a INPUT,
LINPUT, PRINT, or CLOSE operation.

* File specified in EOF function is closed.
5 DEVICE/FILE ALREADY OPEN
¢ Attempted to OPEN or DELETE an open file.

o Attempted to FORMAT storage medium on a device
which has a file open.

{continued)

K-13



APPENDIX K
ERROR MESSAGES

{continued)
Code Definition

6

10

1"

12

13

DEVICE ERROR

e A failure has occurred in the peripheral. This error can
occur when directory information on a tape was lost,
the peripheral detected a transmission error or a
medium failure, etc.

END OF FILE

* Attempted to read past the end of the file.

DATA/FILE TOO LONG

* Attempted to output a record which was longer than
the capacity of the device.

* A file exceeded the maximum file length for a device.

WRITE PROTECT ERROR

e Attempted to FORMAT a write-protected storage
medium.

» Attempted to OPEN a write-protected file in OUTPUT
or UPDATE mode.

* Attempted to DELETE a file from a write-protected
medium.

NOT REQUESTING SERVICE

¢ Response to a service request poll when the specified
device did not request service. (This code is used in
special applications and should not be encountered
during normal execution of BASIC programs.)

DIRECTORY FULL

e Attempted to OPEN a new file on a device whose
directory is full.

BUFFER SIZE ERROR

* When an existing file was opened for input or update,
the specified record length (VARIABLE XXX) was less
than the length of the largest record in the existing
file.

* The VERIFY command found the program in memory
was smaller than the program on the storage medium.

UNSUPPORTED COMMAND

o Attempted an operation not supported by the
peripheral.
(continued)

K-14



APPENDIX K
ERROR MESSAGES

(continued)
Code Definition

14

15

16

17

19

20

21

22

23

24

25

K-15

DEVICE/FILE NOT OPENED FOR OUTPUT
¢ Attempted to write to a file or device opened for input.

DEVICE/FILE NOT OPENED FOR INPUT

¢ Attempted to read from a file or device opened for
output or append.

CHECKSUM ERROR

e The checksum calculated on the input record was
incorrect.

RELATIVE FILES NOT SUPPORTED

» Device specified in OPEN does not support relative
record file organization.

APPEND MODE NOT SUPPORTED

¢ Device specified in OPEN statement does not support
append mode.

OUTPUT MODE NOT SUPPORTED

¢ Device specified in OPEN statement does not support
output mode.

INPUT MODE NOT SUPPORTED

¢ Device specified in OPEN statement does not support
input mode.

UPDATE MODE NOT SUPPORTED

* Device specified in OPEN statement does not support
update mode.

FILE TYPE ERROR

e File type specified in OPEN statement is not
supported by the specified device.

¢ File type specified in OPEN statement does not match
file type of existing file or device.

VERIFY ERROR

® Program or data in memory does not match specified
program or storage medium.

LOW BATTERIES IN PERIPHERAL

¢ Attempted an IO operation with a device whose

batteries are low.
(continued)



APPENDIX K
ERROR MESSAGES

{continued)
Code Definition

26

32

254

255

UNINITIALIZED MEDIUM

* Attempted to open a file on uninitialized storage
medium.

¢ Attempted to open a file on storage medium which has
been accidentally erased or destroyed.

MEDIUM FULL

* No available space on storage medium.

ILLEGAL IN SLAVE MODE

e Attempted a normal (master) I/O bus operation while
the computer was in peripheral (slave) mode. (This
error occurs during some special applications and
should not be encountered during normal execution of
a BASIC program.)

¢ Note: Improper modification of memory by the POKE,
RELMEM, EXEC, or DEBUG subprograms can result in
the computer being placed in peripheral (slave) mode.

TIME-OUT ERROR

¢ Lost communication with the specified device.

* Specified device is not connected to the 1/O bus.

K-16



APPENDIX L

SERVICE & WARRANTY
INFORMATION

In Case of Difficulty

In the event that you have difficulty with your Compact
Computer, the following instructions may help you diagnose
and remedy the problem. Usually you can correct the problem
without returning the unit to a service facility. If the suggested
remedies are not successful, contact Texas Instruments’
Consumer Relations Department by mail or telephone as
described later in the section IF YOU HAVE QUESTIONS OR
NEED ASSISTANCE.

Note: All peripherals attached to the CC-40 should be {urned on
for proper operation.

If one of the following symptoms appears, try the suggested
remedy. If you are operating your computer with peripheral
devices and the remedy does not correct the problem, remove
the peripherals. If the symptom disappears, a peripheral is the
most likely source of the difficulty. Refer to the appropriate
peripheral or accessory manual for more information cn the
cause of the problem.

Symptom Remedy/Cause
No display Check that power is on. Move the display

contrast control to see if the display
becomes visible. If there is still no display,
replace the batteries with fresh AA
alkaline batteries.

No flashing cursor Check the I/O display indicator to see if
any |/O operations are in progress. If the
indicator is on, wait for all peripheral
activity to cease. If the indicator is still on
several minutes later, disconnect the
HEX-BUS interface cable from the
computer. Then press the reset key.

If the I/O indicator is not on, the system
may be locked up. Press the [BREAK] key
to try to hait the computer. If the word
BREAK appears in the display, enter CON
to continue executing the program in
memory.

(continued)



APPENDIX L

SERVICE & WARRANT
INFORMATIOlYl
(continued)
Symptom Remedy/Cause

No flashing cursor If the [BREAK] key is inoperable, press the
reset key. The message Memory contents
may be lost should be displayed. Press
the [CLR] key to clear the display. You can
check if your program is still in memory by
entering LIST.

If pressing the reset key does not cause
the cursor to reappear, the batteries
should be removed. Normally, the system
is then initialized and any program in
memory erased.

Returning Your Computer
When returning your Compact Computer for repair or
replacement, also return any software cartridges that were
being used when the difficulty occurred. For your protection,
the CC~40 should be sent insured; Texas Instruments cannot
assume any responsibility for loss of or damage to the CC-40
during shipment. It is recommended that the CC-40 be shipped
in its original container to minimize the possibility of shipping
damage. Otherwise, the CC-40 should be carefully packaged
and adequately protected against shock and rough handling.
Send shipments to the appropriate Texas Iinstruments Service
Facility listed in the warranty. Please include information on
the difficulty experienced with your computer as well as return
address information including name, address, city, state, and
zip code.

If the CC-40 is in warranty, it will be repaired or replaced under
the terms of the Limited Warranty. Out-of-warranty units in need
of service will be repaired or replaced with reconditioned units
(at TI's option), and service rates in effect at the time will be
charged. Because our Service Facility serves the entire United
States, it is not feasible to hold units while providing service
estimates. For advance information concerning our flat-rate
service charges, please call our toil-free telephone number

(800) 858-4565.

Exchange Centers
If your Compact Computer requires service and you do not wish
to return the unit to your dealer or to a service facility for
repair, you may elect to exchange the computer for a factory-
reconditioned computer of the same model (or equivalent model
specified by Tl) by taking the computer to one of the exchange
centers which have been established across the United States.

L2



APPENDIX L

SERVICE & WARRANTY
INFORMATION

A handling fee will be charged by the exchange center for
in-warranty exchange. Out-of-warranty exchanges will be
charged at the rates in effect at the time of the exchange. To
determine if there is an exchange center in your area, lock for
Texas Instruments Incorporated Exchange Center in the white
pages of your telephone directory or look under the Calculating
and Adding Machines and Supplies heading in the yeliow
pages. Please call the exchange center for the availability of
your model. You can write or call Texas Instruments Consumer
Relations Department for more information.

If You Have Questions or Need Assistance

For General Information

If you have questions concerning Compact Computer repair or
peripheral, accessory, or software purchase, please call our
Customer Relations Department at (800) 858-4565 (toll free
within the contiguous United States). The operators at these
numbers cannot provide technical assistance.

For Technical Assistance

For technical questions such as programming, specific
computer applications, etc., you can call (806) 741-2663. We
regret that this is not a toll-free number, and we cannot accept
collect calls. As an alternative, you can write to:

Texas Instruments Consumer Relations
P.O. Box 83
Lubbock, Texas 79408

Because of the number of suggestions which come to Texas
Instruments from many sources, containing both new and old
ideas, Texas Instruments will consider such suggestions only if
they are freely given to Texas Instruments. It is the policy of
Texas Instruments to refuse to receive any suggestions in
confidence. Therefore, if you wish to share your suggestions
with Texas Instruments, or if you wish us to review any
computer program which you have developed, please include
the following in your letter:
“All of the information forwarded herewith is presented to
Texas Instruments on a nonconfidential, nonobligatory basis;
no relationship, confidential or otherwise, expressed or
implied, is established with Texas Instruments by this
presentation. Texas Instruments may use, copyright,
distribute, publish, reproduce, or dispose of the information
in any way without compensation to me.”

L3



APPENDIX L

SERVICE & WARRANTY
c INFORMATION

90-Day Limited Warranty

THIS TEXAS INSTRUMENTS COMPACT COMPUTER
WARRANTY EXTENDS TO THE ORIGINAL CONSUMER
PURCHASER OF THE COMPUTER.

Warranty Duration:

This computer is warranted to the original consumer purchaser
for a period of 90 days from the original purchase date.

Warranty Coverage:

This computer is warranted against defective materials or
workmanship. THIS WARRANTY DOES NOT COVER BATTERIES AND
IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT,
UNREASONABLE USE, NEGLECT, IMPROPER SERVICE OR OTHER
CAUSE NOT ARISING OUT OF DEFECTS IN MATERIAL OR
WORKMANSHIP.

Warranty Disclaimers:

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF :
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
ARE LIMITED IN DURATION TO THE ABOVE 90-DAY PERIOD. TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE
COMPUTER OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS,
EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY
OTHER USER.

Some states do not allow the exclusion or limitation of implied
warranties or consequential damages, so the above limitations
or exclusions may not apply to you.

Legal Remedies:

This warranty gives you specific legal rights, and you may also
have other rights that vary from state to state.

L4



APPENDIX L

SERVICE & WARRANTY
INFORMATION

Warranty Performance:
Please contact the retailer from whom you purchased the
computer and determine the exchange policies of the retailer.

During the above 90-day warranty period, your TI Compact
Computer will be repaired or replaced with a new or
reconditioned comparable model (at TI’s option) when the
computer is returned either in person or by prepaid shipment to
a Texas Instruments Service Facility listed below.

Texas Instruments strongly recommends that you insure the
computer for value, prior to shipment.

The repalred or replacement computer will be warranted for 90
days from date of repair or replacement. Other than the cost of
postage or shipping to Texas Instruments, no charge will be
made for the repair or replacement of in-warranty computers.

Texas Instruments Consumer Service Facilities

US. Residents: Canadian Customers Only:

Texas Instruments Service Facllity Geophysical Services Incorporated
2303 North University 41 Shelley Road

Lubbock, Texas 79415 Richmond Hill,

Ontario, Canada L4C5G4
Consumers in California and Oregon may contact the following
Texas Instruments offices for additional assistance or
information.
Texas Instruments Consumer Service Texas Instruments Consumer Service

831 South Douglas Street 6700 Southwest 105th St.
El Segundo, California 90245 Kristin Square
(213)973-1803 Suite 110
Beaverton, Oregon 97005
(503) 6436758

L-5



APPER

SERVICE & WARRANGY
INFORMATIONMN

Important Notice Regarding Programs and Book Materials
The following should be read and understood before purchasing:
and/or using TI's Compact Computer.

Tl does not warrant that the programs contained in this
computer and accompanying book materials will meet the
specific requirements of the consumer, or that the programs.
and book materials will be free from error. The consumer
assumes complete responsibility for any decision made or
actions taken based on information obtained using these
programs and book materials. Any statements made concerning
the utility of TI's programs and book materials are not to be
construed as express or implied warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, REGARDING THESE PROGRAMS OR BOOK
MATERIALS OR ANY PROGRAMS DERIVED THEREFROM AND MAKES

SUCH MATERIALS AVAILABLE SOLELY ON AN “AS IS” BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE
FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE
PURCHASE OR USE OF THESE PROGRAMS OR BOOK MATERIALS,
AND THE SOLE AND EXCLUSIVE LIABILITY OF TEXAS INSTRUMENTS,
REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED THE
PURCHASE PRICE OF THIS COMPACT COMPUTER. MOREOVER,
TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF
ANY KIND WHATSOEVER AGAINST THE USER OF THESE PROGRAMS

OR BOOK MATERIALS BY ANY OTHER PARTY.
Some states do not allow the exclusion or limitation of implied
warranties or consequential damages, so the above limitations

or exclusions may not apply to you.

L-6



INDEX M
INDEX

A

Absolute value—5-2, B-1

ABS function—4-37, 5-2, B-1

AC adapter—1-7

ACCEPT—4-27, 53

Accuracy—F-1

ACS function—2-7, 5-6, B-1

Adding lines—4-4

ADDMEM—3-4, 442, 57

Algebraic hierarchy—2-2, 4-20

Alphanumeric keys—1-11

AND—4-22, H-3

Antilogarithms—2-6

APPEND—4-54, 458, 5-89

Arccosine—5-6

Arcsine—59

Arctangent—5-10

Arguments, functions—2-5

—subprograms—4-40, 441, 5-14,
5-130

Arithmetic calculations—2-2

—operators—4-20

—operator keys—1-13

Arrays—4-16, 5-29

ASC function—4-35, 5-8, B-1

ASCII character codes—4-22,
4-34, D1

—characters—4-50, 5-18, 565,
566

—function (ASC)—4-35, 5-8, B-1

ASN function—2-7, 59, B-1

Assembly language programs—
4-42, 443, 5-35, 5-73

Assigning values—4-15, 5-3, 5-55,
5-68, 569, 5-107

Assignment statement (LET)—
568

Asterisks—5-50, 5-51

AT—5-3,5-30

ATN function—2-7, 5-10, B-1

ATTACH—4-42, 5-11

Attributes—4-53, 4-54, 5-88

Automatic Power Down
(APD)—1-10

Available memory—4-42, 5-40

M-

8

Back tab—4-11

BASIC—4-1, 445, 5143

—functions—4-37, B-1

—keyword keys—1-15, 1-17

—keywords—4-2, 44

Battery replacement—1-56

BEEP—5-3, 5-30

Binary notation—H-1

Bit manipulations—H-3

Blanks—1-11, 4-14, 4-27, 4-28,
5-78, 5129

BREAK—4-47, 4-48, 5-13

[BREAK] key—1-16, 4-3, 4-47

Breakpoints—4-47, 4-48, 5-13,
5-21, 580, 5139, I3

Buffer—4-55, 4-58

Bugs—4-48

C

Calculation accuracy—F-1
Calculations—2-1
CALL—4-40, 5-14, 5-130
—ADDMEM—3-4, 4-42, 57
—CHAR—4-44, 5-15
—CLEANUP—5-19
—DEBUG—5-25
—ERR—4-46, 4-47, 5-34
—EXEC—4-43, 5-35
—GETLANG—4-44, 541
—GETMEM—4-43, 542
—INDIC—4-44, 5-54
—10—3-7, 4-43, 563
—KEY—4-46, 565
—LOAD—4-43, 5-73
—PEEK—4-43, 593
—POKE—4-43, 5-95
—SETLANG—4-44, 5124
—VERSION—4-46, 5-143
Care of CC-40—1-4
—cartridges—3-2
Cartridge port—1-7, 3-2
Chain calculations—2-8, 2-9
CHAR—4-44, 5-15
Character—4-44, 5-15, 5-18
Checking a peripheral—3-8



INDEX M
INDEX

Checksum—G-1

CHRS$ function—4-35, 445 518
81 ’ ’

CLEANUP—4-46, 5-19

Clearing memory—1-10Q, 43 575

CLOSE—4+60, 5-20
[CLR] (clear) key—1-16
Coldstart—G-2
Column—5-3, 5-30
Comma—4-28, 598, 5-102, 5.103
Command level—J-10
Commands—4-5, A-1
Common logarithm—26, 5.74
Comparisons—4-22, 4-23, 4-31
Concatenation—4-21
Conditions—4-33, 5-47
Connecting peripherals—3-5
Constant Memory—1-10
Constants—4-13
CONTINUE—4-49, 5-13, 5-21
Control operations—5-18, 5-63
—statements—4-31
Copy memory—I-2
—program—5-122
COS function—2-7, §-22, B-1
Cosine—5.22
CTL indicator—1-16
[CTL] key—1-16
Cursor—1-10
—position—4-27,5-3, 5-30, 5-55,
569, 597
D
D command—I-1
DATA—4-18, 5-23, 5107, 5-113
Data format—4-50
—structures—J-8
Data-type—5-4
DEBUG—5-25
DEBUG monitor—4-46, 1-1
Debugging—4-48
Decimal field--5-50
—format—5-99
.—point—2-1, 549
DEG—5-26
Degrees—2-8, 5-26

460, 5'2062-:7
DIM-—4-16,
imensions—4#-16, 417
DISPLAY 428, 454, 5:30, 589
Display—1-18, 444
—commands—H
—-indicatorsaﬁ& 4-44
—memory—
Display-type data—4-50, 4-54,
5-58, 5102
Down arrow kay ¥ —4-10, 411
E
E—24
Edit keys—1-13, 4-10, 4-11
Editing—4-10
END—46, 5-32
[ENTER) key—1-12, 4-11
Entries—4-7
EOF—4-60, 5-33, B-1
ERASE ALL—5-3, 530
Erase Field—4-12
ERR—4-46, 5-34
Error code—4-13, 5-34, K-1
—handling—4-12, 4-46
—messages—K-1
—subroutine—5-116
—type—5-34, K-1
Errors—4-46, 5-82
Evaluation—2-2, 420, 4-24
Exclamation point—4-8, 5-111
EXEC—4-43, 5-35
Execute—|-4
Exit—1-6
EXP function—2-6, 5-36, B-1
Expanding memory—3-4, 4-42
Exponent—24, 550
Exponential fisld—5-50
Exponentiation symbol—1-13,
549

Expressions—4-20
External devices—4-49



INDEX M
INDEX

F

Fields—4-51

File—4-49, 451, 4-52

—number—4-53, 5-88

—organization—4-52

File-number—5-88,

Files—4-49, 5-20, 5-27, 5-33, 5-88,
5113

Flashing cursor—1-17

Flow—4-31

FN indicator—1-15

[FN] (function) key—1-15, 1-18

FOR TO STEP—4-6, 4-31, 5-37

Format—4-29, 5-49, 5-99, 5-140

FORMAT—4-9, 452, 5-39

FRE function—4-42, 5-40, B-1

Functions—2-5, 45, B-1

Q

GETLANG—4-44, 5-41
GETMEM—443, 542
GOSUB—4-39, 5-44
GOTO—4-32, 545
GRAD—546 .
—indicator—2-6, 546
Grads—26

H

Hardware—J-1

HEX-BUS interface—3-1, 3-5, J-11
Home—4-12

[

IF THEN ELSE—4-33, 547
IMAGE—4-14, 4-29, 549
Immediate execution—4-5, A-1
Increment—4-31
Indicators—4-44, 554
INDIC—4-44, 5-54
Initialization—G-2
Initialize—1-10, 5-39
—variables—4-15, 442, 5-11
INPUT (with files)—4-55, §-58
—(with keyboard)—4-26, 555
—mode—5-89
Insertion—4-11

INT function—4-37, B-1

M-3

INTERNAL—4-50, 4-54, 5-89
INTRND function—5-62, B-1
110 error code—K-13
I/0 indicator—1-18, 3.7, 449
10 subprogram—3-7, 4-43, 563
Installing cartridges—3-2
Integer field—5-50
—random number—4-38, 562
—function (INT)—4-37, 561
Internal counter—4-53
—representation—F-2
—format—4-50, 4-54
Internal-type data—4-50
format, 5-68
—files—5-103

K

KEY—4-46, 565

KEY$ function—4-24, 4-27, 4-35,
566, B-1

Keyboard—1-8

Keycodes—D-1

Keywords—4-2, 44

L

Language—4-44, 541, 5-124

LEN function—4-35, 5-67, B-1

Left arrow key ¢ —1-13, 4-10, 4-11

LET—5-68

Line length—4-8

—numbering—4-3, 44, 47, 5-77,
5112

—numbers—4-7, 577

Line-number error—5-34

LINPUT—4-27, 4-58, 569

LIST—4-3, 4-49, 5-71

Literal field—5-51

LN—5-72, B1

LOAD—4-43, 5-73

LOG—5-74, B-1

Logarithm—2-6, 6-72, 5-74

Logical expressions—4-22

—operations—H-1

—operators—4-22

Loop—46, 4-31, 5-37, 5-76



INDEXM
INDEX

M
Magnitude—2-4
Mantissa—2-4, 5-50
Mathematical functions—2-5
Memory Expansion
cartridges—3-1
Memory—4-42, 4-43, 5-40, 5-42,
575, 595, 5-110
—expansion—4-42, 5-7, J-9
—organization—J-2
—requirements—J-7, J-8
Microprocessor—I-3
Modify memory—I-2
Monitor—4-46
Multiple statements—4-8

N

Natural logarithm—2-6, 5-72
Negative values—2-1, 428
Nested loop—4-32, 5-37
NEW—5-75

NEW ALL—1-19, 5-7, 5-46, 5-75
NEXT—5-37, 5-76
NOT—4-22, 4-23, H-3
NULL—5-3

Null string—4-15, 4-22, 5-29
NUM—5-77

NUMBER—4-7, 5-77
Number keys—2-1
—sign—5-49
NUMERIC—4-37, 5-78, B-1
Numeric array—4-16
—comparison—4-22
—constant—4-13, 4-37, 5-78

—expressions—4-20, 5-97, 5-102,

5103
—format—5-99
—items—4-50
—keys—1-12
—values—4-28
—variable—4-15

0

[OFF] key—1-10
OLD—49, 449, 579
ON BREAK—4-47, 5-80

ON BREAK ERROR—5-80
ON BREAK NEXT—5-80
ON BREAK STOP—5-80
ON ERROR—4-46, 5-82
ON ERROR STOP—5-82
ON GOSUB—4-39, 584
ON GOTO—4-33, 585

[ON] key—1-10

ON WARNING—4-48, 586
ON WARNING ERROR—5-86
ON WARNING EXIT—5-86
ON WARNING PRINT—5-86
OPEN—4-50, 4-53, 588
Open-mode—4-54
Operators—4-20, 4-21, 4-22
OR—4-22, H-3

Order of execution—4-24
Order of operations—2-2
Output—4-24, 4-28
OUTPUT mode—4-54, 589
Overlay—1-15

P

Paging—I4

Parameters—4-40, 5-130

Parentheses—2-3

PAUSE—4-25, 591

PAUSE ALL—4-25, 591

PEEK—4-43, 593

Pending print—4-25, 4-30, 458,
598, 5-103

Peripheral devices—4-49, 563

—file—J-4

—port—1-6

Peripherals—35

Pl function—2-1, 5-94, B-1

Playback—1-14, 2-10, K-1

POKE—4-43, 595

POS function—4-36, 5-96, B-1

Positive values—4-13, 4-28

Power down—G-2

—up—G-1

PRINT (with files)—4-58, 5-101

PRINT (with display)—4-28, 597

M-4



INDEX M
INDEX

Print separators—5-98, 5-102,
5103

Print-list—5-31, 5-97, 5-101

Program counter—I-3

—execution—4-2, 49, 591, 5-120

—flow—4-31

—image—J-7

—lines—5-71

—storage—4-9, 5122

-—termination—4-6, 5-32, 5-128

Prompts—4-44, 5-41, §-55, 569,
5124

PROTECTED—4-9, 5-122

R —

RAD Indicator—2-6

RAD—5-75, 5-105

Radians—2-6, 5105

Radix-100—F-2

Random access—4-52

—memory—5-7

Random number—4-38, 5-62,
5106, 5-118

RAM—57,J1 |

RANDOMIZE—5-106

READ—4-18, 4-19, 5-107

REC—452, 5-101, 5-113

Record length—4-51

Records—4-51

Reference, arguments—4-41,
5-131

Register file—J-3

Relational expressions—4-21

RELATIVE—4-54, 5-89

RELATIVE file—4-52

RELEASE—4-42, 5-108

RELMEM—5-110

REM—438, 5-111

Remarks—4-8, 5111

REN—6-112

RENUMBER—4-7, 5-112

Repetitive calculations—2-10

Reserve memory—4-43, 5-42

Reserved word—C-1

Reset key—1-17

M-5

RESTORE—4-19, 452, 461,
5107, 5113

RETURN with GOSUB—4-39,
5-115

RETURN with ON ERROR—4-47,
5116

Right arrow key $—1-13, 410,
411

RND function—4-38, 5-118, B-1

RPT$ function—4-36, 5-119, B-1

RUN—5-120

[RUN] key—1-16

S

SAVE—49, 449, 5-122

Scientific notation—2-4, 599

SEG$—4-36, 5-123, B-2

Semicolon—4-28, 5-98, 5102,
5103

Separators—4-8, 5-97, 5-101

Sequential—4-52, 5-89

SETLANG—4-44, 5-124

SGN—4-37, 5-125, B-2

SHIFT INDICATOR—1-11

(SHIFT] key—1-11, 1-15

(SHIFT] [DEL} key—1-14, 411

{SHIFT] [INS] key—1-14, 4-11

{SHIFT] [PB] key—1-14, 2-10, 4-11

Sign—4-37, 5-125

Signum function—5-125

SIN function—2-7, 5126, B-2

Sine—5-126

Single stepping—14

SIZE—4-28, 5-3, 530

Solid State Software cartridges—
31,5-120

Solid State Software programs—
34

SQR function—5-127, B-2

Square root—5-127

Stack pointer—I-3

Statement—4-5, A-1

Status register—I-3

STEP—5-37

STOP—4-6, 5-32, 5-128



S
TEXAS INSTRUMENTS

INCORPORATED
Printed in US.A, Dallas, Texas 1052906-1



INDEX M
INDEX

String array—4-16

—comparisons-4-22

—constant—4-14

—expressions—4-21, 597, 5-102,
5103

—field—5-51

—items—4-51

—length—4-22, 4-35, 5-67, 5-119

—~—manipulation—4-34

—position—4-36, 5-96

—repeated—4-36, 5-119

—representation—5-129

—values—4-28

—variable—4-15

STR$ function—4-36, 5-129, B-2

SUB—4-40, 5-130

SUBEND—4-40, 5-134

SUBEXIT—4-40, 5-135

Subprograms—3-4, 4-40, 5-11,
5-14, 5-108, 5-130, 5-134, 5-135

Subroutines—4-39, 5-44, 5-84,
5115

Subscript—4-16

Substring function (SEG$)—4-36,
5123

System RAM—J-6

T

Tab—4-11

TAB function—4-29, 5-97,
5102, 5-136, B-2

Tail remark symbol—4-8, 5-111

TAN function—2-7, 5-138, B-2

Tangent—5-138

Transfer control—4-31, 4.39, 5-47,

585, 5-115, 5116
Trigonometric calculations—E-1
—conversions—E-2
—identities—E-2
—restrictions—E-1
1)

UCL indicator—1-12
[UCL] upper case lock key—1-12
UNBREAK—4-49, 5-139

Underline cursor—1-17, 4-3, 5-91

Up arrow key 4+—4-10, 4-11

UPDATE mode—4-54, 5-89

Upper-case—4-4

User-assigned strings—1-18,
1-19, 2-11

USING—4-29, 530, 5101, 5140

'/

VAL function—4-36, 5-141, B-2

VALIDATE—5-3

Validating date—4-27

Validations—5-56

Value, argument—4-41, 5-131

VARIABLE—4-54, 5-89

Variable assignments—2-1, 4-15,
4-55, 568

Variables—4-14, 4-40, 4-41, 5-I1
5-19, 5-23, 5107, 5-108, 5-131

Verification—5-142

VERIFY—4.9, 4-49, 5-142

VERSION—4-46, 5-143

w
Warmstart—G-1
Warning—4-48, 5-86

X
XOR—4-22, 4-23, H-3

M6



